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Abstract 
Kidney diseases can be caused by a wide range of genetic, 
hemodynamic, toxic, infectious, and autoimmune factors. The 
diagnosis of kidney disease usually involves the biochemical analysis 
of serum and blood, but these tests are often insufficiently sensitive or 
specific to make a definitive diagnosis. Although radiologic imaging 
currently has a limited role in the evaluation of most kidney diseases, 
several new imaging methods hold great promise for improving our 
ability to non-invasively detect structural, functional, and molecular 
changes within the kidney. New methods, such as dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) and blood oxygen 
level-dependent (BOLD) MRI, allow functional imaging of the kidney. 
The use of novel contrast agents, such as microbubbles and 
nanoparticles, allows the detection of specific molecules in the kidney. 
These methods could greatly advance our ability to diagnose disease 
and also to safely monitor patients over time. This could improve the 
care of individual patients, and it could also facilitate the evaluation of 
new treatment strategies.
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Introduction
Kidneys have numerous physiologic functions beyond the  

clearance of uremic toxins. They maintain the balance of  

electrolytes and water, help maintain acid–base balance, produce 

erythropoietin, and are critical for bone and mineral metabolism. 

To carry out these diverse functions, kidneys have many unique 

anatomic and ultrastructural features. The various functions also 

require different specialized cells to detect the composition of 

body fluids and to respond to physiologic changes. Unique cell 

types within the glomerulus and along the renal tubules restrict the  

passage of some molecules while mediating the transport of others 

into and out of the urine.

Because of this broad range of functions, the kidney can be affected 

by many different genetic, hemodynamic, toxic, infectious, and 

autoimmune insults. Kidney disorders are usually diagnosed by 

biochemical measurements of serum and blood, but these tests  

are often insufficiently sensitive or specific to make a definitive 

diagnosis. Measuring serum creatinine, for example, is the most 

common method of detecting a reduction in glomerular filtration, 

but it is an insensitive marker of kidney function and it does not  

discriminate between the different causes of kidney injury.  

Anatomic changes can also be difficult to evaluate. In patients 

with renal artery stenosis, for example, similar degrees of vascu-

lar obstruction seen on ultrasound or angiography can have very  

different functional consequences. New methods for detecting 

molecular, anatomic, and functional changes within the kidney 

would therefore improve our ability to diagnose many different  

diseases.

Radiologic imaging currently has only a limited role in the 

diagnosis of kidney disease. Imaging is primarily used for  

diagnosing nephrolithiasis or gross anatomic defects, such as cystic 

disease, malignancies, and obstructive nephropathy. For most  

other kidney diseases, imaging is used simply to assess kidney 

size and density, crude markers of parenchymal damage1. Sophisti-

cated new radiologic methods have been developed in recent years 

that enable functional measurement of physiologic processes and  

quantitative assessment of molecular markers within tissues.  

Contrast agents are substances that can enhance the radiographic 

visibility of structures, such as the vasculature. Imaging probes, 

on the other hand, are agents that are used to detect specific bio-

logic processes or molecules2, and new probes have been developed  

to detect and quantify specific changes in the composition or  

function of the kidneys. These new modalities and tools have 

the potential to improve our ability to diagnose disease, detect  

changes in kidney structure and composition, and non-invasively 

monitor a patient’s response to treatment.

Anatomic imaging
A fundamental use of radiologic studies is to examine the basic 

structure of an organ. Ultrasound is frequently used to measure  

kidney size, search for the presence of renal masses or cysts, 

detect kidney stones, and determine whether there is urinary  

obstruction3. Doppler imaging can be added to examine flow in the 

renal arteries and veins or to measure the resistive index. Computed 

tomography (CT) and magnetic resonance imaging (MRI) are also 

frequently used for these purposes. However, the use of potentially  

toxic contrast media limits the application to patients with an  

estimated glomerular filtration rate (eGFR) of <30 ml/minute. For 

CT scans, iodinated contrast has been linked to nephrotoxicity. 

It is possible that the risks are not as high as previously thought,  

however, and this is an area of ongoing research4,5. For MRI, the 

use of gadolinium-based contrast agents (GBCAs) in the past has  

been linked to nephrogenic systemic fibrosis (NSF), espe-

cially in patients with acute kidney injury (AKI), chronic kidney  

disease (CKD), and end-stage renal disease (ESRD)6. However,  

newer macrocyclic GBCAs such as gadobenate dimeglumine or 

gadobutrol have not been linked to NSF and have been used safely 

in patients with stage 3–5 CKD in a prospective clinical study7–9.

