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ABSTRACT 

Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly non-
linear and hysteretic even at small strains. Non-linear behavior of soils during a seismic event has a predominant role in current site 
response analysis. The pioneering work of H. B. Seed and I. M. Idriss during the late 1960’s introduced modern site response analysis 
techniques. Since then significant efforts have been made to more accurately represent the non-linear behavior of soils during 
earthquake loading. This paper reviews recent advances in the field of non-linear site response analysis with a focus on 1-D site 
response analysis commonly used in engineering practice. The paper describes developments of material models for both total and 
effective stress considerations as well as the challenges of capturing the measured small and large strain damping within these models. 
Finally, inverse analysis approaches are reviewed in which measurements from vertical arrays are employed to improve material 
models. This includes parametric and non-parametric system identification approaches as well as the use of Self Learning Simulations 
to extract the underlying dynamic soil behavior unconstrained by prior assumptions of soil behavior.  
 
 
INTRODUCTION 

Earthquakes in the last 50 years have demonstrated the role of 
site effects in the distribution and magnitude of the damages 
associated with a seismic event to be paramount. In 1985 an 
8.1 magnitude earthquake caused significant casualties and 
extensive damage in Mexico City. The occurrence of damage 
in a city located 350 km from the earthquake epicenter has 
been attributed to the amplification of seismic waves 
throughout the city’s unconsolidated lacustrine deposit. 
Seismic events such as the Loma Prieta (1989), Northridge 
(1994) Kobe (1995), and Chi-Chi earthquakes (1999) have 
corroborated the significance of local geologic and 
geomorphologic conditions on the seismic ground response. 
The changes in the intensity and the frequency content of the 
motion due to the propagation of the seismic waves in soil 
deposits and the presence of topographic features, commonly 
referred to as site effects, have a direct impact on the response 
of structures during each of these earthquake events. The 
behavior of soil under cyclic loading is often non-linear and 
depends on several factors including amplitude of loading, 
number of cycles, soil type and in situ confining pressure. 

Even at relatively small strains, soils exhibit non-linear 
behavior. Thus it is necessary to incorporate soil non-linearity 
in any site response analysis. One dimensional site response 
analysis methods are widely used to quantify the effect of soil 
deposits on propagated ground motions in research and 
practice.  These methods can be divided into two main 
categories: (1) frequency domain analyses (including the 
equivalent linear method, e.g. SHAKE 91 (1972)) and (2) time 
domain analyses (including non-linear analyses). 
 
FREQUENCY DOMAIN EQUIVALENT LINEAR 
ANALYSIS 

Seed and Idriss (1969) proposed the use of an equivalent 
linear scheme in which the shear modulus and damping are 
modeled using a linear spring and a dashpot respectively. The 
spring and the dashpot parameters are calculated based on the 
secant shear modulus and the damping ratio for a given level 
of shear strain. For earthquake input motions, Seed and Idriss 
(1969) suggested that the properties should be calculated for a 
strain equal to 2/3 of the maximum strain level in a given 
layer. Currently an expression proposed by Idriss and Sun 
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(1992) that relates the ratio of effective shear strain to 
maximum shear strain ( R ) with the earthquake magnitude 

(M) is commonly used [Equation (1)].  
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1


M
R  (1) 

 
The equivalent linear scheme was implemented as an iterative 
procedure as it is not possible to determine the maximum level 
of strain in each layer of the soil profile before the analysis is 
completed. The first step is to set the stiffness and damping 
properties for each layer and then perform a shear wave 
propagation analysis. After the analysis is concluded the 
stiffness and damping properties are updated based on the 
strain that corresponds to R  times the maximum strain at 

each given layer. Subsequent analyses are performed until the 
maximum strain for all layers converge for two consecutive 
calculations. An example of the equivalent linear iterative 
procedure is presented in Figure 1. 
 

0.0

0.2

0.4

0.6

0.8

1.0

G
/G

0

0.0001 0.001 0.01 0.1 1 10
Shear Strain - - [%]

0

5

10

15

20

25

D
am

pi
ng

 -
 

 -
 [

%
]

Target Curve

Iteration 1

Iteration 2

Iteration 3

a)

b)

 
 

Figure 1 Equivalent Linear iterative procedure a) Modulus 
reduction curve,  b) Damping curve  

 
Site response analyses using the equivalent linear method can 
be solved in the frequency domain thereby reducing 
computational time requirements of the site response analysis. 
SHAKE (Schnabel et al. 1972) and SHAKE 91 (Idriss and Sun 
1992) are the most widely used software implementations of 

the one-dimensional equivalent linear method. Hudson et al. 
(2003) implemented a 2-D finite element solution in the 
frequency domain using an equivalent linear approach. This 
solution allowed the effect of topographic features to be taken 
into account in the site response analysis. 
 
For soft soil sites or sites subjected to strong seismic motions, 
the use of the equivalent linear method produces results that 
do not match available observations. Sugito et al. (1994) and 
Assimaki et al. (2000) extended the equivalent linear approach 
to include frequency and pressure dependence of soil dynamic 
properties. The results of Sugito et al. (1994) and Assimaki et 
al. (2000) suggest that it is necessary to assume soil damping 
to be frequency dependent to represent non-linear soil 
response in a frequency domain analysis 
 
Park and Hashash (2008) developed a series of modified 
equivalent linear analyses to characterize the effect of the rate-
dependent soil behavior on site response. It was concluded 
that the effect of the rate–dependence on soil behavior is 
relatively limited, resulting in up to 20% difference in the 
computed response for very weak ground motions, and within 
10% for higher amplitude motions. 
 
Frequency domain methods are widely used methods to 
estimate site effects due to their robustness, simplicity, 
flexibility and low computational requirements, but do have 
some limitations. There are cases (i.e. high seismic intensities 
at the rock base and/or high strain levels in the soil layers) in 
which an equivalent soil stiffness and damping for each layer 
cannot accurately represent the behavior of the soil column 
over the entire duration of a seismic event. In these cases, a 
non-linear time domain solution is used to represent the 
variation of the shear modulus (G) and the damping ratio () 
during shaking. 
 
 
TIME DOMAIN NON-LINEAR ANALYSIS  

In non-linear analysis, the following dynamic equation of 
motion is solved: 
 
            guIMuKuCuM    (2) 

where  M  is the mass matrix,  C  is the viscous damping 

matrix,  K  is the stiffness matrix, u  is the vector of nodal 

relative acceleration,  u  is the vector of nodal relative 

velocities and  u  is the vector of nodal relative 

displacements.  gu  is the acceleration at the base of the soil 

column and  I  is the unit vector.  M ,  C  and  K  matrices 

are assembled using the incremental response of the soil 
layers. The soil response is obtained from a constitutive model 
that describes the cyclic behavior of soil. The dynamic 
equilibrium equation, Equation (2), is solved numerically at 
each time step using a time integration method [e.g. Newmark 
(1959)  method]. 
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The soil column is discretized into individual layers using a 
multi-degree-of-freedom lumped parameter model or finite 
elements (Kramer 1996). In many time domain solutions each 
individual layer i is represented by a corresponding mass, non-
linear spring, and a dashpot for viscous damping. Lumping 
half the mass from two consecutive layers at their common 
boundary forms the mass matrix. The stiffness matrix is 
updated at each time increment to incorporate non-linearity of 
the soil. Figure 2 presents a schematic representation of the 
discretized lumped parameter model for one-dimensional 
wave propagation. 
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Figure 2 Multi-degree-of freedom lumped parameter model 
representation of horizontally layered soil deposit shaken at 
the base by a vertically propagating horizontal shear wave 

 
Different solutions have been and continue to be developed to 
solve the propagation of shear waves throughout a non-linear 
soil profile; these solutions have been used to develop a 
variety of site response analysis software.  Streeter et al. 
(1974) implemented a finite difference scheme (method of 
characteristics) and a Ramberg-Osgood constitutive model 
(Ramberg and Osgood 1943) in the program CHARSOIL to 
perform site response analysis. Martin and Seed (1978) 
developed MASH, a program which used the Martin-
Davidenkov constitutive model with an implicit time-domain 
solution based on the cubic inertia method. DESRA-2C, 
developed by Lee and Finn (1978), allowed total as well as 
effective stress site response analysis with redistribution and 
dissipation of porewater pressure to be performed. DESRA-2C 
implemented a hyperbolic stress-strain relationship (Duncan 
and Chang 1970) as the soil constitutive model.  
 
