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It has been demonstrated in rodents and humans that chronic inflammation characterized
by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which
activation of immune cells is closely associated with insulin sensitivity. Macrophages can
be classified as classically activated (M1) macrophages that support microbicidal activity or
alternatively activated (M2) macrophages that support allergic and antiparasitic responses.
In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting
IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of
proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various
dynamic functions of other immune cells. It has been demonstrated that, in a lean state,
TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of
macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the con-
stituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1
activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secre-
tion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the
M1 activation of macrophages. Since obesity-induced insulin resistance is established by
macrophage infiltration and the activation of immune cells inside tissues, identification of
the factors that regulate accumulation and the intracellular signaling cascades that define
polarization of M1/M2 would be indispensable. Regulation of these factors would lead
to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we
introduce molecular mechanisms relevant to the pathophysiology and review the most
recent studies of clinical applications targeting chronic inflammation.
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INTRODUCTION
Obesity develops as a consequence of nutritional excess and insuf-
ficient exercise; it causes major adverse health outcomes such as
type 2 diabetes, cardiovascular diseases, dyslipidemia, chronic kid-
ney diseases, and cancers, which are serious problems worldwide.
These pathological states are strongly associated with insulin resis-
tance or hyperinsulinemia. On the basis of efforts over the last
two decades, there have been remarkable developments in the
investigation of obesity-induced insulin resistance, especially in
terms of the mechanisms involved, some of which are expected
to lead to treatments of the disease. Among these, low-grade
chronic inflammation in obesity is one of the most innova-
tive and newly identified concepts. The metabolic pathway and
the immune response pathway, which are strongly evolutionarily
conserved among species, have been found to be strongly asso-
ciated with each other in the development of obesity-induced
insulin resistance. In this review, we look back over the ini-
tial findings in the research field of inflammation and insulin
resistance and discuss recent studies, including those on clinical
applications.

OBESITY-INDUCED CHRONIC INFLAMMATION IN ADIPOSE
TISSUE AND ADIPOKINE SECRETION
Low-grade chronic inflammation was found to be closely asso-
ciated with obesity-related metabolic diseases. This association
between obesity/type 2 diabetes and inflammation can be traced
back to case reports published over a century ago, showing that
high-dose sodium salicylate could diminish glycosuria in older
diabetic patients (1, 2). Thereafter, several studies also showed
that acetylsalicylic acid or sodium salicylate reduced the glucose
level and improved glucose tolerance in diabetic patients (3, 4).
These reports again drew attention in 1993 with the publica-
tion of a report demonstrating in mice that the expression of
TNFα in adipose tissue was increased during the development
of obesity, while conversely the neutralization of TNFα attenu-
ated insulin resistance (5). Subsequently, the same research group
demonstrated that TNFα suppressed insulin signaling by inhibit-
ing insulin receptor tyrosine kinase activity (6) and proposed a
model in which inflammation defined as an increased level of
TNFα in adipose tissue could be the basis of systemic insulin resis-
tance. Concurrently with these findings, leptin was identified as
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a secretory bioactive molecule from adipocytes, which regulates
food intake and energy expenditure through the hypothalamus
(7). This led to the establishment of an innovative concept in
which adipose tissue not only simply stores excess energy as tria-
cylglycerol but is also an organ that secretes the biologically active
substances referred to as adipokines. Adipokines could directly
regulate the insulin sensitivity of remote insulin-sensitive organs
including liver and skeletal muscle through the circulation. Dereg-
ulated adipokine secretion from the expanded adipose tissue of
obese individuals was shown to contribute to the development
of systemic insulin resistance and metabolic diseases. Following
the discovery of leptin (7), a number of adipokines have been
identified; these include IL-6 (8, 9), resistin (10), retinol-binding
protein 4 (RBP-4) (11), omentin (12), chemerin (13–15), pro-
granulin (16), and monocyte chemoattractant protein-1 (MCP-1)
(17–19). The proinflammatory cytokine TNFα, produced mainly
by macrophages that have infiltrated into adipose tissue, can also
be considered as an adipokine (5, 20). Given that TNFα activates
proinflammatory signal cascades as well as inhibits insulin recep-
tor signaling, this molecule is thought to be a major player linking
adipose tissue inflammation and insulin resistance (21, 22). In
contrast, in a lean state, a certain level of “healthy” adipokines
contributes to insulin sensitivity and adequate glucose homeosta-
sis. For instance, adiponectin is considered a “healthy” adipokine.
Adiponectin-deficient mice exhibited insulin resistance (23, 24)
along with increased expression of TNFα in adipose tissue (23).
Chronic inflammation, especially in adipose tissue, causes impair-
ment of adipokine secretion, leading to systemic insulin resistance.
Thus, adipose tissue inflammation and adipokine secretion are
strongly associated with each other and coordinately contribute to
insulin resistance in obesity.

MACROPHAGE ACCUMULATION IN ADIPOSE TISSUE
The mechanisms by which TNFα is increased during obesity were
unclear until the findings published in 2003 that chronic inflam-
mation observed in rodents and humans was characterized by the
accumulation of macrophages into adipose tissue (21, 22). In gen-
eral, macrophages differentiate in tissue from recruited monocytes
and function in innate immunity during host defense. However,
these studies demonstrated that macrophages existed even in a
lean state, but expanded their populations during the develop-
ment of obesity in mice and humans (21, 22). It is now considered
that macrophages defined as F4/80+ CD11b+ are resident in lean
adipose tissue, representing 5% of the stromal vascular fraction
(17, 25), but are increased by obesity up to 14–30% (17, 18, 25).
In healthy subjects, adipose tissue macrophages show dynamic
diversity. Kosteli et al. showed that, although chronic weight loss
reduced the macrophage content in adipose tissue, fasting or
acute weight loss in turn elicited their accumulation (26). Such
conditions seemed to enhance the lipolysis that caused elevation
of local free fatty acid (FFA), which induced macrophage accu-
mulation. Infiltrated macrophages incorporate lipids, which act
to suppress lipolysis. These findings provide evidence that, not
only in a pathological state, but also in physiological circum-
stances, macrophages in adipose tissue play dynamic roles in the
maintenance of homeostasis.

