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Opinion Statement

Major depressive disorder (MDD) is associated with key regions of the brain involved in
emotional processing. The present meta-analysis revealed widespread structural reduc-
tions in limbic and prefrontal regions that occur in MDD, with no regions of increased
grey matter volume. Functional impairments involve many of the same regions with
dysregulated interactions between limbic and cortical structures. Longitudinal treat-
ment studies have predominantly investigated pharmacological therapies, and there
have been fewer studies of psychological treatments. Reports of increased hippocampal



volume and reductions in amygdala activation following treatment suggest implica-
tions for the course of illness and the impact of pharmacological as well as psycholog-
ical therapies. Measures of regional brain volume and activity during an acute
depressive episode prior to or early in the course of treatment offer the potential to
develop predictors of clinical response. High predictive accuracy at the level of the in-
dividual is essential for translation of these findings to clinical use. Development of
such biomarkers may help to guide treatment strategies, particularly for individuals
who may not benefit from current first-line therapeutic options, in order to preclude
a potential series of ineffective treatment trials.

Introduction
Major depression is one of the top contributors to the
global burden of disease [1, 2]. It is an often debilitating
disorder that typically follows a recurring and relapsing
course of illness. At present, the diagnostic criteria of de-
pression include an assessment of mood as well as cog-
nitive and somatic symptoms, and treatment decisions
are based on clinical characteristics such as severity and
course of the illness as well as past treatment response.
Evidence-based treatments for depression include anti-
depressant medications and psychological therapies, in-
dividually or in combination, but remission rates have
been relatively modest [3]. To date, there are no biolog-
ical markers that are used in clinical practice to diagnose
the disorder or to predict treatment response [4••, 5•].

Structural and functional magnetic resonance im-
aging (MRI) studies have sought to delineate the brain
abnormalities associated with depression and to ex-
amine the effects of treatment. Understanding the neu-
robiological mechanisms that contribute to the
pathogenesis of the disorder may also provide models

in the development of biomarkers for diagnosis, prog-
nosis, and response prediction [5•]. Often, fMRI stud-
ies in depression have used experimental paradigms
such as tasks of affective and cognitive processing to
engage the regions that may be impaired. Connectivity
analyses provide an additional understanding of the
interactions among brain regions. Longitudinal treat-
ment studies have predominantly focussed on antide-
pressant treatment, and selective serotonin reuptake
inhibitors (SSRIs) in particular, while there have been
fewer studies of psychological treatments [6••]. Identi-
fying neurobiological correlates of treatment response
and establishing biological markers of diagnosis and
response prediction will require high predictive accu-
racy at the individual level as well as a measure of
the confidence of the prediction [7]. In this way, treat-
ment strategies could be personalised, in particular to
identify patients with more severe forms of the disor-
der early in the course of their illness in order to pre-
vent a potential series of ineffective treatment trials.

Structural and Functional Neural Correlates of Depression

MRI studies have revealed structural and functional brain abnormalities asso-
ciated with MDD in limbic and prefrontal regions, key areas involved in
emotional processing and regulation. In our meta-analysis of grey matter ab-
normalities in MDD, we retrieved 34 studies from a systematic literature
search of five databases (PubMed, Scopus, Ovid MEDLINE, PsycINFO, and
Ovid EMBASE) between January 1995 and June 2012 [8](Table 1). The sub-
jects included a total of 1,341 MDD patients and 1,364 healthy controls. The
patient group comprised adults who were both on medication and not tak-
ing medication. Neuroimaging studies utilizing region-of-interest (ROI) as
well as voxel-based morphometry (VBM) methods were included in order
to determine to what extent the methods used in individual studies may have
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influenced the results of the meta-analysis. Studies that reported no signifi-
cant difference in grey matter volume (GMV) or density between patients
and control subjects were also included.

The whole-brain analysis revealed volumetric reductions of grey matter in
10 clusters across the brain comprising the right anterior cingulate cortex
(ACC), right medial superior frontal gyrus, right dorsolateral prefrontal cor-
tex (DLPFC), bilateral orbitomedial prefrontal cortex, right inferior frontal
gyrus opercular part and triangular part, bilateral insula, right claustrum,
and the right putamen.