SOIL CONSTITUTIVE BEHAVIOR 

A broad range of simplified and advanced soil constitutive 
models have been employed in non-linear site response 
analysis. Advanced constitutive models are able to capture 
important features of soil behavior such as anisotropy, pore 
water pressure generation, and dilation among others. Prevost 

(1977) proposed a plasticity based model that describes both 
drained and undrained, anisotropic, path-dependent stress-
strain-strength properties of saturated soils. This model was 
later implemented in the DYNA1D software (Prevost 1989).  
 
Using the bounding surface hypoplasticity model, Li et al. 
(1997) developed the program SUMDES that uses a multi-
directional formulation to more accurately model the 
simultaneous propagation of shear and compression waves; 
the formulation is able to reproduce complex soil behavior as 
progressive softening due to pore water pressure generation. 
 
A three-dimensional bounding surface plasticity model with a 
vanishing elastic region has been implemented by Borja and 
Amies (1994) to model the propagation of seismic waves 
through non-liquefiable soil profiles. The results presented by 
Borja et al. (1999) suggest that the plasticity based model is 
able to accommodate the effects of plastic deformation even 
from the onset of loading. 
 
Elgamal (2004) developed a web-based platform for 
conducting model-based numerical simulations. The platform 
allows the user to develop one-dimensional wave propagation 
analyses using the open source code OpenSEES (McKenna 
and Fenves 2001) and pressure independent and pressure 
dependent constitutive models developed by Yang (2000). The 
soil constitutive model implemented in this application is able 
to represent the generation and dissipation of porewater 
pressure and the behavior of the soil when cyclic mobility 
occurs.   
 
Gerlymos and Gazetas (2005) developed a phenomenological 
constitutive model for the non-linear 1-D ground response 
analysis of layered sites. This model and an explicit finite-
difference algorithm were implemented in the computer code 
NL-DYAS to obtain the nonlinear response of the soil. The 
computer code was used for soft marine normally-
consolidated clay profiles. 
 
The use of advanced soil constitutive models is appropriate 
when detailed information on soil behavior is available. 
However, for most applications the only information available 
are the modulus reduction and damping curves. Therefore, use 
of more simplified models - especially models that belong to 
the family of hyperbolic soil models - are often used. 
 
The more widely used non-linear time domain site response 
analysis codes [e.g. DESRA (Lee and Finn 1978), DMOD 
(Matasovic 1993), and DEEPSOIL (Hashash 2009)] employ 
variations of the hyperbolic model to represent the backbone 
curve of the soil along with the extended unload-reload 
Masing rules (Masing 1926) to model hysteretic behavior. The 
extended Masing rules are discussed in a later section of this 
paper.  
 
The hyperbolic model can be described by using two sets of 
equations; the first equation – known as the backbone curve - 
defines the stress-strain relationship for loading; the second 
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equation defines the stress-strain relationship for unloading-
reloading conditions. Equations (3) and (4) present the loading 
and unloading-reloading relationships respectively for the 
modified Kondner-Zelasko  (MKZ) model (Matasovic 1993) - 
a variation of the hyperbolic model. 
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whereby, is the given shear strain, r is the reference shear 
strain is a dimensionless factor, G0 is the maximum shear 
modulus, and s is a dimensionless exponent.  
 
 
OVERBURDEN PRESSURE DEPENDENT PROPERTIES 

The effect of confining pressure on dynamic properties (e.g. 
secant shear modulus and damping ratio) has been recognized 
by Hardin and Drnevich (1972b), Iwasaki (1978) and Kokusho 
(1980). Ishibashi and Zhang (1993) have published a series of 
relations relating modulus reduction to confining pressure and 
plasticity. Data obtained and collected by Laird and Stokoe 
(1993), EPRI (1993) and Darendeli (2001) illustrated that an 
increase of confining pressure results in a decrease of the 
shear modulus reduction (higher secant shear modulus vs. 
maximum shear modulus ratios for a given strain) and the 
small strain damping. 
 
Hashash and Park (2001) modified the non-linear model 
proposed by Matasovic (1993) to include the effect of 
confining pressure on the secant shear modulus of the soil. In 
the modified model, a new formulation is introduced in which 
the reference strain r is no longer a constant for a soil type, 
but a variable that depends on the effective stress following 
the expression shown in Equation (5). 
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
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where a and b are curve fitting parameters, ’v is the vertical 
(overburden) effective stress to the midpoint of the soil layer 
andref is a reference confining pressure of 0.18 MPa.  
 
To take into account the reduction of the small strain damping 
with the increase of confining pressure Hashash and Park 
(2001) proposed the relationship presented in Equation (6): 
 

 d'
v

c


   (6) 

where c and d are curve fitting parameters and ’v is the 
vertical effective stress.  
 
This expression is able to represent the decrease of the small 
strain damping which data has shown accompanies an increase 
of confining pressure. For deep soil profiles (e.g. Mississippi 
Embayment) the use of pressure dependent formulations 
results in an increase of the computed surface spectral 
acceleration compared to the results of using a pressure 
independent soil model (Hashash and Park 2001). 
 
VISCOUS AND HYSTERETIC DAMPING 

Ideally, the hysteretic response represented in non-linear soil 
models should be sufficient to capture soil damping. However, 
most soil models give nearly zero damping at small strains in 
contrast to the results of laboratory and field measurements. 
Therefore, velocity proportional viscous damping is often used 
to supplement hysteretic damping from non-linear soil models 
in site response analysis (Park and Hashash, 2004 and Kwok 
et. al, 2007). 
 
Small strain (viscous) damping 

Most time-domain wave propagation codes include small 
strain damping by implementing the original expression 
proposed by Rayleigh and Lindsay (1945) in which the 
damping matrix results from the addition of two matrices - one 
proportional to the mass matrix and the other proportional to 
the stiffness matrix as shown in Equation (7). 
 
     KaMaC 10   (7) 
where [M] is the mass matrix, [K] is the stiffness matrix and a0 
and a1 are scalar values selected to obtain given damping 
values for two control frequencies. 
 
Small strain damping calculated using the Rayleigh and 
Lindsay (1945) solution is frequency dependent, a result that 
is inconsistent with most of the available experimental data. 
This data indicates that material damping in soils is frequency 
independent at very small strain levels within the seismic 
frequency band of 0.001 to 10 Hz (Lai and Rix 1998).  
 
Hudson et al. (2003) incorporated a new formulation (two-
frequency scheme) of damping matrices for 2D site response 
analyses. The use of this solution results in a significant 
reduction in the damping of higher frequencies commonly 
associated with the use of a Rayleigh damping solution. The 
use of a two-frequency scheme allows the model to respond to 
the predominant frequencies of the input motion without 
experiencing significant over-damping. 
 
