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Summary. Remeshing is a key component of many geometric algorithms, including mod-

eling, editing, animation and simulation. As such, the rapidly developing field of geometry

processing has produced a profusion of new remeshing techniques over the past few years.

In this paper we survey recent developments in remeshing of surfaces, focusing mainly on

graphics applications. We classify the techniques into five categories based on their end goal:

structured, compatible, high quality, feature and error-driven remeshing. We limit our descrip-

tion to the main ideas and intuition behind each technique, and a brief comparison between

some of the techniques. We also list some open questions and directions for future research.

1 Introduction

Surface meshes are commonly used in many computer graphics applications to

represent shapes. Many of these meshes are generated by scanning devices or by

isosurfacing implicit representations. Unfortunately, such processes - especially if

automated - are error-prone, and the resulting “raw” meshes are rarely satisfactory.

Often they are oversampled and contain many redundant vertices. Besides needing to

reduce the complexity of these meshes, which has stimulated a considerable amount

of work in automatic mesh simplification [53], frequently the mesh quality, in terms

of vertex sampling, regularity and triangle quality, must be improved. This improve-

ment process is called remeshing (see, for example, Figure 1). The focus has been

on ways to ease not only the display process, but also editing, animation, processing,

storing and transmission. The following reviews several results of the past few years.

We invite the reader interested in related topics to read several comprehensive

courses and tutorials on subdivision surfaces [72, 92], geometric modeling [41],

digital geometry processing [81, 79] morphing [2], simplification and compres-

sion [53, 28, 3] and parameterization [22].
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Fig. 1. Uniform remeshing of the Digital Michelangelo David model. Figure reproduced

from [78].

1.1 Remeshing

The literature does not offer a precise universally accepted definition of remeshing.

It often varies according to the targeted goal or application. Nonetheless, one possi-

ble definition could be: “Given a 3D mesh, compute another mesh, whose elements

satisfy some quality requirements, while approximating the input acceptably”. Qual-

ity herein has several meanings. It can refer to the sampling, grading, regularity, size

or shape of elements. Often a combination of these criteria is desired in real applica-

tions. Some remeshing techniques proceed by altering the input, and some generate

a new mesh from scratch.

1.2 Applications

Remeshing of surfaces is beneficial to a wealth of applications that take as input a

meshed surface. These range from modeling to visualization through reverse engi-

neering and simulation. All these applications execute some of the following, which

require surface remeshing: creation and editing, animation, metamorphosis, approx-

imation, simulation, denoising, smoothing and fairing, efficient rendering, compres-

sion, feature recovery and levels of detail.

1.3 Main Issues

We begin by listing briefly some general issues that arise during the remeshing

process:

• Validity. The mesh has to be a valid mesh . This usually means that it should

be a simple manifold. Typically it will also be closed; namely, it will not contain

boundaries.
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• Quality. The quality of mesh elements is crucial for robustness and numerical

stability, required for numerical simulation as well as for geometry processing.

Numerical computations, such as finite element analysis , require fairly regular

meshes, both in terms of geometry and connectivity. These meshes are used to

compute mechanical stress or solve heat and other differential equations. A high-

quality mesh is required to minimize numerical errors and singularities that might

otherwise arise (see [74]).

• Fidelity. The newly generated mesh should approximate the original shape

geometry as closely as possible, while keeping the mesh complexity below a

given budget. Ideally, “just enough” resolution for the problem being solved is

sought. This involves choosing an error metric, as well as deciding between in-

terpolation and approximation.

• Discrete input. The input is given as a discrete mesh, which is usually only an

approximation of some (unknown) continuous shape. Having just this discrete

approximation, and not the ideal shape, hampers most shape interrogation op-

erations (e.g., normal, tangent plane, curvature estimations). Moreover, meshes

generated from sampled point clouds by reconstruction algorithms may be con-

taminated by aliasing artifacts and lack important features present in the original.

• Large data sets. Modern 3D scanners generate very large datasets when the

sampling rate is increased to ensure that no details are missed. As a result, the

sampling and tessellation are insensitive to the shape, and the data is replete with

redundancies.

• Uncertainty. Data obtained by an acquisition process such as laser scanning is

often contaminated by electronic, mechanical or even optical noise present in the

scanning pipeline.

• Correspondence. A central issue common to all remeshing techniques is to find

the corresponding location of a new vertex on the input mesh surface. Such corre-

spondence is typically found by parameterizing the input mesh. This is a complex

problem, which can be computationally expensive, suffer from accuracy issues,

and/or impose restrictions on the mesh. It is particularly problematic when per-

forming the remeshing operations on a 2D parametric domain: the mapping of a

nontrivial 3D structure (possibly a 3D mesh with arbitrary genus and holes) to

a 2D parametric domain inevitably introduces some metric distortion, and may

lead to the loss of important information. Furthermore, if the parameterization is

combined with mesh segmentation, it is likely to encounter difficulties near the

patch boundaries. Other parameter-free approaches work directly on the surface,

and perform local modifications on the mesh (such as adding, removing, or relo-

cating vertices). During these adaptations, the mesh vertices are forced to remain

on the input mesh. This type of approach can be found in several different tech-

niques [24, 23, 34, 33, 66, 83, 77]. The optimizations are either performed in 3D

(which is computationally expensive), or in a tangent plane (which is faster, but

less accurate). By using local operations, the approach may avoid the pitfalls of

techniques based on global operations; and by performing the remeshing opera-

tions on a 2D plane, it is considerably faster than 3D optimizations. The distortion

caused by mapping a 3D mesh to a 2D parametric domain can be considerably
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reduced by using optimizations such as overlapping patches [77], and error ac-

cumulation (often caused by local operations) can be minimized by constantly

comparing to a reference smooth approximation of the original geometry (e.g.,

by using triangular cubic Bzier patches such as PN triangles [85] or continuous

patches [88]).

