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Abstract

This paper addresses the problem of recognising speech in the
presence of a competing speaker. We employ a speech frag-
ment decoding technique that treats segregation and recognition
as coupled problems. Data-driven techniques are used to segment
a spectro-temporal representation into a set of spectro-temporal
fragments, such that each fragment is dominated by one or other of
the speech sources. A speech fragment decoder is used which em-
ploys missing data techniques and clean speech models to simulta-
neously search for the set of fragments and the word sequence that
best matches the target speaker model. The paper reports recent
advances in this technique, and presents an evaluation based on ar-
tificially mixed speech utterances. The fragment decoder produces
significantly lower error rates than a conventional recogniser, and
mimics the pattern of human performance whereby performance
increases as the target-masker ratio is reduced below -3 dB.
Index Terms: speech recognition, speech separation, simultane-
ous speech, auditory scene analysis, noise robustness.

1. Introduction
Often when we are listening to someone speak there are one or
more competing speakers talking ‘in the background.’ With lit-
tle effort we can effectively tune out the background speakers and
understand the speaker of interest with little or no loss in intelli-
gibility. How is this separation performed? Although localisation
cues help in this task, they are not necessary. Listeners are able to
effectively separate speech sources even when they are presented
in a single channel (e.g. consider the situation where someone tele-
phones from a noisy party).

Traditional robust automatic speech recognition (ASR) ap-
proaches perform poorly in simultaneous speech conditions. Most
approaches rely on the speech and the noise having very differ-
ent characteristics. For example, spectral subtraction assumes that
the noise is more stationary than the speech signal [1]. RASTA
processing assumes that the speech dominates the noise across a
narrow range of modulation frequencies [2]. For such systems the
simultaneous speech problem is pathological because the noise is
speech.

In this paper we present a recognition system based on a tech-
nique called speech fragment decoding (SFD) [3]. This tech-
nique exploits the non-stationarity of the speech signal. Speech is
sparsely encoded with most of the energy concentrated in compact
time-frequency regions. This sparsity means that when viewed in
the spectral-temporal domain a mixture of two speech sources can
be approximated as a series of interleaved fragments of the two
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gure 1: A overview of the speech fragment decoding system.

ixed signals. The SFD technique works by first segmenting
pectro-temporal plain into a set of source fragments, and then
cting together the subset of fragments that best fits a model of
arget speech.

The paper evaluates the SFD approach using a small vocab-
y simultaneous speech task, and compares the performance
e technique against that of listeners. Section 2 presents an
view of the basic SFD system. Section 3 describes some re-
advances to the SFD approach. Section 4 presents the exper-
tal results and draws comparison with human data. Finally,
ion 5 concludes and presents some possible future research
ctions.

The speech fragment decoding technique
Overview

re 1 shows an overview of the speech fragment decoding sys-
There are two important components: i) the fragment genera-
process, which in our current implementation exploits models
rimitive auditory scene analysis (ASA) and ideas taken from
e processing; ii) the fragment decoding algorithm, which is
d on an extension of the standard probabilistic theory for ASR
ter for the presence of multiple sound sources.

Fragment Generation

ectro-temporal ‘ratemap’ representation of the acoustic sig-
is formed by first passing it through a 64 channel gammatone
r bank. The filter output is halfwave rectified, smoothed us-
a first order filter with a time constant of 8 ms, sampled at 10
intervals, and then log compressed [4]. We then analyse the
ap to locate ‘coherent’ fragments - that is, spectro-temporal
ons that are dominated by a single source (see sketch in Figure
he fragment generation proceeds in two passes. The first pass
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identifies ‘harmonic fragments’. In brief, a technique exploiting
the dendritic structure of the autocorrelogram is employed to form
multiple pitch estimates for every 10 ms frame [5]. Then a mul-
tiple pitch tracking algorithm is employed to find smooth tracks
through this raw data [6]. Each continuously voiced pitch track
segment is converted into a spectro-temporal fragment by finding
the frequency channels whose periodicity best matches the pitch
estimate at each point in time. Once the time-frequency elements
dominated by harmonic energy have been segmented in this way,
the remaining elements - dominated by inharmonic energy - are
segmented in a second pass using the Watershed algorithm. This is
a technique commonly employed in image processing which acts
to place segment boundaries between the spectro-temporal peaks
in the energy surface [4].