Improved methods of acquiring and analyzing anatomic data 

will improve the accuracy with which lesions can be detected. 

This could be important for diseases like polycystic kidney dis-

ease (PKD), where radiologic measurements of cyst and kidney  

volume have been closely linked with a decline in kidney function10. 

New analytic methods, such as convolutional neural networks, 

may increase the speed and accuracy of volume measurements in  

PKD11. Another method of image reconstruction, referred to as 

cinematic rendering, uses algorithms to add light and shading to 

CT images and make them appear more realistic12,13. Although 

this method may make it easier to identify and evaluate intra-

renal lesions14 (Figure 1), more experience at additional centers is  

necessary in order to determine its usefulness.

Imaging of renal perfusion and glomerular filtration 
rate
Renal blood flow (RBF) is frequently reduced in patients with 

ischemic AKI, renal artery stenosis, obstructive nephropathy, or 

decreased mean arterial blood pressure. Changes in RBF can affect 

the whole organ, but arteriovenous fistulas (AVFs) or vascular 

thrombosis can affect blood flow focally. Major vascular occlusions 

and larger AVFs can usually be detected by Doppler ultrasound,  

but it cannot resolve regional blood flow or determine whether 

blood flow is sufficient for the kidney’s metabolic needs. Several 

functional imaging methods are being developed to more accu-

rately quantify RBF into the kidney, assess the adequacy of blood 

flow based on functional measurements, and measure the rate at 

which plasma is filtered by the kidney (GFR).

Renal perfusion
Arterial spin labeling (ASL) is an MRI method that allows the 

assessment of blood flow throughout the entire kidney. ASL utilizes 

magnetically tagged water as an intrinsic contrast agent, so it is 

safe in patients with renal insufficiency15. The basic principle of 

ASL is that a static image of an organ is generated. Blood water is 

then magnetically tagged with a radiofrequency (RF) pulse before 

it enters the tissue of interest, and then another image is created in 

which the magnetization of the inflowing blood is also captured. 

Subtraction of labeled images from the control images eliminates 

static tissue signal, and the remaining signal is a relative meas-

ure of perfusion proportional to RBF (Figure 2)16. Although the  

resolution of this method was initially quite poor, significant 

improvements in imaging acquisition techniques have been 

made which now enable the discrimination of values in the cor-

tex and medulla. The PARENCHIMA network recently reviewed  
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Figure 1. Cinematic rendering of a computed tomography image of a scarred kidney. Coronal, contrast-enhanced computed radiography 
visualizations of a 42-year-old woman with a history of recurrent urinary tract infections. With soft tissue window settings in the A) excretory/
urographic and B) arterial phases, contour abnormalities in the right kidney that correspond to regions of scarring are apparent (red 
arrowheads). C, D) During the excretory/urographic phase of this study, the windowing can be adjusted to optimize the visualization of 
the collecting systems and ureters. In the right kidney, note the extensive irregularities of the collecting system, including multiple calyceal 
strictures (red arrows). Reproduced with permission from Rowe et al.14.

Figure 2. Overview of arterial spin labeling (ASL). A control image is obtained without contrast. A pulse is then used to magnetize the 
blood, and a delay allows the blood to enter the kidney. The labeled image is then subtracted from the baseline image, generating a map of 
the signal difference created by the perfused blood. In healthy volunteers, the amount of signal due to inflowing blood is in the order of 5% of 
the non-background suppressed baseline tissue magnetization. Reproduced with permission from Nery, Gordon, and Thomas16.
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53 studies on renal perfusion by ASL in patients with various  

forms of nephropathy17. Although there is no gold standard against 

which to validate ASL, the authors concluded that the method has 

good reproducibility.

