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Abstract

The most accurate characterizations of the structure of proteins are provided by structural biology experiments. However,
because of the high cost and labor-intensive nature of the structural experiments, the gap between the number of protein
sequences and solved structures is widening rapidly. Development of computational methods to accurately model protein
structures from sequences is becoming increasingly important to the biological community. In this article, we highlight
some important progress in the field of protein structure prediction, especially those related to free modeling (FM) methods
that generate structure models without using homologous templates. We also provide a short synopsis of some of the re-
cent advances in FM approaches as demonstrated in the recent Computational Assessment of Structure Prediction competi-
tion as well as recent trends and outlook for FM approaches in protein structure prediction.
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Introduction

Owing to the significant improvement in genome sequencing
technologies and efforts, the genomic sequences of a large
number of organisms have now been determined. As of August
2015, 187 million sequences from over 500 000 organisms have
been deposited in Genbank databases [1]. Among them, 50 mil-
lion sequences have been translated into protein amino acid se-
quences and stored in the UniprotKB/TrEMBL database [2].
However, sequences alone do not provide insight into what
each protein does in living cells, and the three-dimensional (3D)
structure of these proteins is often important for interpreting
their biological roles.

Structural biology techniques such as Nuclear magnetic res-
onance (NMR), X-ray crystallography and Cryo-EM provide the
most accurate characterization of the protein structure.
However, because of the technical difficulties associated with
cost and time, the gap between the number of protein se-
quences and that of protein structures is rapidly expanding. As
of August 2015, there are only �100 000 proteins whose struc-
tures have been experimentally solved in Protein Data Bank
(PDB) [3], compared with50 million protein sequences in

UniprotKB [2]. Therefore, solved structures only account for
�0.2% of the known sequences. One promising approach to
close this gap is the development of computational approaches
that are able to generate high-resolution structural models for
sequences that can be conveniently used by the biological
community.

Types of computational approaches for protein structure
prediction

Historically, computational approaches for protein structure
prediction have been classified into three categories [4]: com-
parative modeling (CM or homology modeling) [5], threading [6]
and free modeling (FM or ab initio) [7] approaches. In CM, the
structure of a query protein sequence is constructed by first
matching the query sequence to an evolutionarily related pro-
tein whose structure has already been solved, where the residue
equivalency is obtained by aligning the sequences or sequence
profiles [8–10]. Threading approaches are designed to match the
query sequence directly to the 3D structures of solved proteins
with the goal of recognizing similar protein folds even when
there is no evolutionary relationship to the query. Finally, FM
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approaches are designed for query without structurally related
solved proteins, where models are built from scratch by ab initio
folding methods.

There are two kinds of qualitatively different classes of ap-
proach for structure modeling: comparative modeling and
de novo methods. Comparative modeling approach in one way
or the other make use of structural templates and in de novo
methods attempt to predict the structure from 1st principles
and without structural templates. The Computational
Assessment of Structure Prediction (CASP) categorizes targets
into two groups based on the availability of structural templates
for a given target: (i) template-based modeling (TBM) and (ii) FM.
TBM refers to the case where structural templates are available
for the target, and FM refers to the case for which there are no
template structures available [11].

FM category in CASP assesses methods that predict 3D struc-
tures from a given protein sequence without the explicit use of
template structures available in PDB [12, 13]. It has to be noted
that historically, the most successful methods for such de novo
structure prediction from sequence used fragment assembly
[14, 15]. However, the recent top modeling groups in CASP9 and
CASP10 incorporated the use of remote templates or selection
and refinement of server models [12, 13]. This trend continued
in CASP11 where some of the best-performing methods like
Baker-Rosetta server declared parent templates for 47% of their
models and Zhang-Servers declared 17% parent templates in
FM-only targets [16].

The classification of these computational approaches is
becoming increasingly blurry. For example, both CM and
threading methods use sequence profile alignments [17, 18] and
FM approaches often use evolutionary and threading informa-
tion [19, 20]. In this respect, various composite approaches have
been developed that combine different methods from CM,
threading and FM approaches. ROSETTA[21] and I-TASSER [22]
are some typical examples of composite approaches to protein
tertiary structure prediction.

The average accuracy of current protein structure prediction
approaches is highly correlated to the evolutionary distance be-
tween target (query) sequence and template structure [23, 24].
When the query sequence has a sequence identity>50% to the
template(s), models built by CM can have a backbone root mean
squared distance (RMSD) as low as 1.0 Å. Similarly, when
the target sequence has sequence identity between 30 and
50% to the templates, the models often have backbone RMSD
of around 85% of the core regions as low as 3.5 Å, with the
errors mainly in loop regions and tails [23]. Furthermore, when
the sequence identity drops below 30% (commonly known as
‘the twilight zone’) [25], modeling accuracy sharply decreases
because of the errors in alignment and lack of significant tem-
plate hits.

In CASP8, there were altogether 13 (strictly 10 FM and 3 FM/
TBM) targets and out of those 13, six were predicted well by a
number of groups, whereas there was no satisfactory model for
four of the targets and the prediction for three targets was fair
(based on visual inspection and Global Distance Test (Total
Score) (GDT_TS score)) [26]. Despite the increased difficulty (as
assessed by target domain GDT_SCORE compared withCASP8),
the methods in CASP9 performed better [13]. There were 19 FM
targets in CASP10 and the most successful method submitted
best models for only four of them [12]. In this regard, there has
been a slow but steady progress in modeling the structure of
protein sequences for which the sequence identity to be solved
drops below 30%, as witnessed in community-wide blind CASP
experiments [18, 27].

Two problems are crucial in modeling these proteins: (i) how
to identify the correct templates for the sequences of similar
structures in the PDB and, once identified, how to refine the
template structure closer to that of the native structure and (ii)
for the sequences without similar structures in PDB, how to
build models of correct topology from scratch.

It should be noted that, starting from CASP7, the target se-
quences are divided into only two assessment categories: TBM
and (template)-FM. This classification is based both on the evolu-
tionary relationship between target sequences and the existing
templates and their difficulty level indicated by server perform-
ance. Usually, the target sequences with detectable struc-
ture templates from the PDB, which usually have a higher
accuracy by the automated server predictions, are classified as
TBM, whereas other targets without templates in the PDB are
generally classified as FM. Here, we will discuss recent ad-
vances in structure prediction using these two categories. We
discuss some important recent advances in FM approaches by
starting with a short synopsis on recent advances in TBM
approaches.