Hudson et al. (1994) and Park and Hashash (2004) described 
the application of the full Rayleigh formulation in site 
response analysis. For soil profiles with constant damping 
ratio, scalar values of a0 and a1 can be computed using two 
significant natural modes i  and j using Equation (8): 
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where i and j are the damping ratios for the frequencies fi 
and fj of the system respectively. For site response analysis the 
natural frequency of the selected mode is commonly 
calculated as (Kramer 1996): 
 

H

V
)n(f s

n 4
12   (9) 

where n is the mode number and  fn is the natural frequency of 
the corresponding mode.  
 
It is common practice to choose frequencies that correspond to 
the first mode of the soil column and a higher mode that 
corresponds to the predominant frequency of the input motion. 
Kwok et al. (2007) recommended a value equal to five times 
the natural frequency. Park and Hashash (2004) also give a 
series of recommendations to determine these two frequencies. 
Equal values of modal damping ratios are specified at each of 
the two modes.  
 
Wilson (2005) proposed to use only the stiffness proportional 
damping term to solve dynamic problems involving complex 
structural systems in which a large number of high frequencies 
(short periods) are present. In such problems, periods smaller 
than the time step have a tendency to oscillate indefinitely 
after they are excited. Although the stiffness proportional 
damping with reference frequency equal to the sampling rate 
frequency provides numerical stability, its behavior resembles 
a high pass filter which results in a highly frequency 
dependent viscous damping. Common values of the sampling 
rate frequency (i.e. 50, 100 or 200 Hz) are higher than the 
upper limit of the frequency content range of almost all 
seismic motions and natural frequencies of the soil deposit. 
Therefore, one dimensional wave propagation problems will 
not exhibit the aforementioned numerical instability. The 
solution proposed by Wilson (2005) is highly frequency 
dependent and therefore is not able to represent the soil 
behavior under seismic loads. 
 
Equation (7) can be extended so that more than two 
frequencies/modes can be specified, which is referred to as the 
extended Rayleigh formulation. Park and Hashash (2004) 
implemented an extended Rayleigh scheme using four modes 
in the DEEPSOIL software (Hashash 2009). Using the 
orthogonality conditions of the mass and stiffness matrices, 
the damping matrix can consist of any combination of mass 
and stiffness matrices (Clough and Penzien 1993), as follows: 
 

        
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b KMaMC  (10) 

where N is the number of frequencies/modes incorporated. 
The coefficient ab is a scalar value assuming a constant 
damping ratio throughout the profile and is defined as follows: 
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Equation (11) implies that the damping matrix can be extended 
to include any number of frequencies/modes. The resultant 
matrix from Equation (10) is numerically ill-conditioned since 

coefficients 1
nf , 1

nf , 3
nf , 5

nf … 12 n
nf  differ by orders of 

magnitude.  
 
Employing more than four frequencies/modes can result in a 
singular matrix depending on fn such that ab cannot be 
calculated. An increase in the frequencies/modes used in the 
calculation of the damping matrix also generates an increase in 
the number of diagonal bands of the viscous damping matrix, 
and therefore, a significant time increase for the solution of the 
wave propagation problem. In addition, one must be careful in 
the selection of the number of frequencies/modes to employ so 
as not to obtain negative damping. Incorporating an odd 
number of modes will result in negative damping at certain 
frequencies (Clough and Penzien 1993). Figure 3 presents a 
comparison of the effective damping obtained using one-
mode, two-mode and four-mode solutions. 
 
 

0.1 1 10
Frequency [Hz]

0

2

4

6

8

10

N
or

m
al

iz
ed

 R
ay

le
ig

h 
D

am
pi

ng

Number of Modes in Rayleigh Damping

1 Mode 2 Modes 4 Modes Target  
 

Figure 3 Effective damping for one, two and four (extended) 
modes Rayleigh formulation  

 
 

Phillips and Hashash (2009) implemented the rational indexed 
extension proposed by Liu and Gorman (1995). Using the 
rational indexed extension and an index b equal to 1/2 in 
Equation (10), Equations (10) and (11) reduce to Equations 
(12) and (13) respectively.  
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(13) 

 
Equation (13) shows that for b = 1/2 the viscous damping of 
the system is not dependent on the frequency. Therefore, the 
matrix calculated using Equation (12) is frequency 
independent. Equation (12) was implemented by Phillips and 
Hashash (2009) by using a QL/QR algorithm with implicit 
shifts (Press et al. 1992) to calculate the natural frequencies 
diagonal matrix    and the real modal matrix of the system 

  . The frequency independent model provides a better 

match when compared with the exact solution (which in a 
linear analysis corresponds to a frequency domain solution).  
 
A set of two linear site response analyses with constant 
damping ( = 5%) are presented to examine the influence of 
the proposed frequency independent viscous damping 
formulation on a 100 and 1000 m soil column in the 
Mississippi Embayment (Figure 4a and 4b). These columns 
are analyzed to represent medium depth and deep sites 
respectively. 
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Figure 4 Mississippi Embayment soil columns of different 
depths a) 100 m b) 1000 m. 

 

Figure 5 presents a comparison between the computed surface 
response spectra from linear frequency domain (exact 
solution) and time domain solutions (two mode Rayleigh 
damping and frequency independent damping) for the soil 
profiles located in the Mississippi Embayment with a total 
thickness of 100m (Figure 5a) and 1000m (Figure 5b). The use 
of the Rayleigh damping method to represent small strain 
damping results in an increase in error with increasing profile 
depth. The frequency independent method provides a 
significantly improved match with the results of the frequency 
domain solution for the two soil profiles. 
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Figure 5 Surface response spectra comparison with constant 
damping = 5% profile and linear site response analysis from 
a) 100 m depth soil column b) 1000 soil m depth soil column 

 
Hysteretic damping 

Many models follow the Masing rules (Masing 1926) to 
describe the hysteretic behavior when a soil is unloaded or 
reloaded. The four extended Masing rules are commonly 
stated as:  
 
1. For initial loading, the stress–strain curve follows the 
backbone curve  
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)(Fbb    (14) 

where  is the shear stress and Fbb() is the backbone curve 
function. 
 
2. If a stress reversal occurs at a point (rev, rev), the stress–
strain curve follows a path given by: 








 



22

rev
bb

rev F


 (15) 

 
3. If the unloading or reloading curve intersects the backbone 
curve, it follows the backbone curve until the next stress 
reversal. 
 
4. If an unloading or reloading curve crosses an unloading or 
reloading curve from the previous cycle, the stress–strain 
curve follows that of the previous cycle. 
 
Overestimation of damping at large strain can result when the 
hysteretic damping is calculated using the unload-reload 
stress-strain loops obtained by adhering to the Masing 
rules(Kwok et al. 2007).  Alternatives to the Masing rules 
have been proposed in recent years to overcome the 
overestimation of hysteretic damping problem. 
 
Pyke (1979) proposed an alternative hypothesis (Cundall-Pyke 
hypothesis) to the second Masing rule.  The hypothesis states 
that the scale of the stress-strain relationship for initial loading 
is a function of the stress level on reversal for unloading and 
reloading, instead of using a constant factor (i.e. factor equal 
to 2). The hypothesis in conjunction with a hyperbolic model 
(referred as HDCP model) was implemented later in the 
software TESS (Pyke 2000) to solve total and effective stress 
one-dimensional propagation problems. Using the Cundall-
Pyke hypothesis instead of the Masing rules does not always 
generate a better match with laboratory dynamic curves. 
Therefore, Pyke (2000) proposed that the hysteretic damping 
calculated in the soil model be divided by a factor of two to 
achieve a match to the laboratory measurements. To provide a 
good fit to both modulus reduction and damping curves based 
on laboratory tests, the HDCP model implements a shear 
modulus degradation scheme in which the modulus at a 
reversal point is not equal to G0 but is instead a function of the 
level of strain and number of cycles (Pyke 2000). The main 
shortcomings of using the HDCP model with shear modulus 
degradation matching both modulus reduction and damping 
curves are: (1) the shear modulus degradation seems excessive 
and therefore not always representative of soil behavior, and 
(2) the resulting damping curve in most cases is not a smooth 
function. 
 
