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Abstract: Surface plasmon resonance (SPR) biosensor is 
a powerful tool for studying the kinetics of biomolecu-
lar interactions because they offer unique real-time and 
label-free measurement capabilities with high detection 
sensitivity. In the past two decades, SPR technology has 
been successfully commercialized and its performance 
has continuously been improved with lots of engineering 
efforts. In this review, we describe the recent advances in 
SPR technologies. The developments of SPR technologies 
focusing on detection speed, sensitivity, and portability 
are discussed in details. The incorporation of imaging 
techniques into SPR sensing is emphasized. In addition, 
our SPR imaging biosensors based on the scanning of 
wavelength by a solid-state tunable wavelength filter 
are highlighted. Finally, significant advances of the vast 
developments in nanotechnology-associated SPR sensing 
for sensitivity enhancements are also reviewed. It is hoped 

that this review will provide some insights for researchers 
who are interested in SPR sensing, and help them develop 
SPR sensors with better sensitivity and higher throughput.

Keywords: biosensors; surface plasmon resonance; SPR 
imaging; nanoplasmonics; plasmonics.

1  Introduction
Surface plasmon resonance (SPR) biosensors have 
become an important tool for exploring the kinetics of 
biomolecular interactions, and have been widely adopted 
in the detection of chemical and biological analytes 
[1]. Moreover, by combining the SPR technique with an 
imaging system, one can readily achieve high-throughput 
real-time label-free biosensing in two-dimensional (2D) 
microarrays and parallel monitoring of multiple numbers 
of biomolecular interactions. In the past few decades, it 
has been widely used for measuring specificity, affinity, 
and kinetic parameters in the macromolecule binding 
process, such as protein-protein, protein-DNA, receptor-
drug, and cell/virus-protein bindings [2]. To date, four 
practical SPR sensing techniques, involving intensity, 
wavelength, angle, and phase interrogations, have been 
widely reported [3]. In the intensity interrogation SPR, the 
shift of the SPR dip is translated into the change of reflec-
tivity in the linear region of the SPR angular or spectral 
response curve. In the wavelength interrogation mode, 
the SPR spectral profile can be obtained by either scan-
ning the incidence wavelength or using a spectrometer 
for analyzing the reflected beam. In the angular interroga-
tion mode, the shift of the SPR dip can be monitored by 
continuous scanning of the SPR angular spectrograph. In 
the phase interrogation mode, the SPR phase shift can be 
measured by detecting the phase difference between the 
signal beam and reference beam. To satisfy the require-
ments of high throughput, real time, and high sensitivity 
in the detection of chemical and biological analytes, many 
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efforts have been made. More recently, owing to the vast 
developments in nanotechnology, many new ideas involv-
ing nanostructures in SPR sensing have emerged and 
shown lots of advancements. The emergence of new SPR 
techniques based on the above principles has served as a 
promising sensing approach in the monitoring of small-
molecule interactions. In this review, we present some of 
the latest advances and developments in this field, focus-
ing on the technical design of different SPR sensing tech-
niques. New advancements in four practical SPR sensing 
techniques are introduced, followed by a brief introduc-
tion to recent technical advancements in nanostructure-
based SPR sensing techniques.

2  �Intensity interrogation SPR
In the intensity interrogation mode, the shift of the SPR 
dip can be monitored by measuring the change of reflec-
tivity in the linear region of the SPR angular or spectral 
response curve. In the linear region, the change of the 
SPR signal is proportional to the change of the refrac-
tive index above the metallic film. This requires both the 
incidence angle and wavelength of excitation light to be 
fixed and optimized for best possible sensitivity. In order 
to improve the measurement throughput, multichan-
nel SPR [4, 5] and SPR imaging (SPRi) [6, 7] are devel-
oped. Figure  1 shows a typical scheme of a prism-based 
intensity interrogation SPRi setup. The charge-coupled 
device (CCD) camera records a series of 2D intensity con-
trast images of the sensor surface in real time. Each pixel 
within the image frame provides one data point of the SPR 
response in the sensor surface. Theoretically, this one-to-
one correspondence between the sensor surface and the 
2D CCD imaging pixel arrays may offer massively paral-
lel fast biosensing capability. However, in prism-based 

SPRi, the spatial resolution is significantly low, especially 
along the direction parallel to the surface plasmon wave 
(SPW) due to the geometrical aberration of the prism and 
the propagating length of the SPW. An optimized spatial 
resolution of 1.7 μm perpendicular and 2.8 μm parallel to 
the SPW has been obtained [8]. So far, the intensity inter-
rogation mode is a straightforward case for 2D arrays. It 
has been widely used and commercialized by Biacore GE 
and GWC Technologies for high-throughput analysis in 
immunosensing [4], DNA hybridization [7], protein inter-
actions [9–11], and cellular analysis [12, 13]. However, for 
the detection of multiple interactions simultaneously, 
it is usually not practical to obtain a homogeneous and 
optimal response over the entire analyzed surface with the 
choice of a unique operating point [14].

