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Abstract: This paper surveys recent advances in pulse-coupled neural networks (PCNNs) and their
applications in image processing. The PCNN is a neurology-inspired neural network model that
aims to imitate the information analysis process of the biological cortex. In recent years, many
PCNN-derived models have been developed. Research aims with respect to these models can be
divided into three categories: (1) to reduce the number of manual parameters, (2) to achieve better
real cortex imitation performance, and (3) to combine them with other methodologies. We provide a
comprehensive and schematic review of these novel PCNN-derived models. Moreover, the PCNN
has been widely used in the image processing field due to its outstanding information extraction
ability. We review the recent applications of PCNN-derived models in image processing, providing a
general framework for the state of the art and a better understanding of PCNNs with applications in
image processing. In conclusion, PCNN models are developing rapidly, and it is projected that more
applications of these novel emerging models will be seen in future.

Keywords: pulse-coupled neural network; quasi-continuous model; heterogeneous PCNN; im-
age processing

1. Introduction

The pulse-coupled neural network (PCNN) was inspired by animals’ neuronal cor-
texes. The images received by animals’ eyes stimulate the neurons in their visual cortex,
creating spikes and further transmission of spikes between cortical cell assemblies [1,2].
This transmission phenomenon between cell assemblies can recognize and extract the infor-
mation contained in the stimuli (i.e., the images observed by animals’ eyes) [3]. Evolution
has made this working style of biological cortex extremely good at processing the dynamic
information inside images. Based on these neurological features, Eckhorn et al. proposed an
artificial cortical model [4] that transfers the dynamic information processing property from
the biological cortex to the computer. In the interests of image processing, Johnson et al.
proposed a PCNN model in 1994 that was based on Eckhorn’s initial cortex model. They
concluded that with the limit of weak to moderate liking strength, the periodic time series
as signatures of images are invariant to translation, rotation, scale, intensity, and distortion
changes in these images [5]. In the following year, Ranganath et al. demonstrated that
PCNN exhibits outstanding performance for image smoothing, image segmentation and
feature extraction [6]. Since then, the PCNN has found extensive use in image processing
areas such as pattern recognition [3], feature extraction [5], image segmentation [6], image
shadow removal [7], image encryption [8], and object recognition [9,10].
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In 1996, Kinser proposed the simple pulse network (SPN) [11]. This network is more
efficient than the original PCNN, having less computational complexity, while exhibiting
similar performance to the PCNN. Since then, several modifications and variations of
PCNN have been introduced, which have dramatically influenced the image processing
field [12]. The intersecting cortical model (ICM) is a representative simplification of the
PCNN model, and was designed for image feature enhancement tasks [13]. In 2009, Zhan
et al. [14] proposed a spiking cortical model (SCM), which employs simplified equations like
the ICM but inherits the linking field from the PCNN. In recent years, the heterogeneous
PCNN [15–17] and the non-integer step model [18,19] have been proposed. These novel
models are undoubtedly becoming popular new research interests in the image processing
field. Furthermore, the continuous-coupled neural network (CCNN) was proposed by Liu
et al. in 2022 [20,21]. They considered the stochastic characteristics of the PCNN’s pulse
generation process, making the response of CCNN to DC and AC stimuli more similar to
natural biological cortex neurons.

The PCNN has been one of the most popular models in the image processing field,
which can be attributed to its outstanding information analysis ability, rapid processing
speed, and lack of pre-training requirements. Two reviews have thoroughly presented
the detailed characteristics of PCNN and early PCNN-derived models [22,23]. Hence,
the present review will introduce the PCNN, novel PCNN-derived models, and their
applications in the image processing field in recent years.

The remainder of this review is organized as follows. In Section 2, the fundamentals
of PCNN and its derived models are introduced. In Section 3, the applications of PCNN in
imaging processing are presented. Finally, the conclusions of this study are presented in
Section 4.

2. Fundamentals of PCNN

The development of PCNN-derived models is shown in Figure 1. Since the initial
introduction of PCNN, there have been two significant modification paths of PCNN-derived
models: equation simplifications and application-specific optimizations. The first path
includes the well-known ICM, SCM, and their further developed models. The second path
includes those models generated in practical applications, which are usually only valid for
the corresponding applications. In recent years, new PCNN model research has centered
on optimizing PCNN models into neural networks that more closely resemble natural
biological neural systems. These optimization attempts have led to three novel PCNN-
derived models: (1) quasi-continuous models, (2) heterogenous PCNN, and (3) continuous-
coupled neural network. The details of the aforementioned PCNN-derived models are
illustrated in this section.