Muravskii (2005) presented a methodology to construct 
loading and reloading curves based on a general function that 
becomes an alternative to scaling the backbone by a factor of 
two (as is stated in the Masing rules). Three different functions 
(Davidenkov (1938), Puzrin and Burland (1996) and 
Muravskii and Frydman (1998)) are used to construct the 
unloading and reloading curves. 

 
Gerolymos and Gazetas (2005) developed a phenomenological 
constitutive model capable of reproducing non-linear 
hysteretic behavior for different types of soils and has the 
ability to generate realistic modulus and damping curves 
simultaneously. However, the model requires information on 
anisotropic behavior of the soil and the shape of the unload-
reload loop which can be a limitation to general use. 
 
Based on the idea proposed by Darendeli (2001) of including a 
factor to reduce the hysteretic damping, Phillips and Hashash 
(2009) proposed a formulation that modifies the loading-
unloading criteria that result from using the Masing rules. The 
formulation introduces a reduction factor, F(m). The new 
formulation provides better agreement with the damping 
curves for larger shear strains, but preserves the simplicity of 
the solution proposed by Darendeli (2001) which was based 
on nearly 200 dynamic test results. Equation (16) presents the 
selected functional form for the damping reduction factor: 
 

 
3

0
21 1

p

m G

G
ppF m









   (16) 

where p1, p2 and p3 are non-dimensional parameters selected to 
obtain the best possible fit with the target damping curve.  
 
The modulus reduction and damping curve fitting procedure 
using the reduction factor (MRDF) consists of the following 
three steps:  
 
1) Determine the best backbone curve parameters of the 

modified hyperbolic model to fit the modulus reduction 
curve 

2) Calculate the corresponding damping curve using the 
back-bone curve (determined in the previous step) and 
Masing rules.  

3) Estimate the reduction factor parameters (p1, p2 and p3) 
that provide the best fit for the damping curve. 

 
Figure 6 presents a comparison of the result of using a shear 
modulus only fitting scheme (MR for Modulus Reduction), 
shear modulus and damping fitting scheme (MRD for 
Modulus Reduction and Damping) both using the Masing 
rules, and the new model with reduction factor (MRDF) 
proposed by Phillips and Hashash (2009) which deviates from 
Masing rules. 
 
The new MRDF formulation was tested using 50 sets of 
dynamic curves obtaining a very good to excellent fit for both 
modulus reduction and damping curves simultaneously. 
 
The model proposed by Phillips and Hashash (2009) was later 
implemented in the 1-D non-linear site response analysis by 
including the reduction factor to modify the unloading-
reloading equations. Equation (17)  represents the backbone 
curve, while Equation (18) represents the unloading or 
reloading conditions. 
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(18) 

whereby, is thegiven shear strain,r is the reference shear 
strain,  is the dimensionless factor, s is the dimensionless 
exponentrev is the reversal shear strainrev is the reversal 
shear stressm is the maximum shear strain, F(m) is the 
reduction factor and G0 is the initial shear modulus.  
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Figure 6 Evaluation of proposed damping reduction factor a) 
Modulus reduction and b) Damping curve using Darendeli’s 

curves for cohesionless soils as target. 
 
 
A set of non-linear analyses using the shear wave velocity 
profile presented in Figure 4b and the target dynamic curves 
presented in Figure 7 are performed to evaluate the influence 
of the MRDF Model.  
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Figure 7 Target Dynamic Curves for non-linear example a) 

Modulus Reduction b) Damping   
 
The analysis results are presented in Figure 8 and include 
results using equivalent linear, and MR and MRDF time 
domain approaches with frequency independent small strain 
damping (with a symbol +D).  The results of using the MRDF 
model showed significantly higher responses than MR 
analysis. The MRDF spectrum is slightly lower than the 
equivalent linear (EL) spectrum in the short and long period 
ranges but higher in the mid-period range. 
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Figure 8 Effect of the method used to fit the dynamic 
properties in non-linear site response analysis  
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PORE PRESSURE GENERATION AND DISSIPATION 
MODELS 

The simultaneous generation, dissipation, and redistribution of 
excess pore pressures within the layers of a soil deposit can 
significantly alter the stiffness and seismic response of the 
deposit. The modeling of pore pressure response in non-linear 
site response analysis has seen extensive development based 
on the results of field measurements (Matasovic and Vucetic 
1993) and laboratory tests (Ishihara et al. 1976), including the 
effects of multi-directional shaking (Seed et al. 1978). 
However, models for the generation of pore pressures for 
cohesive soils have received less development as the 
phenomenon has not been as extensively researched as it has 
been for cohesionless soils.  
 
Pore pressure generation models can generally be categorized 
into stress-based, strain-based, and energy-based models 
which can be applied in one-, two-, and three-dimensional 
analyses. Whereas initial models were primarily based on the 
results of cyclic stress-controlled tests, other research 
demonstrated improved correlation with the level of shear 
strain (Dobry et al. 1985b; Youd 1972) or the energy 
dissipated within the soil deposit (Green et al. 2000).  
 
Stress-based pore pressure generation models 
 
For cyclic stress-controlled tests, the excess pore pressures are 
assumed to be those when the applied deviator stress is equal 
to zero. Lee and Albaisa (1974) observed the generation of 
excess pore pressures in cyclic stress-controlled tests on 
saturated cohesionless soils and found that the generation of 
excess pore water pressures generally falls in a narrow band 
defined by the excess pore pressure ratio, ru = ux/’ co, and the 
cycle ratio N/Nliq.  ux is the excess pore pressure, ’ co is the 
initial effective confining stress, N is the number of loading 
cycles, and Nliq is the number of loading cycles required to 
initiate liquefaction which can be determined from cyclic 
stress-controlled laboratory testing. 
 
Seed et al. (1975) developed an empirical expression for ru, 
which was later simplified by (Booker et al. 1976) and 
implemented in the analysis program GADFLEA. The 
expression is shown below as Equation (19). 
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sinr  (19) 

where N is the number of loading cycles, Nliq is the number of 
cycles required to initiate liquefaction, and  is a calibration 
parameter which can be determined from stress-controlled 
cyclic triaxial tests. Despite its simple form, the application of 
this expression is difficult as it requires that the earthquake 
motion be converted to an equivalent number of uniform 
cycles. Recently, there has been a shift from the development 

of stress-based models to strain-based and energy-based 
modeling of pore pressure generation. 
 
Strain-based pore pressure generation models 
 
Site response analysis software which models soil behavior 
according to a hyperbolic model or modifications thereof 
(Finn et al. 1977; Hardin and Drnevich 1972a; Hashash and 
Park 2001; Kondner and Zelasko 1963; Matasovic and 
Vucetic 1993; Prevost and Keane 1990) and which allow for 
fully coupled effective stress analysis are better suited to take 
advantage of strain-based pore pressure generation models. 
Such software programs which include strain-based pore 
pressure generation models include D-MOD (Matasovic 
1993), D-MOD2000 (GeoMotions 2000), DESRA-1 (Lee and 
Finn 1975), DESRA-2C (Lee and Finn 1978), DESRAMOD 
(Vucetic 1986), LASS-IV (Ghaboussi and Dikmen 1984), 
NAPS (Nishi et al. 1985), TESS (Pyke 2000), and DEEPSOIL 
(Hashash 2009). 
 
