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Conventional chemotherapy for cancer treatment is usually compromised by

shortcomings such as insufficient therapeutic outcome and undesired side effects. The

past decade has witnessed the rapid development of combination therapy by integrating

chemotherapy with hyperthermia for enhanced therapeutic efficacy. Near-infrared (NIR)

light-mediated photothermal therapy, which has advantages such as great capacity of

heat ablation and minimally invasive manner, has emerged as a powerful approach

for cancer treatment. A variety of nanomaterials absorbing NIR light to generate

heat have been developed to simultaneously act as carriers for chemotherapeutic

drugs, contributing as heat trigger for drug release and/or inducing hyperthermia

for synergistic effects. This review aims to summarize the recent development

of advanced nanomaterials in chemo-photothermal combination therapy, including

metal-, carbon-based nanomaterials and particularly organic nanomaterials. The

potential challenges and perspectives for the future development of nanomaterials-based

chemo-photothermal therapy were also discussed.

Keywords: cancer, nanomaterials, NIR responsive, chemo-photothermal therapy, synergistic effect

INTRODUCTION

Traditional chemotherapy, typically the main treatment for late stage cancer or adjunct method
for surgery in early stage cancer, usually suffers severe systemic toxicity due to the unspecific
cytotoxicity of chemotherapeutic drugs for both cancerous and normal cells (Cobley et al., 2010;
Mahmoudi et al., 2011; DeSantis et al., 2014). As a result, the outcome of chemotherapy is often
limited by safe dosage, generating insufficient drug concentration in tumor site. Moreover, drug
resistance is possibly developed to further hamper the overall efficacy during the treatment course
(Holohan et al., 2013). Thus, it is urgent to improve specific delivery to reduce side effects, and
optimize the therapeutic efficacy at a lower tolerance dose.

Hyperthermia as cancer therapy refers to the treatment of cancer through heating and has
been used in various forms since the original study pioneered by Coley in the end of nineteenth
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century (Mallory et al., 2016). Although it can be used alone,
hyperthermia is most often used in combination with other
therapeutic modalities including chemotherapy and radiation
therapy. Hyperthermia typically falls under three categories:
local hyperthermia, regional hyperthermia, and whole-body
hyperthermia. Clinical application of heat can be induced by
radiofrequency, microwave, ultrasound, or perfusion methods
(Falk and Issels, 2001). While these methods heat tissues
efficiently, they also cause either a risk of systemic toxicity from
whole-body hyperthermia exposure, require invasive surgery or
probe, ormay damage normal tissues due to non-targeted heating
in local region (Wust et al., 2002). Thus, photothermal therapy
has been proposed as a promising modality for hyperthermia
treatment. Compared with other methods, light is an ideal
external stimulus as it is easily regulated, focused, and remotely
controlled. The ease of control and focus enables better targeted
treatments and leads to less damage in healthy tissues.

NIR photothermal therapy as an emerging strategy, utilizing
NIR laser-generated heat to conduct cancer treatment, has
gained increasing attentions (Peng et al., 2011; Wu et al., 2013;
Yue et al., 2013). In NIR window, NIR light is minimally
absorbed by endogenous absorbers in tissues, which offers deeper
tissue penetration in vivo (Weissleder, 2001; Weissleder and
Ntziachristos, 2003). Besides the heat ablation for direct cell
killing in tumor, NIR light-induced mild hyperthermia can
increase vascular permeability in tumor tissues with newly
formed immature blood vessels, which brings specific drug
accumulation and enhanced cytotoxicity (Hauck et al., 2008;
Park et al., 2009). Various kinds of nano-structured materials,
including both organic and inorganic nanomaterials, have been
designed and applied for photothermal therapy as shown in
several excellent reviews (Jung et al., 2018; Khafaji et al., 2019;
Vines et al., 2019). However, due to the non-uniform heat
distribution and restricted laser power to avoid normal tissue
damage, the photothermal therapy alone is unlikely to eradicate
tumor completely (Wang H. et al., 2013; Luo et al., 2017).

To address these issues, nanomaterials-based combination of
chemotherapy and hyperthermia has exhibited the effectiveness
in optimizing the efficacy for cancer treatment (You et al.,
2012; Zheng et al., 2013; Wang L. M. et al., 2014). It is well-
known that nanomedicines can preferentially accumulate in
tumor site through passive targeting via enhanced permeability
and retention (EPR) effect, or active targeting via surface-
conjugated molecules (Jain and Stylianopoulos, 2010; Kratz
and Warnecke, 2012). Their unique physicochemical properties
also offer different pharmacokinetics and in vivo distribution
for loaded chemotherapeutic agents (Ernsting et al., 2013).
In another hand, nanomaterials-mediated NIR photothermal
therapy is finely localized inside the tumor region, and the
hyperthermia is tunable simply by controlling the timing and
intensity of the extrinsic energy source (Kim et al., 2016). It
has been widely accepted that combined chemo-photothermal
therapy based on nanomaterials exhibits remarkable advantages
over single cancer treatment. Generally, co-delivery of cytotoxic
drugs and hyperthermia can simultaneously exert two benefits to
improve cancer treatments, and combined chemo-photothermal
therapy usually generates synergistic effect. Photothermal

ablation coupled with targeted drug delivery can synergistically
enhance therapeutic index via different manner: (i) elevating
cell membrane permeability; (ii) augmenting drug cytotoxicity
(Hahn et al., 1975; Overgaard, 1976); (iii) triggering drug release
at target region. This can be especially significant in treating
cancers with multidrug resistance (MDR) (Wang L. M. et al.,
2014). So far, there have been several related reviews published,
reporting either organic or inorganic nanomaterials for chemo-
photothermal combination therapy (Zhang et al., 2013; Zhang
A. et al., 2018; Khafaji et al., 2019). Considering the rapid
development of this research area, we believe it is highly desirable
and important to systematically summarize the recent advances
in combined chemo-photothermal therapy based on both organic
and inorganic nanomaterials.

Herein, we will review the recent efforts to design and
construct nanomaterials for cancer chemo-photothermal
therapy. This topic will be presented based on the properties and
classifications of nanomaterials applied as photothermal agents
and nanocarriers. Upon briefly elaborating new progress in
metal and carbon nanomaterials mediated chemo-photothermal
therapy, organic nanomaterials-based combination therapy was
discussed in particular. Material design and formulations for
integrated drug delivery and NIR-responsive hyperthermia are
highlighted on the background of their potential capacity in
optimizing efficacy of cancer treatment.