Recent advances in TBM approaches

Probably, the origin of TBM approach can be traced back to 1969
when Browne and colleagues [28] tried to build structural models
of the bovine alpha-lactalbumin using the solved hen egg-white
lysozyme structure as a template. Yang et al. [29] attribute sev-
eral factors for the improvement of TBM approaches. First, the
development of PSI-BLAST[9] and the consequent profile-to-
profile alignment techniques [6, 30, 31] significantly increased
the accuracy of template identification and alignment relative to
single sequence-based or manual alignment approaches.
Second, composite structure assembly simulations combine
multiple templates identified by meta-server threading align-
ments [32, 33], which can drive individual templates consider-
ably closer to the native structures [34–38]. Finally, the rapid
accumulation of experimental sequence and structure databases
converted many non- or distant-homology targets to close-
homology ones by providing close homology templates. We will
briefly highlight two TBM approaches: MODELLER [39], ModBase
[40] and I-TASSER [22] and some recent trends in TBM.

MODELLER

Although the main focus of this article is on the recent ad-
vances in FM methods, it is instructive to briefly review one of
the most important early methods. MODELLER [39] is one of the
most widely used TBM approach for protein structure prediction
tool developed at Sali Lab. The underlying assumption for TMB
approach is that 3D structure of proteins from the same family
is more conserved than their primary sequences [41]. Thus, any
detectable similarity in the sequence level implies structural
similarity. In addition, because of various structural genomics
project, the probability of finding related proteins of known
structure for a new protein sequence is increasing. In this re-
gard, TBM-based approaches will probably remain one of the
most useful tools to fill the sequence–structure gap that cur-
rently exists.

TBM-based approaches including MODELLER generally con-
sists of four steps: (i) searching for structures related to target
sequence, (ii) aligning target sequence and the template(s), (iii)
model building and (iv) evaluation of the model. MODELLER im-
plements TBM by satisfaction of spatial restraints collected
from various sources [39].
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ModBase

The ModBase [40], which belongs to the TBM category, was also
developed by Sali’s group at UCSF. ModBase consists of a data-
base and other associated resources for comparative protein
structure models. The models are calculated automatically
using ModPipe [42], a pipeline for comparative protein modeling
that relies on number of modules of MODELLER [39] and other
various sequence–sequence [43], sequence–profile [9] and pro-
file–profile [30, 44], methods for sequence–structure alignment.

The templates that are used to build models are obtained
using various fold assignment and sequence–structure align-
ment tools like PSI-BLAST, HHBlits [44] and HHsearch [30]. In
addition to the model repository, the system also has a com-
parative modeling web server module called the ModWeb,
where users can provide one or more FASTA sequences and ob-
tain models of their sequences generated by ModPipe based on
the templates found in the PDB. The system also has other re-
sources for predicting a structural ensemble that fits a Small-
angle X-ray scattering (SAXS) profile, for protein–protein dock-
ing and various others [40]. As a consequence, ModBase is one
of the most comprehensive TBM resources. Indeed, as of
November 2015, ModBase has >34 million models for domains
in 5.7 million unique protein sequences spanning 65 genomes.
Importantly, ModBase models can be accessed through external
databases such as the Protein Model Portal [39], which is a re-
pository for accessing protein structure models from a number
of different resources.

I-TASSER

I-TASSER, developed in Zhang’s group at the University of
Michigan, is a composite TBM approach and has been one of the
most successful TBM protein structure prediction approaches,
as evidenced by results achieved in recent CASP assessments.
I-TASSER is an improved version of TASSER [34] developed by
Zhang and Skolnick, which refines the TASSER cluster centroid
by Iterative Monte Carlo Simulations, thus the name I-TASSER.
A protein is represented using reduced representation by its
C-alpha atoms and side-chain centers of mass, called the CAS
model [34] and the corresponding CAS potential. Another
related reduced represented in use in other approaches is the
CABS model developed by Kolinski where each residue is repre-
sented using four united atoms per residue: a-carbon, c-b and
side-chain center of mass [45]. It is to be noted here that
Kolinski’s group has also developed a FM and consensus-based
approach for prediction of protein structure based on CABS
called as CABS-fold [46]. In essence, I-TASSER is an iterative
fragment assembly approach where structural templates are
identified for a target sequence using a meta-threading ap-
proach called LOMETS [32, 33]. Continuous fragments are then
excised from the templates in the regions that are aligned by
threading. These fragments are then used to reassemble full-
length models by replica-exchange Monte Carlo Simulations
(REMC).

Once reassembled, the structure trajectories are clustered to
identify the low-free energy states. Starting from the clusters, a
2nd round of fragment assembly simulation is conducted to fur-
ther refine the structural models. Finally, the models from the
low-energy conformations are further refined by atomic-level
simulations to obtain the final model. For interested readers, a
retrospective report of the I-TASSER pipeline, which has a de-
tailed description of the performance of I-TASSER in the last
five CASP experiments (CASP7-11), can be found in Yang et al.
[29]. In essence, the report highlights improving trends in the

ability of structure refinement over the threading templates in
I-TASSER.

One of the most recent developments in I-TASSER for
CASP11 is the addition of QUARK [15] (an ab initio-based ap-
proach) as an intermediate step for TBM structure prediction.
QUARK–TBM, which is an extension of QUARK to TBM, is
included as an intermediate step in the pipeline where the
modeling starts from the top 20 threading templates identified
by LOMETS rather than from random conformations.
Essentially, the new I-TASSER [29] pipeline starts with multiple
structure templates identified by meta-threading programs, fol-
lowed by the QUARK ab initio approach to generate initial full-
length models under strong constraints from template align-
ments. Once the full-length models are generated, the protein
structural models are constructed by reassembling continuous
fragments excised from the top LOMETS threading alignments
using I-TASSER. In addition to the spatial restraints from the
threading templates, the restraints are also taken from the full-
length models generated from QUARK-TBM. However, it should
be noted that, because of its high computational cost, QUARK-
TBM is only used for domains that are <300 residues in length.
The structure decoys are then clustered by SPICKER, followed by
fragment-guided molecular dynamics simulations to refine the
SPICKER models at the atomic level. Finally, multiple Quality
Assessment Programs are used to select the best model for the
submission. As evidenced from the CASP11 assessment, the in-
clusion of QUARK simulation as an intermediate step improved
the quality of the output models for TBM targets compared with
the pipeline without using QUARK-TBM for the I-TASSER
pipeline.

