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Advances in sugarcane breeding have contributed significantly to improvements in agronomic
traits and crop yield. However, the growing global demand for sugar and biofuel in the context
of climate change requires further improvements in cane and sugar yields. Attempts to achieve
the desired rates of genetic gain in sugarcane by conventional breeding means are difficult as
many agronomic traits are genetically complex and polygenic, with each gene exerting small
effects. Unlike those of many other crops, the sugarcane genome is highly heterozygous due
to its autopolyploid nature, which further hinders the development of a comprehensive genetic
map. Despite these limitations, many superior agronomic traits/genes for higher cane yield,
sugar production, and disease/pest resistance have been identified through the mapping of
quantitative trait loci, genome-wide association studies, and transcriptome approaches.
Improvements in traits controlled by one or two loci are relatively easy to achieve;
however, this is not the case for traits governed by many genes. Many desirable
phenotypic traits are controlled by quantitative trait nucleotides (QTNs) with small and
variable effects. Assembling these desired QTNs by conventional breeding methods is
time consuming and inefficient due to genetic drift. However, recent developments in
genomics selection (GS) have allowed sugarcane researchers to select and accumulate
desirable alleles imparting superior traits as GS is based on genomic estimated breeding
values, which substantially increases the selection efficiency and genetic gain in sugarcane
breeding programs. Next-generation sequencing techniques coupled with genome-editing
technologies have provided new vistas in harnessing the sugarcane genome to look for
desirable agronomic traits such as erect canopy, leaf angle, prolonged greening, high
biomass, deep root system, and the non-flowering nature of the crop. Many desirable
cane-yielding traits, such as single cane weight, numbers of tillers, numbers of millable
canes, as well as cane quality traits, such as sucrose and sugar yield, have been explored
using these recent biotechnological tools. This review will focus on the recent advances in
sugarcane genomics related to genetic gain and the identification of favorable alleles for
superior agronomic traits for further utilization in sugarcane breeding programs.
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1 INTRODUCTION

Sugarcane (Saccharum spp.) is a major industrial crop grown in
tropical and subtropical regions across the world. It is cultivated
mainly for sugar production and supplies >70% of the world’s
sugar. Additionally, it also provides a sustainable and renewable
source of bioenergy. It is cultivated in over 24.9 million hectares
in about 80 countries with a production value of 174 million tons
(OECD-FAO Agricultural Outlook report 2019–2020). India is
the world’s second largest sugar producer (26.6 million tons) after
Brazil (40% of world production). China, Thailand, the
United States, Pakistan, Mexico, and Russia are the other
major sugar-producing countries in the world. In India,
substantial sugar production is projected for the coming years
as a result of higher cultivation rates of promising sugarcane
varieties and good rainfall during the 2020 season (OECD/FAO,
2021).

The modern cultivars of sugarcane originated from an
interspecific hybridization between S. officinarum (2n = 8x =
80; x = 10) and S. spontaneum (2n = 5x–16x = 40–128; x = 8).
Around 70–80% of the genome is from S. officinarum, while
10–20% is from S. spontaneum; the remaining 10% of the
genome has arisen from interspecific recombination (D’Hont
et al., 1998; Piperidis and D’Hont, 2020; Garsmeur et al., 2018).
The sugarcane genome is larger (about 10 GB) than any other
member of the Poaceae family (Aitken et al., 2016) and is highly
aneuploid, polyploid, and heterozygous in nature. This is because
most cultivars of sugarcane have 110–130 chromosomes. The
monoploid genome (800–900Mb) is larger than that of
sorghum (790Mb); recently sequenced by the French
Agricultural Research Centre for International Development
(CIRAD) using the R570 cultivar (Garsmeur et al., 2018).

It is hoped that progresses in genome sequencing and the
accumulation of genomic resources such as the SUEST
(sugarcane expressed sequenced tag) database, genetic maps,
transcriptomes, bacterial artificial chromosome (BAC) libraries
(Souza et al., 2011), etc. will help in understanding the evolution
of the sugarcane’s complex genome and polyploid structure.
Complete genome sequencing will also help to unravel key
genes/pathways associated with superior agronomic traits in
sugarcane. Although substantial genetic enhancement for cane
and sugar yield in modern cultivars has been achieved through
conventional breeding approaches, the rate of genetic gain in
sugarcane crops is comparatively slower than those of other cereal
crops (Yadav et al., 2020). Breeding varieties with superior
agronomic traits is highly desirable for sustained sugarcane
production under changing climate scenarios across the word.

Genomic selection (GS), which utilizes genome-wide genetic
markers to estimate breeding value, when used along with
genomic strategies, can substantially increase selection
efficiency and genetic gain in sugarcane breeding programs.
Furthermore, selection intensities in sugarcane breeding
programs can be further enhanced by utilizing large breeding
lines and high-throughput phenotyping and genotyping with
bioinformatics tools.

In the wake of enormous advancements in sugarcane
genomics, we outline in this article the recent progress and

future possibilities in sugarcane genomics and phenomics in
identifying superior alleles for agronomically superior traits in
sugarcane crops. These desirable/superior alleles/traits can be
incorporated into sugarcane breeding lines either to improve
existing cultivars or to create new cultivars with enhanced cane
and sugar yield. These approaches can ensure sustainable
increases in sugarcane production with available resources to
meet growing demands.

1.1 Role of Next-Generation Sequencing in
Genomic Selection
The size of the sugarcane genome is ~10 Gb, which is
approximately three times that of the human genome (Le
Cunff et al., 2008; Souza et al., 2011; Zhang et al., 2012).
Genome size analyses of sugarcane varieties using flow
cytometry have revealed that the sugarcane genome may be as
large as 3.80–10.96 Gb (Berkman et al., 2014). Chromosomal
characterizations of different sugarcane clones via genomic in-
situ hybridization (GISH) have revealed that clones with
80 chromosomes are classic S. officinarum, while those with
more than 80 chromosomes are inter-specific hybrids between
S. spontaneum and S. officinarum (X. Liu et al., 2018). The
development of a correct sequence assemblage has been
hindered by the absence of diploid progenitors. Furthermore,
the construction of a reference genome for an inter-specific
sugarcane hybrid having both homo and homoeologous
chromosomes is a difficult task (Souza et al., 2011).

Sorghum is considered to be the reference model for
comparative studies due to it being closest in synteny with
sugarcane (Le Cunff et al., 2008; de Setta et al., 2014; Aono
et al., 2021). Next-generation sequencing (NGS)-based
genotyping is now popularly used in many crop species that
lack reference genomes and has become the primary choice for
many breeders due to its cost-effectiveness and speed (Chung
et al., 2017). NGS technology has enriched our understanding of
the complex sugarcane genome and its evolution (Zhang et al.,
2018). The availability of a draft genome sequence, along with
76 K single nucleotide polymorphisms (SNPs) (Yang et al., 2017),
a further 84 K SNPs (Balsalobre et al., 2017), and the Axiom
Sugarcane100 K SNP array (You et al., 2019) will pave the way for
the implementation of genomic selection (GS) in commercial
sugarcane breeding programs.