The combined whole-brain and ROI analysis revealed more extensive grey
matter reductions across 18 clusters, including the bilateral anterior cingu-
late, bilateral medial superior frontal gyrus, right DLPFC, left superior frontal
gyrus, right inferior frontal gyrus opercular part, bilateral inferior frontal gy-
rus triangular part, bilateral insula, right claustrum, and right rectus gyrus, in
MDD patients compared to controls. In addition to the whole-brain findings,
grey matter reductions were also significant in the bilateral parahippocampal
gyrus, left thalamus, and left postcentral gyrus. Notably, there was no in-
creased grey matter volume found in any region in either the whole-brain
or combined whole-brain and ROI analyses.

The ACC is a region consistently implicated throughout the course of
MDD. Structural magnetic resonance imaging (sMRI) studies have demon-
strated total volume reductions present in the ACC in never-treated MDD pa-
tients [9, 10]. Studies of medication-naïve and medication-free samples may
provide further elucidation of brain abnormalities more directly related to
MDD itself, without potentially confounding effects of medication. Voxel-
based morphometry (VBM) analysis of sMRI data have shown that ACC grey
matter density is significantly reduced in medication-free and medication-na-
ïve patients [11–13]. Reduced white matter volumes have also been reported
in the right ACC [14].

There is evidence that such structural abnormalities have functional con-
sequences likely related to impairments in emotional processing [15]. For ex-
ample, increased activity of the ACC as well as in the amygdala, anteromedial
prefrontal cortex, parahippocampus, and insula regions in response to nega-
tive images has been observed in unmedicated depressed patients [16], and
altered functional connectivity has been reported in subgenual ACC net-
works of medication-naïve MDD adolescents when evaluating negative emo-
tional stimuli [17]. MDD is associated with dysregulated interconnections
within limbic–cortical structures, particularly between the ACC and amygda-
la [18, 19].

In the amygdala, reduced volumes have been reported in both region-of-
interest [20] and VBM [11, 21] studies. Functional activation tasks have dem-
onstrated abnormal and greater amygdala response to negative emotion
in MDD patients at baseline prior to antidepressant treatment as com-
pared to controls [4••, 16, 22–24]. Studies have revealed decreased func-
tional connectivity between the amygdala and PFC, including the ACC,
in response to negative emotional stimuli [19, 25], and the amygdala
and left anterior insula networks in whole-brain resting-state studies of
medication-naïve MDD [26]. It is clear that MDD modulates amygdala
responsivity and widespread functional connectivity to prefrontal cortical
regions [19].
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The DLPFC has been consistently implicated in MDD, with reduced
volume observed in the majority of studies [27–31], including in medi-
cation-naïve and medication-free MDD patients [32]. In a study of med-
ication-naïve subjects, Wu et al. [33] reported abnormalities in white
matter fibres compromising the connectivity within dorsolateral–prefron-
tal circuits. Healthy controls with a family history of MDD have also
been shown to exhibit smaller volumes of white matter in the DLPFC
[14]. As the DLPFC plays an important role in working memory and ex-
ecutive functions, disruptions of the DLPFC, in connection with other
cortical and subcortical regions as part of the limbic–cortical dysregula-
tion model, contribute to diminished cognitive ability and disturbances
in social behaviour and emotional regulation [34].

Reductions in orbitofrontal cortex (OFC) volume in MDD are
thought to be associated with functional alterations in the network of
emotion regulation [35]. In a study that combined fMRI and VBM
methods, unmedicated patients performing a Stroop task demonstrated
hyperactivation of the ACC that was inversely correlated with GMV re-
duction in the OFC [27]. Frodl et al. [36] reported decreased connectiv-
ity between the OFC and the ACC, thought to be associated with a
deficit in regulating self-schemas, and increased connectivity between
the OFC and the DLPFC, demonstrating greater neural response to neg-
ative stimuli in drug-free patients with MDD. In resting-state fMRI,
Zhang et al. [37] reported a decrease in functional activity in an affec-
tive network between the amygdala and OFC in first-episode medica-
tion-naïve MDD adolescents.

One of the most replicated findings in MDD is decreased hippocampal
volume [38, 32], which is evident at the first episode of depression [39]. Re-
current episodes can lead to further volume reductions in the hippocampus
over the course of the disorder, which may also contribute to symptoms of
cognitive decline in MDD [40].

MDD is also associated with increased GMV in the thalamus [31, 32, 41]
and the right insula [31] of medication-naïve first-episode MDD individuals.
Decreased grey matter density in the thalamus has been proven to be a sig-
nificant diagnostic marker of depression in medication-free MDD [42]. The
thalamus has extensive connections with cortical and limbic structures and
is believed to be involved in consciousness, awareness, and arousal. Abnor-
mal functioning of the thalamus may contribute to symptoms such as
disturbed sleep patterns. The insula is a structure that has been implicat-
ed in interoceptive awareness [43]. During an interoceptive attention
task, the dorsal mid-insula exhibited decreased activity in unmedicated
MDD subjects compared to controls [44]. Decreased activity has also
been associated with severity of depression and somatic symptoms in de-
pressed subjects.