Use of sequential similarity of physical properties to
identify homologs

In TBM, the structure of a target protein is modeled based on
the known structure of protein whose sequence is most similar
to the target. The standard procedures for calculating the degree
of similarity between the target sequence and the known struc-
ture are methods based on sequence alignment, such as PSI-
BLAST. Recently, new approaches have been developed to quan-
tify the degree of similarity between two sequences, which is
one of the key steps in TBM. One of them is the property factor
method (PFM) [47], developed by Scherega’s group, to identify
‘sequence homologs’, in which a residue equivalence metric
based entirely on amino acid physical properties is used to iden-
tify the pairwise physical property similarities of the sequences.
This approach is based on the notion that the relationship be-
tween protein sequence and structure arises entirely from
amino acid physical properties and that the physical properties
written into a protein sequence are the key determinants of the
protein structure.

Essentially, in this approach, a protein sequence is repre-
sented by a factor matrix by appropriately specifying the prop-
erties of the 20 canonical amino acids in numerical form, as
described in Kidera et al. [48]. The target sequence, as well as all
the sequences in the PDB, is then converted to a property factor
matrix before the degree of similarity of the target sequence
and every sequence in the PDB is calculated using a fast-
normalized cross-correlation algorithm. Subsequently, five
sequences in the PDB with the highest normalized correlation
coefficient are selected and the best candidate based on the
structural alignment by using TM-align program [49] is selected.

To benchmark the method, the procedure was applied to 89
targets with known PDB structures from CASP10 and 51 targets
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with known PDB structures from CASP11. It was observed that
PFM [47] is better than PSI-BLAST [9] based on the benchmark.
Furthermore, it was also shown that PFM outperforms PSI-
BLAST in challenging targets.

It is hoped that through the advent and further development
of methodologies such as this, TBM will enjoy increasing suc-
cess. Essentially, as the PFM approach is able to detect sequence
similarities arising from shared physical characteristics that
may not be apparent to traditional alignment-based methods,
this method may be used to find homology candidates where
sequence-based homology methods do not work.

However, it should be noted that, like sequence-based hom-
ology methods (e.g. PSI-BLAST), the success of the method will
depend on the properties of the PDB. For instance, if some tar-
gets have no candidates in the PDB with similar physical prop-
erty distributions, then no match will be found for the target
sequence.

Next, we will discuss some of the important recent develop-
ments in FM approaches for protein structure prediction.

Recent advances in FM approaches

FM refers to the approaches that seek to construct structural
models for protein sequences that do not have a template de-
tectable from the PDB. FM approaches are also called as ab initio
or de novo structure prediction. There have been many recent
advances in FM approaches. In this section, we will first briefly
describe the fragment assembly approach, which is one of the
important FM-based approaches. We will then turn our atten-
tion to some of the recent advances in FM approaches, focusing
specifically on the use of evolutionary constraints, contact in-
formation, correlated mutation and other information in scor-
ing functions to improve the prediction accuracy and increase
the size of protein that these methods can handle.

Fragment assembly approach

The fragment assembly approach has become one of the most
popular approaches for FM protein structure prediction. The
fragment assembly approach has its foundations in the work of
Bowie and Eisenberg [50], who assembled new tertiary struc-
tures using small 9-mer fragments from other PDB proteins.
Essentially, in the fragment assembly approach, models of pro-
tein structures are assembled from fragments of known protein
structures. This idea of fragment assembly was later adopted by
David Baker’s group [14] for the development of ROSETTA.
Subsequent work from David Baker’s group, Bradley et al. [51],
which was based on a high-resolution ab initio-based structure
prediction for small proteins, popularized the method of frag-
ment assembly. Other approaches such as I-TASSER [22] and
QUARK [15] also use the fragment assembly approach.
ROSETTA is one of the most popular approaches for FM ap-
proach. Hence, we discuss ROSETTA in this section.

ROSETTA
ROSETTA is perhaps one of the most actively developed tools
for macromolecular modeling. The original development began
in the laboratory of David Baker at University of Washington
but now it is being codeveloped by >44 laboratories that are
members of ROSETTACommons. In addition, a ROSETTA
Conference to discuss the updates to the ROSETTA Source Code
is held annually [52].

Although ROSETTA method was originally developed for de
novo structure prediction, ROSETTA also has methods for

homology modeling [53]. In this regard, it is a unified software
package for protein structure prediction and functional design.
The two common tasks for any structure prediction algorithms
are as follows: (i) sampling of the conformational space and (ii)
ranking of the models using the energy function. ROSETTA uses
knowledge-guided Metropolis Monte Carlo Sampling in con-
junction with knowledge-based energy functions.

Conformational sampling. ROSETTA has two sampling
approaches: one for backbone and other for side-chain degrees
of freedom. In addition, backbone conformational sampling is
divided into large backbone conformational sampling and local
backbone refinement. The large backbone conformational sam-
pling is modeled by exchanging the backbone conformations of
nine or three amino acid peptide fragments, whereas the local
backbone refinement is performed by using Metropolis Monte
Carlo sampling of / and w. Please refer to Rohl et al. [21] for
details.

Energy function. Based on the reduced representation or all-
atom model, ROSETTA has two types of energy function:
knowledge-based centroid energy function and knowledge-
based all-atom energy function. In the centroid representation,
the side chain is treated as centroid and the energy function in-
cludes solvation, electrostatics, hydrogen bonding and steric
clashes [21]. The all-atom energy function includes the 6–12
Lennard-Jones potential for van der Waals forces, a solvation
approximation, hydrogen bonding potential, electrostatics term
and internal free energy term.

De novo structure prediction. The de novo structure prediction
in ROSETTA begins with an extended peptide chain. Please refer
to [21] for the details of de novo structure prediction using
ROSETTA. This method works by first generating structurally di-
verse populations of low-resolution models. Protein models are
represented by backbone atoms and the centroids of side chains
during this step. These models are then refined in the context
of an all-atom energy function by switching the structure repre-
sentation to ‘all-atom’. Using this method, the authors were
able to achieve high-resolution structure prediction (<1.5 Å) for
small proteins (<85 residues). Most recently, ROSETTA approach
was able to successfully predict the structure of a 250-residue
long protein that did not have any templates.