We now list some general desirable algorithmic functionalities of a remeshing algo-

rithm:

• Levels of detail. Support for continuous Levels-of-Detail (i.e., continuous-

resolution representations) is often desirable for rendering and transmission ap-

plications. This poses a major challenge to remeshing algorithms.

• Complexity. With the increasing precision and resolution of modern acquisition

devices, having to deal with meshes made of millions, or even billions, of faces is

commonplace; thus, the speed of a remeshing algorithm is important. Often the

main focus is on the trade-off between the quality of the result and the speed of

the remeshing operation. Typically, close-to-linear runtime complexity is sought.

• Theoretical guarantees. Algorithms that guarantee the topology, matching of

constraints, bounds on the distortion of geometry and normals, or bounds on the

shape of elements are highly desirable for applications where certified results are

required.

2 State of the Art

For each class of methods, this survey provides a definition of the characteristics that

an algorithm must have, the motivations leading to the development of algorithms

of each class, and a discussion of critical and open issues. To present state-of-the-art

techniques as clearly as possible, we classify the remeshing techniques by their end

goal rather than by the technique they employ. We identified five main categories of

remeshing techniques:

• Structured remeshing (Section 2.1) - the connectivity graph of resulting meshes

consists of regular patterns.

• Compatible remeshing (Section 2.2) - several meshes are modified to share a

common connectivity structure.

• High quality remeshing (Section 2.3) - the shape of the elements as well as the

vertex distribution are the main goals.

• Feature remeshing (Section 2.4) - preservation or even restoration of sharp fea-

tures is the main focus when producing the resulting meshes.

• Error-driven remeshing (Section 2.5) - well-defined distances between the orig-

inal and resulting surfaces are minimized (or bounded) while performing the

remeshing.

Clearly, several of the characteristics mentioned above may be desirable simulta-

neously. In fact, some remeshing algorithms have been designed to produce a satis-
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factory compromise within a particular application context. A neat separation, how-

ever, is necessary to produce a generic classification and a useful taxonomy, while

trade-offs would need to be evaluated on a case-by-case basis.

2.1 Structured Remeshing

Definition

Structured remeshing replaces an unstructured input mesh with a structured one. In

a structured mesh, sometimes called a regular mesh , all internal vertices are sur-

rounded by a constant number of elements. A semi-regular mesh is obtained by reg-

ular subdivision of an irregular mesh (see [79]). All the vertices are regular except

for a small number of extraordinary vertices (see Figure 2) . A highly regular mesh

is one in which the vast majority of vertices are regular, yet the mesh has not neces-

sarily been generated by subdivision.

Fig. 2. Meshes: Irregular, semi-regular and regular.

Motivation

Structured meshes offer certain advantages over unstructured ones. Their connectiv-

ity graph is significantly simpler, hence allowing for efficient traversal and localiza-

tion in the algorithms. Semi-regular meshes, which are essentially piecewise-regular,

offer a trade-off between the simplicity of structured meshes and the flexibility of

unstructured meshes.

Semi-Regular

Semi-regular meshes are obtained by recursive subdivision of an initial base mesh

(Figure 3). Their hierarchical structure makes them ideal for multiresolution analy-

sis (coarsification by downsampling and smoothing) and synthesis (subdivision and
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adding of details). They have shown useful for modeling smooth or piecewise smooth

surfaces, reverse engineering, multiresolution analysis and modeling, and morphing,

editing and visualization with levels-of-detail applications.

Fig. 3. Semi-regular mesh obtained by recursive subdivision of an initial base mesh.

The emerging field of geometry processing [79] has made significant use of semi-

regular meshes. A fundamental question of geometry processing is the following:

is it possible to extend the methods of classical digital signal processing (e.g., the

discrete Fourier transform and wavelets), usually applied on regular uniform struc-

tures, to the irregular non-uniform setting? This question has only been partially

solved, and the solution of choice consists of semi-regular remeshing of the original

shape so that the geometric “signal” is resampled onto regular and uniformly sam-

pled patches. One example of geometry processing is the set of discrete operators

used for smoothing and fairing, applicable only in the regular and uniform setting.

The main techniques for semi-regular remeshing can be classified into two cate-

gories according to the way they find correspondences between the input and output

meshes. The first class uses a parameterization to find a bijective correspondence.

The techniques within this class differ mainly by the type of parameterization:

• Techniques that parameterize the input mesh on a global planar domain [35]. The

parameter domain is then resampled, and the new mesh connectivity is projected

back into 3D space, resulting in an improved version of the input (Figure 4). The

main drawbacks of the global parameterization methods are the sensitivity to the

specific parameterization used, and the metric distortion that may arise (due to

the fact that the 3D structure is forced onto a foreign parameter plane). Further-

more, many of these techniques involve the solution of a large set of (sometimes

nonlinear) equations, resulting in substantial computation. Sander et al. [69] used

a hierarchical approach based on multigrid methods, which can accelerate the

process to almost linear time even for large meshes. Nevertheless, numerical pre-

cision issues may arise for meshes with severe isoperimetric distortion.

• Techniques that parameterize the original model onto a set of base triangular do-

mains, the latter obtained either by simplification, or by partitioning the original

mesh into regions using a discrete analogue of the notion of a Voronoi tiling.