Electronics 2022, 11, 3264 3 of 14Electronics 2022, 11, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Framework of PCNN's development. 

2.1. Original Pulse-Coupled Neural Network 
The pulse-coupled neural network is a bio-inspired neuron network based on Eck-

horn’s cortical model. It was derived from research on interactions between cell assem-
blies in a cat’s primary visual cortex [5]. Differing from common neuron networks, the 
PCNN does not require the pre-training process to form the relationship between input 
and output data. Instead, the PCNN works in a way similar to real biological neurons, 
using the change in action potentials when neurons receive stimuli to realize scene analy-
sis. There are three major domains in the PCNN, which are the accepted, modulation, and 
pulse generator domains. The accepted domain is further divided into two parts: link in-
put and feedback input. The mathematical expressions of PCNN are as follows: 𝑭 𝑛 = 𝑒 𝑭 𝑛 − 1 + 𝑉 ∑ 𝑴 𝒀 𝑛 − 1 + 𝑺 , (1) 

𝑳 𝑛 = 𝑒 𝑳 𝑛 − 1 + 𝑉 𝑾 𝒀 𝑛 − 1 , (2) 

𝑼 𝑛 = 𝑭 𝑛 1 + 𝛽𝑳 𝑛 , (3) 𝜽 𝑛 = 𝑒 𝜽 𝑛 − 1 + 𝑉 𝒀 𝑛 − 1 , (4) 

𝒀 𝑛 = 1,        𝑼 𝑛 > 𝜽 𝑛0,               otherwise , (5) 

where the internal activity of a neuron located at the position (𝑖, 𝑗), 𝑼 , is determined by 
the link input 𝑳  and feedback input 𝑭 . The link input and feedback input are coupled 
by a factor named linking strength 𝛽. 𝑛 is the iteration count. 𝛼  and 𝛼  represent the 
decay time constants of link input and feedback input, respectively. 𝑉  and 𝑉  represent 
the amplification coefficients of FI and LI, respectively. For a central neuron in the position (𝑖, 𝑗), it is connected with neighboring neurons located at (𝑘, 𝑙) through constant synaptic 
weight matrixes 𝑾 and 𝑴. 𝑺  is the input stimulus. 𝜽  is the dynamic threshold of a 

Figure 1. Framework of PCNN’s development.

2.1. Original Pulse-Coupled Neural Network

The pulse-coupled neural network is a bio-inspired neuron network based on Eck-
horn’s cortical model. It was derived from research on interactions between cell assemblies
in a cat’s primary visual cortex [5]. Differing from common neuron networks, the PCNN
does not require the pre-training process to form the relationship between input and output
data. Instead, the PCNN works in a way similar to real biological neurons, using the change
in action potentials when neurons receive stimuli to realize scene analysis. There are three
major domains in the PCNN, which are the accepted, modulation, and pulse generator
domains. The accepted domain is further divided into two parts: link input and feedback
input. The mathematical expressions of PCNN are as follows:

Fij[n] = e−αF Fij[n− 1] + VF ∑
kl

MijklYkl [n− 1] + Sij, (1)

Lij[n] = e−αL Lij[n− 1] + VL ∑
kl

WijklYkl [n− 1], (2)

Uij[n] = Fij[n]
{

1 + βLij[n]
}

, (3)

θij[n] = e−αθ θij[n− 1] + VθYij[n− 1], (4)

Yij[n] =
{

1, Uij[n] > θij[n]
0, otherwise

, (5)

where the internal activity of a neuron located at the position (i, j), Uij, is determined by
the link input Lij and feedback input Fij. The link input and feedback input are coupled
by a factor named linking strength β. n is the iteration count. αL and αF represent the
decay time constants of link input and feedback input, respectively. VF and VL represent
the amplification coefficients of FI and LI, respectively. For a central neuron in the position
(i, j), it is connected with neighboring neurons located at (k, l) through constant synaptic
weight matrixes W and M. Sij is the input stimulus. θij is the dynamic threshold of a
neuron in the location (i, j). αθ is the decay time constant of the dynamic threshold, and
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Vθ denotes the amplification coefficients of the dynamic threshold. Yij is the timing pulse
sequence that determines whether a neuron located at (i, j) should be fired (Uij[n] > θij[n],
Yij[n] = 1) or not (Uij[n] ≤ θij[n], Yij[n] = 0).