METAL NANOMATERIALS-BASED
CHEMO-PHOTOTHERMAL THERAPY

Gold Nanoparticles
As is well-known, gold nanoparticles (AuNPs) have been
widely investigated in biomedical fields due to their unique
size- and shape-dependent optical and photothermal properties,
originating from localized surface plasmon resonance (LSPR)
where collective oscillation of electrons occurs on the surface of
AuNPs after light absorption at a certain frequency (Cobley et al.,
2011; Dreaden et al., 2012; Saha et al., 2012). Following excitation
of LSPR by NIR laser, the attenuation of resonance energy can
occur through radiative and non-radiative relaxation, generating
localized heat to surrounding medium. The heat converted
from absorbed NIR light can be used to perform hyperthermia
or trigger drug release in delivery systems (Hu et al., 2006;
Dykman and Khlebtsov, 2012; Llevot and Astruc, 2012). AuNPs
also exhibit chemical inertness and good biocompatibility in
biological tissues (Khlebtsov and Dykman, 2011). All these
properties make AuNPs a promising candidate for effective
chemo-photothermal combination therapy (Figure 1). The
synthesis of AuNPs with controlled size and morphology has
obtained various nanostructures such as gold nanorods (Xiao
et al., 2012; Ren et al., 2013; Shen et al., 2013; Manivasagan et al.,
2019), gold nanoshells (Lee et al., 2010; Liu et al., 2011), hollow
gold nanospheres (You et al., 2010, 2012), gold nanocages (Yavuz
et al., 2009; Shi et al., 2012; Feng et al., 2019), and gold nanostar
(Li M. et al., 2016; Zhang L. et al., 2016), whose LSPR absorption
features can be finely tuned to NIR region. However, weak
interactions between anticancer drugs and naked Au surface
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FIGURE 1 | AuNPs-based nanoplatforms for NIR light-responsive chemo-photothermal therapy. Hollow gold nanospheres, reproduced with permission from You

et al. (2012); Gold nanorods, reproduced with permission from Xiao et al. (2012); Gold nanocages, reproduced with permission from Yavuz et al. (2009); Gold

nanstars, reproduced with permission from Li M. et al. (2016); Gold nanoshells, reproduced with permission from Park et al. (2009); Gold Janus nanoparticles,

reproduced with permission from Zhang L. et al. (2016).

make them hardly attach to AuNPs for in vitro or in vivo co-
delivery application. Thus, extra outer/inner layer for molecule
absorption or pore-blocking strategy have been widely developed
to load drug molecules for chemo-photothermal therapy. For
example, thermo-sensitive amphiphilic block polymer, lipoic
acid conjugated poly(ethylene glycol)-b-poly(ε-caprolactone),
was employed to coat AuNRs surface for DOX loading via
hydrophobic interactions. Light-triggered drug release after
NIR irradiation was achieved due to the phase transition
of poly(ε-caprolactone) on the AuNRs surface (Zhong et al.,
2013). Mesoporous silica has also been widely explored to
decorate AuNPs for drug delivery. High surface area, tunable
pore size, and good biocompatibility make them suitable to
augment drug loading capacity. For instance, mesoporous silica-
coated AuNRs were developed to encapsulate DOX for chemo-
photothermal therapy, exhibiting light-controlled drug release

under low-intensity NIR laser irradiation (Zhang et al., 2012).
DNA molecules can also serve as capping agents on the surface
of AuNPs to realize drug encapsulation and release. DNA duplex
strands, consisting of sequential CG base pairs, provide DOX
loading sites on the AuNRs surface. Photothermal effects trigger
de-hybridization of double-strand DNA by raising temperature
higher than melting temperature to release DOX under light-
controlledmode (Xiao et al., 2012). Hollow gold nanospheres and
gold nanocages themselves could be employed as nano-carriers
to load drugs into both outer and inner space. A well-known
AuNC-based system was fabricated by coating AuNC surface
with thermo-sensitive polymer [poly-(N-isopropylacrylamide),
pNIPAAm] as pore blockers. Following temperature rise above
a certain threshold, pNIPAAm layer collapsed and the pores on
nanocages were exposed for interior drug release (Yavuz et al.,
2009). The state of the art of AuNPs-based chemo-photothermal
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FIGURE 2 | Different copper chalcogenides nanocrystals mediated chemo-photothermal therapy. (A) Schematic illustration and TEM image of PEG-Fol-Cu2S

nanoparticles, and photoexcitation mediated drug release. Reproduced with permission from Poulose et al. (2015). (B) Schematic illustration and TEM image of

Cu2−xSe@mSiO2-PEG nanoparticles, and synergistic effects on cell viability and tumor volume. Reproduced with permission from Liu et al. (2014). (C) TEM image of

PEG-Cu2−xTe nanocubes and effects of chemo-photothermal treatment on cell viability and cellular apoptosis. Reproduced with permission from Poulose et al. (2016).

therapy has been wonderfully summarized in some review
articles (Wang H. et al., 2013; Zhang et al., 2013; Ai et al., 2016;
Kim et al., 2016).

Despite the tremendous attentions and encouraging results
on AuNPs, some important issues should be addressed before
further applications. On the one hand, AuNPs are subject to
deformation upon high-power laser irradiation, leading to loss
of LSPR absorption in the NIR region (Opletal et al., 2011;
Young et al., 2012). On the other hand, the in vivo long-term
toxicity and clearance pathways of AuNPs are still uncertain
and require further study. To date, some studies have unveiled
potential factors that have effect on AuNPs cytotoxicity. It is
believed that surface charge and particle size are likely to be
the most influential factors. It was reported that half the dose
of positively charged 5 nm AuNPs were excreted after 5 days,
while only about 10% of the dose of negatively or neutrally
charged 5 nm particles were excreted (Balogh et al., 2007). Most
of AuNPs accumulations occur within liver and spleen after

intravenous injection of PEG-coated AuNRs (Glenn et al., 2010).
Moreover, chronic inflammation was observed in tissues around
these AuNPs, despite the unclear long-term consequence under
this type of chronic inflammation. In vivo observation of AuNPs
only take place up to 6 months in animal models, leaving
unanswered questions about the potential influence on health
over long time course.

Palladium Nanosheets and Copper
Chalcogenides Nanocrystals
Another noble metal-based nanostructure, Pd nanosheets, has
also been developed to conduct chemo-photothermal therapy.
Pd nanosheets exhibit tunable LSPR peaks in the NIR region, as
well as photothermal stability, thermal transformation efficiency
and biocompatibility (Huang et al., 2011). To facilitate the
hyperthermia-assisted chemotherapy, Pd nanosheets were
deposited onto hollow mesoporous silica particles or coated
with a mesoporous silica layer to achieve drug release under
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NIR irradiation and low pH (Fang et al., 2012a,b). Besides noble
metal-based nanomaterials, copper chalcogenides nanocrystals
have been supposed to be a promising photothermal agent in
biomedical applications. Being p-type semiconductors, copper
chalcogenides nanocrystals provide composition-dependent
LSPR in NIR region and high photothermal conversion
efficiency (Hessel et al., 2011; Lie et al., 2014). Kumar et al.
decorated Cu2S nanocrystals with polyethylene glycol (PEG)
and folate (PEG-Fol-Cu2S) to physically absorb doxorubicin
(DOX) for multimodal therapeutics against brain cancer cells
(Poulose et al., 2015). The folate targeted photothermal ablation
in synergism with photo-responsive DOX release proved to be
a rapid precision guided cancer-killing module (Figure 2A). Hu
et al. reported a low-toxic di-functional nanoplatform based
on Cu2−xSe@mSiO2-PEG core-shell nanoparticles for cancer
treatment (Liu et al., 2014). DOX was loaded into mesoporous
silica shell, and the release of DOX can be triggered by pH and
NIR laser, resulting in a synergistic effect in anti-tumor therapy.
The chemo-photothermal therapy driven by NIR radiation with
safe power density significantly improved the therapeutic efficacy
(Figure 2B). In another work, DOX loaded PEG-Cu2−xTe
nanocubes were developed for treatment of hypermethylated
breast cancer cells (Poulose et al., 2016). PEG-Cu2−xTe/DOX
nanocubes conducted highly effective chemo-photothermal-
photodynamic therapy to overcome hypermethylated cancer
cells resisting to chemotherapeutic drugs (Figure 2C).