Ischemia reperfusion injury (IRI) is a common cause of AKI and 

has a high incidence after major cardiac surgery or solid organ 

transplantation. For cardiac surgeries in which cardiopulmo-

nary bypass is needed, the likelihood of AKI may be as high as  

30%18. ASL offers an excellent method of detecting early renal 

damage, since ischemia causes vascular constriction and a reduc-

tion of RBF. Much work has been done in standardized mouse  

and rat models to correlate reductions in RBF (as assessed by 

ASL)  with histologic changes at different time points after AKI 

onset (Figure 3)19. Reductions in RBF also correlate with AKI  

severity20 and with long-term outcomes21. Initially, there is a 

functional reduction in RBF, and this worsens over the first week 

because of increasing leukocyte infiltration and inflammation of  

the kidneys. Then, either recovery starts or ongoing inflammation  

leads to a permanent reduction of RBF and scarring of the  

kidneys. A pilot study in human patients showed that RBF is  

lower in patients with AKI than in control patients22. In kidney 

transplantation, the correlate of AKI is delayed allograft func-

tion (DGF). Studies in transplant patients have shown that RBF 

is reduced in patients with DGF compared to those with function-

ing allografts23,24. Lower RBF is also predictive of graft failure in 

patients with DGF24.

Microbubbles are synthetic, gas-filled bubbles that can be used 

as ultrasound contrast agents25. Because of their size (1–4 µm),  

microbubbles remain intravascular and can be used to directly  

measure RBF. Microbubbles are generally non-toxic, and no  

adverse renal effects have been reported, although molecules  

on their outer shell can be immunogenic. Contrast-enhanced  

Figure 3. Arterial spin labeling (ASL) in a model of acute kidney injury (AKI). A) ASL in a mouse model of transient AKI induced by 
short-term ischemia/reperfusion injury (IRI; 35 minute clipping of the renal pedicle, green line, upper row) compared to prolonged ischemia 
time (45 minute clipping and resulting in renal fibrosis, red line, lower row). B) Quantification over time shows the permanent impairment of 
renal cortical blood flow due to prolonged ischemia time causing renal fibrosis. The black line represents the contralateral not clipped kidney. 
Reproduced with permission from Hueper et al.19. C) Histology (45 minute IRI) shows lectin-perfused kidneys where patent capillaries are 
stained in light green in the healthy kidney (d0 double stained in red with fibronectin), at d7 macrophages (red) are infiltrated in area with loss 
of patent capillaries, and at d28 hypoperfused areas show enhanced scarring with fibronectin expression (red; bar represents 100 µm). RBF, 
renal blood flow.
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ultrasound (CEUS) is a more accurate method than traditional  

Doppler measurements for measuring kidney perfusion26. A pilot 

study in transplant patients with acute rejection also revealed that 

regional perfusion defects of the allograft can be detected with CEUS  

(Figure 4). In addition, CEUS is a valuable and safe method to 

characterize atypical renal cystic lesions or for follow up on tumor 

recurrence of renal masses27.

Oxygen delivery
Oxygen levels within a tissue are a product of both oxygen  

delivery and oxygen demand. Kidneys are metabolically active 

organs, and functional measures of tissue oxygenation may reveal 

physiologic hypoxia, even with preserved RBF. Decreased oxygen 

levels are probably an important part of the pathogenesis of both 

acute and chronic kidney injury. Blood oxygen level-dependent 

(BOLD) MRI is a method that utilizes differences in the magnetic 

properties of oxygenated and deoxygenated hemoglobin to evaluate 

tissue oxygen levels. The R2* relaxation rate is inversely related to 

tissue oxygen levels and can be mapped throughout BOLD MRI 

of the kidneys28,29. Kidney oxygenation in patients with CKD and 

hypertension and healthy controls has been evaluated by BOLD 

MRI30. Although baseline R2* levels were similar in all three groups 

of subjects, R2* levels decreased to a greater degree in healthy  

subjects after the administration of furosemide. This suggests  

that the relationship between kidney metabolism and sodium trans-

port is abnormal in patients with CKD and hypertension. Focal 

decrease in R2* levels was also seen in patients with renal arte-

rial stenosis31. Several factors can confound R2* in the kidney,  

including hydration status, salt intake, tobacco use, and respiratory 

status, but methods are being developed to help compensate for 

these factors28.

Glomerular filtration
Filtration of blood within the kidney is the primary method by  

which the kidney clears metabolic waste. Serum markers of 

GFR (e.g. serum creatinine) are commonly measured but often 

do not accurately reflect reductions in the GFR. Dynamic con-

trast-enhanced (DCE) MRI is a method in which MRI is used to 

monitor kidney perfusion and the filtration of GBCAs through the  

kidney32,33. Serial images of the kidney are obtained as the contrast 

is filtered, and the images are used to calculate GFR. Different 

methods of calculating the GFR from the MRI have been analyzed 

and compared to radionuclide measurements of GFR in human  

subjects34. The DCE MRI methods correlated fairly well with  

radionuclide measurements (correlation coefficient >0.8).