Genomic selection is a powerful tool for increasing genetic
gain rates and shortening breeding cycle lengths (Meuwissen and
Goddard, 2001; Crossa et al., 2017). It can open new avenues for
sugarcane breeders in managing breeding programs precisely and
in more cost-effective ways. Sugarcane breeders need not wait till
the harvest stage or maintain entire breeding populations to
screen for traits of interest during phenotypic evaluations at
different crop stages. This can reduce the time and cost of
selection processes. Based on genomic estimated breeding
values (GEBVs), a sugarcane breeder can select desired clones
predicted to have superior phenotypes. By adopting this
approach, a breeder can estimate the potential breeding values
of the desired clones before introducing them into main breeding
programs. The individual clonal entries are first phenotyped for
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desired traits and then genotyped using genome-wide marker
resources available for sugarcane; these results are then further
used to predict the breeding value of clones using prediction
models. Thus, GEBVs predicted from reference breeding
populations and clones with high genetic gain or breeding
value can be easily identified at the earlier stages of the
breeding cycle. This approach was first applied in animal
breeding programs, reducing the animal breeding cycle by up
to 5 years. GS has been successfully implemented in many crops,
such as maize, rice, sorghum, and wheat (Daetwyler et al., 2012;
Gaffney et al., 2015; Spindel et al., 2015; Fernandes et al., 2018),
where several quantitative traits have been accurately predicted
using GS. However, there are few studies that utilize this approach
for sugarcane.

In commercial crops like sugarcane, GS has tremendous
potential to achieve genetic gains for major desirable yielding
traits, such as cane yield, number of millable canes (NMC),
uniform tillering population, single cane weight (SCW), high
biomass, commercial cane sucrose (CCS), etc., which are
polygenic with each gene exerting small effects. It is
challenging to improve such traits through marker-assisted
selection (MAS) approaches (Gouy et al., 2013). Using GS is
more advantageous than pedigree-based methods of breeding or
MAS, since pedigree-based methods are slower and MAS fails to
address loci with complex traits governed by many genes with
small effects (Heffner et al., 2009). As GS can capture both large
and small quantitative trait locus (QTL) effects, complex traits
including cane yield and quality-based traits can be predicted
more effectively and accurately in shorter periods of time (Crossa
et al., 2017).

1.2 Genomic Selection Models
Several predictive models have been developed for GS studies in
crop plants; however, selecting the correct model is crucial for
high prediction accuracy. In general, the prediction accuracy of
GS models varies according to their assumptions and the
treatment of marker effects (Liu et al., 2018). In crop plant GS
studies, genomic best linear unbiased prediction (G-BLUP) and
ridge regression best linear unbiased prediction (RR-BLUP) are
commonly employed prediction models. In RR-BLUP, all
markers are assumed to have equal variances and small but
non-zero effects, although this assumption does not imply that
the effects of all markers are equal (Bernardo and Yu, 2007). RR-
BLUP provides high prediction accuracy when the trait is
controlled by several loci with small effects (Buckler et al.,
2009). G-BLUP is another widely used model that uses
genome-wide markers to predict the genetic and phenotypic
values of selection candidates (Wang et al., 2015). The
common assumption in G-BLUP and RR-BLUP models is that
the effects of all loci have a common variance, making themmore
suitable for use in predicting traits influenced by a large number
of minor genes. Most markers across whole genomes produce
small or no effects, whereas a few markers produce huge effects
according to G-BLUP and RR-BLUP assumptions.

Most Bayesian methods, however, allow different markers to
have different effects and variances, unlike G-BLUP and RR-
BLUP. As part of the BayesB model, most loci are assumed to

have no effect on a trait, and thus most markers are excluded from
the prediction model. If the trait expression is governed by large-
effect QTLs, which explainmuch of the genetic variability, BayesB
fits well (Munkvold et al., 2009). The parameter in BayesCπ;
however, π can be calculated by using experimental data, through
which the shrinkage degree is determined, and therefore, this
model is more feasible than BayesB for real data analysis. The
BayesA model is more suitable for traits governed by a moderate
number of genes because its shrinkage degree is lower than
BayesB and BayesCπ. Generally, Bayesian methods result in
better predictions due to their ability to capture large-effect
QTLs. Bayesian least absolute shrinkage and selection operator
(LASSO) combines the features of subset selection with the
shrinkage produced by Bayesian regression. The reproducing
kernel Hilbert space (RKHS) method combines an additive
genetic model with a kernel function and converts predictor
variables into a set of distances among observations to produce a
definite matrix that can be used in a linear model (Gianola et al.,
2006).

Selective shrinkage models, such as BayesB, BayesCπ, BayesA,
and Bayesian LASSO, are sensitive to a number of QTLs; as the
numbers of QTLs increase, prediction accuracies decrease (Wang
et al., 2015). In contrast, the prediction accuracy of G-BLUP and
RR-BLUP often stay nearly constant regardless of the numbers of
QTLs and are more suitable for traits governed by a large number
of minor genes.

1.3 Training Population and Breeding
Population
Sugarcane breeding programs aim to improve genetic gains for
major traits such as cane and sugar yield. However, there is
negative correlation between commercial cane sugar and cane
yield, indicating that many of the genes controlling these traits are
independent. Genetic gain for these traits through phenotypic
selection is very low. This is because the accumulation of superior
alleles for these traits via phenotypic breeding value is very rare
(Jackson, 2005; Mahadevaiah et al., 2021). Therefore, it is only
possible to accumulate favorable alleles for these traits through
recurrent selection schemes (Lingle et al., 2010). GS using
recurrent selection methods has shown enhanced genetic gain
and improvements in prediction accuracies for many desired
traits in sugarcane (Yadav et al., 2020). Combining GS with
recurrent selection-derived breeding populations and multi-
environment phenotyping of breeding can help in increasing
prediction accuracies and genetic gains for superior agronomical
traits.