THE ROLE OF CHEMOKINES IN ADIPOSE TISSUE
INFLAMMATION AND INSULIN RESISTANCE
Chemokines are a family of low-molecular-weight proteins with
an essential role in leukocyte trafficking during both homeosta-
sis and inflammation. On the basis of their molecular structure,
chemokines are divided into two major subgroups: CC chemokine
ligand (CCL) and CXC chemokine ligand (CXCL), which bind
to CC chemokine receptor (CCR) or CXC chemokine receptor
(CXCR), respectively (27). Intriguingly, MCP-1 (also known as
CCL2), a representative CC chemokine, was found to be remark-
ably increased in adipose tissue in obesity (21, 22, 28). We and oth-
ers sought to investigate whether MCP-1 is a factor that enhances
the infiltration of macrophages in adipose tissue. Adipose tissue-
specific overexpression of MCP-1 in mice indeed increased
macrophage infiltration into adipose tissue and insulin resistance
(17, 19), whereas disruption of MCP-1 or its receptor, CCR2,
impaired high-fat diet (HFD)-induced migration of macrophages
into adipose tissue, thereby reducing adipose tissue inflammation
and attenuating insulin resistance (17, 18, 29, 30). These findings
suggest that MCP-1 secreted from enlarged adipocytes attracted
circulating monocytes to adipose tissue, causing inflammatory
characteristics of adipose tissue. Infiltrated monocytes differen-
tiate into macrophages and produce additional inflammatory
cytokines, leading to further inflammation. Secreted inflamma-
tory cytokines are supposed to induce insulin resistance in liver
and skeletal muscle by functioning as adipokines (Figure 1). In
addition, chronic increase in the circulating level of MCP-1 by the
administration of recombinant MCP-1 protein induced insulin
resistance, macrophage infiltration into adipose tissue, and an
increase in hepatic triacylglycerol content without affecting body
weight (18). Acute increase in the circulating MCP-1 concentration
also induced insulin resistance but not macrophage infiltration
into adipose tissue. These findings indicate that an increase in the
concentration of MCP-1 in the circulation is sufficient to induce
systemic insulin resistance irrespective of adipose tissue inflam-
mation (18). In fact, circulating MCP-1 levels were found to be
increased in type 2 diabetic patients compared with normal sub-
jects (31, 32) or to be correlated with HOMA-IR in type 2 diabetic
patients (33). On the other hand, studies by others found no dif-
ference or even more infiltrated macrophages in adipose tissues in
MCP-1-deficient mice, although the reason for the different results
is unknown (34, 35). Recent study by Oh et al. provided evidence
by employing a new method for quantitative in vivo macrophage
tracking, in which monocytes isolated from peripheral blood were
labeled ex vivo with fluorescent PKH26 dye and then injected into
recipient mice (36). Mice receiving CCR2-deficient monocytes
were protected from HFD-induced accumulation of macrophages
in adipose tissue and the liver, while transplantation of intact
monocytes into MCP-1 knockout mice on an HFD did not cause
infiltration of macrophages into the tissues (36). These results all
suggest that the MCP-1-CCR2 signaling pathway plays an impor-
tant role in adipose tissue inflammation (17–19, 29, 30, 36), hepatic
steatosis (17, 18, 37, 38), and glucose metabolism (17–19, 29, 30,
36–38) in insulin-resistant model mice. Thus, examination of the
factors that induce MCP-1 expression in hypertrophied adipocytes
is also important. Ito et al. demonstrated that down-regulation of
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FIGURE 1 | Obesity-induced macrophage infiltration into adipose tissue
causes insulin resistance. (A) In adipose tissue in a lean state, most
resident macrophages are M2 macrophages that contribute to insulin
sensitivity by secreting IL-10. (B) Hyperphagia and lack of exercise cause
hypertrophy of adipocytes, which induces MCP-1 secretion to the circulation,
leading to the recruitment of circulating monocytes to adipose tissues. These

infiltrated monocytes differentiate into activated M1 macrophages, which
robustly secrete proinflammatory cytokines such as TNFα, IL-6, and MCP-1,
thus contributing to low-grade inflammation in adipose tissue and a decrease
of adiponectin. At the same time, these secreted cytokines cause insulin
resistance in liver and skeletal muscle by acting as insulin resistance-inducing
adipokines.

mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-
1) increased MCP-1 expression through MAPK activation in cul-
tured adipocytes (39). Furthermore, Kitade et al. demonstrated
that the expression of CCR5 in adipose tissue was similarly
increased during obesity (40). Genetic deletion of CCR5 in mice
resulted in protection against HFD-induced macrophage infil-
tration, insulin resistance, and hepatic steatosis. Furthermore,
alteration of macrophages in adipose tissues was accompanied
by polarization to M2. These results were reproduced using a
cell-specific approach by employing bone marrow transplantation
(40). At present, it is believed that M2 macrophages contribute
to maintain insulin sensitivity, while obesity causes a switch to
M1 polarization that enhances systemic insulin resistance through
the secretion of inflammatory cytokines (41). Subsequently, the
contributions of chemokines other than the CCL family, such
as CXCL14 (42) or other factors including osteopontin (43),
angiopoietin-like protein 2 (Angptl2) (44), serum amyloid A (45),
and dietary cholesterol (46), to the accumulation of macrophages
in adipose tissue have been demonstrated.