Imaging of electrolytes and metabolites
Sodium magnetic resonance imaging
The conventional understanding of sodium handling is that  

sodium ions are predominantly maintained in the extracellular 

space through transport out of cells by the Na+–K+ ATPase and 

that sodium accumulation (or loss) by the body is accompanied 

by changes in total body water to maintain a relatively constant  

extracellular osmolarity. However, new MRI methods have 

expanded our view of sodium homeostasis. Sodium MRI  

(23Na MRI) is a method that measures sodium cations instead of 
1H protons. Although less sensitive than 1H MRI, 23Na MRI uses 

specialized equipment and pulse sequences to quantify and localize 

sodium within tissues35. Increased levels of sodium in a particular 

tissue can be due to storage in the extracellular space or increased 

intracellular sodium due to loss of cell integrity35. 23Na MRI  

has been used to measure sodium in various regions of the kidney  

as well as to measure the accumulation of sodium in other organs.

Within the kidney, reabsorption of water in the distal tubule and 

collecting duct requires that the extracellular fluid in the renal 

Figure 4. Contrast enhanced ultrasound (CEUS) and B-mode 
ultrasound of kidney allograft with acute rejection. The left panel 
shows the enrichment of the microbubbles within seconds in the 
renal vessels of the allograft of a patient with severe rejection. Areas 
in the lower pole of the kidney are hypoperfused after microbubble 
injection, indicating less blood flow to this region (arrows). The right 
panel corresponds to the B-mode ultrasound. These images are 
original, unpublished data (F. Gueler).
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medulla is hypertonic (~1,200 mOsm/kg in the tip of the medulla). 

Approximately half of the tonicity of the medulla is due to  

sodium and the rest is primarily due to urea. The corticomedul-

lary gradient decreases in the injured kidney owing to a reduc-

tion in the ability to transport sodium into the medulla, impair-

ing water reabsorption. 23Na MRI can measure sodium levels in 

the renal medulla and determine the corticomedullary sodium  

gradient36,37. In humans, the corticomedullary sodium gradient shows 

wide variation between individuals and does not seem to correlate 

with other physiologic factors such as age, gender, or body mass  

index36. Using 23Na MRI, investigators have shown that the  

corticomedullary gradient is lost in models of urinary obstruction, 

ischemic AKI, and radiation injury, likely reflecting an impaired 

ability to actively maintain the gradient37–40. Conversely, the  

gradient increases in patients with water deprivation (Figure 5)41.

A key discovery using 23Na MRI is that a substantial amount of 

sodium is deposited in the skin, muscle, and brain42. Detect-

able levels increase in patients with aldosteronism, which causes  

renal sodium retention, and decrease after treatment. Surpris-

ingly, interstitial sodium can be stored in these organs without  

concomitant water, and high local concentrations of sodium in 

these tissues are not in equilibrium with serum sodium43. Increased 

tissue storage of sodium is seen in several diseases, including 

hypertension44 and ESRD45. Interestingly, sodium deposition may 

be higher in patients with ESRD due to diabetic kidney disease 

than in patients with ESRD from other causes46. Tissue sodium 

stores are also higher in patients with AKI than in healthy con-

trol subjects47. The correlation of tissue sodium with hypertension  

and other diseases suggests that these sodium stores may be a  

marker of cardiovascular risk and/or have a role in disease. 

Although 23Na MRI is not yet available for clinical use, in the 

future this method may be useful for measuring total body sodium  

levels, examining cell integrity, and monitoring therapies intended 

to remove sodium from the body.

Hyperpolarized magnetic resonance imaging
Hyperpolarization is a method whereby energy is transferred to the 

nuclear spin of a compound that contains carbon-13 (13C)48. Hyper-

polarized compounds have a very high signal by MRI, although  

the increased signal is short-lived and the hyperpolarization  

needs to be done near where the imaging will be performed. 

Hyperpolarized probes can be injected into a subject, and the  

compound and its metabolites can then be traced for several  

minutes by MRI. A study using hyperpolarized 13C pyruvate  

showed that metabolism of pyruvate to lactate is altered in mod-

els of diabetic nephropathy49. 13C urea can also be polarized and 

its localization in the kidney imaged by MRI50. Renal uptake of 

hyperpolarized urea demonstrated altered urea transport in rats  

with experimental diabetic nephropathy48 or with IRI51. MRI of 

hyperpolarized metabolites could provide a useful method of  

monitoring transport and metabolic functions in the kidney, but  

the short duration of the probes is a barrier to the clinical  

application of these methods.