Two-Dimensional Transition Metal
Dichalcogenides
In recent years, a class of two-dimensional transition metal
dichalcogenides (2D TMDCs) has attracted tremendous
attention. 2D TMDCs are typically made up of a layer of
transition metal atomssandwiched between two layers of
chalcogen atoms. Their generalized formula is MX2, where M
is a transition metal of groups 4-10 (Mo, W, Ti, Ta, Zr, V, Nb,
etc.) and X is a chalcogen (Chhowalla et al., 2013). Single-layered
2D TMDCs exhibit superior properties, such as strong NIR
absorbance, high photothermal conversion efficiency as well
as good photothermal stability, offering the possibility to be
excellent photothermal agents (Wang C. et al., 2016; Zhu et al.,
2017). Moreover, the ultra-high surface area of 2D TMDCs
endows themselves with efficient cargo loading ability as drug
carriers for chemotherapy.

Meng et al. prepared aptamer conjugated PEG-MoS2/Cu1.8S
nanosheets (ATPMC) as multifunctional platforms for chemo-
photothermal therapy (Meng et al., 2017). ATPMC nanoplatform
possessed superb photothermal conversion efficiency due to
the interactions of MoS2/Cu1.8S nanocomposites. DOX
loaded ATPMC displayed NIR laser-induced programmed
chemotherapy and advanced photothermal therapy, and the
targeted chemo-photothermal therapy presented excellent
antitumor efficiency (Figure 3A). In another work, flower-like
MoS2 nanoparticles coated with bovine serum albumin (BSA)
were successfully fabricated to load DOX for cancer treatment
(Chen L. et al., 2016). Fabricated MoS2@BSA-DOX exhibited
high photothermal conversion efficiency as well as intelligent

drug release. Combination of DOX release and photothermal
treatment displayed better therapeutic efficacy than single
photothermal therapy or chemotherapy (Figure 3B). Kim et al.
reported a photothermally controllable DOX-MoS2@SiO2-
PEG nanoplate as functional drug delivery carrier (Lee et al.,
2016). DOX release was facilitated by external NIR laser
irradiation under acidic pH. Enhanced anticancer effect of
DOX-MoS2@SiO2-PEG was achieved by the combination of
heat damage and enhanced DOX release as well as endosomal
escape (Figure 3C).

Beside MoS2 nanosheetes, other 2D TMDCs have also
been studied for the application of chemo-photothermal
therapy (Wang Y. et al., 2019). Jiang et al. successfully
prepared MoSe2@PDA-DOX to be applicable for multi-
modal chemo-photothermal therapy (Wang C. et al., 2016).
MoSe2@PDA-DOX nanocomposites showed high loading
efficiency and NIR-responsive DOX release. Synergistic therapy
significantly inhibited cancer cell viability, and suppressed
in vivo tumor growth (Figure 3D). In addition, Liu et al.
fabricated WS2nanosheets with iron oxide (IO) nanoparticles
on surface, subsequently coated with mesoporous silica shell
and PEG (Yang G. B. et al., 2015). The obtained WS2-IO@MS-
PEG nanocomposites exhibited high NIR light and X-ray
absorbance as well as NIR-responsive DOX release. Chemo-
photothermal therapy based on WS2-IO@MS-PEG/DOX
achieved a remarkable synergistic effect superior to the
respective mono-therapies (Figure 3E).

As other metal nanomaterials, biosafety is one of the most
concerning issues for 2D TMDCs in biomedical applications,
while the knowledge about toxicity for 2DTMDCs is very limited.
Till now, only a few 2D TMDCs have been tested for their
in vitro and in vivo cytotoxicity, and further studies should
be systematically carried out to examine their acute and long-
term cytotoxicity.

CARBON-BASED
CHEMO-PHOTOTHERMAL THERAPY

Over the past few decades, a range of carbon nanoallotropes
with surprising properties and diverse potential applications
have been discovered, such as carbon nanotubes (Iijima, 1991),
graphene (Novoselov et al., 2004), carbon dots (Xu et al., 2004),
fullerene (Kroto et al., 1985), and nanodiamonds (Niwase et al.,
1995). The majority of the interest in carbon nanomaterials
for biomedical applications relates to bio-imaging and cancer
treatment because of their extraordinary photon-to-thermal
conversion efficiency and ultrahigh surface area (Lim et al.,
2014), as well as the ability to integrate different biomolecules
and drugs on a nanoscale platform, generating advanced hybrid
delivery systems.

Graphene/Graphene Oxide
Graphene is a two-dimension shaped carbon nanoallotrope, in
which carbon atoms are arranged in a single atom thick sheet
packed into a honeycomb lattice (Novoselov et al., 2004). The
unique feature of graphene provide tremendous tunable surface
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FIGURE 3 | 2D TMDCs for combined chemo-photothermal therapy. (A) Schematic illustration of DOX loaded ATPMC for NIR-laser irradiation-induced chemotherapy.

TEM image of MoS2/Cu1.8S nanosheets and tumor volume change with different treatments (*P < 0.01 compared with control group; #P < 0.01 compared with

ATPMCD group). Reproduced with permission from Meng et al. (2017). (B) FESEM image of MoS2@BSA nanoparticles and combined therapeutic efficacy of

MoS2@BSA-DOX in 4T1 cells (**P < 0.01 compared with MoS2@BSA-DOX + NIR group). Reproduced with permission from Chen L. et al. (2016). (C) TEM image of

MoS2@SiO2-NH2 nanoplates and NIR-induced cytotoxicity of DOX-MoS2@SiO2-PEG against HepG2 cells (**P < 0.01). Reproduced with permission from Lee et al.

(2016). (D) TEM image of MoSe2@PDA nanocomposites and tumor growth curves of different treatments. Reproduced with permission from Wang C. et al. (2016).