INFLAMMATORY ACTIVATION OF MYELOID CELLS IN THE
LIVER
Following the findings for adipose tissue, the issues of whether
obesity can cause hepatic inflammation and whether this inflam-
mation can contribute to hepatic or systemic inflammation
became important in this field. Obesity-associated nutrient excess
has been linked to inflammation in part via activation of inhibitor
of κB kinase β (IKKβ) and subsequent nuclear translocation of
nuclear factor κB (NF-κB), one of the key transcriptional medi-
ators of inflammation (47–49). Consumption of an HFD clearly
induced proinflammatory activation of Kupffer cells, the resident

macrophages of the liver, in mice (50, 51). In addition, inflamma-
tory activation of Kupffer cells was implicated in the pathogen-
esis of obesity-induced insulin resistance and fatty liver disease
(50). Deletion of IKKβ in myeloid cells reduced macrophage-
mediated inflammation and improved obesity-associated systemic
and hepatic insulin sensitivity (47). Furthermore, chemical dele-
tion of Kupffer cells was demonstrated to cause improved insulin
sensitivity during HFD feeding (52). Obesity and insulin resis-
tance are often associated with hepatic steatosis in a large pro-
portion of obese patients. We demonstrated mechanically that
overexpression of MCP-1 in adipose tissue caused hepatic steatosis
along with adipose tissue inflammation, while systemic deletion
of MCP-1 inhibited HFD-induced steatosis (17). In addition,
chronic increase of plasma MCP-1 level was also sufficient to
induce hepatic steatosis and adipose tissue inflammation (18).
These findings suggest that an increase of circulating MCP-1 or
adipose tissue inflammation may cause hepatic steatosis. Although
HFD feeding caused M1 activation of Kupffer cells in the liver (50,
51), it seemed that the number of Kupffer cells was not increased
in obesity (53). Using flow cytometry, it was investigated how
a population of myeloid cells (CD11b+) changed during obe-
sity or type 2 diabetes. Kupffer cells, defined as CD45+, F4/80+,
were a major subset of myeloid cells in the liver. Obesity rather
reduced the number of Kupffer cells, while in turn, the pro-
portion of myeloid cells, defined as CD11b+, CD45+, F4/80low,
doubled, from 10.0 to 19.7% (53). Given that these recruited
myeloid cells were also characterized by CCR2+, hepatic expres-
sion of CCL2/CCR2, which was increased by HFD, seemed to
have originated from infiltrated macrophages. By employing bone
marrow transplantation from CCR2-deficient mice, it was fur-
ther demonstrated that the trafficking of the infiltrated cells was
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dependent on CCR2. In addition, adenoviral overexpression of
CCL2 in the liver caused the accumulation of myeloid cells coin-
cident with hepatic steatosis (53). CCR2-dependent recruitment
of myeloid cells to the liver (36) and CCL2-dependent develop-
ment of hepatic steatosis (54) were also demonstrated by other
studies. These results also underline the role of the CCL2-CCR2
signaling pathway in the recruitment of myeloid cells to the liver.
Taking these findings together, the range of immune cells in the
liver is thus complex and heterogeneous, but they are thought
to play important roles in both insulin resistance and hepatic
steatosis.

REGULATION OF KUPFFER CELL ACTIVATION BY
ENDOTHELIAL NO PRODUCTION
Local and systemic insulin resistance has been discussed in rela-
tion to the interactions between immune cells and parenchymal
cells. We have proposed that endothelial cells could be added
to those components with which interactions are shown. We
have demonstrated that HFD feeding induced proinflammatory

activation of Kupffer cells in wild-type (WT) mice coincident
with reduced liver endothelial nitric oxide synthase activity
and nitric oxide (NO) content while, conversely, the enhance-
ment of cGMP signaling downstream of endogenous NO by
phosphodiesterase-5 inhibition protected Kupffer cells against
HFD-induced inflammation (51). Furthermore, proinflammatory
activation of Kupffer cells was evident in eNos−/− mice, even
on a low-fat diet. Targeted deletion of vasodilator-stimulated
phosphoprotein (VASP), a key downstream target of endothe-
lially derived NO, similarly led to a predisposition to hepatic
and Kupffer cell inflammation and abrogated the protective effect
of NO signaling in both macrophages and hepatocytes studied
in a cell culture model (51). These results collectively imply a
physiological role for endothelial NO to limit obesity-associated
inflammation and insulin resistance in hepatocytes and support
a model in which Kupffer cell activation during HFD feeding
is dependent on reduced NO signaling (51) (Figure 2). The
NO/cGMP/VASP axis was also shown to be relevant in adipose
tissue (55).
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FIGURE 2 | Accumulation of monocytes/macrophages in adipose tissue
and liver, and activation in the tissues. Trafficking: During obesity,
adipocytes exhibit hypertrophy, while liver incorporates substantial FFAs, both
of which cause tissue inflammation, activation of NF-κB, and AP1 signaling,
leading to increased secretion of inflammatory chemokines and cytokines,
including CCLs and TNFα. Elevated secretion of CCLs (e.g., MCP-1) elicits the
accumulation of CCR-positive monocytes to the site of inflammation,
particularly CCR2+ for adipose and liver, but CCR5+ for adipose tissue. In situ
activation: In a lean state, resident tissue macrophages display the M2
phenotype, which is achieved and sustained through the JAK/STAT6 pathway

in response to IL-4 or IL-13 stimuli. These stimuli are derived from resident TH2
cells, Treg cells, eosinophils, and mast cells. PPARs and KLF4 also induce M2
activation. In turn, obesity and subsequent elevation of tissue FFA or
inflammatory cytokines stimulate NF-κB and AP1 signaling, which causes
switching of the phenotype to M1, leading to further secretion of TNFα. Signal
from inflammasome also activates M1 activation. M1 activation of
macrophages can be suppressed by endothelial NO/cGMP signaling. M2
macrophages contribute to insulin sensitivity in neighboring parenchymal
cells, while M1 induces insulin resistance, with the M1/M2 balance
determining tissue and/or systemic insulin sensitivity.
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CONSTITUENT CELLS OTHER THAN MACROPHAGES IN
OBESITY-INDUCED INFLAMMATION: INTERACTIONS
AMONG IMMUNE CELLS DURING INFLAMMATION IN
ADIPOSE TISSUE
The role of macrophages in adipose tissue inflammation has been
clearly demonstrated. Besides these cells, additional leukocyte sub-
populations have recently been demonstrated to be involved in
obesity and insulin resistance, such as T cells, B cells, eosinophils,
neutrophils, mast cells, and natural killer cells. The involvement
of multiple leukocyte subpopulations underlines the complexity
of obesity-associated adipose tissue inflammation (Figure 3).