As shown in Figure 2a,b [24,25], the internal activity Uij, timing pulse sequence Y, and
dynamic threshold θij are closely connected. The activity of any one of them will further
influence others. Specifically, Uij directly influences the Y, and Y can further decide θij.
Meanwhile, θij in turn affects Y because Y is defined by Uij and θij together. The ignition
condition of a neuron is presented in Figure 2c [24,25]. The internal activity threshold Uij
and the dynamic threshold θij are simultaneously augmented by periodic external input Sij.
After the stimulation of multiple pulses, the growth rate of Uij tends to slow down while
that of θij remains. This phenomenon makes sure that θij will eventually exceed Uij; hence,
the reset of a neuron occurs. The number of times when Uij is greater than θij is defined as
the ignition time. The final output of the PCNN is a matrix that has the same dimensions
as the original input signal, and each element in this matrix is the ignition time of the input
signal’s corresponding position. This output matrix is called as the ignition map.
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Figure 2. Schematic of the pulse-coupled neural network. (a) Connection between the internal activity
Uij, timing pulse sequence Y, and dynamic threshold θij. (b) Schematic of the PCNN. (c) Activity of
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2.2. Intersecting Cortical Model

The ICM is a representative simplified version of full PCNN. This model includes the
feeding input, dynamic threshold, and pulse generator. Its mathematical expressions are as
follows:

Fij(n + 1) =
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Fij(n) + Sij + ∑
kl

WijklYkl(n), (6)

Θij(n + 1) = ℊΘij(n) +hYij(n + 1), (7)

Yij(n + 1) =
{

1, i f Fij(n) > Θij(n)
0, otherwise

, (8)

where parameters
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and ℊ are two constant parameters that control the property of the
threshold Θij.
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is a parameter that decides the characteristic of feeding input Fij. It is larger
than ℊ to make sure that the threshold finally falls below the feeding input Fij, making the
neuron capable of being ignited. h is a larger value than
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and ℊ because the threshold
needs to increase substantially to ensure the neuron can be reset after its ignition. The
weight matrix W denotes the connections between neurons. Other parameters are the same
as those in the original PCNN.

2.3. Spiking Cortical Model

The SCM, introduced by Zhan et al. [14], is a local-connected neural network model
derived from the PCNN model. It has fewer parameters, lower computational complexity,
and higher accuracy rates compared with PCNN and other PCNN-derived methods such
as ICM. Working like a group of real biologic neurons, the membrane potential of a neuron
in SCM is calculated by the combination of the direct stimulus, and the synaptic modulation
which comes from its neighboring neurons. If the membrane potential of a neuron exceeds
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its dynamic threshold, this neuron is activated, and it will generate a spike that would
further affect its neighboring neurons in the next iteration. The formulae of the SCM are
given as follows:

Uij(n) = f Uij(n− 1) + Sij(1 + ∑
kl

WijklYkl(n− 1)), (9)

θij(n) = gθij(n− 1) + hYij(n), (10)

Yij(n) =
{

1, i f Uij(n) > θij(n− 1)
0, otherwise

(11)

where n represents the iteration count, Uij(n) denotes a neuron’s membrane potential that
is located at (i, j) at iteration n. f is the attenuation constant of the membrane potential, Sij
represents the external stimulus, Wijkl denotes the synaptic weight matrix that affects the
connection between a neuron at location (i, j) and its neighboring neurons at location (k, l),
Y stands for the output action potential (i.e., the output spike) of a neuron, the convolution
of Wijkl and Ykl(n− 1) represents the modulation on the central neuron located at (i, j)
by its neighboring neurons at location (k, l), θij is the dynamic threshold of a neuron
at location (i, j), g and h are the attenuation constant of the threshold and the absolute
refractory period, respectively, which prevents neurons that just been activated from being
reactivated immediately.