This technique, used by [20, 47, 30], yields excellent results while being sensi-

tive to the patch structure (see example Figure 5 and its colour version CP-1 in

Appendix B). The vertex sampling is also sensitive to control.
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Fig. 4. Quadrilateral remeshing: The main idea of the algorithm is to circumvent the three-

dimensional remeshing problem by flattening the 3D mesh T3 to a 2D version T2, and solving

the two-dimensional problem instead. The deflation function f is then defined by linearly

mapping each triangle of T3 to the corresponding triangle in T2 while the inverse inflation

function F enables to get back from 2D to 3D. Figure reproduced from [35].

Fig. 5. Multiresolution adaptive parameterization of surfaces. Overview of the algorithm. Top

left: a scanned input mesh (courtesy Cyberware). Next the parameter or base domain, obtained

through mesh simplification. Top right: regions of the original mesh colored according to their

assigned base domain triangle. Bottom left: adaptive remeshing with subdivision connectivity.

Bottom middle: multiresolution edit. Figure reproduced from [47].
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The second class of techniques does not rely on any parameterization but instead

uses ray shooting [43] to find correspondences. These are then used to shrink wrap

the new mesh onto the input mesh (Figure 6).

Fig. 6. Remeshing by shrink wrapping. The original bust model has 61K triangles. The base

mesh with 72 triangles is subdivided three times to generate the center mesh and 5 times to

generate the right image. Figure reproduced from [43].

Shape compression techniques employing semi-regular remeshing are among the

best reported to date. The main idea behind these techniques [40, 30, 38, 60] is the

observation that a mesh representation has three components: geometry, connectivity

and parameterization, of which the latter two (i.e. connectivity and parameterization)

are not important for the representation of the geometry. The goal is, therefore, to re-

duce the “volume” of these two components as much as possible by semi-regular

remeshing (see [3] for a more detailed description of this shape compression tech-

nique).

Discussion

In all mapping-based methods, parameterization plays a critical role, and any defi-

ciencies in it will be amplified in the output. In particular, building globally smooth

parameterization is notoriously difficult [39]). Having subdivision connectivity is

still necessary for multiresolution analysis, which has proved to be a powerful tool

for many geometric modeling and processing applications. The challenge remains in

how to handle irregular meshes directly. Moreover, this stumbling block will remain

as long as current geometry processing approaches are designed in analogy to their

continuous counterparts.
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Completely Regular

In a regular mesh (a grid, triangle or hexagonal tessellation) the connectivity is im-

plicit, the compactness and regularity of the data structure improve the efficiency

and facilitate the implementation of many algorithms. Regular remeshing has been

shown to be useful for efficient rendering (no cache indirection), texture and other

modulation mapping (e.g., normal, transparency maps).

Gu et al. [29] remeshed irregular triangle meshes using a regular rectangular grid.

The input mesh of arbitrary genus is initially cut to reduce it to a single topological

disc. It is then parameterized on the unit 2D square while minimizing a geometric-

stretch measure. This is then represented as a so-called geometry image that stores

the geometry as well as any modulation map required for visualization purposes

(see Figure 7 and its colour version CP-2 in the in Appendix B). Such a compact

grid structure drastically simplifies the rendering pipeline since all cache indirec-

tions usually found in irregular mesh rendering are eliminated. Despite its obvious

importance for efficient rendering, this technique has a few drawbacks due to the

inevitable surface cutting: each geometry image has to be homeomorphic to a disk,

therefore, closed or genus> 0 models have to be cut along a cut graph. In particular,

it introduces unacceptably high parameterization distortion for high genus models or

shapes with high isoperimetric ratios (e.g., long extremities). To alleviate these draw-

backs, Sander et al. [70] used an atlas construction to map the input mesh onto charts

of arbitrary shape. Those charts are then packed in a geometry image in parameter

space, and a zippering algorithm is used to remove the discontinuities across chart

boundaries and create a watertight surface. Another way to minimize seams due to

cutting is to first parameterize the mesh to a sphere [27], which is then mapped in a

highly structured way to the square.

Fig. 7. Construction of a Geometry Image: Original mesh (70k faces, genus 0), original mesh

with cut, parameterization and Geometry Image (257× 257). Figure reproduced from [29].

Discussion

The concept of geometry images follows the recent trend in computer graphics to

represent all surface modulation signals as “texture images” (normal maps, bump

maps, transparency maps, color maps, light maps, reflection maps), instead of using
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a fine mesh with attributes at each vertex. The key idea is to represent the shape

geometry itself using regular grids, assuming the cost of 3D transformations to be

negligible with respect to the cost of “decorating” the mesh using a complex multi-

texturing process. Research on geometry images, mainly driven by Hoppe and co-

workers, anticipates the unification of vertex and image buffers.

Highly Regular

Szymczak et al.[80] described a remeshing method for the creation of piecewise

regular meshes . Based on their orientation, this algorithm partitions the triangles

into six sets. The set of triangles whose normal is closest to the positive x-direction

is sampled using a regular grid in the y-z plane. The other five sets are sampled

similarly using the appropriate grids. Finally, these re-sampled pieces are connected

into one valid mesh. The result typically contains a large fraction of regular vertices;

specifically, all the internal vertices of each piece are regular by construction, while

some irregular vertices may appear along the seams.

Surazhsky and Gotsman [77] performed local modifications directly on the

mesh surface in order to obtain a highly regular mesh. One key feature of their

method is the use of overlapping patches to locally parameterize the surface (which

overcomes the problems of global parameterization and of remeshing that usually

arise near the patch boundaries when parameterizing based on mesh segmentation).

Another key feature is a series of edge-collapse and edge-flip operations combined

with area-based mesh optimization to improve regularity and to produce well-shaped

triangles (without the problem of long and skinny triangles typically created if mesh

generation is based on triangle areas). As the overlapping parameterization allows

2D mesh optimization methods to be applied to 3D meshes (while minimizing the

distortion problem, typical of mapping a 3D mesh to a 2D parametric domain), this

algorithm is fast as well as robust (see an example in Figure 8).