QUARK
QUARK [15] is an FM approach for protein structure prediction
developed at Zhang’s group at University of Michigan. QUARK
starts by breaking query sequences into fragments of 1–20 resi-
dues where multiple fragment residues are retrieved at each
position from unrelated experimental structures. Full-length
structure models are then assembled from the fragments using
REMC simulations guided by a composite knowledge-based
force field. For force field development, QUARK takes a semi-
reduced model to represent protein residues by the full back-
bone atoms and the side-chain center of mass. Initially, QUARK
predicts a variety of structural features by using a neural net-
work, and then the global fold is generated by REMC simulation
by assembling the small fragments, as in ROSETTA [21] or
I-TASSER [22].

The QUARK procedure can be divided into three steps: (i)
multiple feature predictions and fragment generation starting
from one query sequence, (ii) structure constructions using
REMC and (iii) decoy structure clustering and full-atomic refine-
ment. Based on a benchmark study, QUARK was able to cor-
rectly fold 31% of the mid-sized proteins (100–150 residues) with
a TM-score >0.5. It was also noted that the cases where QUARK
was not able to perform well were the proteins where the
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structural topology was complex, such as b-proteins of compli-
cated strand arrangement.

Fragment generation and fragment library
As discussed above, fragment-based approaches are one of the
most successful approach for FM and they rely on accurate and
reliable fragment libraries. Hence, accurate fragment library
generation is important to the overall success of fragment-base
approaches [54]. The quality of the fragments, hence are tied to
the success of the fragment-based approaches. There are vari-
ous approaches for generating fragments NNMake (ROSETTA’s
method for fragment library generation) [55], FRAGFOLD [56],
HHFrag [57] SAFrag [58] and others.

Recently, some studies have been performed with the aim of
designing a better fragment library for improving FM of protein
structure. In this regard, De Oliviera et al. [44] developed Flib, a
novel method to build better fragment library. Scoring frag-
ments based on the predicted secondary structure of the frag-
ment, (essentially a-helical fragments being predicted more
accurately), Flib on a validation set of 41 proteins performed
better than two state-of-the art methods NNMake and HHFrag.

In addition, not only the length of the fragment but also the
number of fragments used per position is equally important for
the success of fragment assembly-based approaches. In this re-
gard, Xu and Zhang [59] performed systematic analysis of
length of the fragments, number of fragments per position and
how these factors affect the precision of the library and showed
that this new fragment library developed based on the findings
of these analysis performs better than the existing fragment
libraries for the ab initio structure prediction.

Based on this study, it was also concluded that the optimal
fragment length for structural assembly is around 10, and at
least 100 fragments per position are required for reliable struc-
ture prediction. This also is in alignment with the fact that 9-
mer fragments is the most popular choice for the size of frag-
ments [54, 60]. In the case of ROSETTA, its fragment libraries
contain 200 fragments per position and these fragments are
typically three and nine residues long [55].

Physics-based FM methods

Some of the most successful FM methods based on various
CASPs are not strictly de novo methods, as these methods use
some form of template information. In this regard, purely
Physics-based methods can be only strictly thought of as FM
approaches. Recently, some impressive results have been
achieved using Physics-based FM methods.

In this regard, using a specialized supercomputer (called
Anton) that accelerated the execution of Molecular Dynamics
(MD) simulations, Shaw and coworker [61] successfully con-
ducted atomic-level molecular dynamics folding simulation of
Bovine Pancreatic Trypsin Inhibitor (BPTI). In addition, Shaw’s
group reported successful atomic-level molecular dynamics
simulations to understand the common principles underlying
the folding landscape of 12 structurally diverse proteins with an
average size of 50 residues [62].

More recently, the same group has successfully studied fold-
ing of ubiquitin, a 76-residue long protein, with a folding time of
�3 ms timescale [63]. One of the major contributions of this
work is that until this research, millisecond timescale-based
MD simulations were not successful. Most recently, the same
group has successfully completed atomic level of ubiquitin on
the picosecond to millisecond timescale [64], which is a remark-
able feat.

One thing to note here is that because of extremely long
timescales required to reach the native structure, application of
MD-based simulations for protein structure prediction still re-
mains challenging. However, there have been some recent ad-
vances on accelerating the MD simulation. Like the recent
trends of using contact-based restraints for other various
approaches, Shaw group studied the extent in accelerating the
prediction of protein structure using MD using residue–residue
contact information [65]. It was observed that for ubiquitin, a
speedup of more than an order of magnitude was observed
using a relatively small number of restraints (¼15) compared
with unbiased simulations. We can expect to see other ad-
vancements in accelerating the MD-based simulation.

Use of evolutionary constraints from sequence
homologs

Studies on Pfam family database have shown that residues in
spatial proximity may coevolve across a protein family to main-
tain energetically favorable interactions [66]. This in turn might
suggest that residue correlations (i.e. coevolution) could provide
information about amino acid residues that are close in struc-
ture. In this regard, evolutionary constraints from sequence
homologs have been used to predict 3D structures of proteins.
Furthermore, because of the advent of high-throughput gen-
omic sequencing technologies, it is possible to collect multi-
tudes of homologous sequences. For example, Marks et al. [67]
recently interrogated whether it is possible to infer evolutionary
constraints from a set of sequence homologs of a protein. They
then explored the idea of using information obtained from stat-
istical analysis of multiple sequence alignments (MSAs) to pre-
dict protein structures. The primary challenge using this
approach is to distinguish true evolution couplings from the
noisy set of observed correlations. Essentially, the residue pair
couplings were inferred using a maximum entropy model of the
protein sequence with a global statistical model (Bayesian net-
work framework). Finally, residue–residue contacts inferred
from the evolutionary record are used to compute the structures
from the sequence data alone. The overall method is called
EVfold and it is available at http://EVfold.org. For a data set of 15
proteins whose lengths were in the range of 48–258 residues
and which had different folds, including a transmembrane pro-
tein, EVfold was able to build a final model that had a TM-score
of<0.7 for 11 out of 15 studied proteins. Based on the results, it
can be concluded that coevolution signals provide some valu-
able information to determine accurate 3D structures.