2.4. Modified SPCNN

The modified SPCNN (MSPCNN) model [26] was proposed based on Chen et al.’s
simplified pulse-coupled neural network (SPCNN) model [27]. The SPCNN is a simpli-
fied version of the original PCNN, with fewer equations and parameters. However, its
parameters are not fully automatic, which makes the application of SCPNN limited. The
MSPCNN focused on solving this drawback, simplifying the five parameters of SPCNN
into three. Moreover, these three parameters are all correlated with the Otsu threshold-
ing [28]. Consequently, all parameters of MSPCNN can be adaptively selected by finding
the Otsu thresholding. The mathematical expression of SPCNN is as follows:

Fij(n) = Sij, (12)

Lij[n] = VL ∑
kl

WijklYkl [n− 1], (13)

Uij[n] = e−α f Uij[n− 1] + Sij(1 + βVL ∑
kl

WijklYkl [n− 1]), (14)

θij[n] = e−αθ θij[n− 1] + VθYij[n− 1], (15)

Yij[n] =
{

1, Uij[n] > θij[n]
0, otherwise

, (16)

where all parameters have the same meanings as the original PCNN. The weight Wijkl is
given as a fixed matrix:

Wijkl =

0.5 1 0.5
1 0 1

0.5 1 0.5

, (17)

As is apparent, there are five adjustable parameters in the SCPNN: VL, α f , β, αθ ,
and Vθ . In the MSPCNN, the mathematical model is the same as that of SPCNN, while
VL is removed, and α f and αθ are combined into one parameter α. The remaining three
parameters are expressed as follows:

α = α f = αθ = log
(

1
S′

)
, (18)
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β =
1− S′

4S′
, (19)

Vθ = 1 + S′2 − S′8, (20)

where S′ denotes the normalized Otsu thresholding.

2.5. Fire-Controlled MSPCNN

The fire-controlled MSPCNN (FC-MSPCNN) is a further model developed based on
the MSPCNN, which aims to control the neuronal firing states at each iteration [29]. This
FC-MSCPCNN has been proved to work well in general image processing tasks, such as
color image quantization and gallbladder image location. It uses parameters with adaptive
values rather than fixed parameters of the MSPCNN, and all parameters are automatically
set according to the neuronal firing states. These characteristics allow it to overcome the
limitations of the MSPCNN in general image processing applications resulting from the
randomness and unpredictability of neuronal firing results. The mathematical expression
of FC-MSPCNN is given as follows:

Uij[n] = e−αUij[n− 1] + Sij(1 + β ∑
kl

WijklYkl [n− 1]), (21)

θij[n] = e−αθij[n− 1] + Vθ RnYij[n− 1], (22)

Yij[n] =
{

1, Uij[n] > θij[n]
0, otherwise

, (23)

where Rn is a parameter used to prevent a neuron from firing twice, and other parameters
are the same as those in MSPCNN. Additionally, a parameter P is introduced to determine
the iteration times of the model. It denotes the iteration times that all the neurons fire once
after the first iteration, which is expressed as follows:

P = N − 1, (24)

where N is the total iteration times of an image processing task. Based on the iteration
states and pixel intensity of an image, all other parameters can be expressed as follows:

α = − ln
Smin

P
, (25)

β =
1
4

e−2α, (26)

Vθ = e−α 1− e−3α

1− e−α
, (27)

Rn =

(
eNα

1− e−α

)√log2 (n)

, (28)

where Smin is the minimum external input, i.e., the minimum pixel intensity of an image.

2.6. Sine–Cosine PCNN

The sine–cosine PCNN (SC-PCNN) was proposed by Yang et al. to suppress random
noise [30]. They concluded that the random noise in the PCNN model mainly comes from
three sources: the input noise from S, system noise from U, and a random stat in which θ is
initially randomized. This random noise has a negative influence on the image processing
performance of PCNN. To reduce this random noise, they added the sine–cosine term to
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the PCNN model, using the small oscillations caused by this term to offset the random
noise. The mathematical expression of SC-PCNN is as follows:

Uij[n] = sin
(π

2
(1 + nα̃)

)
Uij[n− 1] + Sij(1 + βVL ∑

kl
WijklYkl [n− 1]), (29)

θij[n] = cos
(π

2
(1 + nα̃)

)
θij[n− 1] + VθYij[n− 1], (30)

Yij[n] =
{

1, Uij[n] > θij[n]
0, otherwise

, (31)

where α̃ is a decay factor, set as a fixed number 0.01, and other parameters have the same
meaning as those of the MSPCNN. VL is set as a fixed number 1. The weight Wijkl , β, and
Vθ are given as follows:

Wijkl =

0.5 1 0.5
1 0 1

0.5 1 0.5

, (32)

β =
Smax

S′ − 1
VL ∑ Wijkl

, (33)

Vθ =
Smax

S′
, (34)

where Smax is the maximum pixel intensity and S′ denotes the normalized Otsu threshold-
ing.