T CELLS
Although macrophage infiltration in adipose tissue has been
demonstrated in both mice and humans (56), little is known about
the sequence of events that lead to the macrophage accumulation
in adipose tissue. Research attempting to investigate which surface
antigens of immune cells are associated with inflammation and
insulin resistance revealed the involvement of CD11c-positive cells
(57). Myeloid-specific deletion of CD11c in mice protected against
HFD-induced accumulation of macrophages in adipose tissue and
exhibited insulin sensitivity compared with the controls (57). Next,
T cells (CD4+, CD8+) were found to be increased in adipose tissue
during obesity (58–60). In a lean state, CD4+ helper T cells and
regulatory T (Treg) cells (CD4+, CD25+, Foxp3+) were predomi-
nant; however, prior to the accumulation of macrophages (F4/80+,
CD11b−), CD8+ T cells infiltrated coincidentally with a reduction
of the number of Treg (25). The administration of CD8 antibody
to WT mice fed an HFD attenuated macrophage infiltration and
insulin resistance. Although CD8 knockout mice were protected

against HFD-induced accumulation of macrophages, restoration
of CD8+ T-cells increased macrophage infiltration. Similar results
were obtained by other groups (61, 62). It is now considered
that, in a lean state, CD4+ CD25+ Foxp3+ Treg cells induce
alternative activation of monocyte/macrophages (63), which is
characterized by the expression of macrophage mannose recep-
tor (MMR) or intracellular activity of arginase (64). T helper type
2 (TH2) cells expressing IL-4 and IL-13 also induce M2 activation
of macrophages that secrete IL-10, whereas macrophages are M1-
activated through IFNγ by T helper type 1 (TH1) cells and through
IL-17 by TH17 cells. Recently, peroxisome proliferator-activated
receptor γ (PPARγ) activity in Treg cells has been shown to be
important to reduce chronic inflammation in adipose tissue (65).

B CELLS
The accumulation of B cells was observed in adipose tissue of
mice fed an HFD before macrophage and T-cell accumulation
(66). In addition, diet-induced obese mice lacking B cells were
protected from metabolic abnormalities despite weight gain (67).
B-cell effects on glucose metabolism were associated with the
activation of proinflammatory macrophages and T cells and the
production of pathogenic IgG antibodies. In fact, treatment of
mice fed an HFD with a B-cell-depleting CD20 antibody ame-
liorated abnormality in glucose metabolism and adipose tissue
inflammation, whereas the transfer of IgG from mice with diet-
induced obesity rapidly induced insulin resistance and glucose
intolerance (67). Recently, obese B-cell-null mice were reported
to exhibit decreased systemic inflammation, inflammatory B- and
T-cell cytokines, adipose tissue inflammation, and insulin resis-
tance compared with obese WT mice (68). This was associated
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FIGURE 3 | Control of M1/M2 polarization by neighboring immune
cells. In a lean state, resident T cells consist of TH2 cells, Treg cells, and
NKT cells. Combined with resident eosinophils, these cells sustain the
M2 activation of macrophages through secreting IL-4, IL-10, and IL-13. As
obesity progresses, alteration of constituent immune cells occurs, in

which the numbers of TH2 cells and Treg cells decline, while in turn, TH1
cells and B cells increase. In addition to these more prevalent cells,
neutrophils and mast cells induce M1 activation of macrophages by
increased secretion of elastase, TNF, IFNγ, IL-6, and pathogenic IgG. B
cells also activate T cells.
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with an increased percentage of anti-inflammatory regulatory T
cells. B cells from type 2 diabetes subjects promote proinflam-
matory T-cell function through contact-dependent mechanisms,
suggesting that B cells regulate inflammation in type 2 diabetes by
modulating T-cell functions (68).

EOSINOPHILS
In addition to TH2 or Treg cells, eosinophils have been shown to
exist in lean adipose tissue and participate in the maintenance of
M2 activation through secreting IL-4 (69). By using eosinophil-
deficient and hypereosinophilic mice, Wu et al. showed that
eosinophil-derived IL-4 and IL-13 determined the M2 activa-
tion of macrophages in adipose tissue and contributed to insulin
sensitivity. Hypereosinophilic mice displayed improved insulin
sensitivity, while eosinophil-deficient mice exhibited increased
fat together with impaired glucose tolerance and insulin resis-
tance (69).

NEUTROPHILS
Neutrophils are rare in a lean state; however, an HFD elicits the
accumulation of neutrophils (CD11b+ Ly6g+ F4/80− CD11c−),
which seem to induce local insulin resistance by secreting elas-
tase (70). The deletion of neutrophil elastase in HFD-induced
obese mice led to reduced macrophage content and inflammation.
These changes were coincident with improvement of glucose tol-
erance and increased insulin sensitivity. Intriguingly, neutrophil
elastase can degrade IRS-1 protein and cause insulin resistance
in adipocytes (70). Similar results were obtained in a very recent
study by another group (71). In humans, an increased blood level
of myeloperoxidase, a marker of neutrophils, in obese women (72),
and increased activity of neutrophils in obese subjects have also
been noted (71, 73).