Use of correlated mutation information

It has been long known that, given a sufficiently accurate list of
contacts, the native fold of a protein can be deduced directly
[68, 69]. However, accurate prediction of residue–residue con-
tacts has remained a bottleneck. Residue–residue contacts can
be inferred from the observations of correlated mutations in
MSAs. These type of methods have an underlying hypothesis
that any given contact that is critical for maintaining the fold of
the protein will constrain the physicochemical properties of the
two amino acids involved: if one or both contacting residues are
mutated, then the stability of the native structure will be
reduced. As a consequence, pairs of residues that coevolve are
likely to be in close proximity to one another (i.e. in contact) in
the native structure. This information is useful in mapping resi-
due–residue contacts in the native structure.
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Similarly, Jones’ group [70] recently developed PSICOV, an al-
gorithm that uses sparse inverse covariance estimation tech-
niques to predict contacts accurately from sequence
alignments. When sufficient homologous sequences are avail-
able, PSICOV [70] can predict long-range contacts (i.e. contacts
separated by >23 residues) with an accuracy close to 80%. For
instance, Jones’ group [71] used the predicted contacts from
PSICOV to identify the native fold for medium-sized (<200 resi-
dues) protein domains.

More recently, Nungent and Jones [72] developed FILM3,
which uses a scoring function based on correlated mutations de-
tected from multiple sequence alignment (i.e. only information
derivable from the target sequence and its homologs) using
PSICOV to produce a 3D model for larger a-helical transmem-
brane proteins. In this regard, it can be argued that the authors
were able to replace the use of knowledge-based potentials or
other statistically derived scoring function by correlated muta-
tion-based scoring function. The method, FILM3, is able to predict
the structure of proteins of up to 531 residues within a reasonable
TM-score (<0.745 using a scoring function based on the estimated
probabilities of residue–residue contacts predicted using PSICOV).

Similarly, David Baker’s group [73] also developed
GREMLIN—a method for predicting residue–residue contact
based on the coevolutionary information. They then used this
information to improve the prediction of structures of proteins.
By going beyond the second-order approximation in the resi-
due–residue covariation matrix inversion used by PSICOV, the
authors improved the residue–residue contact prediction and
then assessed the usefulness of contact prediction for protein
structure prediction. In so doing, they interrogated how useful
covariance-based contact predictions are for structure predic-
tion when the homologous structure of the target protein is
likely to be available. Based on analysis on a benchmark data
set, it was suggested that the contact predictions are likely to be
accurate when the number of aligned sequences is >5 times the
length of the protein and that the predicted contacts are likely
to be useful for structure prediction when the aligned se-
quences are more similar to the target protein than to the clos-
est homologous structure of the target protein.

Recently, Hopf et al. [74] also used amino acid coevolution to
define restraints on structural proximity of residue pairs and
used this information to generate the ab initio structure of an in-
sect odorant receptors, which does not have solved crystal
structures or sequence similarity to other proteins. In this re-
gard, coevolutionary information has been gaining a lot of at-
tention for predicting structures of proteins.

Use of residue–residue contact information

Various experiments [75, 76] have been performed to determine
if accurate protein structures can be reconstructed using true
contacts. These studies suggest that contacts contain crucial in-
formation for structure prediction. However, recent work in pro-
tein structure modeling using NMR chemical shifts [77], sparse
restraints [78] and Cryo-EM data [79] have shown that additional
information can also significantly improve protein structure
modeling. In this regard, protein contact map prediction infor-
mation can be used to improve the modeling of protein struc-
ture. Moreover, recent studies suggest that predicted contacts
could be used to reconstruct protein structures. Therefore, it
will be important to exploit the new information obtained from
protein residue–residue contact prediction methods.

One of the methods that uses residue–residue contacts to
predict ab initio protein structure is the Residue-Residue

Contact-guided ab initio Protein Folding (CONFOLD) method de-
veloped by Adhikari et al. [80]. This method uses predicted con-
tacts and secondary structures to improve structure prediction
for FM targets. Essentially, this approach consists of two stages.
In the 1ststage, the initial contact-based distance restraints and
secondary structure-based restraints are used to reconstruct
protein models. In the second stage, the contact information, as
well as the b-sheet information, is updated by analyzing the
model having minimum energy in the 1ststage. In total, 400
models are reconstructed for a given protein in each stage and
the 400 models in the second stage are considered as final pre-
dictions. Based on a comparative analysis on the EVFOLD
benchmark [67] data set that comprises 15 proteins, the predic-
tion accuracy of CONFOLD was similar to EVFOLD. Recently, I-
TASSER used sequence-based contact predictions from SVMSEQ
[81] to improve protein structure prediction since CASP8.

Number of contacts needed for reconstruction
Although there are various studies that use residue–residue
contacts to improve protein structure prediction, until recently
little work had been done to determine how much distance in-
formation is required to improve protein structure modeling. In
this regard, Kim et al. [82] carried out a study to analyze how
much contact information is needed to improve the modeling
of protein structures. Based on the analysis and comparison of
contact-assisted and non-assisted prediction using ROSETTA,
Kimet al. [82] observed a consistent improvement over most of
the best non-assisted predictions. Using an average amount of
one correct contact per 12 residues, the group was able to model
the correct topology for 15 out of 17 target domains in the
CASP10 data set with a TM-score>0.5. Based on these observa-
tions, it was concluded that experimental, as well as bioinfor-
matics, methods for obtaining contact information may only
need to generate a limited number of accurate contacts (e.g. one
correct contact for every 12 residues in the protein) to promote
accurate topology-level modeling.

Adhikari et al. [80] also performed an analysis to estimate the
number of contacts needed for reconstruction by scanning the
structures in the PDB and found that 99% of known 3D struc-
tures have<3L (L: length of the protein) true contacts, and >50%
of them have <2L true contacts. In their analysis, they found
that 60% of the best models are reconstructed with the top 0.6L
and that different proteins need different numbers of contacts
to be folded well. Their analysis to determine the number of
predicted contacts needed to obtain the best fold showed that
different proteins need different numbers of contacts to be
folded well, and they suggested that instead of fixing the num-
ber of contacts, predicting a range for the number of contacts
would be useful for contact-based protein reconstruction.