The results of cyclic strain-controlled tests performed by Youd 
(1972), Silver and Seed (1971), and Pyke (1975) show that the 
densification of dry sands is primarily controlled by cyclic 
strains rather than cyclic stresses. Testing the compaction of 
dry sand revealed the existence of a threshold value of cyclic 
shear strain below which no change in volume occurs. In 
extending this concept to saturated cohesionless soils 
subjected to dynamic loading, the generation of excess pore 
pressures would occur only when the threshold value had been 
exceeded (thus, change in volume could occur). 
 
Dobry et al. (1985a) presented a pore pressure generation 
model for saturated sands which is based on undrained testing, 
theoretical effective stress considerations, and a curve-fitting 
procedure. Vucetic and Dobry (1988) presented a modified 
version of the Dobry et al model in order to include the effects 
of 2-D shaking, which is established as shown in Equation 
(20): 
 

 
 tvpc

s
tvpc*

N NFf

NFfp
u










1
 (20) 

 

where *
Nu  is the normalized (by ’v0) excess cyclic porewater 

pressure after cycle N.  The primary factors controlling the 
generation of pore water pressure are identified as the 
amplitude of the cyclic shear strain, c, the number of shear 
straining cycles, N, and the magnitude of the volumetric 
threshold shear strain, tvp.  The f parameter is used in 
simulating 2-D effects, while p, F, and s are curve-fitting 
parameters. 
 
The primary factors controlling the generation of pore water 
pressure are identified as the amplitude of the cyclic shear 
strain, c, the number of shear straining cycles, N, and the 
magnitude of the volumetric threshold shear strain, tvp.  
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The generation of excess porewater pressures in soils results in 
a reduction of soil stiffness which can be generally represented 
by a modulus degradation model [Equation (21)] and stress 
degradation model [Equation (22)] for cohesionless soils: 
 

*
N

* uGG  10  (21) 

 

 *
N

* u 1  (22) 

 
Matasovic (1993) found that the use of these models 
consistently resulted in an overestimation of degradation, but 
could be improved by including an exponential constant, , as 
shown in Equation (23): 
 

  


 



  00 1 *

N
* u  (23) 

where  is the stress degradation index function. Similarly, 
there is a corresponding modulus degradation index function 
whereby:  
 

G
*
N

* GuGG  00 1  (24) 

 
Based on the same considerations as the Dobry (1985a) 
model, Matasovic (1993) developed a pore pressure 
generation model for cohesive soils which employed the same 
primary factors controlling the pore pressure generation, in 
addition to consideration of the loading history of the cohesive 
soil. The latter must be considered as overconsolidated clays 
may develop large negative pore pressures during early cyclic 
loading. 
 
For cohesive soils, the degradation index function can be 
expressed in terms of either shear modulus or shear stresses 
(i.e. G = ). The degradation index function for cohesive 
soils is given in Equation (25): 
 

tN   (25) 
where N is the number of cycles, and t is a degradation 
parameter of a hyperbolic form which was modified by 
Matasovic (1993), and is given by Equation (26): 
 

 rtvpcst    (26) 

where c is once again the amplitude of the cyclic shear strain, 
tvp is the magnitude of the volumetric threshold shear strain, 
and s and r are curve-fitting parameters which can be 
approximated based on knowledge of the plasticity index (PI) 
and overconsolidation ratio (OCR).  
 
The pore pressure generation model for clays is defined by 
Equation (27). 
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 (27) 

where c is once again the amplitude of the cyclic shear strain, 
tvp is the magnitude of the volumetric threshold shear strain, 
and A, B, C, D, s, and r are curve-fitting parameters.  
 
Matasovic (1993) included the effects of the stress and 
modulus degradation by applying the modulus degradation 
and stress degradation index factors to the MKZ hyperbolic 
model. The generalized stress-strain degradation model for the 
loading portion of the MKZ model is as Equation (28): 
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whereas the unloading-reloading portion is given by Equation 
(29): 
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The work of Moreno-Torres et al. (2010) further extended the 
MRDF pressure-dependent hyperbolic model to include the 
effects of degradation due to pore water pressure generation. 
During the loading portion, the model is exactly the same as 
shown in Equation (28) as proposed by Matasovic (1993). For 
unloading-reloading, the equation incorporates the reduction 
factor, F(m), as shown in Equation (30): 
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(30) 

 
The coupling of the MRDF pressure-dependent hyperbolic 
model (following non-Masing criteria) with the modulus and 
stress degradation index factors developed by Matasovic 
(1993) allow for improved modeling of soil constitutive 
behavior. 
 
Energy-based pore pressure generation models 
 
Energy-based models are empirical expressions which relate 
the generation of excess pore pressure to the energy dissipated 
per unit volume of soil. The dissipated energy can be 
calculated for a given increment of time from the stress-strain 
curve as the area under the curve as illustrated in Figure 9. 
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Figure 9 The dissipated energy per unit volume for a soil 
sample is defined as the area bound by the stress-strain 

hysteretic loop 
 
Energy-based models are generally in the form of Equation 
(31) (Kramer 1996). 
 

 Nu Wr   (31) 

where  and  are curve-fitting or calibration parameters 
while WN is the energy dissipated for cycle N. For general 
loadings, increments in WN are related to stress conditions and 
increments in strain. This feature allows for the 
implementation of energy-based pore pressure models in non-
linear site response analysis software. 
 
The work of Moreno-Torres et al. (2010) considered the 
implementation of  an energy-based pore pressure generation 
model – the GMP model (Green et al. 2000) – in nonlinear site 
response analysis. The GMP model computes the excess pore 
pressure as shown in Equation (32), which is a special case of 
the general equation shown in Equation (31) as well as the 
model proposed by Berrill and Davis (1985). 
 

PEC

W
r s
u   

(32) 

 
where Ws is the dissipated energy per unit volume of soil 
divided by the initial effective confining pressure, and PEC is 
the “pseudo energy capacity” – a calibration parameter. 
 
The dissipated energy, Ws can be calculated by Equation (33): 
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(33) 

where 'v0 is the initial effective vertical stress, n is the 
number of load increments to trigger liquefaction, i and i+1 
are shear stresses at load increments i and i+1; and i and i+1 
are the shear strains corresponding to load increments i and 
i+1. It can be seen that Equation (33) employs the trapezoidal 

rule to compute the area bounded by the stress-strain 
hysteretic loops which is then normalized by 'v0. 
 
The determination of the PEC calibration parameter can be 
conducted either via graphical procedure or by use of an 
empirical relationship. The graphical procedure is described in 
detail by Green et al. (2000). However, this causes an 
interruption in analysis as it requires the construction of the 
graphical procedure outside of site response analysis software.  
 
Polito et al (2008) derived an empirical relationship between 
PEC, relative density (Dr), and fines content (FC) from a large 
database of laboratory data on non-plastic silt-sand mixtures 
ranging from clean sands to pure silts. The empirical 
relationship is defined by Equation (34): 
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(34) 

where c1 = -0.597, c2 = 0.312, c3 = 0.0139, and c4 = -1.021. 
The use of this empirical relationship allows the use of the 
GMP model directly in nonlinear site response analysis 
software by removing the need to find the value of PEC 
through graphical procedures.  
 
Effect of multidirectional shaking on pore pressure generation 
 
Correct implementation of pore pressure generation models 
within one-dimensional non-linear site response analysis 
requires the foresight that while only one component of the 
earthquake motion is considered in the analysis the 
development of pore pressure is dependent on multidirectional 
loading.  
 
Seed et al. (1978) explored the effect of multidirectional 
shaking on pore pressure development in sands. The results of 
this work indicate that sands subjected to two equal and 
orthogonal components of shaking exhibit generation of pore 
pressure occurring approximately twice as fast as compared to 
one-dimensional shaking, or twice the amount of pore pressure 
generated for a given time increment. This effect is accounted 
for in various ways depending on the pore pressure generation 
model or analytical program employed. 
 