Structural Changes with Antidepressant Treatment

Antidepressants such as selective serotonin reuptake inhibitors (SSRIs),
which are widely used in the treatment of depression, have been reported
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to alter the structure of frontal-subcortical circuits involved in the pathophys-
iology of depression [31, 45, 46•, 47, 48].

Increases in hippocampal volume have been reported following eight
weeks of treatment with citalopram [46•] as well as following three years
of treatment with various antidepressant medications [47]. Volume increases
have also been reported in the dorsolateral and orbitofrontal cortices follow-
ing treatment with fluoxetine [31]. The hippocampus is involved in declara-
tive or explicit memory function [49, 50], and these findings may be
consistent with the amelioration of memory impairments in depressed pa-
tients [51] following antidepressant treatment [52, 53].

However, not all studies have found alterations in brain volume of de-
pressed patients following antidepressant treatment [54, 55]). In addition,
a decrease in volume in the dorsolateral prefrontal cortex has been reported
[56]. More research is needed to delineate volume change and direction of
volume change associated with antidepressant treatment and improved
mood and function.

Functional Changes with Antidepressant Treatment

The effects of antidepressant treatment on affective processing networks have
been more widely studied, as there is a mood-congruent processing bias ev-
ident in patients with depression. This negative bias is evident in the process-
ing of facial expressions [57], and MDD patients show both implicit and
explicit attentional biases toward negative stimuli and away from positive
stimuli [58]. fMRI studies often use implicit emotional processing paradigms
such as a gender decision task, as these tasks are more likely to elicit activa-
tions in subcortical and extrastriate cortical regions [59].

Implicit processing of sad facial expressions has revealed abnormal ac-
tivations in corticolimbic regions such as the amygdala [24, 60], insula
and anterior cingulate [24] at baseline, followed by significant decreases
in the amygdala following treatment with antidepressants [24, 62]. Hap-
py facial expressions, on the other hand, tend to be associated with de-
creased corticolimbic activations in patients compared to controls, and
which normalize following antidepressant treatment [63]. Moreover,
amygdala activations are also observed during passive viewing of nega-
tive stimuli [16, 64] which attenuate with treatment [64]. Conversely, ex-
plicit labelling of emotions is likely to decrease the probability of
amygdala activation compared to passive viewing or implicit processing
[59]. There is also some evidence of a lateralization of amygdala activa-
tions in which the left rather than the right amygdala is more likely to
be activated during processing of evident unmasked emotional stimuli
[65–67], and therefore may be more functionally inclined to modulation
by antidepressants [67].

The fusiform gyrus is important in face processing [65], and is typically
engaged during explicit processing of emotional stimuli. Similar to
amygdalar responses, fusiform gyrus activations are seen in patients versus
controls during negative emotional processing, while decreased activations
have been observed in patients during processing of positive emotional stim-
uli [68]. Normalization of the fusiform gyrus activity after antidepressant
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treatment is seen during both positive [69] and negative [61] emotional stim-
uli, suggesting that antidepressants modulate regions that are associated with
emotion dysregulation in depression.

In addition to biases in emotional processing, depression is associated
with cognitive impairments leading to difficulties in memory and attention.
The anterior cingulate is more likely to be activated during tasks of cognitive
demand [24, 70], and fMRI studies of cognitive processing have shown in-
creased rostral anterior cingulate activity during Stroop tasks [71, 72] and
tasks of cognitive control [73]. Subregions of the anterior cingulate cortex
– namely the pregenual and the subgenual ACC – are important targets for
antidepressant action [74], and normalization of the frontocingulate activity
has been observed with antidepressant treatment [73].

It has been proposed that depression results from abnormal connections
between the limbic regions, such as the amygdala, and other parts of the
brain. Therefore, in addition to investigating regional brain activations, stud-
ies have also looked at the interaction between brain regions that are im-
paired in depression. Patients with depression show reduced functional
connectivity between the frontocortical and limbic regions [16, 19, 67],
which is improved following treatment with antidepressants [67].