Under present sugarcane breeding programs, phenotypic
selection takes 12–13 years to develop a new variety for
commercial cultivation. The crosses effected once are
maintained in a clonal form and evaluated over the breeding
cycle. Hence, chances of introgression of new alleles through
recombination are possible only at the beginning of the crossing
program, which is carried out in once every 12 years.
Furthermore, handling a large number of seedlings in the
ground nursery and carrying them forwards in the subsequent
stages of first and second clonal trials before entering pre-zonal
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variety testing is a herculean task (Meena et al., 2020a). These
tasks are time consuming, labor intensive, and expensive because
they require the maintenance of clonal lines in large land areas.
GS can help in reducing the numbers of clonal lines that need to
be maintained in every stage of the breeding program. Since it
also utilizes additive and non-additive variance components in
genomic prediction models, the technique can help in integrating
many desirable alleles into selected clonal lines (Deomano et al.,
2020; Voss-Fels et al., 2021). Once the desired traits are accurately
phenotyped in multi-environmental locations via recurrent
selection methods, genomic prediction can also help in
identifying desirable selections from the target breeding pool
for optimal performance in various agro-ecological regions.

Therefore, GS can aid in rapid genetic gains in sugarcane
breeding through the selection of superior clonal entries at the
early crop stage; this helps in reducing the length of the breeding
cycles in such programs.

1.4 Genomic Selection in Sugarcane
Breeding
Continuous advances in plant breeding and agronomic practices
in the context of systematic crop improvement have contributed
significantly to annual productivity gains in major food
commercial crops. However, the demands for food, sugar,
fiber, energy, and fuel are growing due to the ever-increasing
human population, increasing per capita income, and diversified
food consumption/industrial use patterns. Although sugarcane
has been cultivated primarily as a source of sugar for centuries,
the crop has recently gainedmuch attention as a source of ethanol

and biodiesel to satisfy global energy demands. Owing to its
economic value, the sugarcane genome has received growing
interest in recent times in the context of the changing climate.
In the current breeding program, ground nursery populations
(~15–25 K), generated through the random crossing of desired
parents (~20–30 parents) in the national hybridization garden
facility, can be evaluated for desired agronomically superior traits.
Within and between family selection is employed and around
100–125 improved families can be selected from a population of
15–25 K seedlings (training population) based on the desired trait
value. Individual selection is employed at the first and second
clonal stages based on increasing cane and sugar yielding traits,
better stem elongation, shoot tillering, NMC, deep root system,
and high biomass production, depending upon the breeding
objective. GEBVs for these desired traits can be estimated
using SNP markers in the first and second clonal stages
(breeding population) (Figure 1). Prediction accuracies for
these superior traits based on genome-wide marker
information and phenotypic accounts are expected to be high.
Best performing clones with superior agronomical traits can be
used as parents for further rapid recurrent GS to accumulate the
favorable alleles for these desired traits. Better performing clones
with high phenotypic trait values are selected using rapid
recurrent GS approaches; these clones can either be used as
parents in ongoing breeding programs or be evaluated with
existing varieties in order to identify better varieties in zonal
varietal trials.

Recent advancements in sugarcane genomics, including the
compilation of a draft genome sequence, are opening new
windows in the utilization of genomic resources for rapid

FIGURE 1 | Schematic for genomic selection (GS) approach in sugarcane for increasing the rate of genetic gain and reducing generation intervals. Stage
1 represents the training population where phenotypic selection is carried out based on desirable major agronomical traits. Stage 2 represents individual clonal selection
where the best clones are selected, and genomic estimated breeding value (GEBV) estimation is performed.
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genetic gain through molecular breeding tools such as genome-
wide association studies (GWAS) and GS. In GS, available
genome-wide markers are used to estimate the effects of all
loci and thereby calculate the GEBV, which has a substantial
potential for increasing selection efficiency. GS in livestock
breeding has incredible potential in accelerating genetic gains
(sometimes as high as two-fold) compared to conventional
progeny testing (Hickey et al., 2017; Georges et al., 2019).
Therefore, GS and GEBV likely hold great potential to
accelerate the rate of genetic gain in sugarcane breeding
(Yadav et al., 2020).

In any sugarcane breeding program, high cane yield andCCS yield
are two major traits of commercial importance, and they are
governed by many genes and/or QTLs (Aitken et al., 2008). Cane
yield has high narrow-sense heritability and a non-additive nature of
genetic variance (Wei and Jackson, 2017). Recent advancements in
genomic prediction and the availability of diversity array technology
(DArT), Affymetrix Axiom 100 K SNP arrays, and Axion 345 K SNP
arrays (Aitken et al., 2016; You et al., 2018) could provide ample
opportunities to speed up genetic gains for many agronomically
superior traits. These include cane yield, sucrose content, NMC,
SCW, erect canopy, leaf angle, non-flowering nature, high biomass,
and deep root system, and they can be selected for through the
accurate prediction of breeding values in candidate parent clones and
the shortening of generation intervals. The selection of parents based
solely on breeding values in conventional breeding may not improve
the genetic gain for cane yield due to low narrow-sense heritability
and very high non-additive genetic variance (Wei and Jackson, 2017).
In a simulation study of sugarcane for genetic gain (Voss-Fels et al.,
2021), two different GS-based breeding strategies were compared
with standard pedigree selection (PS) over five breeding cycles. GS
Scheme 1 was similar to conventional PS, along with three rapid
recurrent genomic selection (RRGS) steps. In contrast, GS Scheme
2 was fundamentally different from PS as it did not include a progeny
assessment stage, but did include three RRGS steps. Both GS models
achieved annual genetic gains of 2.6–2.7%, which were 1.9 times
higher than those of normal PS with an additive model (1.4%). In
non-additive models, annual rates of genetic gain were lower for both
the schemes; however, the rates for the GS schemes (1.5–1.6%) were
still higher than those of PS (1.1%). Similarly, GS was used by Islam
et al. (2021) to test for two major diseases in sugarcane—brown and
orange rust—and the authors observed that GS prediction accuracies
ranged from 0.28–0.43 and 0.13–0.29, respectively. The prediction
accuracies further improved when a known major gene for brown
rust resistance was included as a fixed effect in the GS model.
Genome-wide markers such as SNPs have also been utilized for
genomic prediction studies in sugarcane (Gouy et al., 2013; Deomano
et al., 2020; Hayes et al., 2021; Yadav et al., 2021). The results of these
studies provide further motivation for adopting GS-based techniques
in sugarcane breeding programs. The different factors affecting GS
accuracy are genetic relatedness, type and density of molecular
markers, heritability of the trait, gene effects (additive/non-
additive/interactions), population size, population structure,
statistical models used to calibrate the best-fitted model, extent
and distribution of linkage disequilibrium (LD) between markers
and genomic regions associated with the trait of interest, effective
population size, and genotypes–environment interactions (GEI)

(Meuwissen and Goddard, 2001; Zhang et al., 2017; Berro et al.,
2019).