Inflammation
One of the most common reasons to perform a kidney biopsy is 

to diagnose glomerulonephritis or to assess the disease activ-

ity of patients with known disease. The detection of glomerular  

inflammation, or “active” disease, is frequently used to make treat-

ment decisions. Furthermore, repeat biopsies may be necessary to 

diagnose disease recurrence or to assess whether or not a patient is 

responding to treatment. Glomerular inflammation is often patchy, 

however. Kidney biopsies may not accurately represent inflamma-

tion throughout the kidneys, particularly if the number of glomeruli  

is small52. Kidney allograft biopsies are still the gold standard 

to grade transplant rejection and to distinguish other forms of  

allograft injury. Several new imaging methods and probes have 

been developed to detect cellular or molecular markers of kidney 

inflammation53.

Inflammation causes vascular leakage and edema formation in  

tissues. This can be visualized by T1 and T2 mapping of MRI as a 

measure of tissue water content54. The T1 relaxation time, a measure 

of how fast the nuclear spin magnetization returns to its equilibrium 

state after a RF pulse in the MRI scanner, is a key source of soft  

tissue contrast in MRI55. Changes in T1 relaxation time reflect 

edema, infarction, and scarring56. RBF, as assessed by ASL, is 

also reduced in patients with kidney inflammation. For exam-

ple, RBF is reduced in patients with lupus nephritis compared 

Figure 5. Sodium magnetic resonance imaging (MRI) of the kidney. A) A scheme of the human kidney. B) Color-coded central coronal 
slices of sodium images of a human kidney under normal conditions. C) Sodium images of the same kidney after 12 hour water deprivation. 
The sodium gradient increased by 25% after water deprivation. Reproduced with permission from 41.
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to healthy controls57. Because these MRI measurements are also 

reduced in patients with CKD, however, the interpretation of the 

results requires consideration of the context and timing in disease  

progression.

Ultrasound probes for detecting inflammation
Standard ultrasound can detect abscesses and gross tissue changes, 

but it cannot accurately detect kidney inflammation. Conjugation  

of targeting proteins to the surface of microbubbles can direct  

them to endothelial markers of inflammation, such as adhesion 

molecules, providing a signal of tissue inflammation. A preclinical  

study used microbubbles targeted to P-selectin and vascular cell 

adhesion molecule 1 (VCAM-1) to test whether they could be 

used to detect kidney inflammation after ischemia reperfusion58. A 

strong signal was seen four hours after the induction of ischemia/ 

reperfusion using both probes. Microbubbles targeted to other mol-

ecules have also been used to detect renal inflammation, includ-

ing the detection of T cells in a model of allograft rejection59, and 

activated neutrophils in a model of ischemic AKI60. These meth-

ods may be useful for detecting markers of allograft rejection that  

currently require a tissue biopsy to identify them.

Magnetic resonance imaging probes for detecting 
inflammation
MRI probes have also been used to detect markers of inflammation 

within the kidney. Superparamagnetic iron oxide (SPIO) causes a 

darkening of T2-weighted MRI, and SPIO can be used as a con-

trast agent61. SPIO that are 20–30 nm in diameter are phagocytosed 

by macrophages, thereby accumulating in tissues infiltrated by 

macrophages. They can therefore be used as a molecular imaging 

probe for macrophages within the kidney. Using untargeted SPIO, 

tissue macrophages were detected in animal models of focal seg-

mental glomerulosclerosis, acute glomerulonephritis, and ischemic  

AKI62–64. In a pilot study of human patients, signal was seen in 

patients with acute rejection of a renal transplant, glomerulone-

phritis, or ischemic AKI65. Furthermore, the localization of the  

signal was in the medulla of patients with AKI, and in the cortex 

of patients with the other causes of inflammation, and the change 

in MRI signal in the kidney after SPIO injection correlated with 

infiltration of the kidney by macrophages.