Encouraging developments in contact prediction in CASP11
assessment
Contact prediction also has been a focus area in CASP.
Especially, as highlighted by the fact that the successful predic-
tion of a 250 residue target in CASP11 was attributed to contact
prediction, contact prediction is gathering a lot of interest.
However, until CASP10, the contact prediction accuracy of the
participating methods was marginal (20%), at best [83]. CASP11
also included a category for prediction of contacts in FM targets,
assigning a probability score between 0 and 1 to each
contact. This served as a measure of the confidence of the
assignment.

A pair of residues is defined to be in contact when the dis-
tance between their Cb atoms is smaller than 8.0 Å.
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Concentrating the assessment on long-range contacts (24 pos-
ition separation between interacting residues) and ensuring
fairness of the comparison by reducing the contacts per target
(L/5), prediction of 29 groups were evaluated [83].

In this regard, Monastyrskyy et al. [83] did an assessment
study on the improvement in contact prediction using CASP11
results. Based on the evaluation carried out on FM targets for
which structural template could not be identified, and focusing
on the long-range intradomain contacts (separation of the inter-
acting residues of at least 24 positions along the sequence
within the same domain), one of the major highlights of the
study is the performance of CONSIP2 [84] with precision of 27%
on target proteins that did not have templates. Based on these
results and other assessments of CASP11 results, it can be con-
cluded that encouraging developments have been observed in
the area of contact prediction. It has to be noted that the preci-
sion of best methods for CASP9 was 21% and CASP10 was 20%.

This study also assessed the interdomain contact predic-
tions as interdomain contacts help proper packing of the do-
mains in multi-domain proteins. Based on the study, it was
observed that the accuracy of predicting interdomain contacts
is much lower than that of intradomain contacts. The highest
precision achieved for CASP11 is below 6%, highlighting the dis-
mal and little to no improvement compared with previous
CASPs. In this regard, we can expect more methods focusing on
improving the prediction accuracy of intradomain contacts.

Advances in FM approaches based on CASP10
assessment

Until recently, successes in FM approaches in predicting 3D
structures of protein sequences without using template struc-
tures from experimentally solved proteins were limited to
smaller proteins with lengths below 100 residues [27]. This is
mainly attributed to two reasons: (1) lack of accurate force fields
to describe the atomic interactions that can guide the protein-
folding simulations and (2) insufficient sampling of the search
space. However, there has been steady progress in the FM
approaches, as evidenced by recent CASP assessments. We will
first summarize assessment of FM approaches in CASP10 and
then we will describe recent advances in FM approaches.

The Biennial CASP [85] assessment provides an objective
and independent assessment of protein structure prediction
methods. As discussed earlier, although much progress has
been made during the last 20 years of CASP, the template-FM re-
mains a challenge [12, 13, 26, 27]. Out of a total of 96 target pro-
teins, there were 20 in the FM category of CASP10 [12].
Historically, the number of FM targets has been low: 13 in
CASP8 and 30 in CASP9 [13]. Out of these FM targets, only
two in CASP9, four in CASP9 and three in CASP10 belonged
to potentially new folds. Owing to the fact that it is difficult
to support a statistically meaningful evaluation of the FM
techniques, the number of targets was increased by introducing
the ROLL experiments, in which FM targets were rolled year-
round.

Based on comprehensive analysis of the predictions for
11 FM and 19 ROLL server targets—where the lengths ranged
from 58 to 533 residues—the Keasar group submitted the best
models for four targets. QUARK was designated as the best ser-
ver, with three best predictions, followed by the Zhang-Server
and Baker-Rosetta servers [13]. Although the category is an FM
category, CASP9 FM assessors [13] noted that ‘meta-predictors’
were also observed in CASP10 [12]. Ideally, it is difficult to find
templates for these targets, but many predictors found

templates and improved on those templates to produce the best
models for the target. In this regard, even the most successful
group submitted best models for only four of the 19 FM targets
and eight of the 36 ROLL targets. This highlights the fact that
prediction of structures without a template remains a chal-
lenge. As there were six or more groups that had at least one
best model, more progress is expected in the future.

For CASP 10, Zhang’s group participated using the QUARK
pipeline as well as integrating QUARK (FM) with I-TASSER
(TBM). The integration was based on the idea that the ab initio
models built from scratch are usually different from experimen-
tal structures in the PDB, and that a close match between the
templates and ab initio models is usually an indication of the
correct fold adopted by the ab initio models. Essentially,
I-TASSER (TBM) and QUARK (ab initio modeling) models were
combined to find distant-homology proteins (in particular those
that are longer than 100 residues). Initially, the LOMETS (thread-
ing) templates with the highest TM-score to the QUARK models
(ab initio) were used as the initial models for I-TASSER simula-
tions. This is based on the fact that any reasonable match be-
tween the ab initio folding simulations to the real protein may
indicate a correct template hit. This method was shown to im-
prove the quality and robustness of the final models for FM pro-
tein targets, as evidenced in CASP10 assessment [86].

Advances in FM approaches based on CASP11
assessment

The progress of FM approaches, although successful for
smaller proteins, appeared to be stalled for larger proteins in
the past decade until CASP11 [87] when an accurate 3D model of
a large (256) residue protein was generated by David Baker’s
group.

The CASP11 FM target included largest number of targets for
FM evaluation: 45 targets compared with30 targets in CASP9
and 20 in CASP10. Strictly speaking, FM approaches should not
use template information. However, in the previous CASP9 and
CASP10, the top-performing groups incorporated some use of
templates or selection and refinement of server models. This
trend continued in CASP11 where some of the best-performing
methods like Baker-Rosetta server used parent templates for
47% and Zhang-servers used parent templates for 17% of FM-
only targets [16]. It has to be noted here that QUARK declared
0% parent templates and it outperformed other template-based
methods as servers. One of the important highlights of CASP11
is the target T0806-D1 (a 256-residue protein with no sequence
similarity to existing template), for which Baker’s group pro-
vided one of the outstanding models. It has to be noted that this
case represents one of the largest correctly predicted FM models
in the history of CASP. On investigation, it was observed that
T0806 had a sufficiently large enough family for predicting
coevolving residues from sequence alignments [16]. Overall, the
success of the methods in this category in CASP11 is attributed
to the incorporation of contact information.