2.3. Fragment Decoding

The speech fragment decoder extends standard ASR decoding to
account for the presence of competing sources. HMMs are trained
on the spectro-temporal representation of the clean speech signal.
The state-likelihoods are a function of the observed data and a
foreground/background segmentation hypothesis. They are com-
puted using missing data techniques. Potential segmentation hy-
potheses are derived by considering all possible combinations of
foreground/background labelling for the set of coherent fragments.
The full set of labellings can be evaluated in an efficient manner
using a splitting and merging graph: When a new fragment starts
all HMM states are duplicated and the ‘fragment is foreground’
interpretation is sent to one copy of the HMM, and the ‘fragment
is background’ interpretation to the other. When a fragment ends,
pairs of HMM states are remerged and the best scoring token of
each pair is maintained. Crucially, independent foreground versus
background decisions are made within each state of the HMM, so
the labelling of the fragment is a function of the word string hy-
pothesis. By coupling segmentation and recognition in this way,
the segmentation exploits constraints that are implicit in the acous-
tic and language models. For example, in a digit recognition task, a
fragment containing the unvoiced fricative energy of /s/ and an ad-
jacent voiced fragment /ev n/ may both be labelled as foreground
because they match the word ‘seven’. However, if the fragment /s/
is followed by a fragment /i:/ from the competing speaker, then the
fragments will be identified as not belonging together as they do
not fit well to any digit model. Note, that in a different task with a
different vocabulary, an /s/ fragment and an adjacent /i:/ fragment
may been seen as making the word ‘see’. The language model
influences the segmentation. A full description of the decoding
algorithm is presented in [3].

3. Advances in the decoder framework
The system employed in the current work improves over that pre-
sented in Barker, Cooke and Ellis [3] in a number of ways. The
most significant advances are described in the sections that follow.

3.1. Soft fragments

In the original SFD system each fragment labelling hypothesis is
represented as a discrete missing data mask - spectro-temporal ele-
ments within background fragments are treated as wholly missing
(0) and those within foreground fragments are wholly present (1).
However, it has been shown that missing data systems perform bet-
ter when using ‘soft’ masks [7]. The missing data mask is allowed
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old values between 0 and 1 (indicating a degree of ‘present-
’). The acoustic match score is then computed in a way that
ds between the missing and present interpretations. The cur-
SFD system converts each fragment labelling hypotheses into
ft masks. Within harmonic fragments, spectral-temporal points
have a single clear periodicity are given a fragment value close
(i.e. these points are either clearly foreground or background).
ts where there is evidence of multiple pitches are given a value
er to 0.5 (for details see [5]). Inharmonic fragments remain
rete. During decoding, a soft mask is constructed from the
ment values, x, by either using x directly if the fragment is be-
hypothesised as foreground, or by taking 1− x if the fragment
pothesised as background. Note, mask values close to 1 will
nate between 1 and 0 (present and missing), more ambiguous
es close to 0.5 will alternate between being a little big greater
0.5 (probably present) to a little bit less than 0.5 (probably
ing).

Delta features

current system extends [3] through the use of temporal dif-
nce features. Some care has to be taken to employ these fea-
effectively. Consider first the standard missing data approach:
n the static features are judged to be present, delta features can
be computed and employed. For missing static features the
ability calculation integrates over the range of energy that the
ing feature could have had. However, because it is not possi-
o compute a meaningful bound on the value of unknown delta
res, missing delta features are simply ignored. This causes
roblems in missing data systems where a single missing data
k is evaluated. However, in the SFD system each segmenta-
hypothesis is represented by a different missing data mask,
ypotheses are compared in which different amounts of data
issing. If the probability computation includes terms for the
ent deltas but not the missing deltas then these hypotheses will
be comparable. This problem can be corrected by using the
ent deltas in a different way. In the current system if a delta
re is present, the likelihood of the corresponding static feature
the delta feature are averaged, i.e. in all probability calcula-
s the term p(xi|q) is replaced with