Similar to microbubbles, SPIO nanoparticles can be conjugated 

with targeting molecules that cause them to accumulate in tis-

sues expressing the target ligands. SPIO targeted to tissue-bound  

complement C3 fragments caused negative enhancement of the kid-

neys in a model of lupus nephritis66. A subsequent study showed 

that the magnitude of the change in MRI signal after injection of 

the targeted SPIO correlated with disease severity67. Kidney biop-

sies from patients with lupus nephritis are routinely immunostained 

for C3 deposits, and this imaging method holds promise as a non- 

invasive way of monitoring this marker of kidney inflammation.

Kidney inflammation is also associated with metabolic changes. 

Chemical exchange saturation transfer is an MRI method that can  

be used to measure metabolites within a tissue68. Using this tech-

nique to measure glucose content (GlucoCEST) can be employed 

as a readout of metabolism. GlucoCEST readings in different 

areas of the kidney were able to distinguish acute rejection from 

other forms of injury in a rodent transplant model69. Interestingly, 

the readings did not correlate with renal perfusion in a model  

of ischemic injury.

Nuclear medicine probes for detecting inflammation
Positron emission tomography (PET) can detect specific molecules 

with high sensitivity and has been used to quantify inflammatory  

markers in target tissues. Chemokine receptor CXCR4- 

targeted PET can detect leukocyte infiltrates (Figure 6). A recent 

study integrated CXCR4-targeted PET with MRI as a method of  

Figure 6. Magnetic resonance imaging (MRI) and CXCR4-positron emission tomography (PET) imaging of acute renal allograft 
infection. Diffusion-weighted MRI and PET imaging with a specific CXCR4 ligand (68Ga-pentixafor) were used to image the kidney of a 
patient with recurrent urinary tract infection after kidney transplantation. The upper row shows apparent diffusion coefficient (ADC) maps 
of the kidney (top, frontal views from posterior to anterior), and the bottom row shows 68Ga-pentixafor PET imaging. Areas of reduced ADC 
corresponded to foci with upregulated CXCR4 expression (arrows). T2-weighted MRI and maximum-intensity-projection PET are shown for 
anatomic orientation. The kidney allograft is located in the right lower abdomen. The spleen displays high CXCR4 expression due to high 
content of leukocytes. Reproduced with permission from Derlin et al.70. SUV, standardized uptake value.
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localizing infections in transplant patients with complicated  

urinary tract infections (UTIs)70. In this setting, it can be difficult 

to determine whether the primary site of the UTI is the trans-

planted kidney or the heavily damaged native kidneys. This study  

examined patients who were already scheduled for native nephrec-

tomy. In some patients, the CXCR4 imaging revealed severe  

allograft pyelonephritis rather than infection of the native kidney.  

The knowledge of the primary source of infection and the  

extension of the local inflammation can help to optimize the  

therapeutic approach for the individual patient, and, in some  

cases, it can even prevent the unnecessary removal of unaffected 

kidneys.

Fibrosis
Kidney fibrosis is a hallmark of most forms of tissue injury. It is 

the end result of essentially all kidney diseases, including genetic  

diseases, acute or chronic ischemia, infection and inflamma-

tion, ionizing radiation, and obstructive nephropathy. Glomerulo-

sclerosis and tubulointerstitial fibrosis seen on kidney biopsy are  

generally interpreted as irreversible lesions, although drugs to 

reverse fibrosis are in development71. The detection and quantifi-

cation of fibrosis is clinically very important, as tubulointerstitial 

fibrosis is a strong predictor of progressive renal failure and the 

detection of extensive fibrosis may prevent clinicians from using 

treatments that are unlikely to be effective72.

Standard B-mode ultrasound is commonly used to look for  

kidney fibrosis. Fibrotic changes increase the echogenicity  

(brightness) of the kidney cortex and decrease the thickness of 

the cortex, and the renal contour can appear irregular. Irreversible  

kidney damage is also associated with decreased kidney size  

(usually estimated by the length)1. However, these findings are  

not sensitive or specific for fibrosis, and they do not accurately 

reflect changes to the composition of the kidney and accumula-

tion of extracellular matrix. Given the importance of detecting  

and quantifying kidney fibrosis, several new imaging probes and 

methods are being developed for this purpose.

Elastography reports on the stiffness of tissues by measuring  

deformation of the tissue to applied pressure, and several ultra-

sound techniques have been adapted to measure stiffness of the 

kidney. An impulse is applied to the kidney in order to generate 

shear waves, and the speed of the shear waves (shear wave velocity  

[SWV]) is then measured. Stiffness of the tissue would be  

expected to increase the SWV, and this was observed in a rat model 

of kidney disease73. Surprisingly, in two studies of patients with 

CKD, the SWV decreased in patients with more severe disease74,75. 