The Dobry et al. (1985a) model for pore pressure generation in 
cohesionless soils can optionally account for this effect by 
multiplying the calculated pore pressure by two for two-
dimensional shaking. DEEPSOIL and D-MOD employ the 
Dobry model and can thus account for the effect of two-
dimensional shaking on the development of pore pressures. 
Other analytical programs such as SUMDES allow for the 
specification of a second earthquake motion which is solely 
referenced when determining the generation of pore pressures.  
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Dissipation / redistribution models 
 
The dissipation and redistribution of excess pore pressures 
within a soil deposit is governed by the rate of flow of water in 
and out of the layers of the deposit and the respective rate of 
pore pressure generation in a given time increment.  
 
The flow of water is commonly modeled (e.g. Hashash, 
(2009), and Matasovic, (1993) using a form of the Terzaghi 
one-dimensional theory of consolidation – Hashash (2009) 
employs the coefficient of consolidation (cv), while Matasovic 
(1993) employs the constrained oedometric rebound modulus 
(Ēr). Equation (35) represents the dissipation / redistribution 
model employed by Hashash (2009). 
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An analysis scheme is required to compute the final pore 
pressures. The most common applied method is a finite 
difference method, or a variation thereof (Hashash 2009; Lee 
and Finn 1978; Matasovic 1993). Once the effect of 
dissipation for a given time increment has been calculated, any 
change in pore pressure is added algebraically to the existing 
pore pressure to obtain the final pore pressure. 
 
IMPLIED SOIL STRENGTH AT LARGE STRAINS 

Site response analyses that involve large levels of shear strain 
must not only ensure that the stiffness and damping are 
properly represented, but must also incorporate the shear 
strength of the soil. Performing an analysis without checking 
the implied shear strength of the soil can lead to unreasonable 
soil behavior that commonly results in significant 
overestimation or underestimation of the shear strain profile. 
 
Chiu et al. (2008) have shown that if the modulus reduction 
curve is determined by using only the Darendeli (2001) model 
the shape of the backbone curve at large shear strains would 
be based principally on extrapolation which typically 
underestimates the shear strength at shallow depths.  
 
Stewart and Kwok (2008) proposed a hybrid procedure to 
solve this issue. In this procedure, the modulus reduction 
curves are constructed using cyclic test results or correlation 
relationships to define the shape of the backbone curve until a 
certain strain level 1. At strain levels exceeding 1, the strain-
stress coordinates calculated by the hyperbolic relationship 
that accounts for the material shear strength (ff) for simple 
shear conditions is adjusted for rate effects. Figure 10 presents 
an example of the proposed procedure. It can be observed that 
for shear strain values higher than 0.1% (1 = 0.1% in this 
example), as the shear strain increases the shear stress values 
approach the maximum shear strength. 
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Figure 10 Stewart and Kwok (2008) proposed hybrid 
procedure for a sand ’=33°,’v=100 kPa, Vs=200 m/s a) 

Modulus reduction curve b) Shear strain curve 
 
The backbone curve based on shear strength data provides 
more realistic modeling of large strain behavior which results 
in a decrease of the maximum shear strain along the soil 
profile (Chiu et al. 2008) and a slight increase in the spectral 
acceleration values at the surface.- 
 
The method proposed by Stewart and Kwok (2008) provides 
curves that match the behavior observed in tests for low to 
intermediate cyclic shear strains (bender element, resonant 
column and cyclic triaxial test) and do not underestimate the 
shear strength of the soil. The use of such a composite curve is 
easily employed in equivalent linear analysis but cannot be 
directly used in nonlinear site response analysis.  
 
Based on work the authors have performed, it is observed that 
while some target modulus reduction curves underestimate the 
soil strengths, others overestimate the strength. A new 
procedure is developed to rectify this problem in nonlinear site 
response analysis using the MRDF model discussed earlier. 
The procedure consists of the following five steps: 
 

1) Fit the target curve for the soil (e.g. curve obtained using 
Darendeli (2001) equations) using the aforementioned 
MRDF model. Obtain the soil model parameters (r, s, , 
small, p1, p2, p3). 
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2) Compute the implied soil shear strength as the maximum 
shear stress value calculated using Equation (36) for all 
points that are part of the modulus reduction curve. 

 

 
0

2

G

G
Vs  (36) 

where  is the mass density, Vs is the shear wave 
velocity, G/G0 is the modulus reduction value and  is 
the correspondent shear strain. 

 
For cohesionless soils the implied friction angle can be 
estimated using Equation (37): 
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where  is the implied friction angle, max is the implied 
shear strength of the soil and ’v is the vertical effective 
stress at mid depth of the layer. 

 
3) Compare the obtained implied shear strength or friction 

angle with the soil dynamic (target) shear strength or 
(target) friction angle. The dynamic shear strength may 
be estimated as 1.1-1.4 times the static shear strength.  
(Chiu et al. 2008; Ishihara and Kasuda 1984; Sheahan et 
al. 1996).  

 
4) In the case of the implied shear strength/friction angle 

being lower than the target value (underestimation of the 
shear strength): For shear strains exceeding values of 
0.1%, manually increase the modulus reduction curve 
data points such that the implied shear strength or 
friction angle is somewhat larger than the target value. 
 
In the case of the implied shear strength/friction being 
higher than the target value (overestimation of the shear 
strength): For strains in excess of 0.1%, manually reduce 
the modulus reduction curve data points such that the 
implied shear strength or friction angle is somewhat 
lower than the target value.  

 
5) Fit the modified modulus reduction curve (Step 3) and 

the damping curve obtained in Step 1 using the MRDF 
procedure.  

 
6) Calculate the implied shear strength for the fitted curve 

using the aforementioned equations. If the implied shear 
strength is significantly higher or lower than the target 
value repeat Steps 3-5. 

 
Figure 11 presents an example of the application of the 
proposed method to a layer of a clay with ’v=460kPa, 
Vs=366 m/s. The modulus reduction of the original curve has 
an implied shear strength that is almost three times higher than 
the target shear strength determined in experimental tests. The 
proposed method provides a similar modulus reduction curve 
to the original modulus reduction curve for strains lower than 
0.1%, an almost identical damping curve and a implied shear 

strength almost equal to the target shear strength for this type 
of soil at the given confinement pressure. 
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Figure 11 Application of the methodology proposed by 
Hashash for generation of dynamic curves for Old Bay Clay. 

a) Modulus reduction b) Damping c) Shear strength curve 
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VERTICAL SITE RESPONSE 

Field evidence collected in the Kalamata (Greece, 1986), 
Northridge (USA, 1994) and Kobe (Japan, 1995) earthquakes 
indicate that damage and collapse of concrete and steel 
buildings and several bridges can be attributed to high vertical 
ground motions (Papazoglou and Elnashai 1996). Bozorgnia 
and Campbell (2004), Elgamal and Liangcai (2004) and 
Watabe et al. (1990) have shown that the vertical to horizontal 
ratio (V/H) of strong motion response spectra is highly 
dependent on the natural period of the input motion, source to 
site distance and local site conditions.  
 
Bozorgnia and Campbell (2004) observed that V/H spectra 
values with distance are different for firm soil (NEHRP site 
category D) than for stiffer soil and rock deposits. For firm 
soil sites, V/H values higher than one were predicted. For 
short periods, close distances, and large magnitude 
earthquakes, V/H values close to 1.8 have been predicted. 
 
The limited availability of downhole vertical array records 
hinders the ability to establish definitive conclusions regarding 
wave propagation of vertical ground motions through soil 
profiles. The available data shows that the peak vertical 
acceleration (PVA) amplification mainly occurs within the top 
20 m of soil. At the ground surface, PVA was amplified by a 
factor of 2–3 (Elgamal and Liangcai 2004).  
 