1.5 Genomic Selection for Superior
Agronomic Traits
The development of breeding sugarcane clones with agronomically
superior traits is slow and expensive. During recent decades, the rates
of genetic improvement in sugarcane have been static compared to
other crops (Wei and Jackson, 2017). Therefore, the use of modern
approaches, such as speed breeding, GS, and genome editing, could
accelerate the accumulation of favorable alleles for several desired
agronomic traits. Many traits of agronomically superior value, such
as uniform tillering habits, erect canopy, non-flowering nature of the
plant, high sucrose yield, deep root system, ability to stay green, high
NMC, high SCW, higher cane yield, high commercial cane sugar
production in tonnes per hectare (CCS t/ha), and high biomass and
fiber production, are considered to be important traits in the main
sugarcane breeding programs (Meena et al., 2020b) (Figure 1). The
combinations of these traits further depend upon the breeding
objective of the researchers. The main objective of commercial
breeding is to develop good clones/varieties with improved
performance. If the breeding objective is for a high yielding
energy crop, then clones with higher biomass and fiber, profuse
tillering, and high biotic/abiotic stress tolerance are selected.
Similarly, if the objective is to develop clones for high cane and
sugar yield, then agronomically desired traits such as long
internodes, high stalk weight and numbers, and higher sucrose
production for more commercial cane sugar are considered.
Further, if the development of clones suitable for drought stress
is the main objective, desired traits such as deep root systems, erect
canopies, and staying green, along with high cane and sugar yield are
given importance. Likewise, to obtain clones with good ratooning
ability, traits such as higher ratooning potential during the winter
and spring season are given more focus. Combining these traits
based only on breeding values may not be adequate to obtain
genetically superior individuals. This is because only substantial
amounts of additive genetic variance of these traits of interest are
captured; however, the overall performance of clones is determined
both by additive and no-additive genetic variance. Hence, breeding
approaches that exploit both these genetic components together
need to be given priority. The inclusion of non-additive effects in
genomic prediction models improves clonal prediction accuracies
significantly, which can further enable the precise identification of
sugarcane clones/varieties (Yadav et al., 2021).

Therefore, the successful application of GS approaches for
these important traits could substantially accelerate genetic gain
and increase the accuracy of the selection of desired traits in
sugarcane breeding.

1.6 Effect of Markers and Prediction
Accuracies
As GS is an innovative approach in sugarcane crop, few
researchers have reported the accuracy of GS approaches for
economically important traits in sugarcane. GS in sugarcane was
first reported by Gouy et al. (2013), who found small to
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substantial levels (0.11–0.62) of genomic prediction accuracies for
10 agronomically important traits using a small panel of
167 individuals with 1,499 DArT markers. The lesser
prediction accuracy in this study could be due to the small
population size and few marker numbers used. Recent
assessments of GS in sugarcane, with modestly sized reference
populations, have shown more promising prediction accuracies
for key commercial traits (Gouy et al., 2013; Deomano et al.,
2020). There are many factors, such as trait heritability, training
population size, marker density, and statistical models, that
influence genomic prediction accuracies in sugarcane (Heslot
et al., 2013). The extended statistical models that combine the
effects of genome-wide markers with non-additive effects could
further improve genetic gains in clonal selection programs
(Yadav et al., 2020). However, the crucial elements
determining the prediction accuracies of models are dependent
on the genetic architecture of the desired trait, along with type of
gene action governed. Additive genetic variance is a proportion of
genetic variance inherited in progeny, which is helpful in the
selection of desired parental combinations. Non-additive
variance, on the other hand, is helpful in the selection of
desired plant types during selection from the ground nursery
(Jackson et al., 2016; Mahadevaiah et al., 2021). As cane yield is
reflected by low narrow-sense heritability and CCS has a
moderate level of heritability, also governed polygenically
(Hoang et al., 2015), both non-additive and additive effects
must be taken into account to improve the overall
performance of these traits.

In another study by Yadav et al., (2020), the genomic
prediction accuracies for cane, CCS, and fiber yields using
G-BLUP, extended G-BLUP, and RKHS models were
compared. The study found that GS-based extended G-BLUP
improved prediction accuracies significantly. With the available
genome-wide SNP marker arrays and statistical prediction
models, the exploration of non-additive gene action for many
desired complex traits to accelerate genetic gain in sugarcane
breeding can be undertaken (Yadav et al., 2021). Although there
has been tremendous progress in NGS and genotyping
technology, the variable ploidy levels and multi-allelic dosage
effects in sugarcane still pose a big challenge in breeding
(Piperidis and D’Hont, 2020). Therefore, considerations of
allele dosage effects in genomic prediction are needed for
more accuracy in assessing genotypic effects (de C. Lara et al.,
2019; Endelman et al., 2018). To overcome such challenges, single
dose markers (SDMs), which follow segregation patterns similar
to those of diploid species and pseudo-diploid models, remain the
key options for linkage analysis and GS in sugarcane breeding.
Under pseudo-diploid models, heterozygous genotypes are
considered in one class in genotype calling (Deomano et al.,
2020; Yadav et al., 2021); further details of this technique in
sugarcane breeding can be found in Aitken et al. (2016).

Recent progress in GS techniques in sugarcane for key cane
traits, such as cane yield, sugar yield, fiber percent, and other
traits, has been found to provide good prediction accuracies
(Deomano et al., 2020; Hayes et al., 2021; Yadav et al., 2021).
GEBV accuracies for flowering traits, such as days to flowering,
and pollen and gender viability with high heritability of 0.57, 0.78,

and 0.72, respectively, were assessed using three genomic
prediction approaches, namely G-BLUP, BayesR, and genomic
single step (GenomicsSS) (Hayes et al., 2021). The prediction
accuracy for many of the traits (0.3–0.44) indicated that GS could
be used to improve these traits in sugarcane breeding programs.
The genomic prediction accuracies for sugar and cane yield
(0.25 and 0.45) were found to be promising in an Australian
breeding program by Deomano et al. (2020). In this study, the
researchers used three relatively large commercial sugarcane
varieties (2,400 clones) with a 47–57 K SNP array. In another
study, a total of 1,276 sets of parental clones with their progenies
were used with a 22 K genome-wide SNPs marker array to predict
GEBV, which was then correlated with phenotypic breeding value
(Ansari et al., 2020). The identified correlations for major
breeding traits, such as sucrose (0.45) and cane yield (0.60),
further support the use of GS to predict the breeding value for the
subsequent selection of superior cross combinations.

1.7 Physiological Approaches for Superior
Agronomic Traits
Sugarcane is also valued for other products besides sugar. The
population density of a sugarcane crop has a strong influence on
the agronomic output viz. the production of high sucrose, fiber,
biomass, bioenergy, ethanol, etc. The population density is
characterized by the numbers of canes, leaf area, biomass, and
canopy structure for efficient solar energy harvest for the
photosynthetic conversion of light energy into carbohydrates.
Cane yield also depends on several plant characteristics, and the
two factors collectively enhance yield per unit area.