Similarly, for the server model, Zhang’s QUARK produced
one of the outstanding models for target T0837-D1. This model
maintained correct topology of the target fold over all seven
a-helices, thus encompassing the entire fold. Overall, Baker’s
group and Zhang’s group performed better in the overall predic-
tion for CASP11 FM targets. Also for ROLL, the outstanding
prediction was for the up and down a-helical bundle target
R0034-D1 submitted by Zhang’s group. One of the major ad-
vances in the methods in CASP11 compared with previous CASP
is the improvement in prediction accuracy for larger protein
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domains. Also, as highlighted by the not so successful predic-
tion of multidomain targets like T0808-D2, it can be concluded
that multi-domain targets are still challenging to FM prediction
methods.

Some other notable methods in CASP11 is the method [88]
from Kihara Lab at Purdue. The method used a new knowledge-
based scoring function called Protein Residue Environment
Score and helix interaction potential for selecting near-native
structures from server models (made available for human pre-
dictors by CASP organizers) and then performed short structural
refinement using MD simulation. This group was ranked 1st
among all the participants in the FM category when the top one
models were considered [88].

Protein–peptide complex prediction

Recently, some notable advancement has been achieved in the
structure modeling of protein–peptide complexes. Kurcinski
et al.[89] developed CABS-dock web server for the flexible dock-
ing of peptides to proteins. CABS-dock attempts to unify all
three steps of computation protein–peptide docking: (i) predic-
tion of the binding site on the receptor structure, (ii) initial mod-
eling of the peptide backbone in the binding site(s) and (iii)
refinement of the protein–peptide complexes to high resolution.
This server when benchmarked against 103 bound and 68 un-
bound cases obtained that for over 80% of the cases, models
with high or medium accuracy sufficient for practical
applications where high quality is defined as ligand
(peptide) RMSD<3 Å and medium accuracy is defined as
3 Å<RMSD< 5.5 Å.

Similarly, London et al. [90] developed Rosetta framework-
based Rosetta FlexPepDock web server for the refinement of
protein–peptide complex. Given a protein receptor structure
and (possibly) inaccurate model of the peptide, FlexPepDock
allows for full flexibility to the peptide and side-chain flexibility
to the receptor using Monte Carlo-based minimization ap-
proach. On a benchmark data set that covers wide range
of starting peptide conformations, Rosetta FlexPepDock ser-
ver is able to create near-native models (peptide
backbone RMSD< 2 Å) in 91% cases for the bound receptor and
rank them as one of the top five models in 78% of the cases
when the initial backbone root mean square deviation is up
to 5.5 Å.

Most recent trends, outlook and conclusion for
FM approach

Recently, several trends have emerged in the FM-based protein
structure prediction. For instance, to increase the accuracy of
predictions, there has been a trend toward integrating TBM and
FM techniques. Likewise, collaborative efforts for protein struc-
ture prediction have increased in recent years. In parallel with
these efforts, there has also been an increase in the number of
studies focused on improvement of structure modeling by
large-scale model quality analysis. Below, we discuss some of
these recent trends and the current outlook for FM-based
approaches. We also summarize the discussed methods in the
article in Table 1.

Integration of template-based and template-free protein
structure modeling

Few methods have been proposed that integrates complemen-
tary modeling methods (e.g. template-based and template-free

protein structure modeling methods). One of the examples of
this type of tool is MULTICOM-NOVEL [91]. This server inte-
grates the prediction capabilities of both TBM and template-FM
to synergistically combine the two kinds of methods to improve
protein structure prediction. In this work, the authors de-
veloped a new method by integrating several protein structure
prediction methods, including their own template-based
MULTICOM server [92], the ab initio contact-based protein struc-
ture prediction method CONFOLD [80], their multi-template-
based model generation tool MTMG and locally installed
external ROSETTA [21], I-TASSER [22] and RaptorX [93] protein
structure prediction tools. This approach was ranked among
the top 10 methods out of 44 servers in the recently concluded
CASP11, which demonstrates the usefulness of integrating
TBM-based approaches and FM-based approaches for advancing
protein structure prediction.

There have been some other approaches for FM targets that
integrate ab initio (FM) and TBM approaches. One of them is the
method from Zhang’s group [94]. In addition to the QUARK pipe-
line, for CASP11, Zhang’s group [94] championed the idea of
integrating TBM approaches with FM-based approaches a step
further by integrating QUARK and I-TASSER to predict the FM
targets. Essentially, threading templates identified by the meta-
threading program LOMETS were sorted by their similarity
(based on the TM-score) to QUARK (ab initio) models before being
submitted to the I-TASSER pipeline. The spatial constraints
were then collected from the new (sorted) LOMETS templates
and the QUARK models, which were subsequently used by I-
TASSER assembly simulations. Finally, the structural decoys
were clustered using SPICKER and the models with the highest
cluster density were further refined by fragment-guided mo-
lecular dynamic simulations. Compared with the QUARK pipe-
line alone, the integrated approach (Zhang-server) was able to
model 60% more domains with length up to 204 residues.
Despite these promising results, significant challenges still exist
for FM of protein structures.

Large-scale model quality assessment

The two major challenges of protein structure prediction are
conformational sampling and model quality assessment (MQA;
or ranking). The aim of conformational sampling is to generate
a number of conformations for a target protein, and the goal of
MQA) is to assess the quality of these models and select the best
ones as final predictions. In this regard, development of accur-
ate MQA methods is indispensable for improving protein struc-
ture prediction. There are basically two main kinds of quality
assessment methods: single-MQA methods [95] that evaluate
the quality of one single model without using the information
of other models; and multi-MQA methods [96] that uses the in-
formation of other models of the same protein to assess the
quality of a model. Generally, protein structure prediction
protocols use one or a few MQA methods. Some methods, like
I-TASSER, also use clustering techniques to rank these models.
The evaluation of model quality estimates in CASP10 [97] also
highlights the fact that none of the methods can consistently
select the best models. In this regard, protein MQA still needs
some improvement.

One recent trend is to develop novel MQA methods, particu-
larly large-scale MQA methods. To this end, Cao et al. [98] used a
large-scale model combination approach to combine 14 MQA
methods to improve the quality of protein model ranking. The
method ranked 3rd out of all 143 human and server predictions
for protein structure prediction in CASP 11 based on the sum of
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z-score of the 1st models predicted for 78 CASP11 protein
domains.