MAST CELLS
Mast cell invasion was also detected in adipose tissue in obese
mice (74). Mast cell-deficient mice (KitW-sh/W-sh mice) were
protected from HFD-induced body weight gain and the increase
of proinflammatory cytokines and chemokines along with the
improvement of glucose metabolism and energy expenditure due
to the up-regulation of UCP-1 expression in BAT (74). Simi-
lar effects were observed in the treatment of mice with a mast
cell-stabilizing agent. Mast cells were supposed to promote diet-
induced obesity and glucose intolerance by the production of IL-6
and IFNγ. Mast cells are also involved in obesity-induced adi-
pose tissue inflammation and insulin resistance. Weight gain of
mast-cell-deficient mice during HFD was decreased compared
with that of control mice (75). Mechanistically, prostaglandin
J2 (PGJ2) produced by mast cells in response to high-glucose
enhanced adipocyte differentiation by PPARγ activation, leading
to obesity (75).

NATURAL KILLER T CELLS
Natural killer T (NKT) cells are innate-like T lymphocytes that
recognize glycolipid antigens and have been implicated in autoim-
munity, microbial infection, and cancer and hence represent an
important immunotherapeutic target (76). Similar to eosinophils,
NKT cells have been shown to reside in lean adipose tissue, in

which they contribute to sustain the M2 activation of macrophages
by stimulating IL-4/STAT6 signaling (77, 78). Schipper et al.
demonstrated that CD1d-null mice whose NKT cells were not
activated displayed a distinctive insulin resistance phenotype even
on a low-fat diet without overt adipose tissue inflammation (79).
Activation of NKT cells has thus been demonstrated to modulate
polarization toward M2, resulting in improved glucose metabo-
lism (78–80). Unlike in mouse studies, the role of NKT cells dur-
ing obesity and adipose tissue inflammation in humans remains
unclear. An unaltered number of circulating NKT cells in obesity
(80, 81) and significantly lower numbers of circulating NKT cells
in obese patients have been documented (82).

CELL SIGNALING IN MACROPHAGES THAT DEFINES M1 AND
M2 ACTIVATION
Macrophages are terminally differentiated cells of the mononu-
clear phagocyte system that include dendritic cells, circulating
blood monocytes, and committed myeloid progenitor cells in the
bone marrow. Local environmental factors are known to affect
the properties, functions, and activation state of macrophages.
In general, macrophage activation is defined across two sepa-
rate polarization states, M1 (proinflammatory) and M2 (anti-
inflammatory) states. M1 or “classically activated” macrophages
are induced by proinflammatory mediators such as lipopolysac-
charide (LPS), TNFα, and IFN-γ. M1 macrophages are also
associated with enhanced proinflammatory cytokine production
(TNFα, IL-6, IL-1). On the other hand, M2 or “alternatively acti-
vated”macrophages have low proinflammatory characteristics and
instead generate high levels of anti-inflammatory cytokines, for
example, IL-10. Since the attenuation of macrophage M1 activa-
tion and the maintenance of M2 activity are believed to be impor-
tant for intact glucose metabolism, there has been research focus-
ing on intracellular signaling that determines proinflammatory or
alternative activation in macrophages (Figures 2 and 3).

M1 MACROPHAGES
M1 activation of macrophages is established mainly through the
IKKβ/NF-κB and Jun N-terminal kinase (JNK) 1/activator pro-
tein 1(AP1) system. Obesity induces adipose tissue inflammation,
which results in high levels of proinflammatory cytokines and
chemokines. In particular, TNFα is a representative inflammatory
cytokine that causes lipolysis in adipose tissue. Thereby, plasma
FFA levels are usually elevated in obesity. FFAs released from
adipocytes through lipolysis have been shown to be capable of
serving as ligands for the toll-like receptor 4 (TLR4) complex (83).
TLRs are initially indispensable for innate immune cells to rec-
ognize intruding pathogens and trigger an appropriate immune
response. Among them, TLR4 is a high-affinity receptor for LPS,
which is a component of the cell walls of gram-negative bacte-
ria (84). TLR4 signaling activated by FFA induces the expression
of a large number of proinflammatory target genes and drives
M1 activation by regulating the transcriptional factors includ-
ing NF-κB, AP1, and interferon-regulatory factor (IRF) family
members. TNFα also drives M1 activation by inducing proinflam-
matory genes through activating NF-κB and AP1 transcriptional
factors. For instance, lipid infusion caused the accumulation of
macrophages in adipose tissue accompanied by insulin resistance
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in WT control mice, but this was not the case in TLR4-deficient
mice (83). Hematopoietic cell-specific deletion of TLR4 in mice
attenuated HFD-induced insulin resistance in adipose and the liver
(85). Activated TLR4 signaling induced a classical inflammatory
response, which led to the recruitment of macrophages. In this way,
macrophages activated to M1 by FFA through TLR4-mediated sig-
naling secrete TNFα, which in turn enhances lipolysis in neighbor-
ing adipocytes, leading to further production of FFA. This vicious
cycle or paracrine loop mediated by TNFα and FFA between
adipocytes and macrophages in obese adipose tissue induces fur-
ther adipose tissue inflammation (86). In addition, TNFα and
FFA inhibit insulin receptor signaling via the increase of serine
phosphorylation of IRS-1. Recently, a liver secretory glycoprotein,
fetuin-A, was demonstrated to play a crucial role as an endogenous
ligand for TLR4 in FFA-induced inflammation and insulin resis-
tance in adipocytes (87). The serum concentration of fetuin-A was
significantly increased in obese diabetic patients compared with
that in non-obese non-diabetic human subjects. Next, myeloid dif-
ferentiation primary response protein 88 (MYD88), the primary
mediator of TLR and IL1 receptor signaling, has been investi-
gated to clarify whether this is also involved in the FFA-induced
insulin resistance. However,MyD88 deficiency in mice exacerbated
diet-induced glucose intolerance and hyperlipidemia (88). There
is therefore a conflict regarding the activity of the TLR4/MyD88
axis in diet-induced obesity and insulin resistance, which remains
to be elucidated in future studies.