1

2
(p(xi) + p(x′

i|q)) where
a static feature and x

′

i is the corresponding delta, and q is the
M model state. This is akin to treating the static feature and its
as two observations of the same process rather than as treat-
them as independent observations. This treatment leaves the
ber of terms in the probability calculation unaffected by the
ber of present features in the missing data mask.

Speech prior

y implementations of the SFD technique scaled the bounded
ginal term computed for missing features by dividing by the
rved energy. This gives the term a similar range to the ob-
ed data likelihood terms. It is shown in Barker, Cooke and
[3] that it is the correct way to treat the statistics under the
mption that the missing features have a uniform prior distribu-
. However, a uniform distribution is a poor model of the speech
energy values used in the current work. Instead a GMM-based
ch prior model is trained using clean speech (see Section 4 for
ils), and this model is used in the manner described in Section
of [3]. The use of an appropriate speech prior has been shown
nsiderably improve performance.



4. Experiments with simultaneous speech
4.1. The Grid data

Experiments were performed using simultaneous speaker data
constructed from the Grid corpus [8] and in accordance with rules
dictated by the Interspeech 2006 Speech Separation Challenge.1

The Grid corpus consists of utterances of the form indicated in
Table 1 spoken by 34 speakers. In the present study pairs of end-
pointed utterances have been artificially added at a range of target-
masker ratios (TMR). The ‘colour’ for the target utterance is al-
ways ‘white’, while the ‘colour’ of the masking utterance is never
‘white’. The task is to recognise the letter and digit spoken by the
target speaker (i.e. by the person who says ‘white’). A full descrip-
tion of the preparation of the two talker speaker data is presented
in Cooke et al. (submitted) [9]. The test set has 600 utterance pairs
at each TMR; 200 pairs in which target and masker are the same
speaker, 200 pairs of the same gender (but different speakers), and
200 pairs of mixed gender.

Table 1: Structure of the sentences in the GRID corpus.

VERB COLOUR PREP. LETTER DIGIT ADVERB

bin blue at a-z 1-9 again
lay green by (no ‘w’) and zero now
place red on please
set white with soon

4.2. The recogniser configuration

A 64-channel log-scaled ratemap representation was employed
(see Section 2.2). The 128-dimensional feature vector consisted
of 64 log-energies and 64 delta log-energies terms. Speaker-
dependent word-level HMMs were trained using 500 utterances
from each of the 34 Grid speakers. Each word was modelled us-
ing 2 states per phoneme in a left-to-right model topology with no
skips, and with 7 diagonal-covariance Gaussian mixture compo-
nents per state. A GMM speech prior was employed (see Section
3.3). This was constructed by training a set of speaker dependent
HMMs with a single mixture per state, and then pooling the Gaus-
sians from all HMM states with weights scaled to correct for the
differing prior probabilities of each HMM state. Tests on devel-
opment data showed this prior to be more effective than priors
constructed from HMMs with a greater number of Gaussians. The
recogniser employed a grammar representing all allowable grid ut-
terances in which the colour spoken is ‘white’. In all experiments
it is assumed that the target speaker is one of the speakers encoun-
tered in the training set, but two different configurations were em-
ployed: i) ‘known speaker’ - the utterance is decoded using the
HMMs corresponding to the target speaker, ii) ‘unknown speaker’
- the utterance is decoded using HMMs corresponding to each of
the 34 speakers and the overall best scoring hypothesis is selected
(this can be implemented as an extended grammar in which 34
speaker dependent grammars are placed in parallel).