(E) TEM image of WS2-IO@MS-PEG and growth of 4T1 tumors in different groups of mice after various treatments (***P < 0.001, *P < 0.05). Reproduced with

permission from Yang G. B. et al. (2015).

with great mechanical Young’s modulus, fracture strength,
electrical, thermal and optical properties (Yang et al., 2010;
Feng and Liu, 2011). Graphene oxide (GO) is a highly oxidized
form of graphene that is comprised of single atom carbon sheet
with carboxylate groups on the border areas, and hydroxyl,
epoxide groups on the basal surface. Carboxylate groups provide
negatively charged surface and colloidal stability, whereas basal
planes offerπ-π interaction for the absorption of drugmolecules.
Like other nanomaterials-based photothermal agents, PEGylated
GO and reduced GO exhibit highNIR absorbance and capacity in
photothermal treatment (Robinson et al., 2011; Yang et al., 2012a;
Zaharie-Butucel et al., 2019). Meanwhile, due to the ultrahigh
surface area and delocalized π electron, many anticancer
agents such as camptothecin (CPT), DOX, and 7-ethyl-10-
hydroxycamptothecin (SN38) have been successfully loaded onto
the GO surface (Li et al., 2006; Zhang et al., 2010; Bao et al., 2011;
Pan et al., 2011). The works concerning on nano-graphene based
chemo-photothermal therapy have been well-reviewed (Yang
et al., 2013; Orecchioni et al., 2015; Rahman et al., 2015; Yang
K. et al., 2015). For biomedical application of nano-graphene,

one of the critical issues is still the potential long-term toxicity in
biological systems (Kiew et al., 2016). It is urgent to figure out that
whether and how nano-graphene would be gradually degraded in
living body, which is essentially unclear at present and needs a lot
more efforts in future studies.

Carbon Dots and Mesoporous Carbon
Nanoparticles
Carbon dots (C-dots) are quasi-spherical carbon nanoparticles
with diameters of 2–10 nm, and consist of oxygen, nitrogen
elements and other doped heteroatoms (Baker and Baker,
2010). Due to their high quantum yield, superior chemical
and photostability, low cytotoxicity and low cost, C-dots are
generally regarded as a promising candidate in cancer therapeutic
applications (Zhao et al., 2015; Zheng et al., 2015; Wang and
Qiu, 2016). Gomes et al. prepared PEG2000 passivated nitrogen-
doped C-dots (CND-P) to remotely initiate the delivery of
DOX in 3D cultured MCF-7 cells (Ardekani et al., 2017).
CND-P possessed high drug loading capacity with the ability
to release DOX under two-photon excitation. CND-P/DOX
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FIGURE 4 | C-dots- and MCNs-based chemo-photothermal therapy. (A) Schematic illustration of CND-P and cell viability with different treatments. Reproduced with

permission from Ardekani et al. (2017). (B) Schematic illustration of GdN@CQDs/GP and relative tumor volume of tumor-bearing mice after various treatments.

Reproduced with permission from Zhang et al. (2017a). (C) Schematic illustration of MCNs, and cytotoxicity assays of MDA-MB-231 cells under different treatments.

Reproduced with permission from Zhou et al. (2015). (D) Schematic illustration of FPC-NCs and in vitro cytotoxicity after various treatments. Reproduced with

permission from Wang H. et al. (2015).

mediated chemo-photothermal treatment was superior to single
treatment of CND-P or DOX in killing efficiency (Figure 4A).
Moreover, magnetofluorescent C-dots were also reported as
chemo-photothermal therapeutic agents (Zhang et al., 2017a,b).
For example, Zhou et al. prepared Gd doped magnetofluorescent
C-dots (GdN@CQDs) as drug carriers, followed with cross-
linking by genipin to form multifunctional delivery system
(GdN@CQDs/GP-DOX) with pH- and NIR-triggered drug
release (Zhang et al., 2017a). GdN@CQDs/GP demonstrated
strong NIR absorption and high photothermal conversion
efficiency. Upon laser irradiation, GdN@CQDs/GP-DOX has the
ability to achieve synergistic therapeutic effect (Figure 4B).

Recently, mesoporous carbon nanoparticles (MCNs) have
received considerable attention in the family of carbon-
nanomaterials (Fang et al., 2010). This growing interest
stems from their intrinsic properties, such as high surface
areas, large pore volumes, and well-defined surface properties,
offering significant advantages as drug carrier on the basis
of higher loading capacity and biologic inertness without
cytotoxicity (Karavasili et al., 2013). Furthermore, MCNs
could also be used as NIR-absorbing nanomaterials with
high photothermal conversion efficacy (Dong et al., 2016;
Wang X. et al., 2019). Qu et al. developed hyaluronic
acid surface-modified MCNs (MCNs-HA) as nanocarriers
for effective dual-triggered synergistic cancer therapy (Zhou
et al., 2015). This system was sensitive to both intracellular
hyaluronidase-1 and GSH level to release loaded DOX.
In combination with photothermal therapy, DOX-MCNs-
HA showed effective therapeutic efficiency toward target

cells (Figure 4C). In another study, hollow porous carbon
nanoparticles with C-dots embedded in carbon shell (FPC-NCs)
were fabricated (Wang H. et al., 2015). Such prepared FPC-NCs
demonstrated great potential to combine multiple functions for
simultaneous two-photon cell imaging, responsive drug delivery,
and photothermal therapy. DOX-loaded FPC-NCs manifested
NIR-responsive drug release and combined chemo-photothermal
therapy (Figure 4D).

ORGANIC NANOMATERIALS-BASED
CHEMO-PHOTOTHERMAL THERAPY

In spite of the excellent photothermal conversion efficiency,
the poor biodegradability and potential long-term toxicity of
inorganic nanoparticles are still major obstacles for their clinical
applications in the future (Jung et al., 2018). In this regard,
organic nanoparticles usually exhibit optimized biodegradability
and biocompatibility as an alternative approach for combined
chemo-photothermal therapy in cancer treatment (Shi et al.,
2017; Pierini et al., 2018). Additionally, organic nanoparticles
have other attractive advantages such as facile preparation
under mild conditions, desirable photothermal features based on
easily tuning molecular structures, and satisfactory drug loading
efficiency (Yue et al., 2017). In this section, we will mainly
talk about small molecular NIR dyes, conjugated polymers and
melanin-like polydopamine based organic nano-systems and
their applications in synergistic chemo-photothermal therapy.
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Small Molecular NIR Dyes
Over the past few years, small molecular NIR dyes have attracted
lots of attention mainly due to their excellent performance
in fluorescent imaging and the ease of tuning photothermal
features through elaborate chemical design and synthesis. In
principle, these organic dyes with strong NIR absorbance can
serve as photothermal agents as well (Song et al., 2015).
Therefore, nano-systems containing NIR dyes can be easily
designed as a nano-platform for multifunctional theranostics.
To date, the well-studied NIR dyes include porphyrin, cyanine
derivatives, borondipyrromethane dyes, diketopyrrolopyrrole
derivatives and so on (Cai et al., 2018). Direct use of
NIR dyes is mainly hindered by the rapid blood clearance
following with undesired aggregation caused by the poor aqueous
solubility/stability and non-specific protein adsorption (Chen
Y. J. et al., 2016). From this point of view, NIR dyes are
similar to many anticancer drugs which usually need to be
administrated in the form of nano-formulations to improve
therapeutic efficacy. Therefore, rational design of nano-systems
with drugs/NIR dyes either encapsulated or conjugated is of
great significance to achieve favorable synergistic outcomes of
chemo-photothermal therapy.