M2 MACROPHAGES
The activation of M2 macrophages is basically maintained by the
signaling of the IL-4/JAK/STAT6 pathway. The administration of
IL-4 to mice induces M2 activation of macrophages, thereby atten-
uating HFD-induced insulin resistance (89). IL-10 secreted by M2
macrophages enhances insulin signaling, including that in the liver,
thereby having a protective role against obesity-induced insulin
resistance (90). Taking these findings together, the activation of
IL-4 signaling is considered to be a promising target to suppress
insulin resistance and thus studies to identify molecular media-
tors are underway. We describe here several factors involved in M2
activation.

Peroxisome proliferator-activated receptor γ

Macrophage-specific deletion of PPARγ in mice impaired M2 acti-
vation despite the mice being on a chow diet (91). In these mice,
adiponectin expression was decreased. This change was accom-
panied by reduced oxidative phosphorylation in liver and skeletal
muscle, which might have contributed to the insulin resistance
in these tissues. Another study demonstrated that macrophage-
specific PPARγ-deficient mice showed glucose intolerance and
insulin resistance in a lean state. These mice had increased
inflammatory markers in adipose tissue, liver, and skeletal mus-
cle and showed decreased effects of thiazolidinediones, indicat-
ing a requirement for PPARγ in macrophages for intact insulin
sensitivity in muscle/liver and a full antidiabetic effect of thiazo-
lidinediones (92). Odegaard et al. demonstrated that peroxisome
proliferator-activated receptor δ (PPARδ) mediated the effects of a
Th2 cytokine, IL-4, to direct the expression of the alternative phe-
notype in Kupffer cells and adipose tissue macrophages of lean

mice (50). Adoptive transfer of PPARδ−/− bone marrow into WT
mice conversely diminished the alternative activation of hepatic
macrophages, causing hepatic dysfunction and systemic insulin
resistance (50). Collectively, PPARs are thought to be required
for the maturation of M2 activation and the resulting insulin
sensitivity.

Krüppel-like factor 4
In addition to PPARs,another nuclear receptor,Krüppel-like factor
4 (KLF4), has been implicated in M2 activation in macrophages
(93). In macrophages, KLF4 is suppressed by LPS stimulation,
while it is increased by IL-4. Macrophage-specific KLF4 knock-
out mice display M1 activation and M2 disactivation. Owing to
reduced fatty acid oxidation, the mice are susceptible to becom-
ing obese and exhibit glucose intolerance and insulin resistance. In
contrast, forced expression of KLF4 in RAW cultured macrophages
resulted in M2 activation and resistance to M1 polarization by
stimulation of LPS. Importantly,mRNA expression of KLF4 in adi-
pose tissue is reduced in human obesity. Moreover, mRNA expres-
sion of KLF4 is not only positively associated with adiponectin
expression in adipose tissue but also with well-defined M2 mark-
ers, such as CD206 and CCL18 in the stromal vascular fraction
of adipose tissue. It has also been documented that IL-4 activates
STAT6, leading to transcriptional activation of KLF4 to induce M2
genes (93).

AMP-activated protein kinase
AMP-activated protein kinase (AMPK) is an evolutionarily con-
served sensor of cellular energy status that is activated by low
energy status (increased cellular AMP/ADP:ATP ratio) and con-
sists of an α catalytic subunit and βγ regulatory subunits. This
molecule has also been shown to be crucial for the mainte-
nance of M2 activation (94). Galic et al. tested the effect of
AMPK β1 loss in macrophages in vivo by transplantation of
bone marrow from WT or β1(−/−) mice into WT recipients.
When challenged with an HFD, mice that received β1(−/−) bone
marrow displayed enhanced adipose tissue macrophage inflam-
mation and liver insulin resistance compared with animals that
received WT bone marrow (94). Taking these findings together,
the activation of AMPK and increased fatty acid oxidation in
macrophages might provide an avenue for the treatment of type 2
diabetes.

Sirtuin 1
Sirtuin 1 (SIRT1), the mammalian homolog of yeast silent
information-regulator 2 (Sir2), is an NAD+-dependent histone
deacetylase that has been implicated in the regulation of lifespan
under calorie restriction (95) or energy metabolism during fasting
(96); thus, it is believed to be a promising target for type 2 diabetes
(95, 97). Besides these findings, anti-inflammatory effects have
also been demonstrated, showing that SIRT1 deacetylates NFκB
and suppresses its transcriptional activity by inhibiting nuclear
translocation (98). SIRT1 levels are markedly reduced in adipose
tissue of obese humans and mice (99, 100). HFD was also found to
result in cleavage of SIRT1 protein (101). In fact, upon the reduc-
tion of SIRT1 in fat by antisense oligonucleotides to levels similar
to those seen during overnutrition, macrophage recruitment to
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adipose tissue was significantly increased. Similar results were
obtained in fat-specific SIRT1 knockout mice. In contrast, overex-
pression of SIRT1 in mice prevented HFD-induced accumulation
of macrophages (102). Furthermore, it was found that the SIRT1
expression level in human subcutaneous fat was inversely related to
the number of adipose tissue macrophages. Mechanistically, others
demonstrated that SIRT1 regulated intracellular inflammatory sig-
naling at the levels of JNK and IKK (103). In addition, AMPK was
also reported to regulate lipid-induced inflammation negatively
through SIRT1 (104). Taken together, these findings indicate that
SIRT1 might exert an insulin-sensitizing effect partially through
the suppression of inflammation.