Fig. 8. Highly regular remeshing. Figure reproduced from [77].
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Discussion

Highly regular meshes are frequently obtained by tessellating on a regular grid.

Surazhsky and Gotsman [77] demonstrated that highly regular meshes cannot be gen-

erated simply by local mesh adaptation, unless some semi-global operations, such as

drifting edges, are performed. One challenge is to obtain semi-regular meshes with a

prescribed number of irregular vertices (up to that required by the Euler formula) by

semi-global adaptation instead of subdivision.

2.2 Compatible Remeshing

Definitions

Given a set of 3D meshes with a partial correspondence between them, compatible

remeshing amounts to generating a new set of meshes that are remeshes of the input

set, such that they have a common connectivity structure, well-shaped polygons,

approximate the input well, and respect the correspondence.

Motivation

Motivating applications are morphing between shapes and attributes, multi-model

shape blending, synchronized model editing, fitting template models to multiple data

sets and principal component analysis. In these applications the common connectiv-

ity is usually more important than the mesh element quality.

Joint Parameterization

Much of the work done on compatible meshing focuses on morphing as the target

application. This first requires the computation of a joint parameterization (some-

times called cross parameterization) , namely, a bijective mapping between the two

meshes, possibly subject to some constraints. Alexa [2] provided a good review of

joint parameterization and compatible remeshing techniques developed for morph-

ing. Joint parameterization is typically computed by parameterizing the models on

a common base domain. One popular choice is the sphere. A number of algorithms

for spherical parameterization exist, e.g., [1, 27, 64]. Of these, only Alexa’s method

addresses feature correspondence (see Figure 9). However, it does not guarantee a

bijective mapping and is not always capable of matching the features. An inherent

limitation of a spherical parameterization is that it can only be applied to closed,

genus zero surfaces.

A more general approach is to parameterize the models over a common base

mesh [46, 48, 55, 65]. This approach splits the meshes into matching patches with

an identical inter-patch connectivity. After the split, each set of matching patches is

parameterized on a common convex planar domain. An advantage of this approach

is that it naturally supports feature correspondence by using feature vertices as cor-

ners of the matching patches. The main challenge in mapping the models to a single

base mesh is to construct identical inter-patch connectivities. The vast majority of the
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Fig. 9. Joint spherical parameterization: First, an initial sphere embedding is computed for

each mesh. Second, the initial subdivision is deformed such that the common features coincide

on the spheres. The two connectivities are then merged. Figure reproduced from [1].

methods use heuristic techniques that work only when the models have nearly iden-

tical shape. Praun et al. [65] provided a robust method for partitioning both meshes

into patches given user-supplied base mesh connectivity. A common disadvantage of

existing techniques for constructing base meshes is that the patch structure severely

restricts the freedom of the parameterization. As a result, the shape of the patches

has a huge influence on the amount of mapping distortion.

Given joint parameterization, many techniques [1, 37] generate the common con-

nectivity for the models by overlaying the meshes in this parameter domain and

computing a common intersection mesh. The new mesh captures the geometry of the

models. However, the new mesh is typically much larger than the input meshes and

has very badly shaped triangles. The overlaying algorithm is also extremely tricky to

implement, as it requires multiple intersection and projection operations. An alter-

native is to remesh the models using a regular subdivision connectivity derived from

the base mesh [46, 55, 65]. Due to the rigid connectivity structure, the shape of the

mesh triangles reflects the shape of the base mesh. Thus, if the shape of the triangles

is poor (because, for example, the user picked unevenly spaced feature vertices), the

shape of the mesh triangles will reflect this. More importantly, a model that contains

features interior to the base mesh triangles will require a very dense subdivision mesh

over the entire model.

Inter-Surface Mapping

Kraevoy and Sheffer [45] developed a technique for joint parameterization and com-

patible remeshing of two genus-0 meshes with partial correspondence (Figure 10).

The input of the algorithm is a pair of triangle meshes and a set of corresponding
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feature vertices. The first stage of the algorithm constructs a common base domain

by incrementally adding pairs of matching shortest edge paths. Care is taken to avoid

intersections and blocking, as well as to preserve cyclic orders so as to obtain match-

ing patch layouts. Face paths are then added until all patches are triangulated, and

an additional path flip procedure improves the connectivity of the patch layout. The

second stage computes a shape preserving parameterization with smooth transitions

between patches using the mean-value parameterization followed by an adjacency

preserving smoothing procedure. The last stage constructs compatible meshes by al-

ternating vertex relocation to attract vertices toward areas of higher error, and error-

driven mesh refinement. The approximation of normals is improved by an additional

pseudo edge-flip refinement procedure. The meshes generated by this procedure con-

tain significantly fewer elements than those generated by simple overlaying methods,

while approximating well the geometry and normals of the input model.

Fig. 10. Base domains construction for joint parameterization and compatible remeshing of

two genus-0 meshes (feature vertices are dark green): (a),(b) edge paths; (c),(d) face paths,

new vertices are highlighted (turquoise); (e),(f) base meshes. Figure reproduced from [45].

Schreiner et at. [71] used a procedure similar to that of Kraevoy and Sheffer

for base mesh construction, handling models of arbitrary genus more robustly. To

generate a smooth joint parameterization, they used a symmetric, stretch based re-

laxation procedure, which trades off high computational complexity for quality of

the mapping. The common mesh is generated using an overlay of the input meshes,
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as described above. To avoid artifacts, the method has to relax the feature vertex

correspondence in some cases.