2.7. Quasi-Continuous Model

The quasi-continuous model (or non-integer step index PCNN model) was proposed
to solve the mathematical coupled firing phenomenon. This model uses non-integer steps
to emulate a continuous time system. In the early stage of the PCNN’s development, the
network system was constructed discretely due to the significant computational costs [31].
With advances in computer science, the computational ability of modern computers is able
to bear the computational burden of the continuous-time PCNN system. Therefore, the
quasi-continuous model is proposed, making it possible to adjust the balance between the
PCNN’s resolution and computational complexity [32]. The mathematical expression of
the quasi-continuous model is as follows:

Wijkl =

0.5 1 0.5
1 0 1

0.5 1 0.5

, (35)

β =
Smax

S′ − 1
VL ∑ Wijkl

, (36)

Vθ =
Smax

S′
, (37)

Uij(t + ∆t) = e−αF∆tUij(t) + Sij(1 + β ∑
kl

WijklYkl(t)), (38)

θij(t + ∆t) = e−αE∆tθij(t) + VθYij(t), (39)

Yij(t + ∆t) =
{

1, i f Uij(t + ∆t) > θij(t)
0, otherwise

, (40)

where ∆t is a non-integer scale that decides the resolution of this model and other parame-
ters are the same as those in MSPCNN. When ∆t is closer to 0, the model becomes more
similar to a continuous-time system. In contrast, when ∆t is closer to 1, the model becomes
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more similar to the discrete SPCNN model. The non-integer step model has been demon-
strated to be highly effective in applications that need fine resolution and the detection of
small details, such as image noise analyses and detection of micro-calcifications.

2.8. Heterogeneous PCNN

Biological findings have shown that animals’ nervous systems are heterogeneous in
terms of both their structures and the interconnections between neurons [33–35]. To make
the PCNN model closer to natural nervous systems, the heterogeneous PCNN (HPCNN)
has been proposed. The heterogeneous aspect of HPCNN incorporates the following three
types:

1. Neurons with different weights, but the same structure.
2. Neurons with different structures, but the same weight.
3. Both structure and weight are different for different neurons.

Apparently, the third type is the closest to the real neuron cortex structure. However,
different weights and different neuron characteristics lead directly to a large number of
manual parameters. For example, if an image is divided into three parts and processed
by three different PCNN models, three times the number of parameters will be needed
compared to the homogeneous PCNN. Only in a few image processing applications can
the parameters of PCNN be fully automatic, making the parameter selection task of the
other applications extremely cumbersome. Even in adaptive parameter applications, such
as image segmentation, the computational complexity still curtails the finer classification of
an image (i.e., using more different PCNN models to process a single image). Although
there are drawbacks to HPCNN that remain unsolved, the image processing performance
of HPCNN is impressive, and it is undeniably becoming one of the most popular research
interests in the PCNN field. HPCNN models can be categorized into two types: neuron
groups-isolated models and neuron groups-linked models.

The first type is represented by the initial HPCNN model proposed by Huang et al. [15].
The neuron structure of their model is shown in Figure 3. This group-isolated HPCNN
model divides an image into different parts and processes different parts with different
PCNN models. There is no link between different PCNN models, which means that
the firing condition of a PCNN model will not influence other PCNN models, and the
final output of the HPCNN is the summation of all independent PCNN models. The
mathematical expression of each independent PCNN is the same as the original PCNN
model. An automatic parameter decision strategy is designed to select parameter values of
different PCNN models based on the characteristics of different image parts.
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The second type is represented by the heterogeneous SPCNN (HSPCNN) proposed by
Yang et al. [36]. The neuron structure of their model is shown in Figure 4 [36]. Similar to the
first type, the HSPCNN is constructed by serval different SPCNN models, and each SPCNN
model is responsible for the image processing task of an image’s particular part. However,
in the neuron groups-linked HSPCNN model, different SPCNN models are connected by
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the weight L12 and L23. This connection allows the HSPCNN able to process an image in
a way that is more similar to the natural cortex of animals. This is realized through the
parameter and formula simplification of the SPCNN model. For each SPCNN model, the
formulas are the same as the SPCNN model described in Section 2.4, and all parameters
are decided without a manual process. The final output of the HSPCNN is obtained by
summing up the results of different SPCNN models.
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2.9. Continuous-Coupled Neural Network