Activation in the anterior cingulate and orbitofrontal cortex during an
acute depressive episode is predictive of subsequent clinical response [6••].
In addition, differences in functional orbitofrontal cortex connectivity prior
to treatment have been shown to distinguish responders from non-re-
sponders [75]. The anterior cingulate and orbitofrontal cortices play an im-
portant role in emotional processing, and the orbitofrontal cortex is
particularly associated with reward and hedonic experience [76]. Greater
pre-treatment activity in these regions may suggest better ability to process
emotions and greater responsivity to hedonic stimuli, and therefore predic-
tive of a clinical response [6••].

Functional Changes with Cognitive Behavioural Therapy

Fewer studies have investigated the neural correlates of emotional processing fol-
lowing psychotherapy. Most studies have investigated cognitive behavioural ther-
apy (CBT), an effective treatment for major depressive disorder, with rates of
efficacy comparable toantidepressantmedication [77], andwhich focusesonmod-
ifying dysfunctional thinking and behaviour that are common in depression [78].

Elevated baseline amygdala-hippocampal activity has been identified in
depressed patients in comparison to healthy controls during implicit process-
ing of sad facial expressions which ameliorates following a course of cogni-
tive behaviour therapy [60]. Other reported changes in depressed patients
following cognitive behavioural therapy have included decreased activation
in the medial prefrontal cortex (mPFC) and ventral anterior cingulate cortex
(vACC) in response to an emotional processing task [79] and during self-ref-
erential processing of negative words [80]. The medial prefrontal cortex is
thought to play an important role in self-referential processing of negative
stimuli [81], which is a central feature of rumination and depression [82].
These functional changes in activity following CBT treatment may reflect
an increased engagement of processes involved in modulating responses to
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affect-laden stimuli compatible with a “top-down” mechanism of action
[83].

This cortical top-down model of cognitive therapy focuses on altering
memory and attention processes that are involved in the mediation of cogni-
tive biases and maladaptive processing of information [84]. There is evidence
to suggest that antidepressants may have a mechanism of action similar to
cognitive therapy in modulating negative biases and memory impairments
in depression, occurring very early in the course of treatment, even before pa-
tients report any change in their mood or anxiety [85••, 86]. As such, these
treatments may have similar neurobiological mechanisms on common un-
derlying processes, leading to improvement in depression.

Clinical Neuroimaging Biomarkers in Depression

In addition to examining treatment effects in major depression, identifying
biomarkers of clinical response may aid in treatment recommendations as
well as in the development of novel strategies to augment existing treatment
methods. Our meta-analysis of both pharmacological and psychological
treatment studies revealed that higher pre-treatment anterior cingulate activ-
ity was a consistent predictor of clinical response, while reduced baseline hip-
pocampal volume and increased insula and striatum activity were indicative
of a poorer clinical response [6••]. Anterior cingulate activity as a predictor of
clinical response has been widely reported across different antidepressant
treatment studies using a variety of tasks, including resting-state [87, 88], emo-
tion processing [23, 74, 89], and cognitive [90] tasks. The predictive function of
the anterior cingulate is usually observed in response tonegative rather thanpos-
itive emotional stimuli [23, 74, 89].Whilst there is strong evidence for increased
baseline activation in the anterior cingulate as a predictor for antidepressant re-
sponse, the evidence for CBT has beenmoremixed [6••], in part due to the lim-
ited number of studies. Further investigation is warranted.

To translate these findings into clinical application, it is important to
identify clinical biomarkers with high predictive accuracy at the individual
level [5•]. Using neuroimaging measures, it has been possible to identify bio-
markers of clinical response even before the start of treatment. To date, there
are no biological markers that are used to diagnose the disorder or to predict
clinical response. Methods of analyses based on machine learning algorithms
have been applied to neuroimaging measures such as structural and func-
tional data to predict diagnosis, course of illness, and treatment prognosis
[7]. The pattern of baseline neural activity during sad facial expression accu-
rately classified 84 % of MDD patients and 89 % of healthy controls [4••],
while neural correlates of verbal working memory showed reduced accuracy
[90]. Baseline neural activity during sad facial processing predicted remission
to CBT with a sensitivity of 71 % and specificity of 86 % [91], while remis-
sion to antidepressants showed a trend towards significance [4••]. Evidence
from structural data, on the other hand, revealed that grey matter density pre-
dicted clinical response to antidepressant medication, in particular in the
anterior cingulate [42, 92]. Further investigation of neuroimaging as well
as other biological measures is required to develop clinically useful bio-
markers. This would help optimize treatment strategies, especially for
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those who may not benefit from current first-line treatment options that
are available for depression.
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