1.7.1 Optimum Shoot and Cane Population
Tillering or underground branching is responsible for the crop
stands in sugarcane. Tillering, in general, peaks at 120 days after
planting (DAP) and declines thereafter due to mortality, and
usually stabilizes at 180 DAP. Thereafter, the majority of shoots
are converted to cane stacks (Vasantha et al., 2012). Inter- and
intra-row spacing influences shoot/cane population density,
SCW, and cane yield. Hence, working out optimum spacing
for higher yield is imperative to match with resource
limitations for specific growing conditions.

1.7.2 Physiological Traits Contributing to Yield
Considerable knowledge has been gained concerning the
physiology of yield in crops and it is now possible to
quantitatively estimate limits to crop yield based on
physiological and environmental constraints (Sinclair, 1993;
Sinclair, 1994; Muchow et al., 1997).The two main
components of sucrose yield are biomass and sucrose fraction,
and increasing one or both of these will increase sucrose yield.
Maximizing radiation interception, its conversion and
partitioning to stalk (Singles and Donaldsons, 2000), and the
amount of photosynthetically active radiation (PAR) intercepted
by a canopy determines the biomass produced. Genotypes exhibit
variations in canopy development and structure (Zhou, 2003).
Source leaf photosynthetic capacity is correlated with decreases in
assimilate availabilities to the acropetal sink tissue (McCormick
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et al., 2006). Inman-Bamber et al. (2009) are of the opinion that
contrasts in sucrose content reside more in the morphology of the
plant and responses to ripening stimuli, such as mild water stress,
and how these traits influence supply and demand for photo
assimilates. Therefore, in the early stages, sugarcane crop
selection should focus on yield alone, while the focus on
sucrose content should be stronger in later stages of varietal
evolution (Zhou, 2004). Inman-Bamber (1991), Inman-Bamber
(1994), and Zhou (2003) determined the patterns of tiller
populations among sugarcane genotypes. The harvest index
(HI) has been overlooked or misunderstood in sugarcane as it
is unique among field crops as the economic product is also in the
harvested stalk; therefore, special considerations are required for
assessing the importance of HI (Moore, 1989; Evans and Lloyd,
1993).

Ideotypes of crop plants based on canopy temperature
depression (CTD) has been proposed by Blum (2005) for use in
plant breeding according to drought types, such as isohydric
(“water saving”) and anisohydric (“water spending”) models.
The water saving model has a distinct advantage in harsher
environments, whereas the water spending model is expected to
perform relatively better under more moderate/mild drought
situations. Sugarcane hybrids with high water use efficiency
(WUE) can play a pivotal role in sustaining sugarcane
productivity by reducing the volume of irrigation water required
for its cultivation in water-scarce regions of India. The deficit
irrigation treatments (50% by volume and 50% by frequency) lead
to declines in cane yield of 41.2 and 56.4%, respectively. WP has
been found to be significantly influenced by irrigation level; the
reduction in irrigation water reduced WP by 17.5 and 36.3% in
restricted irrigation treatments (Tayade et al., 2020). Significant
reductions in CTD, the ratio of variable fluorescence to maximum
chlorophyll fluorescence (Fv/Fm), the soil plant analytical division
(SPAD) index, and the leaf rolling index were observed under
limited irrigation during the grand growth stage of sugarcane
(Arun kumar et al., 2020). This study highlights the significance
of CTD and Fv/Fm as useful physiological tools for selecting
sugarcane clones suitable for production under water-limited
conditions. Several physiological traits, such as chlorophyll
fluorescence, CTD, SPAD index, photosynthesis, and
transpiration efficiency (Luo et al., 2013; Jackson et al., 2016;
Liu et al., 2019), are related to photosynthetic efficiency and
total biomass. In sugarcane, traits associated with biomass tend
to have positive relations with cane yields and yield components.
Canopy-based physiological parameters need to be assessed for
their influence on cane yield specifically in pre-breeding and
advanced breeder trials. Tiller and leaf development parameters
and biomass partitioning are potential yield predictors. The
heritability of the most promising parameter should be studied
to exploit the potential of the crop. Mamet and Galwey (1999)
suggested that shoot elongation parameters are reliable indicators
of the time of ripening. Singh and Venkatarama (1983) reported
that early ripening sugarcane cultivars had higher growth rates
than others during elongation, which lends weight to the idea that
early varieties are physiologically more efficient since the early
varieties were taller as well as faster growing than the late varieties.
In sugarcane, changes to plant architecture and crop geometry are

being explored to breed crops better suited to mechanical harvest,
intercropping, modified fertigation methods, and crop
intensification. The concept of ideotypes has thus been
modified; hence, studies on these aspects must also be undertaken.

The major aim of plant breeding science is to develop plant
types with enhanced plant traits and physiological processes. The
schematic representation of the traits of primary nature, which
improve physiological and economic output efficiencies is
depicted in Figure 2. The bottom tier of the triangle
represents the total numbers of tillers (ultimately resulting in
NMC), NMC (actual harvestable part of the crop), SCW (a major
component of cane yield), sucrose (measurable quality of the
produce), and biomass (efficiency of solar energy harvested and
converted to chemical energy). All the traits presented in the first
tier are measurable primary data. The second tier lists desirable
physiological activities culminating in better output of the
processes, viz. early synchronized tillering, conversion
efficiency of tillers to canes, optimized NMC for higher CCS%,
superior partitioning towards economic traits, and the
maintenance of high quality and high biomass for varied end
products (sucrose, bioenergy, and biofuel). The quantifiable and
desirable physiological plant behaviors for efficient output are
depicted in tier three. The penultimate tier explains both
phenotyping and genotyping for the aforementioned
physiological and plant processes. Most of these processes
have been defined by specific phenotype and genotype
markers by sugarcane researchers (Moore and Botha, 2014).
The ultimate outcome, i.e. the ideal sugarcane plant, should
also meet the demands of the sugar industry.