The continuous-coupled neural network (CCNN) is the most recent advance in PCNN-
related models, proposed by Liu et al. in 2022 [20,21]. The CCNN is an attempt to push
brain-like computation even further. Unlike all current deep learning neuron networks,
PCNN is one of the most successful third generation models, which use spiking to translate
and analyze information, a method that mammals have evolved over hundreds of millions
of years. However, a chaos phenomenon called the “butterfly effect” that has long been
known in the electrophysiological field [37] cannot be simulated by PCNN or PCNN-
derived models. Specifically, neurophysiological evidence shows that neurons exhibit
chaotic behavior under a periodic stimulus and periodic behavior under a constant stimulus.
In contrast, PCNN cannot exhibit these characteristics.

Consequently, the CCNN is proposed to solve the gap between the response charac-
teristics of PCNN and natural neurons. Specifically, the CCNN uses sigmoid functions
to replace PCNN’s pulse generator and considers the stochastic attributes of the pulse
generation process. The formulas of CCNN are as follows:

Fij[n] = e−αF Fij[n− 1] + VF ∑
kl

MijklYkl [n− 1] + Sij, (41)

Lij[n] = e−αL Lij[n− 1] + VL ∑
kl

WijklYkl [n− 1], (42)

Uij[n] = Fij[n]
{

1 + βLij[n]
}

, (43)

θij[n] = e−αθ θij[n− 1] + VθYij[n− 1], (44)

Yij[n] =
1

1 + e−(Uij [n]−θij [n])
, (45)

where all parameters have the same meanings as in the original PCNN model. It is worth
noting that the CCNN exhibits outstanding performance on video processing tasks. It
encodes changing pixels as non-periodic chaotic signals and static pixels as periodic signals,
making it capable of recognizing objects directly. This method of object recognition is
different from all other video processing algorithms, in that it employs no feature extraction
process.
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Aside from the aforementioned PCNN-derived models, some other research has
been performed during the past few years, in areas such as three-dimensional PCNN [38],
color transfer PCNN [39], and pulse-number-adjustable MSPCNN [40]. These studies
have modified the general PCNN-derived models, making them more suitable for specific
applications. This application-driven PCNN modification is becoming a new research hot
zone in the fields of image processing, video processing, automatic diagnostics, and many
other areas. The details of these novel PCNN applications will be presented in the next
section.

3. Applications

PCNN applications in the image processing field were illustrated in 2018 by Zhen
et al. [23]. Since then, applications of PCNN-derived models have expanded dramatically
in just a few years. It is hard to present all the novel applications in a thorough manner;
hence, we present some representative applications in three main categories: (1) color
image processing, (2) diagnosis and computer vision, and (3) image fusion. The advantages
exhibited by the PCNN in these novel applications are analyzed in order to shed light on
current trends and possible future research topics in PCNN-related image processing fields.

3.1. Color Image Processing

Jia et al. presented a three-dimensional PCNN (3DPCNN) for oil pollution image
segmentation [38]. They combined the 3DPCNN with a hybrid seagull optimization
algorithm to analyze the pollution condition of an image. The color information inside
the red, green, and blue (RGB) channels is crucial in the segmentation task of oil pollution.
It is necessary to use all information in these channels, which necessitates modifying the
PCNN to process RGB channels simultaneously. Consequently, each neuron is connected
with 26 neighboring neurons in the 3DPCNN model. The inter- and intra-channel spike
transmission efficiently extracts information from color images, leading to state-of-art
segmentation performance. He et al. proposed a color transfer PCNN for enhancing the
underwater visual images captured by robots [39]. This algorithm can process retrieved
images in real time and improve their color and contrast. Unlike the 3DPCNN, the color
transfer PCNN processes color images in the HSI space (hue, saturation, and intensity),
rather than the RGB space. An image is separated into H, S, and I components and fed to
three independent PCNNs. This PCNN enhancement process successfully produces more
edges and detail.

The PCNN-based color image processing algorithms are currently the closest kind
to biological color vision. On the one hand, three types of retinal cells in the human
eye are sensitive to different wavelengths of light. The wavelength information they
collect is processed through spike transmission in the cortex, generating color images in
the brain. This process corresponds to the 3DPCNN model. On the other hand, human
vision perceives brightness much more strongly than color intensity. Transforming images
to the HIS space is suitable for representing the characteristics of human vision. This
process corresponds to color transfer PCNN. Further research on PCNN-based color image
processing is helpful for scientists to better understand the working style of the human
visual system.