INVOLVEMENT OF INFLAMMASOME IN OBESITY-INDUCED
INFLAMMATION
The mechanisms by which obesity induces macrophage activation
despite the absence of any infection or autoimmune processes
remained unclear. Although some mechanisms including hypoxia
(105, 106) and autophagy (107–109) have been proposed for
the induction of inflammation, in this review, we would like to
focus on a new concept, the involvement of inflammasome in
adipose tissue inflammation and insulin resistance. External or
internal stimuli are recognized by pattern recognition receptors
(PRRs). External stimuli, particularly pathogen-associated mol-
ecular patterns (PAMPs), are detected not only by TLRs but
also by inflammasome, which is a protein complex consisting
of caspase-1, apoptosis-associated speck-like protein containing
a caspase recruitment domain (ASC), and nucleotide-binding
oligomerization (NOD)-like receptors (NLRs) (110). Among these
components, different pathogens are recognized by distinct con-
stituents of NLRs. For instance, bacterial infection is recognized by
nucleotide-binding domain, leucine-rich-containing family, pyrin
domain-containing-1 (NLRP1), NLRP3, NLRP4, and absent in
melanoma 2 (AIM2). Viral infection is recognized by NLRP3
and AIM3. Fungal or parasitic infection is recognized by NLRP3
(110). But all of these infections cause the activation of caspase-
1, which eventually leads to the processing and secretion of
proinflammatory cytokines, including IL-1β and IL-18 (110). A
unique feature of inflammasome is its additive ability to recog-
nize internal stimuli as danger signals. For instance, uric acid,
silica, fatty acids, and ATP in cytoplasm are detected as non-
microbial-originated damage-associated molecular pattern mole-
cules (DAMPs) by NLRs (110). Since mRNA expression of NLRP3
in adipose tissue correlates with IL-1β, body weight, and blood
glucose level in rodents and humans (111), Vandanmagsar et al.
tested whether NLRP3 played important roles during the develop-
ment of chronic inflammation in obesity. Using NLRP3 knockout
mice, they showed that NLRP3 sensed ceramide as a danger signal
that activated caspase-1, which enhanced IL-1β secretion, thereby
inducing T-cell activation (111). Target deletion of NLRP3 in mice
displayed improved glucose tolerance and increased insulin sen-
sitivity. These results were accompanied by the appearance of
small adipocytes, reduced M1 activation, and enhanced insulin
signaling in liver, adipose tissue, and skeletal muscle. Elevated
ceramide, saturated fatty acid, reactive oxygen species (ROS), and
mitochondrial dysfunction caused activation of inflammasome
in macrophages (108, 112). The resulting activation of caspase-1

and subsequent secretion of IL-1β then interfere with insulin sig-
naling, whereas inhibition of caspase-1 has been demonstrated
to attenuate insulin resistance coincident with improved func-
tion of adipocytes (108, 112, 113). In humans, elevated levels
of circulating IL-18 in patients with type 2 diabetes have been
demonstrated (114), along with a suppressive effect of calorie
restriction and resulting weight loss on the reduced expression
of adipose NLRP3 in type 2 diabetes (111), and marked reduc-
tion of both adipose and liver expression of IL-1β in morbidly
obese subjects by laparoscopic adjustable gastric banding surgery
(114).

THERAPEUTIC INTERVENTIONS
The basis of therapeutic interventions in inflammation and insulin
resistance is to prevent or to ameliorate obesity by physical exer-
cise and diet control. They can also present the beneficial effects
to the improvement of inflammation irrespective of body weight
loss. In addition, the significance of chronic inflammation and
its molecular mechanisms during the development of type 2
diabetes has been demonstrated and, in mice, suppression of
inflammation-related molecules has successfully improved glu-
cose intolerance. On the basis of this evidence, clinical trials
targeting inflammation-related molecules have started. Thus, at
first we would like to introduce the contribution of exercise and
diet to the amelioration of inflammation. Next, we describe the
current circumstances concerning several clinical applications of
anti-inflammatory drugs.

EXERCISE AND DIET
Although exercise is generally admitted to be effective to atten-
uate obesity and sustain health, single session of exercise has
been reported to trigger an increase in proinflammatory cytokine
release together with leukocytosis and increased plasma concen-
tration of CRP (115). Regular and chronic exercise, however, has
been reported to be associated with reduction of inflammatory
markers such as CRP, IL-6, and TNFα (115–118). Physical (aer-
obic+ resistance) exercise was also associated with increase in
anti-inflammatory substances, such as IL-4 and IL-10 in type 2
diabetic patients with metabolic syndrome (118). Among many
types of exercise, Oliveira et al. compared the effect of 12 weeks
training with three different types of exercise (aerobic training,
strength training, and combined training) on subjects with type 2
diabetes, demonstrating that the aerobic training program caused
significant up-regulation in antioxidant enzymes (119). Accord-
ingly, exercise-dependent improvement of glucose tolerance seems
to be related with suppression of inflammation and oxidative
stress (116).

Dietary calorie restriction is well recognized to be beneficial to
ameliorate obesity-induced inflammation through weight loss. In
addition to this, dietary composition has also been demonstrated
to be important for the improvement of inflammation. Dietary
bioactive compounds, such as polyphenols and certain fatty acids
suppress systemic and adipose tissue inflammation. Polyphenols
such as resveratrol exhibited anti-inflammatory effects via sup-
pression of NF-κB (120) and extracellular signaling regulated
kinase pathway (121) as well as via activating SIRT1 (122). Resver-
atrol has also been shown to activate AMPK independent of
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SIRT1 (123). Therefore, resveratrol may be a promising candi-
date in anti-inflammatory therapy (124). For instance, resvera-
trol supplementation for 30 days decreased blood glucose levels
and inflammation markers along with improvement of HOMA
index in healthy obese men irrespective of body weight (125).
In addition, dietary polyunsaturated fatty acids, such as eicos-
apentaenoic acid (EPA) or docosahexaenoic acid (DHA) possess
anti-inflammatory effects. Mechanistically, these include activa-
tion of AMPK and PPARγ (126). These polyunsaturated fatty acids
also inhibits NF-κB pathway by activation of G-protein coupled
receptor (GPR) 120 (127). In fact, n-3 polyunsaturated fatty acids
(EPA and DHA) decreased adipose tissue and systemic inflam-
mation in severe obese non-diabetic patients and improved lipid
metabolism (128). EPA was demonstrated to reduce body weight
at least by suppressing lipogenesis in the liver (129).