Adaptive beam-pruning was implemented to reduce the com-
putational cost of decoding the ‘unknown speaker’ configuration.
The beam width was adapted in such a way as to prune a fixed per-
centage of the partial hypotheses at each frame. This percentage
was tuned using a small development set (150 mixtures at 0 dB). It

1http://www.dcs.shef.ac.uk/∼martin/SpeechSeparationChallenge.html
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re 2: Results for the baseline system using speaker dependent
) or speaker independent (SI) models trained on either ratemap
FCC features.

found that 90% of the hypotheses could be pruned with little
act on the recognition result, and with a resulting reduction in
ding time of over 75%.
Results have also been obtained for a conventional HMM
em using models with an identical topology trained on ei-
the ratemap representation or 13 MFCC features along with
deltas and accelerations. This baseline has been tested us-
speaker dependent models employing up to 7 Gaussian mix-
s per state and running in the known speaker configuration.
s also been tested using a single set of speaker independent
HMMs employing 32 mixtures per state and trained using the
bined training data from all 34 Grid speakers.

Results

re 2 shows results for the baseline system. Performance
es (throughout the paper) indicate the percentage of the total
ber of letter and digit tokens that were recognised correctly.
Cs outperform the ratemap representation. HMMs trained on
peakers provide better performance than a speaker dependent
M matched to the target speaker, i.e. the speaker dependent
Ms were less tolerant to noise. However, the performance of
ystems degrades quickly as the TMR decreases. At 0dB the
gnition score is 32%, and at -9 dB performance is down to
ce levels, 7%.
Recognition results for the SFD system are shown in Figure
nd Table 2), plotted alongside results from a group of listen-
9], and the best conventional system from Figure 2. The SFD
rly outperforms the baseline across all TMRs and across all
ture conditions. Unlike the conventional system the SFD is
to exploit knowledge of the target speaker identity (compare
‘known’ and ‘unknown’ speaker curves). Prior knowledge of
peaker identity only fails to confer an advantage in the ‘same
ker’ condition. Although no recogniser performance matches
of listeners, the shape of the listener data is matched remark-
closely by the SFD in the ‘unknown’ speaker condition. The
acteristic pattern in which performance increases as the TMR
eases below about -3 dB, occurs because the negative effects
creased energetic masking are more than offset by decreased

rmational masking [10]. Informational masking is at a peak at
nd 0 dB where fragments of the target and masker are most
usable. As the TMR moves away from 0 dB the fragments
me more easily separable on the basis of their level. For the
own speaker configuration the extra errors at 0 dB, where tar-
nd masker are most confusable, result when hypotheses pass-
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Figure 3: Results for the speech fragment decoder in known
speaker and unknown speaker configurations compared against
the baseline system and average listener results.

ing through the HMM for the masker wins over that of the target.
However, the target will generally be favoured because the gram-
mar forces the decoding through the colour ‘white’ which is known
to be spoken by the target. An example of a typical decoding is
shown in Figure 4.

Table 2: Result for unknown speaker configuration (%).

-9 dB -6 dB -3 dB 0 dB 3 dB 6 dB

Overall 53.8 54.3 45.4 45.8 65.3 80.5

ST 42.8 43.2 36.9 36.7 53.2 76.2
SG 55.9 59.2 48.6 51.4 70.11 83.0
DG 64.0 62.3 52.0 50.8 74.5 83.0

5. Conclusions
The paper has described a novel approach to robust ASR which
works by coupling the problems of foreground/background segre-
gation and speech recognition. Whereas most robust ASR tech-
nique have problems in non-stationary noise conditions, the SFD
system mimics listeners in that it is able to take advantage of the
fact that non-stationary noises provide unmasked glimpses of the
target speech source. Recognition performance is significantly
above that of a conventional HMM ASR system, and is relatively
insensitive to the noise level over a broad range of TMRs. The sys-
tem has performance curves similar to those of listeners with char-
acteristic dips around 0 to -3 dB TMR in the same talker and same
gender conditions. Future work will aim to develop a statistical
model of primitive sequential grouping that will weight segmen-
tation hypotheses according to continuity of primitive properties
across fragments through time.
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