Two other studies examined whether elastography could identify 

kidney fibrosis. In a study of patients with diabetic nephropathy, 

the SWV values did correlate with the degree of kidney disease76.  

A study of renal transplant recipients, on the other hand, did 

not find any correlation between renal elastography and kidney  

fibrosis77. It is possible that these discrepant results are explained  

by the effects of other factors, such as the surrounding tissues  

and urine in the collecting system, on the shear wave imaging  

readings78,79.

Acoustic radiation force impulse imaging is an elastography-

based method that can be used to create a map of tissue stiffness  

throughout an organ80. Values in the kidneys of patients with CKD 

are lower than those in healthy controls, and the results correlate 

with the degree of kidney dysfunction81. In another study, this 

method distinguished patients with diabetic nephropathy from 

healthy control kidneys76.

Several MRI methods can also be used to evaluate renal fibrosis, 

and efforts are underway to standardize these techniques82. Similar  

to ultrasound elastography, MR elastography can be used to  

measure kidney stiffness as an indicator of fibrosis. In MR  

elastography, MRI is used to measure displacement of the kidney  

in response to compression or mechanical vibration. MR elastog-

raphy was initially developed to assess hepatic fibrosis, but more 

recently it has been adapted as a method for measuring kidney 

fibrosis. As with ultrasound elastography, the results are affected  

by factors other than fibrosis, including tissues adjacent to the  

kidney, RBF, and urine in the renal pelvis79,83. MR elastography  

correlated with tissue fibrosis in a pig model of ischemic  

nephropathy84. A small study in kidney transplant recipients also 

showed that MR elastography may correlate with kidney fibrosis 

on biopsy, although the number of patients was too small to be  

conclusive85.

Diffusion weighted imaging (DWI) is an MRI method for studying 

the movement of water molecules in a tissue. Different methods can 

be used to distinguish directional flow (such as the flow of blood 

or urine) and random diffusion86,87. In fibrotic tissues, the water 

molecules become more constrained, decreasing a metric called 

the apparent diffusion coefficient (ADC). In a mouse model of  

progressive kidney fibrosis, the ADC decreased in proportion 

to histologic fibrosis88. In humans, ADC values were shown to  

correlate with decreased kidney function89,90.

A related MRI method called diffusion tensor imaging (DTI)  

also measures the mobility of water molecules, but it incorpo-

rates analysis of the direction in which water molecules can move. 

Changes in DTI have been associated with histologic damage on 

kidney biopsy, including tissue fibrosis91–93. Because DWI and  

DTI are based on the motion of water molecules in tissue, how-

ever, they can be affected by factors other than fibrosis, includ-

ing renal perfusion, tubular dilatation, or other changes to tissue  

architecture94. Renal fibrosis is also associated with a loss of  

capillaries, for example, reducing blood flow through the paren-

chyma, but RBF can also be affected by heart failure or hydration 

status. Furthermore, the values for these imaging measurements 

in healthy subjects overlap with those for patients with disease,  

limiting the utility of these methods in individual patients90.

Lipid content
In addition to inflammation and fibrosis, pathologic processes can 

also change the composition of the kidneys in other ways. For 

example, obesity and diabetes are associated with lipid accumula-

tion and fatty changes in the kidneys. Several MRI methods have 

been developed to detect these changes and have been tested in 

patients with metabolic syndrome or diabetes95–98. Although the 

role for lipid accumulation as either a marker or a cause of kidney 

disease is incompletely understood, methods for detecting these 

changes will allow investigators to determine whether they are of 

prognostic importance.
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Conclusions
Many promising new radiologic methods and tools that may help 

in the detection of kidney disease are currently in development. 

These methods can detect with high resolution alterations in the 

structure of the kidney as well as readouts of blood flow or specific 

kidney functions. New molecular imaging methods can also detect 

markers of inflammation and fibrosis within the kidneys. Although 

these methods have not yet entered clinical practice, many of them 

can be performed using equipment that is widely available. MRI 

and PET-CT imaging methods remain quite costly, however, and 

are currently not fully reimbursed by insurance companies. The 

new methods are therefore still mostly used within clinical studies.  

Nevertheless, better imaging methods hold great promise for  

diagnosing diseases earlier and for safely monitoring the responses 

of patients who undergo treatment.
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