The simplest way to combine NIR dyes and chemotherapeutic
drugs is co-encapsulation in one nanoparticle by physical
interactions. Cai et al. prepared poly(lactic-co-glycolic acid)
(PLGA)-lecithin-PEG nanoparticles (DINPs) containing both
DOX and indocyanine green (ICG) by a single-step sonication
method (Zheng et al., 2013). ICG is the quintessential NIR dye
and has been approved by US Food and Drug Administration
(FDA) for several clinical applications (Sheng et al., 2013; Porcu
et al., 2016). The stability of ICG was significantly improved
by encapsulation in DINPs, thus generating higher localized
temperature than free ICG under NIR laser irradiation and
facilitating DOX release and cellular uptake. Encouragingly,
combined chemo-photothermal therapy realized successful
suppression of MCF-7 and DOX-resistant MCF-7/ADR tumor
growth as well as prevention of tumor recurrence in vivo.
Similarly, many other attempts have beenmade to co-encapsulate
various NIR dyes and drugs in different kinds of nano-
carriers like liposomes (Li et al., 2015; Feng et al., 2016; Yan
et al., 2016; Gao et al., 2018; Mu et al., 2019), polymeric
nanoparticles (Su et al., 2015; Zhu et al., 2015; Chen Y.
et al., 2017; Wang et al., 2017; Deng et al., 2018; He H.
Z. et al., 2018; Yao et al., 2018; Tan et al., 2019; Zhang
et al., 2019), protein nanoparticles (Chen et al., 2015; Lin
and Shieh, 2018; Gao et al., 2019; Pei et al., 2019), and cell
membranes (Sun et al., 2015; Li X. et al., 2018; Wan et al.,
2018; Zhang N. et al., 2018; Ye et al., 2019). For example,
Liu et al. developed “Abraxane-like” nanodrug through self-
assembly of human serum albumin (HSA), paclitaxel (PTX),
and ICG in a simple mixing manner (Chen et al., 2015). The
nanodrug remarkably improved solubility of both PTX and ICG,
achieving prolonged blood circulation time and high tumor
accumulation. The combined chemo-photothermal therapy
completely destructed subcutaneous tumors and exhibited great
therapeutic benefit in treating lung metastasis. The excellent
therapeutic effect and FDA-approved components endow this

“Abraxane-like” nanodrug with great potential for clinical use in
the future.

The simple processing method of physically co-encapsulated
nano-formulations is usually preferred for clinical translation.
However, undesirable premature leakage of drugs and NIR
dyes during administration can happen and lead to insufficient
tumor accumulation and potential adverse effects as well.
Covalent conjugation of drugs and/or NIR dyes to nano-
carriers is believed to potently address this issue. Polymeric
prodrugs with therapeutic molecules reversibly linked to polymer
chains have already been extensively studied for their longer
blood circulation time, higher tumor accumulation and better
therapeutic effect but lower systemic toxicity (Duncan, 2006;
Larson and Ghandehari, 2012; Delplace et al., 2014). Therefore,
polymeric prodrug assemblies can serve as a good platform
for co-loading of NIR dyes to perform combined chemo-
photothermal therapy. Ji et al. prepared IR-780 loaded polymeric
prodrug micelles (IPM) for overcoming multidrug resistance by
combination of chemo-photothermal therapy (Figure 5; Li Z.
H. et al., 2016). Zwitterionic polymer with DOX conjugated by
acid-cleavable hydrazone bonds can self-assemble into polymeric
prodrug micelles, simultaneously encapsulating lipophilic IR-780
dye in the hydrophobic micellar core. The prodrug micelles kept
remarkable stability at pH 7.4 while exhibited accelerated DOX
release at pH 5.0 which mimics the acidic endosome/lysosome
environment. Interestingly, IPM combined with NIR laser
irradiation can dramatically increase DOX accumulation in
cytoplasm of MCF-7/ADR cells, which should be attributed
to hyperthermia-induced enhanced cytoplasm permeability.
Significant suppression of MCF-7/ADR tumor growth can be
achieved by localized NIR laser irradiation post-intravenous
injection of IPM. Recently, several similar strategies have been
reported by encapsulating various NIR dyes in different kinds
of polymeric prodrug nanoparticles (Zhang Y. Y. et al., 2016a,b,
2018; Chen et al., 2018; Wang W. H. et al., 2018). For example,
Hu and Xing et al. prepared smart nanoplatforms by loading
ICG in enzyme-responsive cisplatin polyprodrug amphiphiles
for cascade photo-chemotherapy (Wang W. H. et al., 2018).
Zhao et al. utilized host-guest supramolecular chemistry to
fabricate reduction-sensitive CPT prodrug nanoparticles, which
can further incorporate IR825 dye to achieve simultaneous
chemo-photothermal therapy (Zhang Y. Y. et al., 2018).

Nano-systems with both drugs and NIR dyes covalently
conjugated, however, have rarely been reported. The multiple
steps that are usually necessary for conjugating two or more
molecules in one single system may be the major obstacle.
One of the very few examples is P-DOX/P-cypate hybrid
micelles, which were composed of enzyme-responsive DOX
polymeric prodrugsandcypate-linked polymers (Yu et al., 2015).
Hyperthermia effect of the hydride micelles upon NIR irradiation
significantly enhanced tumor penetration and cytosol release of
DOX, further inducing high therapeutic efficacy in combating
DOX resistance in MCF-7/ADR breast cancer.

Considering the tremendous benefits of NIR dyes-based nano-
systems whereas few applications so far, further efforts are needed
to simplify the synthesis procedures and precisely control the
loading ratios of chemical drugs and NIR dyes, thus enabling
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FIGURE 5 | Polymeric prodrug micelles as nano-carriers for NIR dye. (A) Schematic representation of IR-780 loaded polymeric prodrug micelle for

chemo-photothermal therapy to overcome drug resistance. (B) Temperature increments of IR-780 loaded micelles upon 808 nm NIR laser irradiation. (C) Subcellular

localization of free DOX, free IR-780, IPM, and IPM plus NIR laser irradiation after coincubation with MCF-7/ADR cells. (D) Quantitative evaluation of cell viability in

MCF-7/ADR cells after different treatments (*P < 0.05, **P < 0.01). (E) MCF-7/ADR tumor growth curves subjected to different treatments. Reproduced with

permission from Li Z. H. et al. (2016).

ease of availability and optimizing the synergistic effect of chemo-
photothermal therapy.