1.8 High-Throughput Phenomics
Using non-invasive methods (such as sophisticated cameras
combined with automation) can help in studying complex
phenotypes in sugarcane crops rapidly. The usefulness of
unmanned aerial vehicles (UAVs) has been clearly reviewed by
Cardoso et al. (2022) for its usefulness in precision agriculture for

FIGURE 2 | Schematic illustrating primary plant traits of sugarcane that
increase efficiencies in physiological and economic output.
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the cultivation of sugarcane in Brazil, a crop with the third largest
planted area in the country. High-throughput phenotyping also
aids in predicting complex traits that are appropriate for selection
and provides relevant information on why particular genotypes
perform well under specific conditions (Pasala and Pandey,
2020). Arun kumar et al. (2020) reviewed studies on shoot/
root growth, plant architecture, greenness, leaf area, leaf
rolling, leaf angle, leaf curvature, leaf senescence, growth rates,
tillering, early vigor, plant height, phenology, biomass, convex
hull, compactness, and eccentricity, all of which could be studied
easily with the aid of cameras (Golzarian et al., 2011; Das et al.,
2016). Infra-red cameras used for thermal imaging have
revolutionized screening methods for drought-tolerant
genotypes in wheat, rice, and other crops. Such cameras, used
in conjunction with UAVs or drones, can be used to identify
drought-tolerant sugarcane clones in available pools of
germplasm. Thermal imaging can be helpful in understanding
stomatal conductance and plant health both under biotic and
abiotic stresses (Moller et al., 2006; Talamond et al., 2015). The
usefulness of UAV-assisted canopy temperature (Tc)
measurements in sugarcane has clearly been emphasized
(Basnayake et al., 2016) compared to that of the old-style,
lengthy, and labor-intensive measurement through handheld
infrared cameras. Arun Kumar et al. (2020) recently
highlighted that canopy temperature depression (CTD) in
sugarcane clones grown under water-limited conditions had a
significant positive correlation with cane yield.

Near infrared imaging and multispectral line scanning
cameras can be useful for determining water content, leaf
thickness, leaf area index (Zhang et al., 2021), and root soil
moisture extraction patterns. Hyperspectral cameras can also be
useful in studying several physiological traits, viz. chlorophyll
content, relative water content, nutrient status, chemical
composition, plant health, and photochemical reflectance
index (Römer et al., 2012; Sahoo et al., 2015; Arun kumar
et al., 2016; Wahabzada et al., 2016). Field phenomics that
encompass the measurement of phenotypes occurring both in
cultivated and natural conditions are much more useful in
sugarcane crop breeding studies than controlled environment
phenomics research, which involves the use of glass houses,
growth chambers, and other systems.

Cane height is highly influenced by the soil, total sugar
content, leaf nitrogen content, temperature, and light intensity,
and it can be an indicator of yield and other parameters (Souza
et al., 2017). Bunruang (2021) showed a significant correlation
(R2 = 0.82) between measured plant height (PH) and estimated
PH, reflecting the usefulness of aerial images from a UAV three
months prior to harvesting.

1.8.1 High-Throughput Phenomics for Early-Stage
Selection
The effectiveness of a high-throughput phenotyping system was
demonstrated by Natarajan et al. (2019); it can be adapted to
capture and use indirect yield-related traits for clone selection
from early-stage selection trials in sugarcane breeding programs.
Ground observations using various sensors, viz. visual,
multispectral, and thermal mounted on UAVs in six-month-

old sugarcane plants, revealed that stalk number and plant height
were highly correlated to canopy cover (rg = 0.72) and canopy
height (rg = 0.69), respectively (Natarajan et al., 2019). They also
reported that UAV-assisted high-throughput phenotyping is
considered an imperative strategy for improving clonal
selections and genetic gains in early-stage sugarcane breeding
programs.

1.8.2 Phenomics for Pre-Harvest Cane Yield
Determination
Recently, Som-ard et al. (2018) reported a successful (more than
90% accuracy) forecasting model for pre-harvest sugarcane yield
determination using UAV-acquired RGB color images coupled
with ground information data. The high spatial resolution of the
UAV image and the advanced image classification of object-based
image analysis (OBIA) with a gray-level co-occurrence matrix
demonstrated the significant potential for the prediction of
sugarcane yield before harvest, which will be beneficial to
sugarcane farmers and related industries. Further adding to
this discussion, Tanut et al. (2021) reported a new robust tool,
viz. the wonder cane model, which correctly forecast total
sugarcane harvest yield with an accuracy of 98.69% with fewer
estimate errors. The wonder cane model determines the cane
yield based on the principle of through data in classification form
rather than data in regression form.

1.8.3 Big Data Management in Plant Phenomics
Phenomics generates a hefty number of images and metadata
through phenotyping instruments, hence there is a prerequisite
for proper data processing and management (Kim et al., 2017).
High-throughput phenomics (HTP) has helped researchers to
record the crop data in a faster way, both in a temporal and spatial
manner. However, in HTP, the big data (data = phenotypic data +
molecular data + environmental data) (Rahaman et al., 2015)
generated over the period remains a huge task, and recently many
articles have addressed this issue of big data management. The
large set of images and the meta-data generated automatically can
be properly processed, standardized, and stored, and finally
combined with genomic models. Proper big data management
will render HTP successful in crop breeding programs for
increased crop productivity under the changing climate.
Reliable, automatic, and high-throughput phenotyping
platforms have been developed to solve this complex problem
of big data management in plant phenomics.

The large set of germplasm in various crops, and the high-
throughput phenotyping along with the intelligent management
of big data through proper phenomic platforms viz. PHENOPSIS,
WIWAM, PHENOSCOPE, GROWSCREEN, TraitMill,
PHENODYN, PlantScan, LemnaTec, Qubit Phenomics, and
HRPF (Rahaman et al., 2015) helps in identifying the outlier,
and finally reduction in background noise, leading to the proper
utilization of data correlated with the required component, viz.
crop yield and biomass. The implementation of proper statistical
tools in data analysis, viz. PCA, factor analysis, discriminant
analysis and stepwise regression, linear mixed model, generalized
linear model (GLM), likelihood estimation of mixed models,
multiple regression, and artificial neural network (ANN),
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favors the accelerated selection of better genotypes in various
crops against abiotic and biotic stresses under the changing
climate. Tests for multicollinearity, autocorrelation, and
heterogeneity will be extremely useful in solving the complex
data analysis (Rahaman et al., 2015).

The correct identification of background noise, for example in
thermal imaging for canopy temperature measurement the air
temperature (Tair), net isothermal radiation (Rni), vapor
pressure deficit (VPD), and wind speed, multiplies the
background noise in canopy temperature determination, and
the dissection of leaf temperature needs stable weather
conditions (Costa et al., 2013).

Thorough understanding of the sugarcane phenotype
according to the phenophase (Vasantha et al., 2021) [i.e.
germination phase (0–60 days): nodal roots and other root
formation along with canopy coverage/vigor; Formative phase
(60–150 days): tiller production; grand growth phase
(150–240 days): optimum leaf area index; maturity and
ripening phase (240–360 days): SCW, cane thickness, cane
length, invertase, SPS, and SS activity] will be extremely
valuable in assimilating the complex pathways and
physiological and biochemical traits, ultimately leading to
better association with crop biomass and yield. A
multidisciplinary team consisting of experts in data
acquisition, image processing, machine learning algorithms,
computer applications, and statistics helps in rendering the
HTP for improved sugarcane phenotyping in meaningful way.