CLINICAL APPLICATIONS OF ANTI-INFLAMMATORY DRUGS
Aspirin/salsalate
It has been reported that high-dose sodium salicylate or acetyl-
salicylic acid could diminish glycosuria or improve the blood
glucose level in diabetic patients (1–4). Given that IKKβ is a
key downstream mediator of insulin resistance and its blockade
by salicylates attenuated hyperglycemia, hyperinsulinemia, and
dyslipidemia in obese rodents (130, 131), Hundal et al. asked
whether high-dose aspirin (∼7 g/day) could ameliorate insulin
resistance and improve glucose tolerance in patients with type 2
diabetes (132). They demonstrated that this treatment for 2 weeks
resulted in marked reduction of metabolic parameters includ-
ing fasting glucose, basal rate of hepatic glucose production, and
insulin-stimulated peripheral glucose uptake, despite no change
in body weight. A large randomized trial, the National Insti-
tute of Diabetes and Digestive and Kidney Diseases-sponsored
Targeting Inflammation with Salsalate, Non-acetylated Prodrug
of Salicylate, in Type 2 Diabetes (TINSAL-T2D) trial, recently
concluded that salsalate lowered hemoglobin A1c (HbA1c) lev-
els and improved glycemic control in patients with type 2 diabetes
(133). In a single-masked run-in period, patients were randomly
assigned to receive placebo or salsalate at a dosage of 3.0, 3.5,
or 4.0 g/day for 14 weeks (27 patients each) in addition to their
current therapy. Mean HbA1c changes were−0.36% (P = 0.02) at
3.0 g/day,−0.34% (P = 0.02) at 3.5 g/day,and−0.49% (P = 0.001)
at 4.0 g/day compared with placebo (133). The number of patients
studied and the trial duration were insufficient to warrant recom-
mending the use of salsalate for type 2 diabetes; however, it appears
warranted to target this molecule in further investigations.

IL-1β
Reducing the activity of inflammasome and suppressing IL-1β

secretion might be targets to attenuate insulin resistance in dia-
betes. Randomized clinical trials have shown that the blockade of
IL-1β signaling by anakinra, a recombinant human IL-1 recep-
tor antagonist, reduced systemic inflammation and improved
glycemia of type 2 diabetes (134–136).

TNFα
Etanercept is a dimeric recombinant form of the extracellular
domain of the human p75 TNFα receptor 2 fused to the Fc frag-
ment of human immunoglobulin G1 (IgG1) and acts as a TNFα

antagonist by interfering with the binding of TNFα to its cellu-
lar receptors and thus blocks the inflammatory response (137).
Several studies have been conducted to test whether this bio-
pharmaceutical improves glucose tolerance in patients with type 2
diabetes; however, despite a suppressive effect on systemic inflam-
mation, the attenuation of glucose tolerance or insulin resistance
has not yet been achieved (137–139). These results might be
attributable to the distinct role of TNFα between rodents (5) and
humans (137–139). Alternatively, antagonism of TNFα by other
drugs remains hopeful in future studies.

CONCLUDING REMARKS
Following the discovery of chronic inflammation characterized
by macrophage accumulation in adipose tissue, an explosion of
studies in the past decade have begun to reveal the contribu-
tions of inflammation to the development of insulin resistance
and subsequent metabolic abnormalities in other tissues, such as
liver (47–52) and most recently brain (140). Adipose tissue, liver,
and the hematopoietic system are evolutionarily derived from the
same tissue. This developmental heritage can underlie the link
between obesity-induced adipose tissue and hepatic inflamma-
tion (56) (Figure 2). Studies using flow cytometry subsequently
identified the relative importance of other immune cells, includ-
ing T cells, B cells, eosinophils, neutrophils, mast cells, and NKT
cells, during the development of chronic inflammation. At present,
besides the identification of constituent immune cells, an avenue
intended to reveal how these neighboring immune cells modulate
the inflammatory signals in macrophages has being created. In
order to reveal the significance of inflammation during the devel-
opment of type 2 diabetes, the identification of both factors that
regulate trafficking of macrophages and intracellular molecules
that control inflammatory activation in macrophages would be
indispensable. Since there might be substantial differences in the
nature of inflammation between rodents and humans and since
clinical applications have not yet achieved excellent results, the
question remains of how much the inhibition of inflammation
contributes to improving glucose homeostasis. In future, there is a
need for translational research that applies evidence from mice to
human subjects. Because chronic inflammation is also involved in
the development of atherosclerosis, rheumatoid arthritis, cancers,
and neurodegenerative diseases, the suppression of inflammation
can be a desirable therapy for type 2 diabetes. However, simple
reduction of inflammation cannot be a beneficial approach as
innate immunity is a radical form of homeostasis to deal with
pathogenic infections. In addition, since the pathophysiology does
not develop via a single molecule, multilayered targeting of var-
ious molecules without affecting physiological immune function
has to be achieved. The location, timing, and degree of suppres-
sion all have to be controlled. Although recent studies have shed
light on the pathophysiological roles of inflammation in diabetes,
substantial efforts are required to achieve clinical application in
human subjects.
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