Conjugated Polymers
Conjugated polymers are well-known for their fantastic
photoelectric properties due to the existence of large π-
conjugated backbones. For a long time in the past, conjugated
polymers were extensively studied in the areas like organic
semiconductors and solar cells, but not biomedicine. It
was not until the year of 2011–2012 that two kinds of very
commonly used conjugated polymers, polyaniline (PANI) and
polypyrrole (PPy), were successfully developed as photothermal
agents for the first time (Yang et al., 2011, 2012b). Later
on, lots of semiconducting polymers were further explored
for fluorescent imaging and phototherapy (Li J. C. et al.,
2018; Zhu et al., 2018). Benefiting from the unique chemical
structures, conjugated polymers hold the advantages of excellent
photostability and high photothermal conversion efficiency.
Several excellent reviews have summarized the applications of
conjugated polymers in fluorescent imaging and phototherapy
(Xu et al., 2014; Qian et al., 2017; Li J. C. et al., 2018; Sun
et al., 2018). Conjugated polymers are generally hydrophobic
organic molecules, therefore, nano-stabilizing methods like
encapsulation in amphiphiles or covalent grafting of hydrophilic
polymers are usually necessary prior to their use in vitro and
in vivo. By further incorporation of chemical drugs, conjugated

polymers based nanomaterials can be utilized for combined
chemo-photothermal therapy.

PANI nanoparticles were firstly reported to serve as a

photothermal agent for in vitro treatment of epithelial cancer
in 2011 (Yang et al., 2011). Li et al. further prepared F127
stabilized PANI nanoparticles for in vivo tumor ablation with no
tumor regrowth observed (Zhou et al., 2013). Chemotherapeutic
drugs were encapsulated within PANI nanoparticles to perform
the combination of chemo- and photothermal therapy. For
example, Kim and Yong et al. prepared multifunctional hybrid
polymeric nanoparticles (denoted as LT-MTX/PANI NPs) by
incorporation of methotrexate (MTX) and PANI together and
further conjugation with Lanreotide (LT) for cancer targeting
(Nguyen et al., 2018). The hybrid NPs showed burst release
of MTX upon NIR light irradiation due to heat generation by
PANI. Enhanced cell apoptosis in vitro as well as improved
tumor suppression in vivo were observed by treatment of LT-
MTX/PANI NPs with NIR light irradiation.

In 2012, Liu’s group firstly reported poly(vinyl alcohol)
(PVA)-stabilized PPy nanoparticles for photothermal
therapy (Yang et al., 2012b). Then, they fabricated core-shell
structured Fe3O4@PPy-PEG-DOX nanocomposite by oxidative
polymerization of pyrrole on the surface of Fe3O4 nanoclusters
and subsequent surface modification and drug loading (Wang
C. et al., 2013). The Fe3O4 core can be used for MRI to
monitor the therapeutic effect, while the PPy shell can generate
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FIGURE 6 | Multifunctional nanoparticles for light-controlled pulsatile drug release in cancer chemo-photothermal therapy. (A) Schematic illustration of the synthesis of

CPT@DOX-UCST/PPy nanoparticles. (B) Thermal images recorded for different contents of CPT@DOX-UCST/PPy upon irradiation with 808 nm laser at different

power density. (C) In vitro CPT and DOX dual drug release profile recorded for CPT@DOX-UCST/PPy with periodic 808 nm laser illumination at 2 W/cm2.

(D) Photographs of tumor tissue of mice upon different treatments. Reproduced with permission from Yang et al. (2018).

mild hyperthermia to enhance intracellular delivery of DOX.
Remarkable anticancer effect in vivo was achieved by combined
chemo-photothermal therapy. Other groups also designed
various nano-platforms for combined chemo-photothermal
therapy by loading drugs in PPy-based nanomaterials, mainly
by physical interactions (Wang Y. et al., 2014; Wang J. et al.,
2015; Wang K. et al., 2016; Zhu et al., 2016; Chen X. J. et al.,
2017; Yao et al., 2017). Very recently, Hu et al. prepared
multifunctional PPy/micelle hybrid nanoparticles (denoted as
CPT@DOX-UCST/PPy) by polymerizing pyrrole in the shell

of polymeric micelles with upper critical solution temperature
(UCST) feature (Figure 6; Yang et al., 2018). The polymeric
micelles are exquisitely designed by tethering thermo-cleavable
DOX prodrug in the corona and encapsulating hydrophobic
CPT in the UCST micellar core. CPT@DOX-UCST/PPy had
multiple synergistic effects upon NIR light irradiation, which
showed great potential to kill three birds with one stone. First,
PPy shell can generate heat for photothermal therapy. Second,
DOX can be released by cleavage of the thermo-labile linker.
Third, CPT can also be released following micellar swelling
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FIGURE 7 | Carrier-free “Nanobomb” for on demand drug release and enhanced chemo-photothermal therapy. (A) Schematic illustration of the preparation of

DNPs/N@PDA. (B) Schematic illustration of the stable blood circulation of DNPs/N@PDA and on demand “bomb-like” drug release and enhanced

chemo-photothermal therapy triggered by NIR irradiation. (C) TEM images of DNPs/N@PDA before and after NIR laser irradiation (808 nm, 5 W/cm2 ) for 5 min.

(D) Temperature increase profiles of PBS, DNPs, DNPs@PDA, and DNPs/N@PDA with NIR laser irradiation of 808 nm (5 W/cm2, 8min). (E) Cumulative release

profiles of DOX from DNPs, DNPs@PDA, and DNPs/N@PDA in PBS with different pHs without or with NIR irradiation (808 nm, 5 W/cm2, 5min). (F) In vitro cytotoxicity

of DNPs, DNPs@PDA, and DNPs/N@PDA at pH 5.0 with NIR laser irradiation (808 nm) of 5 W/cm2 for 1min at different DOX concentrations on HeLa cells after 48 h

incubation (**p < vs. DNPs/N@PDA group with NIR irradiation). (G) Representative photos of excised tumors 21 d after treatments. Reproduced with permission from

Li M. H. et al. (2018).
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triggered by phase transition of the UCST core. Together with
the photoacoustic (PA) imaging module, CPT@DOX-UCST/PPy
can serve as a multifunctional nano-platform for combined
chemo-photothermal therapy and theranostics.

Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)
(PEDOT:PSS), commonly used in organic electronics, was
developed by Liu’s group for photothermal therapy in 2012
(Gong et al., 2013). PEDOT:PSS-PEG nanoparticles were
prepared through layer-by-layer coating of charged polymers
followed by conjugating with branched PEG. In another work
of the same group, chemotherapeutic drugs like DOX and
SN38, as well as photodynamic agent Ce6, were encapsulated
within PEDOT:PSS-PEG nanoparticles through π-π stacking
and hydrophobic interaction. The photothermal effect of
PEDOT:PSS-PEG promoted intracellular delivery of DOX,
obtaining integrated chemo-photothermal therapy with
synergistic effect.