Discussion

While compatible remeshing is becoming increasingly important in computer graph-

ics animation applications, where a sequence of meshes is available, it is still plagued

by a number of problems. The selection of pairs of corresponding feature points is

still manual. Very few methods extend easily to arbitrary genus surfaces and long

animation sequences. Lastly, the results are still highly dependent on the parameter-

ization method used to perform the joint parameterization.

2.3 High Quality Remeshing

Definitions

In our taxonomy high quality remeshing means to generate a new discretization of

the original geometry with a mesh that exhibits the following three properties: well-

shaped elements, uniform or isotropic sampling and smooth gradation sampling. A

well-shaped triangle has an aspect ratio as close to 1 as possible, and a well-shaped

quadrilateral contains angles between two consecutive edges as close to π/2 as pos-

sible. Isotropic sampling means that the sampling is locally uniform in all directions.

Requiring uniform sampling is even more restrictive since it mandates the sampling

to be uniform over the entire mesh. Smooth gradation means that if the sampling

density is not uniform - it should vary in a smooth manner [13].

Motivation

High quality remeshing is motivated by numerical stability and reliability of com-

putations for simulation. Efficient rendering, interactive free-form shape modeling,

as well as a few geometry processing algorithms such as compression, fairing or

smoothing also benefit from high quality meshes. The shape of mesh elements [61]

has a direct impact on the numerical stability of numerical computations for finite

element analysis, as well as for efficient rendering. For popular triangle meshes, it is

desirable to have no small angles and/or no large angles, depending on the targeted

computations (see [74]).

We restrict our description to point-based sampling techniques, although other

primitives can be evenly distributed on surfaces for meshing (e.g. bubble pack-

ing [90], square cell packing [75], placement of streamlines [6]). Uniform (resp.

isotropic) point sampling for remeshing amounts to globally (resp. locally) distrib-

uting a set of points on the input model in as even a manner as possible. We may

distinguish between greedy sample placement methods that insert one point at a time

to refine the newly generated model, and relaxation-based methods that improve an

initial placement either locally or globally through point relocation.
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Farthest point sampling.

The farthest point paradigm [49] advocates inserting one sample point at a time, as

far as possible from previously placed samples, i.e., at the center of the biggest void.

Its main advantage is in retaining the uniformity while increasing the density. In con-

trast to stochastic approaches, it can guarantee some uniformity by bounding the dis-

tance between samples [12]. This paradigm, called Delaunay refinement [15, 68, 56]

or sink insertion [21] as a variant, has shown effective in producing uniform as well

as isotropic sample placements. Recently it has been extended using the geodesic

distance estimated on the input mesh to find the center of the biggest voids [63, 57].

From an initial point set sampled on the input mesh, a Delaunay-like triangulation

is created by taking the dual of a geodesic-based Voronoi diagram constructed using

the Fast Marching method of Sethian and Kimmel [73].

Advancing front.

A popular method for evenly-spaced placement is the advancing front paradigm com-

monly used for meshing [11, 31, 82]. This method has recently been extended using

an approximation of the geodesic distance for remeshing by Sifri et al. [76]. A more

general approach was introduced by Dong et al. [18], who computed a harmonic

Morse function on the mesh surface. Drawing isocontours of this function, and plac-

ing a set of orthogonal streamlines results in a good quad remesh (Figure 11). An-

other quasi-uniform remeshing approach based on an advancing front is implicit in

the SwingWrapper compression scheme [10]. To reduce the number of bits needed

to encode the vertex locations, SwingWrapper partitions the surface into geodesic

triangles that, when flattened, constitute a new, strongly compressible mesh. The

remeshing is performed so that for each vertex of the new mesh there is at least one

incident isosceles triangle having a prescribed height. Though not optimally uniform,

the remeshing performed by SwingWrapper might effectively be used as an initial

guess for iterative processes that try to optimize uniformity.

Attraction-repulsion.

One of the first remeshing techniques to surface in the graphics community was

described by Turk [83]. It places a (user defined) number of new vertices on the input

mesh, and arranges the new vertices with the help of an attraction-repulsion particle

relaxation procedure, followed by an intermediate mutual tessellation that contains

both the vertices of the original mesh and the new vertices. This simple approach

produced quite remarkable results, although it had several limitations. Most notably,

it is not suitable for models that have sharp edges and corners, as it does not precisely

approximate such surfaces.

Umbrella operator.

Another popular method commonly used for even placement of samples consists of

repeatedly moving each sample point to the barycenter of its neighbors, and updating
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Fig. 11. Quadrilateral remeshing of arbitrary manifolds: (a) A harmonic function is com-

puted over the manifold. (b) A set of crossings along each flow line is constructed. (c) A

non-conforming mesh is extracted from this net of flow crossings. (d) A post-process pro-

duces a conforming mesh composed solely of triangles and quadrilaterals. Figure reproduced

from [18].

the mesh connectivity. This procedure tends to generate globally uniform edges in

the simple case, and locally uniform edges (i.e. isotropic sampling) if weights are

assigned to edges [87].

The interactive remeshing technique introduced by Alliez et al. [5] is based on

global parameterization. It represents the original mesh by a series of 2D maps in

parameter space, and allows the user to control the sampling density over the surface

patch using a so-called control map, the latter created from the 2D maps. First, an

initial isotropic resampling is performed using an error-diffusion sampling technique

originally designed for image half-toning [58], followed by relaxation using the um-

brella operator. This method is a hybrid between a greedy method and a variational

method since the coefficients used for error diffusion are optimized during an off-

line procedure that seeks a placement with a so-called blue-noise profile, related to

the notion of isotropic sampling. The initial sample placement is then performed in

a single pass at run time; see Figure 12.
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Fig. 12. Interactive geometry remeshing: Remeshing of the MaxPlanck model with various

distribution of the sampling with respect to the curvature. The original model (left) is remeshed

uniformly and with an increasing importance placed on highly curved areas (left to right) as

the magnified area shows. Figure reproduced from [5].