Using the same analytical procedure as employed for 
horizontal ground motions, Mok et al. (1998) developed a site 
response analysis procedure for vertical ground motions. For 
this analysis the controlling parameter of the soil column 
response is the compression-wave propagation velocity 
instead of the shear-wave velocity of traditional site response 
analysis.  
 
Mok et al. (1998) recommended reducing the compression-
wave propagation velocity determined by geophysical 
measurements of near-surface unsaturated soils by 40 to 60% 
and using the geophysical measurements for soils with 
compression-wave velocities equal or greater than that of 
water. To include soil damping in vertical site response 
analysis damping, Mok et al. (1998) recommended using the 
average values estimated from site response analyses for 
horizontal components without exceeding 10% of the critical 
damping ratio in any layer. Following these recommendations, 
Mok et al. (1998) obtained a reasonably good agreement 
between the results of the vertical site response analysis and 
the measured values (vertical component) at Lotung and Port 
Island sites. 
 
Elgamal and Liangcai (2004) used vertical motion records of 
the Lotung downhole vertical array to examine a vertical wave 
propagation model based on the equivalent-linear model 
employed in SHAKE91 (Schnabel et al. 1972). An  
optimization procedure (Elgamal et al. 2001) was employed to 
obtain the dynamic properties of the model. High damping 
(even for small input motions) in the range of 15% and wave 

velocity approximately equal to 3/4 Vp were required to match 
the measured time histories at different depths of the vertical 
array. Although the use of optimized properties allows for an 
accurate reproduction of the measurements, there is no 
physical basis to explain the use of high damping values and 
low compression-wave velocity. Additional data and analyses 
are required to develop a rational vertical motion site response 
analysis procedure (Beresnev et al. 2002). 
 
ADDITIONAL PRACTICAL CONSIDERATIONS 

Maximum layer thickness 

An important consideration in nonlinear analysis is the 
thickness of layers when discretizing the soil column. In 
general, the maximum frequency (fmax) which can be 
propagated through a soil layer in non-linear analysis is 
calculated as shown in equation (38): 
 

H

V
f s

max 4
  (38) 

where Vs is the shear wave velocity and H is the thickness of 
the given layer. This is known as the maximum cut-off 
frequency. Frequencies above this value will not be 
propagated through the soil layer. It is recommended that the 
maximum cut-off frequency for any given layer be no less 
than 25-30 Hz, but may be larger as governed by the 
frequency content of the input motion and the level of strains 
anticipated in the soil profile. An appropriate selection of the 
maximum cut-off frequency is required to ensure 
computationally accurate soil constitutive behavior. 
 
Elastic versus rigid base 

After establishing an appropriately discretized soil column, the 
engineering practitioner must next address the modeling of the 
half-space at the base beneath the column. The modeling of 
this half-space is selected as either an elastic or rigid base and 
is dependent on the location at which the motion was 
recorded.  
 
Selection of a rigid base implies a fixed-end boundary at the 
base of the column which will completely reflect any 
descending waves back through the column. In this case, the 
motion of the base is unaffected by motions within the 
overlying geologic column. If the earthquake motion was 
obtained from within the soil column (e.g. from a vertical 
array), a rigid base should be selected to accurately represent 
the shaking at the base of the column (Kwok et al. 2007). 
 
Selection of an elastic base allows for only the partial 
reflection of descending waves back through the column. This 
allows for some of the elastic wave energy to be dissipated 
into the bedrock, resulting in ground surface motions smaller 
in magnitude than those obtained using a rigid base. If a rock 
outcrop motion is being used, an elastic base should be 
selected to account for the radiation damping of elastic wave 
energy as the waves propagate through rock to the outcrop. In 
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general the input motions used in most engineering analyses 
are motions at an equivalent rock outcrop, thus an elastic base 
should be used in these analyses.  
 
Role of equivalent linear analysis 

The previous sections describe in detail many issues involved 
in nonlinear site response analysis. However, the authors 
recommend that equivalent linear analyses always be 
conducted in parallel with nonlinear analyses. From a practical 
point of view there are many potential pitfalls in the nonlinear 
analyses that the user can readily identify by comparing the 
results with those of equivalent linear analysis. It is expected 
that equivalent linear and nonlinear analyses will provide 
different results; nevertheless a comparison of the two will 
help the user quickly identify obvious errors in the analysis 
methodology. 
 
DYNAMIC SOIL BEHAVIOR FROM VERTICAL ARRAY 
DATA 

Conventional site response analysis models are used to predict 
seismic response at a site including acceleration, velocity, and 
displacement at the ground surface and within the soil column. 
The accuracy of prediction highly depends on the 
representation of cyclic soil behavior. Laboratory tests are 
often used to measure or evaluate dynamic soil behavior and 
then to develop cyclic soil constitutive models. The loading 
paths in lab tests, however, are significantly different from 
those soil experienced in the field (Kramer 1996) and are not 
necessarily representative of anticipated soil behavior under 
real shaking. Consequently, site response analysis models may 
not be able to predict site response accurately. 
 
Recently, an increasing number of downhole arrays are being 
deployed to measure motions at the ground surface and within 
the soil profile. These arrays provide valuable data to enhance 
site response analysis models and reveal the real soil behavior 
under earthquake shaking. Nevertheless, learning from field 
measurements is an inherently inverse problem that can be 
challenging to solve. Ad hoc approaches are sometimes 
adopted to adjust soil model properties to match field 
observations, but these approaches are not always successful 
and do not necessarily provide additional insight into the 
seismic site response or cyclic soil behavior. 
 
Parametric and non-parametric system identification 

Zeghal and Elgamal (1993) used a linear interpolation 
approach to estimate shear stress and strain seismic histories 
from downhole arrays via a nonparametric system 
identification procedure. However, soil behavior identified by 
this method only represents averaged behavior between two 
points of measurements. Recently, another system 
identification approach, called parametric system 
identification, such as time-domain method (Glaser and Baise 
2000) and frequency domain method (Elgamal et al. 2001; 

Harichance et al. 2005) has also been applied to downhole 
arrays.  
 
Although this approach provides better estimates of the 
dynamic properties of soil (shear stiffness and damping ratios) 
compared to the linear interpolation approach, the approach 
still has some limitations. The frequency domain method 
(Elgamal et al. 2001; Harichance et al. 2005) can only identify 
the equivalent stiffness and damping of the system regardless 
of the level of shaking. It cannot identify the variation of these 
quantities with time. 
 
The time-domain method (Glaser and Baise 2000) is able to 
identify the variation of stiffness and damping ratio at each 
time interval, but these time-varied parameters still cannot be 
readily integrated into a material constitutive model for future 
use in site response analysis.  
 
More recently Assimaki and Steidl (2007) developed a hybrid 
optimization scheme for downhole array seismogram 
inversion. The proposed approach estimates the low-strain 
dynamic soil properties by the inversion of low-amplitude 
waveforms and the equivalent linear dynamic soil properties 
by inversion of the main shock. The results have shown that 
that inversion of strong motion site response data may be used 
for the approximate assessment of nonlinear effects 
experienced by soil formations during strong motion events. 
 
Current approaches, while providing important insights from 
field observations, do not fully benefit from field observations. 
They are often constrained by prior assumptions about soil 
behavior or the employed soil model.  
 