To achieve higher photothermal conversion efficiency,
conjugated polymers with narrow energy band gap are highly
desired as they are expected to have sharper adsorption peaks
to get greater heat generation (He Y. L. et al., 2018). The
concept of donor-acceptor (D-A) has been widely applied for
designing conjugated polymer-based field-effect transistors
and organic photovoltaics. In 2013, Levi-Polyachenko et al.
reported for the first time the use of D-A conjugated polymer
nanoparticles with low band gap for photothermal ablation
of cancer cells in vitro (MacNeill et al., 2013). Since then,
lots of D-A conjugated polymers have been synthesized for
photothermal therapy by proper design of the donor and
acceptor structures (Sun et al., 2018). Chemotherapeutic
drugs can be co-loaded with hydrophobic D-A conjugated
polymers in liposomes or polymeric micelles, or encapsulated
in micelles formed with PEG-modified D-A conjugated
polymers. These nano-formulations can thus gain significant
synergistic effect of combined chemo-photothermal therapy
upon NIR light irradiation. For example, Yang’s group reported
a D-A conjugated polymer PBIBDF-BT with alternating
isoindigo derivative bis(2-oxoindolin-3-ylidene)-benzodifuran-
dione (BIBDF) and bithiophene (BT) units (Li D. D. et al.,
2016). Hydrophobic PBIBDF-BT together with anticancer
drug DOX were simultaneously encapsulated in micelles
formed by an amphiphilic copolymer poly(ethylene glycol)-
block-poly(hexyl ethylene phosphate) (mPEG-b-PHEP).
DOX-loaded PBIBDF-BT@NPPPE nanoparticles exhibited NIR-
triggered intracellular drug release and synergistic anticancer
treatment. Liu and coworkers prepared poly[9,9-bis(4-(2-
ethylhexyl)phenyl)fluorene-alt-co-6,7-bis(4-(hexyloxy)phenyl)-
4,9-di(thiophen-2-yl)thiadiazolo-quinoxaline] (PFTTQ) with
strong absorption in the NIR region (Yuan et al., 2015). An
amphiphilic brush copolymer, decorated with 2-diazo-1,2-
naphthoquinones (DNQ) moieties and cyclic arginine-glycine-
aspartic acid (cRGD), was used to encapsulate hydrophobic
PFTTQ and DOX (forming T-PFTTQ/DOX). Upon NIR laser
irradiation, the DNQ moieties could undergo hydrophobic-
hydrophilic transformation, inducing disassembly of the micelles
and subsequent DOX release. At the same time, hyperthermia
generated by PFTTQ further contributed to the efficient killing

of cancer cells. The combination index was calculated to be
0.48, indicating the synergistic effect of T-PFTTQ/DOX for
combined chemo-photothermal therapy. Pu’s group synthesized
an amphiphilic PEG-grafted poly(cyclopentadithiophene-alt-
benzothiadiazole) (PEG-PCB), which could self-assemble into
homogenous nanoparticles and simultaneously load anticancer
drug DOX via strong hydrophobic and π-π interactions
(Jiang et al., 2017). Drug-loaded PEG-PCB (DSPN) could
serve as a multifunctional theranosticnanoagent for NIR
fluorescence/PA imaging guided chemo-photothermal therapy.
Both in vitro and in vivo results confirmed the superior
antitumor efficacy by the synergistic treatment. Similarly, Li et al.
prepared several theranosticnanosystems by co-encapsulating
diketopyrrolopyrrole-based D-A polymers with anticancer drugs
like DOX or curcumin in polymeric micelles or thermosensitive
liposomes (Cao et al., 2017a,b). These nanoparticles also
exhibited excellent PA imaging-guided chemo-photothermal
combined cancer therapy.

Polydopamine-Based Nanoparticles
Polydopamine (PDA), a melanin-like polymer, can be easily
obtained by self-polymerization of dopamine under mild
conditions. PDA was introduced by Lee and Messersmith for
the first time as a simple and powerful surface functionalization
method in 2007 (Lee et al., 2007). Lu’s group reported the
first application of PDA nanoparticles (PDA-NPs) for in vivo
photothermal ablation of tumors in 2013 (Liu et al., 2013). PDA-
NPs are well-evaluated to have advantages such as strong NIR
light absorption, high photothermal conversion efficiency as well
as remarkable biocompatibility and biodegradability. Moreover,
the surface of PDA-NPs remains high reactive activity for
further functional modification. Thiol- and amino-terminated
molecules, such as hydrophilic PEG and cancer targeting
moieties, can be covalently attached onto PDA nano-surface via
Michael addition or Schiff base reactions (Park et al., 2014).

So far, PDA-NPs have been extensively utilized as drug
delivery systems for combined chemo-photothermal therapy
(Ambekar and Kandasubramanian, 2019; Farokhi et al., 2019).
Cheng et al. synthesized PEGylated PDA-NPs (PDA-PEG)
to encapsulate anticancer drugs such as DOX and SN38
(Wang X. Y. et al., 2016). Remarkable photothermal effect of
PDA-PEG was observed upon 808 nm NIR light irradiation
along with enhanced drug release. Drug-loaded PDA-PEG was
proved to have synergetic effect on cancer cell killing in vitro
and tumor suppression in vivo. Then, alendronate (ALN)-
anchored and SN38-loaded polydopamine nanoparticles (PDA-
ALN/SN38) were prepared by the same group, successfully
regressing bone tumor and osteolysis by combined chemo-
photothermaltherapy (Wang Y. T. et al., 2018). Lu’s group
prepared PDA nanocomplex (PDA@CPx, x = 3,6,9) by
encapsulating biodegradable coordination polymer (CP) on iron-
chelated PDA nanosurface via layer-by-layer method (Chen Y.
et al., 2016). DOX loaded PDA@CP3 noncomplex was developed
for T1/T2 dual mode MRI together with synergistic chemo-
photothermal therapy both in vitro and in vivo, which showed
great potential for theranositc nanomedicine.
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TABLE 1 | Photothermal conversion efficiency of various nanomaterials applied in chemo-phototermal therapy.

Nanomaterials Photothermal conversion

efficiency (%)

NIR light (nm) References

Gold nanorods 16.92 808 Manivasagan et al., 2019

Gold Janus nanoparticles 49.5 808 Zhang L. et al., 2016

Cu2−xTe nanocubes 25.68 808 Poulose et al., 2016

Cu2S nanocrystals 25.3 800 Poulose et al., 2015

MoS2/Cu1.8S nanosheets 32.5 980 Meng et al., 2017

MoSe2 nanosheets 32.8 808 Wang C. et al., 2016

MoSe2/Bi2Se3 nanosheets 59.3 808 Wang Y. et al., 2019

Bamboo charcoal nanoparticles 29.42 808 Dong et al., 2016

Mesoporous carbon nanoparticles 27.4 808 Wang X. et al., 2019

IR780-HSA NPs 10 808 Pei et al., 2019

IR780-CSOSA 33.5 808 Tan et al., 2019

Aza-BODIPY prodrug NPs 38.3 660 Chen et al., 2018

PPy 40 808 Chen X. J. et al., 2017

PEGylated poly-(diketopyrrolopyrrole-thiophene) 76 808 Yao et al., 2017

PBIBDF-BT@NPPPE 46.7 808 Li D. D. et al., 2016

PEG grafted poly(cyclopentadithiophene-alt-benz othiadiazole) 30.8 808 Jiang et al., 2017