Local area equalization.

Precise uniform sampling can be achieved through local area equalization. Assuming

that the neighbors of the vertex to be relocated is fixed, the new position is computed

by solving a linear system in order to minimize the area dispersion among all incident

triangles [77]. This technique has recently been extended to local equalization of the

Voronoi areas of the vertices in order to symmetrize a linear system used for mul-

tiresolution modeling [14]. The system is solved efficiently using a Cholesky-based

solver that takes advantage of symmetric band-limited matrices. Although efficient

and robust, these area equalization techniques do not provide an easy way to globally

distribute a set of samples in accordance to a density function.

Lloyd relaxation.

Isotropic sample placement can be achieved by applying the Lloyd clustering al-

gorithm [50], which consists of alternating Voronoi partitioning with relocation of

the generators to the centroid of their respective Voronoi cell (Figure 13). Such a

relaxation procedure generates centroidal Voronoi diagrams [19], where the genera-

tors coincide with the centroid of their respective cells. Lloyd relaxation minimizes

energy related to the compactness of the Voronoi cells (and hence to isotropic sam-

pling) while equi-distributing the energy within each cluster, as shown by Gersho in

the late seventies [26]. Contrary to other methods, this method allows the definition
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of a density function related to the desired size of each Voronoi cell. It will then gen-

erate a distribution of energy which globally matches the local size while achieving

isotropic sampling.

Fig. 13. Lloyd relaxation: A set of generators (black dots) are randomly generated (the centroid

of each Voronoi cell is depicted as a red circle). Each iteration of the Lloyd algorithm moves

each generator to its associated centroid, and updates the Voronoi diagram.

Alliez et al. [7], and Surazhsky et al. [78] proposed two remeshing techniques

based on Lloyd relaxation. The first uses a global conformal planar parameterization

and then applies relaxation in the parameter space using a density function designed

to compensate for the area distortion due to flattening (Figure 14). To alleviate the

numerical issues for high isoperimetric distortion, as well as the artificial cuts re-

quired for closed or genus models, the second approach applies the Lloyd relaxation

procedure on a set of local overlapping parameterizations (Figure 15). More recently,

the Lloyd-based isotropic remeshing approach has been extended in two directions:

one uses the geodesic distance on triangle meshes to generate a centroidal geodesic-

based Voronoi diagram [62], while the other is an efficient discrete analog of the

Lloyd relaxation applied on the input mesh triangles [84].

Discussion

As expected, relaxation-based sample placement methods achieve better results than

greedy methods, at the price of lengthier computations. Nevertheless, the only meth-

ods that provide certified bounds on the shape of elements are the greedy approaches

based on Delaunay refinement. The Lloyd-based isotropic sampling method com-

bined with local overlapping parameterization has been successful at isotropically

distributing a point set in accordance with a density function [78]. Two remain-

ing challenges related to the Lloyd relaxation method are to prove or to give

sufficient conditions for achieving convergence to a global optimum, and to accel-

erate convergence. Another promising direction for efficient isotropic sampling is

the hierarchical Penrose-based importance sampling technique developed by Ostro-

moukhov [59], which is deterministic and several orders of magnitude faster than

relaxation methods.
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Fig. 14. Uniform remeshing of the David head: a planar conformal parameterization is com-

puted (bottom left). Then Lloyd relaxation is applied in parameter space in order to obtain a

weighted centroidal Voronoi tessellation, with which the mesh is uniformly resampled. Figure

reproduced from [7].

2.4 Feature Remeshing

Definitions

Assume that a triangle mesh is an approximation of a curved shape, possibly with

sharp edges and corners. We call the process that takes such a triangle mesh and gen-

erates a new tessellation in which the original sharp features are preserved, feature

remeshing. In this context, the quality of the approximation may be measured either

using a purely geometric metric (the L∞ norm, for example, is strongly affected by
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Fig. 15. Uniform remeshing of the Beetle: Lloyd relaxation is applied over local overlapping

parameterizations as described in [78].

badly-approximated sharp corners), or by a metric that reflects visual-quality (e.g.,

normal deviation), or a combination of both.

Motivation

Most acquisition techniques, as well as several recently developed remeshing algo-

rithms [67, 80, 29, 10], restrict each sample to lie on a specific line or curve whose

position is completely defined by a pre-established pattern. In most cases, such a

pattern cannot be adjusted to coincide with a model’s sharp edges and corners, and

almost none of the samples will lie on such sharp features. Thus, the sharp edges and

corners of the original shape are removed by the sampling process and replaced by

irregularly triangulated chamfers, which often result in a poor-quality visualization

and high L∞ distortion.

Feature-preserving

When the original shape is available, the error between such a shape and the approx-

imating triangle mesh may be reduced by dense sampling. Over-sampling, however,

will significantly increase the number of vertices, and thus the associated complexity,

transmission and processing costs. Furthermore, as observed by Kobbelt et al. [44],

the associated aliasing problem will not be solved by over-sampling, since the sur-

face normals in the reconstructed model will not converge to the normal field of the

original object. To cope with this problem, an extended marching cubes algorithm

was proposed in [44]. The input shape is first converted into a signed distance field.

This representation is then polygonized using a variant of the marching-cubes [51]

algorithm in which vertex normals are derived from the distance field and used to

decide whether a voxel contains a sharp feature or not. If they do appear, additional

vertices are created within the voxel and placed at intersections between the planes

defined by the vertices and their associated normals. Another feature-preserving ap-

proach was proposed in [36]. It is able to accurately polygonize models with sharp
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features using adaptive space subdivision (an octree), resulting in polygonal models

with fewer faces. In a different setting, an original triangulation may be remeshed

without converting it into a scalar distance field, and the aliasing problem may be

avoided by snapping some of the evenly distributed vertices onto sharp creases, as

proposed in [86].