Collaborative effort: WeFold

Interdisciplinary collaboration is on the rise throughout the sci-
entific community. CASP, which was started by Moult et al.[85]
in 1994, also saw this new trend of ‘coopetition’ called WeFold
[99] during the CASP10 experiments, where 13labs worldwide,
using methods ranging from purely bioinformatics to Physics-
based approaches, participated in a social media-based
worldwide collaborative effort and competed in search of meth-
odologies that are better than their individual parts. The 13 labs
were arranged into five branches, each representing five inde-
pendent protein structure prediction methods that combine dif-
ferent components from their contributing group.

Three of the branches produced one remarkable result each,
and two of these results were featured by the assessors in the
refinement and FM categories. However, none of the branches
produced consistently good results.

The wfCPUNK branch that worked on the FM submitted
model for four targets. The GDT_TS score for wfCPUNK was bet-
ter than individual methods but not statistically significant (e.g.
for target T0740 the GDT_TS of wfCPUNK was 32.1, whereas the
highest GDT_TS of the individual methods was 30.81). Similarly,
the WeFold branch, which attempted on the 43 human targets,
performed comparably (11 targets) or better than one of the in-
dividual methods (TASSER (12 targets) [34]) in 53% of the cases.
However, in 17 targets, TASSER significantly outperformed the
WeFold branch that indicates that WeFold still needs a lot of
improvement.

Nevertheless, this approach of coopetition (cooperative com-
petition) to the difficult problem of protein structure prediction
shows some promise and is an important step in the right direc-
tion. This collaboration has continued into CASP11, in which
there were 18 different branches that each submitted their own

prediction. As can be seen by the increased number of branches
from CASP10 to CASP11, we hope to see more branches coming
out of this collaborative effort.

Multi-domain protein structure prediction

The existing computational approaches for multi-domain pro-
tein structure-based prediction methods can be roughly divided
into two classes: (i) ab initio methods and (ii) template-based
methods. Existing ab initio methods can be further subdivided
into two general approaches: (i) a docking approach, in which
multi-domain structure prediction is treated as a docking prob-
lem [100, 101] and (ii) a domain assembly approach, in which
the linker region is sampled iteratively [102]. Methods based on
the domain assembly approach [102] are successful in only
�50% of the studied cases. Likewise, methods that use the dock-
ing approach yield an assembly within the top 10 solutions in
only �60% of the cases. This is likely because of the fact that the
rigid docking models used by these approaches often cannot ac-
count for the flexibility in the linker region [100, 101]. Recently,
Xu et al. [103] developed an energy minimization method, AIDA,
which uses ab initio folding potential for domain assembly.
However, this method also could only correctly predict 2 out of
15 multi-domain proteins from the CASP10 target. In this re-
gard, multi-domain protein structure prediction is still
challenging.

In addition, Monastyrskyy et al. also assessed the interdo-
main contact predictions because the interdomain contact
helps proper packing of the domains in multi-domain proteins.
Based on the study, it was observed that the accuracy of predict-
ing interdomain contacts is much lower than that of intrado-
main contacts. The highest precision achieved for CASP11 is
below 6% highlighting the disappointment, whereas the intra-
domain contact precision was 27% that also highlights the diffi-
culty in multi-domain protein structure prediction. In this
regard, despite the great strides that have been made in

Table 1. Protein structure prediction methods described in the article with short description and reference

Method Type Short description Reference

Rosetta FM/TBM Fragment assembly https://boinc.bakerlab.org/
I-TASSER TBM Fragment assembly http://zhanglab.ccmb.med.umich.edu/I-TASSER/
ModBase TBM Comprehensive resource for TBM http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi
PMP TBM Resource for accessing protein structure

models from various methods
http://www.proteinmodelportal.org/

TASSER FM/TBM MetaServer that combines various
TASSER-based approaches

http://cssb.biology.gatech.edu/skolnick/
webservice/TASSER/index.html

QUARK FM Fragment assembly developed at
Zhang Laboratory

http://zhanglab.ccmb.med.umich.edu/QUARK/

Desmond MD Software suite for MD of biological systems https://www.deshawresearch.com/
resources_desmond.html

EVfold Evolutionary
couplings

Residue contact-based structure prediction http://evfold.org/evfold-web/evfold.do

CONFOLD FM Residue contact-guided FM http://protein.rnet.missouri.edu/confold/
CABS-dock Protein–peptide

complex
Protein–peptide complex server http://biocomp.chem.uw.edu.pl/CABSdock

Rosetta
FlexPepDock

Protein–peptide
complex

Protein–peptide complex server http://flexpepdock.furmanlab.cs.huji.ac.il/

AIDA FM Ab initio multi-domain server http://ffas.sanfordburnham.org/AIDA/
MULTICOM TBM http://sysbio.rnet.missouri.edu/multicom_toolbox/
MODELLER TBM Available for download http://salilab.org/modeller/
CABS-fold FM De novo, templates, distance restraints http://biocomp.chem.uw.edu.pl/CABSfold/

PMP ¼ Protein Model Portal.
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single-domain protein structure prediction, multi-domain pro-
tein structure prediction remains a major challenge in the field.

Key Points

• Protein structure prediction can be classified according
to TBM approaches and FM approaches. Classification
of computational approaches for protein structure pre-
diction is becoming increasingly blurry.

• Some of the new trends are to integrate TBM and FM
approaches.

• Slow but steady progress has been made in
modeling the structure of protein sequences for which
the sequence identity to a solved drops below 30%,
as witnessed in the community-wide blind CASP
experiments.

• Use of sequence constraints, contact prediction and
correlated mutation information shows some promise
in improvement of FM approaches.

• Remarkable progress has been achieved in FM in
CASP11 where a 250-residue long protein was success-
fully modeled.

• MD-based methods using specialized computers have
been successful in folding.

• True FM approaches based on molecular dynamics
simulation using specialized computers have suc-
ceeded in folding of ubiquitin, a 76-residue long pro-
tein, with a folding time of �3 ms timescale.

• Likely that new method development in the prediction
of the structure of multi-domain proteins and also
more multi-domain targets will be seen in the CASP
assessments.
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