1.9 Genome Editing in Sugarcane
The recent assembly of a draft sugarcane genome has accelerated
crop improvement. In spite of this, its polyploid nature, the large
size of its genome, low transformation efficiency, and lack of
high-throughput tools and transgene silencing in sugarcane poses
a great challenge for these efforts (Souza et al., 2011; Mohan,
2016; Okura et al., 2016). The genome-edited plants with site
directed nucleases have a competitive edge over the transgenic
plants in terms of biosafety regulations. In sugarcane producing
countries, such as Brazil and India, the edited plants with site
directed nuclease (SDN1 and SDN2) approaches are considered
non-transgenic or foreign-DNA-free. SDNs have increased the
possibilities worldwide for researchers and breeders to alter the
genomes of target organisms in a way that is extremely difficult or
impossible to achieve using conventional breeding (Shan et al.,
2013).

Among the highlights of sugarcane genome editing are the
generation of events incorporating and expressing TALEN,
capillary electrophoresis experiments to demonstrate targeted
mutation, analysis of 89–148 nucleotide PCR amplicons
encompassing the TALEN target site, and phenotypes that
show reduced lignin and altered lignin and cell wall
composition under greenhouse conditions (Jung and Altpeter,
2016; Meena et al., 2020b). Sun et al. (2016) utilized TALEN
scaffolds and the transformation system to achieve targeted
caffeic acid O-methyltransferase (COMT) mutation at an
efficiency of 74%, which is comparable to previous studies that
have reported mutation rates of between 4 and 31%. A field
evaluation was carried out by Kannan et al. (2018) to determine

the agronomic performance, cell wall composition, lignin
content, as well as the saccharification efficiency of these
TALEN-mediated COMT mutant sugarcane lines. By
demonstrating TALEN-mediated targeted mutagenesis in
sugarcane, a new option for genetic improvement has opened
up despite its complex polyploid genome. To create a “loss of
function” phenotype in sugarcane, extensive co-editing of many
targets is necessary. These authors found that lignin biosynthesis
gene COMT co-editing more than 100 copies/alleles did not have
any adverse effects on performance under field conditions.
Targeted mutagenesis of the more than 100 COMT copies/
alleles led to a decrease in the amount of lignin and a change
in the ratio of lignin monomers. This was in addition to
improving the saccharification of cell wall-bound sugar by
39–44%.

1.9.1 The CRISPR-Cas System (Clustered Regularly
Interspaced Short Palindrome Repeat)
This genome-editing based on RNA-guided nucleases has
emerged as a one of the most simple and versatile methods
(Gasiunas et al., 2012; Chandrasegaran and Carroll, 2016; Oz
et al., 2021) during the past decade. The CRISPR-Cas
mechanism involves the cleavage of DNA through specific
nucleases, for example, CRISPR-Cas9, and repair by non-
homologous end joining (NHEJ) or homology-directed
repair (HDR), to rectify double-strand breaks (DSBs). Non-
homologous end joining results in knockout alleles through
frameshift mutations due to the loss of nucleotides, while HDR
leads to the introduction of precise genetic modifications,
including single-nucleotide substitutions, gene replacements,
and large insertions (Huang and Puchta, 2019). The CRISPR-
Cas9 system has been successfully employed to modify cereal,
vegetable, and horticultural plant species to improve their
agronomic traits (Xu et al., 2019; Ansari et al., 2020; Tian,
et al., 2021). The challenges in sugarcane, being of a polyploid
nature with a large number of homeologs and homologs, could
have functional redundancy of alleles. Nevertheless, the
CRISPR-Cas9 system offers an opportunity to generate the
efficient multiallelic co-editing of a large number of copies of
genes. Higher efficiency of editing can be achieved through
optimization of the genome-editing reagents and their delivery
to enable the efficient co-editing of a large number of copies/
alleles (Eid et al., 2021).

Genome-edited varieties with improved agronomic traits are
becoming a reality in sugarcane using this technology. Brazil has
developed non-transgenic CRISPR-edited sugarcane, Cana Flex I
and Cana Flex II, with modified cell wall components and high
sucrose content, respectively. Cana Flex I plants facilitate ethanol
production and better extraction of other bioproducts. Eid et al.
(2021) used the CRISPR system to target the multiallelic
magnesium chelatase subunit I (MgCh) gene, which is a key
gene in chlorophyll biosynthesis. The CRISPR-Cas9 system could
target 49 copies/alleles of magnesium chelatase, as confirmed via
Sanger sequencing. The edited plants produced light green to
yellow leaves. This work proved that genome editing could be
achievable in polyploid crops, overcoming the limitations of the
protospacer adjacent motif site (Eid et al., 2021).
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The CRISPR-Cas system has been successfully used to produce
herbicide tolerance in sugarcane (Oz et al., 2021). The co-editing
of multiple alleles of the acetolactate synthase gene was done
through a template-mediated HDR approach. This technology
can be used in both directions, i.e. either elimination of inferior
alleles or random addition of desirable alleles. The alleles of a
susceptible variety can be eliminated to make it resistant and vice-
versa. In future, many agronomically desired traits, such as an
increase in chlorophyll content to enhance the photosynthesis
and reduce the nitrogen requirement, herbicide resistance to
advance weed management, and an increase of multigene to
improve biomass yield in sugarcane (essential to acquire more
biofuel from plant sources to replace the dependency on
petrochemicals and save the environment), can be improved
in the existing cultivars.

As far as the regulatory aspects of genome editing are
concerned, the process is different for different countries. In
the US, gene-editing events without transgenes do not require
regulatory approval by the US regulatory agencies. In Brazil, the
National Biosafety Technical Commission (CTNBio) states that
the classification can be made on a case-by-case analysis by
CTNBio for the varieties of sugarcane. Cana Flex I and II are
classified as non-transgenic. In India, the Department of
Biotechnology, Ministry of Science and Technology, and the
Department of Agriculture Research and Education, Ministry
of Agriculture and Farmers Welfare have recommended that the
SDN1 and SDN2 genome-edited products that are transgene-free
should be exempt from biosafety assessment.

1.10 The Role of Artificial Intelligence and
Machine Learning in Big Data Analysis
Data-intensive modes of research, both in basic and applied plant
sciences, have gained momentum over the last two decades due to
greater advances in the field of big data generation (Leonelli et al.,
2017). Advances in high-throughput genomic platforms
(HTGPs), coupled with public genomic data sharing and high-
throughput phenotypic platforms (HTPPs), has significantly
increased the capacity to dissect biological complexity more
efficiently (Tardieu et al., 2017). High-throughput phenotyping
thorough non-invasive imaging techniques, including thermal,
digital, and spectroscopic imaging, as well as chlorophyll
fluorescence, are more useful in extracting the information,
which helps in the biological elucidation of plant growth
(Walter et al., 2010; Chen et al., 2015). Both plant
phenotyping and genotyping have improved progressively over
the recent past, and big biological data generation through
HTGPs and HTPPs has contributed to a boom in artificial
intelligence (AI) and machine learning (ML) in commercial
agriculture to deliver precision farming strategies.