Self Learning Simulations 

SelfSim, self-learning simulations, is an inverse analysis 
framework that implements and extends the autoprogressive 
algorithm (Ghaboussi et al. 1998). The algorithm requires two 
complementary sets of measured boundary forces and 
displacements in two complementary numerical analyses of 
the boundary value problem. The analyses produce 
complementary pairs of stresses and strains that are used to 
develop a neural network (NN)-based material constitutive 
model. The procedure is repeated until an acceptable match is 
obtained between the two sets of analyses. The resulting 
material model can then be used in the analysis of new 
boundary value problems. SelfSim has been used to extract 
material behavior from non-uniform material tests (Sidarta and 
Ghaboussi 1998). Tsai and Hashash (2007) extended SelfSim 
to extract dynamic soil behavior from downhole arrays which 
constitutes a major departure from general system 
identification methods from field observations and 
conventional methods for development and calibration of 
dynamic soil models using laboratory measurements. The 
proposed method (Figure 12) proved to be capable of 
extracting non-linear soil behavior using downhole array 
measurements unconstrained by prior assumptions of soil 
behavior. 
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Figure 12 Schematic representation of the algorithm to apply 

SelfSim to one dimensional wave propagation problems 
 

The results of using the SelfSim algorithm have shown (Figure 
13) its ability to gradually learn the global response while 
extracting the underlying soil behavior. Recordings from 
multiple events are needed to extract non-linear soil behavior 
over a wide strain range. 
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Figure 13 Comparison of surface response spectrum from 
SelfSim and target response. a) Kobe Earthquake b) Yerba 

Buena Earthquake 

 
Tsai and Hashash (2007) were able to explore modulus 
degradation with respect to the number of cycles by assuming 
that hysteretic loops are symmetric. Figure 14 presents the 
extracted behavior of one soil layer in terms of number of 
cycles from the Lotung array. Analysis of the data developed 
by Tsai and Hashash (2007) showed that, in general, the 
increase of the number of cycles results in modulus 
degradation with almost no effect on the damping curve. 
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Figure 14 Dependence of extracted behavior on number of 
cycles, Lotung array. 

 
Using a similar approach, Tsai and Hashash (2007) analyzed 
the effect of the strain rate on the dynamic curves. Using the 
results presented in Figure 15, Tsai and Hashash (2007) 
determined that the decrease in strain rate results in modulus 
degradation, which is corroborated by several observations 
from laboratory tests (Kim et al. 1991; Matesic and Vucetic 
2003). However, the extracted behavior does not show any 
significant observable correlation between damping and strain 
rate. 
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Figure 15 Dependence of extracted behavior on the strain rate, 

Lotung array. 
 
 
Hashash and Groholski (2009) further extended SelfSim to 
extract not only the constitutive behavior of the soil, but also 
the pore water pressure generation response of the soil using 
downhole array measurements. In this implementation, 
measured pore water pressures from downhole arrays are 
imposed in the force boundary condition analysis along with 
the recorded acceleration as measured from the deepest point 
of the downhole array. The displacement boundary condition 
analysis is performed as normal. Shear stresses are extracted 
from the force boundary condition analysis, while shear strains 
and pore pressures are extracted from the displacement 
boundary condition analysis. This data is then used to train 
two neural network material models – one for the pore 
pressure response, and the second for soil behavior. The 
material models are then implemented into the two 
complementary numerical analyses and the procedure is 
repeated until an acceptable match is obtained between the 
analyses.  
 

A set of effective stress site response analyses are presented to 
examine the ability of SelfSim to capture the soil behavior 
under cyclic conditions. The soil column presented in Figure 
16 with and the dynamic properties presented in Figure 17 are 
used as an example. 
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Figure 16 Shear wave velocity profile for fully coupled 
SelfSim learning example 
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Figure 17 Target Dynamic Curves for fully coupled SelfSim 

learning example a) Modulus Reduction b) Damping   
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The results of the implementation of the SelfSim algorithm as 
applied to a fully-coupled effective stress site response 
analysis are shown in Figure 18. The results illustrate the 
capability of SelfSim to gradually learn the global response, 
while simultaneously extracting both the soil behavior and 
pore pressure generation response. Similar to the findings of 
Tsai and Hashash (2007), recordings from multiple events are 
required to extract non-linear soil behavior over a wide strain 
range, with the same also holding true for the extraction of 
pore pressure response. 
 

 

0.01 0.1 1 10
Period [sec]

0

1

2

3

4

5

S
pe

ct
ra

l A
cc

el
er

at
io

n 
-S

a-
 [

g]

-0.30 -0.15 0.00 0.15 0.30
Shear strain -- [%]

-2.4

-1.2

0.0

1.2

2.4

N
or

m
. S

he
ar

 S
tr

es
s 

(
 / 
'

v0
)

0 10 20 30 40 50 60 70
Time [sec]

0.0

0.2

0.4

0.6

0.8

1.0

ru
 (
u

/
' v0

)

Target

SelSim Learning

c)

b)

a)

 
 

Figure 18 Comparison a) response spectra b) stress-strain 
curves, and c) pore pressure response from SelfSim and target 

response. 

USER INTERFACE FOR ROBUST 1D SITE RESPONSE 
ANALYSIS 

The importance of a carefully designed GUI for nonlinear site 
response analysis cannot be understated. GUI allows the user 
to focus on the key aspects of the site response analysis (e.g. 
geometry of the problem, soil characteristics/parameters, and 
boundary conditions, among others), diminishing the required 
time to: construct a correct input file, export the output or 
generate graphic reports of the results. A successful interface 
becomes the main communication tool between the developer 
and the user and a key element in reducing the most typical 
errors in site response analysis. For example, in time domain 
analysis a proper GUI will show to the user the need to 
subdivide certain soil layers to ensure that the numerical 
model will not filter the higher frequencies of the input 
motion. All the widely used site response analysis codes now 
have GUI that greatly facilitate the analysis process and allows 
the user to focus on the essential elements of the analysis.   
 
CONCLUDING REMARKS 

Measurements from earthquakes over the past 50 years have 
demonstrated the inherent non-linear behavior of soil materials 
subjected to earthquake loading, and thus the importance of 
their consideration in site response analysis. Numerous 
methods and models have been, and continue to be developed 
for determining the soil response in the time domain. While 
advanced models are available, they require extensive 
information in regard to a specific soil's exhibited behavior 
while in most cases only the modulus reduction and damping 
curves are available.  
 
The hyperbolic model has proven to be a simple, yet versatile 
model which allows for the inclusion of effects of overburden 
pressure, small-strain and hysteretic damping, as well as 
modulus degradation due to the generation, dissipation, and 
redistribution of excess pore pressures.  
 
The paper described many of the important and practical 
developments designed to improve the quality of nonlinear 
site response analysis. This included small and large strain 
damping formulations, porewater pressure generation models, 
inverse analysis for learning dynamic soil behavior. The paper 
also discussed other practical issues including layer thickness 
and rock base modeling requirements.  
 
A set of curve-fitting procedures is available to more 
accurately model recorded soil behavior (based on the 
modulus reduction and damping curves) according to the 
parameters of the hyperbolic model. Using these curve-fitting 
procedures, a new procedure is described which uses the 
results of dynamic tests for small to medium strains and the 
shear strength of the soil for large strains to construct the soils 
curve.  
 
Techniques for the extraction of dynamic soil behavior from 
downhole array measurements are reviewed. Such techniques 
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include both parametric and non-parametric system 
identification approaches which provide insight from field 
observations, but are limited by assumptions made about soil 
behavior or the employed soil model. An inverse analysis 
framework, SelfSim, has shown the capability of an evolving 
soil model to reproduce global behavior of the site while 
simultaneously extracting the underlying soil behavior. 
Further research is currently being conducted to extend this 
concept towards the extraction of excess pore pressure 
response in addition to soil behavior. 
 
Nonlinear site response analysis can provide acceptable 
representation of soil column response as long as the model 
parameters are implemented and understood correctly. To this 
end, the accuracy of the results is dependent on the 
engineering practitioner's understanding of requirements for a 
proper site response analysis; which can be significantly 
augmented by the use of a well designed graphical user 
interface in the site response analysis software. 
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