Feature-enhancing

When the original shape is not available, the EdgeSharpener method [9] provides an

automatic procedure for identifying and sharpening the chamfered edges and cor-

ners. In a first step, the mesh is analyzed and the average dihedral angle at the edges

is computed. Based on this value, “smooth” regions are grown on the mesh, and

the strips of triangles separating neighboring smooth regions are considered “alias-

ing artifacts” made of chamfer triangles . The growing process results in a number

of smooth regions in which all the internal edges have a nearly flat dihedral angle.

EdgeSharpener infers the original sharp edges and corners by intersecting planar ex-

trapolations of the smooth regions. Then, each chamfer triangle is subdivided, and

the newly inserted vertices are moved to the intersections, which are assumed to

better approximate the original sharp features (see Figure 16). Unless the input con-

tains significant amounts of noise, EdgeSharpener does not introduce undesirable

side-effects, and limits the modifications to the portions of the mesh that are actually

chamfer artifacts. EdgeSharpener has been tested on the results of several feature-

insensitive remeshing algorithms [10, 80, 67], and has been shown to significantly

reduce the L∞ distortion introduced by the remeshing process.

Fig. 16. EdgeSharpener: A triangle mesh reconstructed from a point cloud (left) is improved

by EdgeSharpener [9]. Smooth regions are identified (red) and chamfer triangles (gray and

green with blue edges) are sharpened (right).

To give designers more flexibility, an interactive remeshing approach has been

proposed [42] for restoring corrupted sharp edges. The user is required to construct

a number of fish bone structures (spine and orthogonal ribs) that will be automati-

cally tessellated to replace the original chamfers. Though not automatic, this method

is particularly suitable for simple models with few sharp edges, and allows the de-

signer to sharpen the chamfers as well as to modify the swept profiles to produce

blends or decorated edges.
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One may argue that an application of the extended marching cubes [44] to a

polygonal mesh may be used to infer, and hence reconstruct, the sharp features.

In [44], this application to remeshing is discussed and, in fact, it is useful in improv-

ing the quality of meshes having degenerate elements or other bad characteristics. In

some cases, the information at the edge-intersections makes it possible to reconstruct

sharp features in an EdgeSharpener-like manner. For example, if a cell contains an

aliased part that does not intersect the cell’s edges, the normal information at the

intersections is used to extrapolate planes, and additional points are created on the

inferred sharp feature. If, on the other hand, the cell’s edges do intersect the aliased

part, the normal information is contaminated, and nothing can be predicted about any

possible feature reconstruction. Moreover, remeshing the whole model through the

extended marching cubes approach can introduce an additional error on the regions

without sharp features, while the local remeshing produced by EdgeSharpener only

affects the aliased zones by subdividing the triangles that cut through the original

solid (or through its complement) near sharp edges.

Discussion

The ability to preserve or reconstruct sharp features is undoubtedly important. Meth-

ods that do not assume the availability of the original surface, however, must nec-

essarily rely on heuristics to infer and restore sharp edges and corners in an aliased

model. Thus one of the main challenges in this context is the definition of a formal

framework for sampling non-smooth surfaces. Although such a framework has been

defined for smooth models [8, 12], the problem of dealing with tangential disconti-

nuities remains open, even for the 2D case [17].

2.5 Error-driven Remeshing

Definitions

Error-driven remeshing amounts to generating a mesh that maximizes the trade-off

between complexity and accuracy. The complexity is expressed in terms of the num-

ber of mesh elements, while the geometric accuracy is measured relative to the input

mesh and according to a predefined distortion error measure. The efficiency of a

mesh is qualified by the error per element ratio (the smaller, the better). One usu-

ally wants to minimize the approximation error for a given budget of elements, or

conversely, minimize the number of elements for a given error tolerance. Another

challenging task consists of optimizing the efficiency trade-off at multiple levels-of-

detail.

Motivation

Efficient representation of complex shapes is of fundamental importance, in particu-

lar for applications dealing with digital models generated by laser scanning or isosur-

facing of volume data. This is mainly due to the fact that the complexity of numerous
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algorithms is proportional to the number of mesh primitives. Examples of related ap-

plications are modeling, processing, simulation, storage or transmission. Even for

most rendering algorithms, polygon count is still the main bottleneck. Being able to

automatically adapt the newly generated mesh to the local shape complexity is of

crucial importance in this context.

Mesh simplification or refinement methods are obvious ways of generating

efficient meshes. In this survey we will not pretend to survey the plethora of

polygonal simplification techniques published in the last decade, and instead refer

the interested reader to the a multitude of comprehensive course notes and sur-

veys [32, 25, 52, 53, 28]. We complement these documents by focusing on tech-

niques that proceed by optimization or by recovering a continuous model from the

input mesh. These include techniques specifically designed to exploit a shape’s local

planarity, symmetry and features in order to optimize its geometric representation.

We focus in more detail on techniques that construct efficient meshes by extracting,

up to a certain degree, the “semantical content” of the input shape.

Hoppe et al. [34] formulated the problem of efficient triangle remeshing as an

optimization problem with an energy functional that directly measures the L
2 error

deviation from the final mesh to the original one. They showed that optimizing the

number of vertices, as well as their geometry and connectivity, captures the curvature

variations and features of the original geometry. Despite a spring force restricting the

anisotropy of the results and an approximate point-to-surface Euclidean L
2 distance

measure, this technique results in particularly efficient meshes. Alliez et al. [4] de-

scribed another optimization method that minimizes the volume between the simpli-

fied mesh and the input mesh using a gradient-based optimization algorithm and a

finite-element interpolation model implicitly defined on meshes. The volume-based

error metric is shown to accurately fit the geometric singularities on 3D meshes by

aligning edges appropriately, without any distinction required between smooth and

sharp areas.