The simulation of human intelligence in machines that are
programmed to think like humans and mimic their actions is
generally refereed as the AI. It refers to machines displaying
characteristics of the human mind (Frankenfield, 2021). Machine
learning (ML) is a sub-domain of AI where the machine can learn
automatically from data without being explicitly programmed. AI
methods require large data repositories in order to effectively

program machines for desired tasks. To enhance early detection
and thereby improve decision-making, AI algorithms require big
data sets for training (Frey, 2018). The data generated through
non-destructive phenomics using instruments and sensors, such
as digital cameras and spectrometers, are generally integrated
with their own proprietary communication protocols into AI
algorithms. It is often necessary to convert sensor-based data to
digital formats before analyzing it (White et al., 2012). In order to
utilize phenomics data management, Artificial Intelligence (AI) is
mainly used for: the conversion of sensory data into phenotypic
information; the development of models to comprehend
genotype-phenotype relationships with environmental
interactions; and the management of databases to facilitate the
sharing of information and resources (Pauli, 2015). The main
aspects of AI, ML, deep learning, and computer vision have been
applied thus far to a recognizable extent in phenomics. Similarly,
high-throughput NGS technologies have been emerging to
generate economically viable big data sequence sets to address
the continuous demand for cost-effective sequence data
generation.

The recent advancements in the field of AI have presented
ample opportunities; AI applications in crop research and
agriculture have so far primarily benefited large-scale industrial
farming (Carbonell, 2016), with research and development
investment mainly focused on: commodity crops, such as
wheat, rice, and maize; high-value horticulture crops, such as
soft fruits; and the enhancement of large-scale orchards and
vineyards. Yield forecasting in agricultural crops is a challenging
task; to address this, Murali et al. (2020) developed a ML hybrid
model with available data for yield forecasting. Combining a
statistical model, such as generalized autoregressive conditional
heteroscedasticity (GARCH), with a recurrent neural network
(RNN) refined using the whale optimization algorithm, was
found to be more appropriate for sugarcane yield forecasting in
the medium term. Similarly, Kumar et al. (2015) used ANN-based
models for the prediction of sugarcane yield in India. The ML
algorithm has also been used to predict the sugarcane yield by using
the support vector machine (SVM) algorithm (Kudagi et al., 2020).
In a similar attempt, Rodrigues and Pereira (2021), applied ML to
normalized difference vegetation index (NDVI) images to estimate
sugarcane productivity. ANN has also been used in the individual
selection process within the best sugarcane families to increase the
sugarcane breeding efficiency; ANN made the same selective
choice as the breeder during the simulation for the individual
best linear unbiased predictors (BLUPs) (Brasileiro et al., 2015).

A novel deep learning (DL) approach with three different
extractor models (VGG-16, VGG-19, and Inception v3) and
seven (naive Bayes, AdaBoost, neural network, stochastic
gradient descent, K-nearest neighbor, support vector machine,
and logistic regression) different classifiers has been used to
classify sugarcane crops as diseased and non-diseased with the
highest area under curve (AUC) of 90.2% (Srivastava et al., 2020).
In a similar attempt, AI has been used to detect sugarcane plant
disease by using the discrete wavelet transform (DWT) algorithm
(Reddy et al., 2017). The fast and precise detection of stem nodes
on sugarcane crops in the complex natural environment is a pre-
requisite for the development of sugarcane harvesters. An object
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detection algorithm based on deep learning was used by Chen et al.
(2021) for stem node recognition in the sugarcane field conditions.
The four different deep learning algorithms (Faster R-CNN,
SSD300, RetinaNet, and YOLO v3) were compared with the
YOLO v4 algorithm, and the average precision of the sugarcane
stem node detection by YOLO v4 was 95.17%, which was superior
compared to other tested algorithms. Zhou et al. (2020) used a new
sugarcane seed cutting system based on machine vision to save
time and labor intensity. The different segments of the sugarcane
stalks were identified by the machine vision with a recognition rate
of 93% and an average time of 0.539 s, along with zero rate of bud
damage. Sugarcane is a long duration crop, and during its course of
growth and development, a lot of weed infestation poses a threat to
sugarcane yield. In this context, Hashemi-Beni et al. (2022) used
deep learning to improve weed control and precision agriculture
through the fast processing of big datasets captured by unmanned
aerial systems (UASs) for smart and precision agriculture. These
authors fine-tuned U-Net to classify sugarcane ortho-mosaic UAS
datasets into three classes (background, crops, andweeds) based on
its performance on SegNet, FCN-32, FCN-16, and FCN-8 deep
learning models to distinguish crops from weeds (Hashemi-Beni
et al., 2022).

2 CONCLUSION

The integration of GS techniques in current breeding
programs will be very useful in identifying better-
performing sugarcane clones at earlier stages than
conventional breeding techniques. GS can not only help in
reducing population sizes but can also shorten breeding cycles
and help in the selection of parents with superior agronomic
traits. Utilizing rapid recurrent selection in superior clones can
help in accumulating desired alleles associated with superior
agronomic traits, such as cane yield, sucrose percent, NMC,
uniform tillering, staying green, erect canopy, non-flowering
habit, deep root system, better stem elongation, and tolerance

to biotic and abiotic stresses. Identifying clones with high
accuracy helps in increasing genetic gains for complex traits
in sugarcane breeding programs. Implementing GS techniques
with modified breeding schemes can have great potential to
increase selection efficiencies and the rate of genetic gain in
sugarcane. Real-time monitoring of phenomic changes with
respect to the response of plants to different stresses has been
simplified by the genomics revolution, which has alleviated the
bottlenecks in phenomics. Automated and remote sensors,
data integration, and experimental design all contribute to
effective phenotyping by increasing the accuracy, precision,
and throughput of measurements, as well as reducing costs due
to rapidly evolving low-cost phenotyping facilities. The
invention of chemicals and physical mutagens has shown a
multifold improvement in creating genetic changes that have
shaped a new revolution in agriculture production. The
introduction of the precise and specific biologically highly
efficient tool CRISPR-Cas9 is expected to accelerate the
beneficial genetic change in crop plants, assisting in feeding
the world’s growing population. Advancement in the
application of AI and ML is expected to significantly
improve instant planning and decision making and
maintain product quality.
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