PDA 40 808 Liu et al., 2013

PDA 33.7 808 Ding et al., 2019

Benefiting from the excellent surface adhesive capability of
PDA, core-shell structured nanocomposites consisting of drug-
loaded polymeric core and PDA coated shell were developed
for combined chemo-photothermal therapy. Xu et al. reported
tumor targeting PLGA/PDA core-shell nanocomposites by
coating PDA on DOX loaded PLGA nanoparticles, followed
by surface PEGylation and anchoring of Anti-EGFR antibody
(He et al., 2017). The PDA shell here not only offered reactive
sites for surface decoration but also generated hyperthermia
under NIR light irradiation for both photothermal therapy and
triggering drug release to improve the synergistic chemotherapy.
Nie et al. prepared polymer/PDA nanocomposites by coating
PDA on nanoparticles formed from a thermo-sensitive block
copolymer P(MEO2MA-co-OEGMA-co-DMAEMA)-b-PLGA
(Ding et al., 2017). DOX, PTX, and small interfering RNAs were
simultaneously loaded within these nanocomposites, generating
accurately drug release in response to photothermal effect. These
multifunctional nanocomposites integrating photothermal,
chemo-, and gene therapy successfully caused regression in
triple-negative breast cancer with negligible side effects. Very
recently, Dong et al. reported a novel polypeptide nanocomposite
PNOC-PDA/DOX by coating PDA on micelles formed by S-
nitroso (SNO, a kind of heatsensitive NO donor) conjugated
polypeptide copolymer and further loading with DOX (Ding
et al., 2019). Upon NIR light irradiation, NO gas was released due
to heat-induced S-NO cleavage. The mild hyperthermia together
with NO gas therapy were proved to overcome MDR and
maximize chemotherapy. The triple chemo-NO-photothermal
therapies completely eradicated MCF-7/ADR tumors without
skin damage, scarring, and tumor recurrence within 30 days,
indicating excellent synergistic effects for reversing MDR
in tumors.

Carrier-free nanoparticles with high drug loading and on-
demand drug release have attracted increasing attention. Liu
and coworkers introduced a novel carrier-free “nanobomb” with
drug loading efficiency as high as 85.8% (Li M. H. et al., 2018).
The “nanobomb” was prepared by two simple steps: the first
is making DOX nano-precipitates (DNPs) of ca. 5 nm, and the
second is surface deposition of PDA which further induced
secondary aggregation of small DNPs to form nanodrugs with
an average size of around 70 nm (Figure 7). When exposed to
NIR laser, the PDA shell generated enough heat to produce CO2

and NH3 gases from the encapsulated NH4HCO3. PDA film
outside the DNPs was thus broken up to facilitate in situ release of
DOX for enhanced chemotherapy. The synergistic photothermal
and chemotherapy of the NIR responsive “nanobomb” achieved
excellent anticancer activity both in vitro and in vivo. Recently,
Dong’s group synthesized high drug-loading PDA-chlorambucil
conjugate nanoparticles by direct polymerizing dopamine with
a novel pH and reduction-responsive dopamine-chloroambucil
prodrug (Du et al., 2019). The PDA-chlorambucil prodrug
nanoparticles exhibited triple pH/reduction/NIR light responsive
drug release profile in vitro and achieved traceless and complete
ablation of MCF-7 tumors without recurrence within 50 days by
combined chemotherapy and mild hyperthermia.

CONCLUSION AND OUTLOOK

In this review, we summarized recent advances in NIR light
responsive nanomaterials for combined chemo-photothermal
cancer therapy. Metal-, carbon-based and organic nanomaterials
were included to discuss their design, preparation and
application in combined therapy for improving cancer
treatment. The combined chemo-photothermal therapy has
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been widely evaluated to show synergistic anticancer effect in
a “1+1>2” manner. On the one hand, hyperthermia induced
by photothermal agents upon specific NIR laser irradiation in
the tumor region can not only kill cancer cells directly, but also
serve as heat trigger to stimulate drug release in a controlled
manner and facilitate cell membrane permeability to enhance
drug uptake. On the other hand, optimized chemotherapy
by systematic administration of anticancer drugs can help
to completely eradicate tumors together with photothermal
therapy. The combined chemo-photothermal therapy has
also shown excellent performance in overcoming MDR and
lung metastasis.

In spite of the rapid development and promising potential
of nanomaterials for chemo-photothermal therapy, there
still exist several critical issues that need to be addressed.
Firstly, the photothermal conversion efficiency, which will
significantly influence the dosage of photothermal agents
and NIR light intensity/irradiation time for efficient heat
generation, differs among various nanomaterials concerned
in this review. Photothermal conversion efficiencies of several
kinds of nanomaterials are summarized in Table 1. More efforts
are needed to be put into the creation of novel nanomaterials
with favorable photothermal conversion efficiency in order
to achieve satisfactory photothermal outcome and reduce the
administration dose of nanomaterials. Secondly, though NIR
laser can reach deeper tumor tissues, the penetrated depth is
still limited. Therefore, the non-invasive photothermal therapy
seems mostly feasible for superficial tumors. For internal organ
tumors, efficient photothermal therapy can be conducted with
minimal intervention by the development of novel invasive
medical devices. Thirdly, long-term cytotoxicity of these
nanomaterials, especially those with poor biodegradability
such as carbon-based nanomaterials, remains uncertain and
deserves more attention in future studies. In this regard,
organic photothermal agents-based nanomaterials exhibit better
performance in biodegradability and biocompatibility. For
example, nano-formulations containing FDA-approved ICG are
very promising for future clinical utilization. Another concern
of cytotoxicity comes from the loaded chemotherapeutic drugs.
Though excellent anticancer efficacy can be obtained in a lower
dosage with the assistance of hyperthermia, the systematic
distribution may still induce undesired side effects. Covalently
conjugated prodrugs can significantly decrease premature release
of drugs during blood circulation before linker cleavage under

tumor physiological environment. Surface tailoring through
conjugation of targeting moieties on nanomaterials can further
enhance tumor accumulation via specific nano-cell interactions,
consequently enhancing anticancer efficacy, and reducing side
effects. Lastly, the mechanism of synergistic effect for combined
chemo-photothermal therapy needs deeper investigation
in the future. Hyperthermia has been reported to increase
vascular permeability within tumor tissues, thus promoting
drug enrichment and enhancing therapeutic outcome of
chemotherapy. Multidrug resistance is one of the major obstacles
against efficient cancer treatment by single chemotherapy.
Photothermal therapy has been proved to significantly reduce
drug efflux by inhibiting P-glycoprotein expression with
augmentation of drug sensitivity to cancer cells. Nevertheless,
molecular mechanisms beneath chemo-photothermal therapy,
involving multiple signaling pathways in cancer cells, are still
rarely to be explored. Certainly, studies on tumor biology will
help us to have better understanding about intrinsic mechanism
for drug resistance, facilitating the design of novel nanomaterials
for precise and efficient cancer treatments.

Regardless of the existing challenges, chemo-photothermal
combination therapy has shown promising results in many
experiments. With the rapid development of nanoscience,
material chemistry, and tumor biology, we believe that successful
clinical applications of nanomaterials for chemo-photothermal
cancer treatment can be expected in the future.
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