Following previous work on feature remeshing (see Section 2.4), the remeshing

technique introduced by Alliez et al. [6] pushes the idea of aligning edges on fea-

tures further by generalizing it to the entire surface. They generated a quad-dominant

mesh that reflects the symmetries of the input shape by sampling the input shape

with curves instead of the usual points. The algorithm has three main stages. The

first stage recovers a continuous model from the input triangle mesh by estimating

one 3D curvature tensor per vertex. The normal component of each tensor is then

discarded and a 2D piecewise linear curvature tensor field is built after computing

a discrete conformal parameterization. This field is then altered to obtain smoother

principal curvature directions. The singularities of the tensor field (the umbilics) are

also extracted. The second stage consists of resampling the original mesh in parame-

ter space by building a network of lines of curvatures (a set of “streamlines” approx-

imated by polylines) following the principal curvature directions. A user-prescribed

approximation precision in conjunction with the estimated curvatures is used to de-

fine the local density of lines of curvatures at each point in parameter space during

the integration of streamlines. The third stage deduces the vertices of the new mesh
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by intersecting the lines of curvatures on anisotropic areas and by selecting a subset

of the umbilics on isotropic areas (estimated to be spherical). The edges are obtained

by straightening the lines of curvatures in-between the newly extracted vertices on

anisotropic areas, and simply deduced from the Delaunay triangulation on isotropic

areas. The final output is a polygon mesh with mostly elongated quadrilateral ele-

ments on anisotropic areas, and triangles on isotropic areas. Quads are placed mostly

on regions with two (estimated) axis of symmetry, while triangles are used to either

tile isotropic areas or to generate conforming convex polygonal elements. On flat ar-

eas the infinite spacing of streamlines will not produce any polygons, except for the

sake of convex decomposition (see example Figure 17). This approach has recently

been extended to reduce its dependence on any parameterization [54].

Fig. 17. Anisotropic remeshing: From an input triangulated geometry, the curvature tensor

field is estimated, then smoothed, and its umbilics are deduced (colored dots). Lines of curva-

tures (following the principal directions) are then traced on the surface, with a local density

guided by the principal curvatures, while usual point-sampling is used near umbilic points

(spherical regions). The final mesh is extracted by subsampling, and conforming-edge inser-

tion. The result is an anisotropic mesh, with elongated quads aligned to the original principal

directions, and triangles in isotropic regions. Figure reproduced from [6].

Although the edge sampling strategy described above increases the mesh effi-

ciency by matching the conditions of optimality for the L2 metric in the limit, there

is no guarantee of its efficiency at coarse scales. Moreover, this technique involves

local estimation of curvatures, known to be difficult on discrete meshes. The esti-

mator itself requires the definition of a scale that remains elusive (intuitively, the

scale itself should depend on the approximation tolerance). These observations mo-

tivate an efficient remeshing approach based exclusively on the approximation error.

Thus Cohen-Steiner et al. [16] proposed an error-driven clustering approach that does

not resort to any estimation of differential quantities or any parameterization. Error-

driven remeshing is now cast as a variational partitioning problem where a set of

planes (so-called proxies) are iteratively optimized using Lloyd’s heuristic to mini-

mize a predefined approximation error (see Figure 2.5 and its colour version CP-3 in
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Appendix B). As in the original Lloyd algorithm, the key idea hinges on alternating

partitioning and moving each representative to the centroid of its region. The parti-

tioning is generated triangle by triangle using a region growing procedure driven by

a global priority queue. The queue is sorted by the error between each new triangle

candidate for expansion and the proxy (representative) of the corresponding region.

The analog of the centroid in the metric space is now simply the best fit proxy for

each region. Closed forms for the errors between one triangle and one proxy, as well

as for the best fit proxy are given for regions consisting of a set of triangles, both

for the L
2 and L2,1 (L2 deviation of normals) error metric. A polygonal remeshing

technique is proposed based on a discrete analog of a Voronoi diagram implemented

with a two-pass partitioning algorithm over the input triangle mesh. The elements of

the resulting polygonal meshes will then exhibit orientation and elongation guided

by the minimization of the approximation error instead of being the result of a cur-

vature estimation process as in [6]. This technique has been extended by Wu and

Kobbelt to handle non planar proxies such as spheres, cylinders, and rolling ball

blend patches [89], and by Yan et al. to handle quadric proxies [91].

Fig. 18. Error-driven remeshing: Through repeated error-driven partitioning (left), a set of

geometric proxies (represented as ellipses, center) is optimized. These proxies are then used

to construct an approximating polygonal mesh (right). Figure reproduced from [16].

Discussion

In this section we narrowed our scope to the study of methods that best preserve

the shape geometry during the remeshing stage of the geometry processing pipeline.

Despite the considerable amount of work done on mesh approximation through error-

driven simplification or refinement, there is much less work on approximating shapes

by using geometric analysis to guide the remeshing process.

Observations have shown that for sketching, artists implicitly exploit the sym-

metry of a shape as they sketch images that best convey the desired model. Simple

symmetric primitives such as planes, spheres, ellipses, saddles, cylinders and cones

are also exploited by artists as basic components for modeling a shape. For reverse
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engineering, remeshers such as [89, 91] help, to a certain degree, to automatically

capture the “semantical” structure of a measured shape by inferring a smooth model

and extracting its main traits. The local symmetries and main traits of the shape

should ideally be deduced from the elements of the mesh, facilitating structuring and

analysis.
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