3.2. Diagnosis and Computer Vision

In 2021, Shanker et al. proposed a fast version of SPCNN [41]. They combined it
with the Ripplet transform, probabilistic principal component analysis, and twin support
vector machine to construct an automated computer-aided diagnosis system. This system
exhibited state-of-art brain magnetic resonance image analysis ability. A deep learning
model based on the PCNN and transfer learning was proposed in 2021 [42], focusing
on breast cancer diagnosis. Moreover, Thyagharajan et al. proposed a PCNN-based
near-duplicate detection algorithm [43]. They used the PCNN to extract features from
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the near-duplicated images, generating feature maps for subsequent image similarity
measurement.

These applications use the advantages of PCNN in that it is able to segment images
and process low-resolution images without requiring any pre-processing steps. Performing
operations on the original image is cumbersome and expensive in many image processing
scenarios. Consequently, a method that can automatically select a region of interest or
extract a feature map is important. PCNN-derived models are competent for these tasks
and can exhibit state-of-the-art performance with no pre-training process. They have
become popular methods in the image segmentation field [44,45].

3.3. Image Fusion

As a result of PCNN’s excellent feature extraction ability, its application in the image
fusion field has been extensively researched in recent years, for example, in muti-focus
image fusion [46,47] and multimodal medical image fusion [48–50]. In these fusion appli-
cations, the PCNN mainly serves as a fusion decision method. It is combined with other
methods such as image decomposition transforms and texture analysis [51,52]. The pixels
with important information inside the decomposition images or feature images are selected
by PCNN. The final fused image is reconstructed on the basis of these selected pixels.

3.4. Other Recent Advances

In 2021, Chen et al. used the PCNN to achieve real-time auto-focusing control [53].
Lian et al. proposed a pulse-number-adjustable MSPCNN (PNA-MSPCNN) for the image
enhancement task in 2021 [40]. This PNA-MSPCNN was able to adaptively select each
neuron’s firing times and frequency, achieving impressive low-light image enhancement
performance. The directional PCNN is offered for dynamic gesture recognition [54], which
can prevent irrelevant neurons from firring in order to realize rapid recognition while main-
taining high accuracy. The heterogenous PCNN-based hyperspectral image visualization
technique was achieved by Duan et al. in 2019 [17], indicating the potential of HPCNN’s
application in areas other than image segmentation and quantization.

In these recent advances, novel PCNN-derived models such as the HPCNN were used
to achieve cutting-edge image processing performance. The rapid development of the
PCNN family is undoubtedly influencing and propelling advances in image processing
fields.

3.5. Summary

Generally, making modifications to PCNN specific to the application requirements and
combining PCNN-derived models with conventional algorithms within the application
fields are the two main streams of PCNN applications. The most significant advantages
of PCNN in the image processing field are: (1) the lack of a pre-training requirement;
(2) outstanding feature extraction and image segmentation abilities; and (3) the ability to
process images under various resolution conditions. However, the following disadvantages
of PCNN remain unsolved: (1) parameter selection strategy; and (2) computational cost.
Nowadays, the parameters are decided empirically, either using an empirical formula or on
the basis of extensive experiments. A general parameter decision methodology is a crucial
research topic for the future. Moreover, the applications of three recently proposed PCNN
models—quasi-continuous models, HPCNN, and CCNN—are still in the early stages. It is
expected that more applications of these models will be seen in the future.

4. Conclusions

As a bio-neuron-inspired network, the PCNN has been successfully applied in the im-
age processing field. This paper reviews the development of PCNN models and their appli-
cations in image processing. The development of PCNN-derived models can be categorized
into five groups: (1) conventional optimization models, (2) application-specific modified
models, (3) quasi-continuous models, (4) heterogeneous PCNN, and (5) continuous-coupled
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neural networks. Representative models and recent developments in each category are
discussed. Recent developments in the image processing area can be divided into two
primary research interests: (1) modify PCNN models specific to the application require-
ments, and (2) combine PCNN-derived models with conventional algorithms within the
application field. The application of novel models, such as the quasi-continuous and
continuous-coupled neural network, are in their infant stage. More research related to them
is projected to emerge in the future.
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