3  �Angle interrogation SPR
In the angular interrogation mode, the incidence wave-
length is fixed and the shift of the SPR dip can be 
monitored by continuous scanning of the SPR angular 
spectrograph. As compared to the intensity interrogation 
mode, the noise of the light source could be eliminated in 
the angle interrogation mode, which results in a relatively 
higher sensitivity [15]. In a conventional angle interroga-
tion SPR sensor, a goniometer with two rotational stages is 
usually required when scanning the angle of incidence. To 
avoid using an expensive goniometer, Mohanty and Kasiv-
iswanathan proposed a two-prism setup with only one 
rotating element [16]. In such a setup, the emergent rays 
are always parallel to each other with minimal separation. 
More importantly, the rays fall normally on the detector 
for a wide angular scanning range, thus providing a rela-
tively large dynamic range. Sathiyamoorthy et  al. then 
modified the two-prism setup to keep both the interroga-
tion spot and the reflected beam stationary [17]. Although 
the two-prism configuration have reduced the rotational 
stage from two to one and thus improved the sensitivity, 
to get a faster response, it is ideal to avoid any mechanical 
movements. For such a purpose, a convergent light beam 
covering an interval of incidence angles is usually intro-
duced. The resonance angle can then be obtained with a 
detector array by curve fitting the reflectance minimum 
[18]. However, in such configurations, to increase the 
angle detection resolution for sensitivity improvements 
requires a lot of efforts. Tao et al. have achieved a high res-
olution of ~10−5 deg and a fast response time of 1 μs using 
a bicell photodetector for accurate measurement of shift 
in the SPR angle [19]. Berger and Greve [20] introduced 
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Figure 1: Schematic illustration of a typical prism-based intensity 
interrogation SPRi setup.
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differential detection in their setup, where the angle of 
incidence was modulated by a piezoelectric actuator and 
the reflectance signal was measured with a lock-in ampli-
fier. Their sensor has shown a sub-microdegree resolution 
for the detection of immunoreaction.

A single-spot interrogation SPR sensor can detect 
biological response with high sensitivity; however, it is 
not satisfactory in terms of achieving high-throughput 
measurements. This is when imaging technology comes 
in. Wolf et al. [21, 22] developed a prism- and detection-
arm-rotated angle-resolved SPRi for quantitative char-
acterization of DNA interactions and the kinetics of 
DNA-drug binding. White light from a tungsten-halogen 
source was used for SPR excitation, and a liquid crystal 
variable retarder was employed to correct images for 
spatial intensity variation in the light source. With such 
corrections, the authors achieved accurate measurements 
of surface coverage without the need for instrumental 
calibration. In 2008, Ruemmele et  al. [23] reported an 
inexpensive automated angle-scanning SPRi instrument 
with optimum flexibility. So far, angle-resolved SPRi has 
been widely applied for biomolecular interaction detec-
tion with high-throughput. Beusink et  al. demonstrated 
the use of a commercial SPRi instrument for sensitive, 
accurate, and label-free detection of analytes with differ-
ent molecular weights in a large dynamic range (from 2.4 
to 150 kDa) within the same experiment [24]. In another 
angle scanning SPRi device developed by Zhou et al. [25] 
a rhombic structure was introduced to convert the linear 
motion of a piezoceramic motor into the angular motion 
of the laser and CCD arrays, as shown in Figure 2. Owing 
to the fast scanning speed provided by the piezoceramic 

motor, the authors could detect the mismatched bases in 
the caspase-3 DNA at high throughput. In order to avoid 
the mechanical scanning of the detection arm, angle-
resolved SPRi technologies based on an angle-controlled 
mirror or an acousto-optic deflector have been developed 
[2, 24]. Therefore, the measurement rate of the SPR dip is 
improved up to 10 Hz in the angle-resolved SPRi [2].

4  �Wavelength interrogation SPR
In the wavelength interrogation mode, the angle of inci-
dence is fixed while the SPR spectral profile is continuously 
obtained to monitor the SPR dip. Wavelength interroga-
tion SPR provides a wide dynamic range, and its detec-
tion sensitivity could be as high as that offered by angle 
interrogation. Moreover, wavelength interrogation-based 
SPR sensors are much more flexible in terms of optimiza-
tion because the operation wavelength range can be easily 
tuned to achieve the best SPR excitation. In this mode, the 
SPR spectral profile can be obtained by either scanning 
the incidence wavelength or using a spectrometer for ana-
lyzing the reflected beam. In recent years, lots of efforts 
have been spent to improve the sensitivity as well as the 
throughput. Yuk et al. [26] introduced an SPRi sensor for 
the investigation of protein interactions on arrays, where, 
in addition to the calculation of the resonance wavelength 
from the SPR reflectivity spectra, the authors also incor-
porated the position control. With these arrangements, 
they could quantitatively analyze the specific binding of 
anti-Rac1 and anti-RhoA to Rac1 and RhoA on the protein 
arrays. In addition to high throughput, it is also important 
to achieve real-time monitoring of biological interactions. 
To improve the time resolution, Liu et al. [27] reported a 
1D optical line scan spectral SPR system for imaging 2D 
arrays. It took the system 60 s to measure the SPR dips of 
the 2D array for an area of 8 × 8 mm. Recently, to further 
speed up the measurements, an optimized algorithm 
based on five parameters was developed for spectral SPRi 
sensors, with which the measurement time of the SPR dip 
was reduced dramatically to 10 s for 2D arrays [14].

Our group also built a fast-wavelength interroga-
tion SPRi system, as shown in Figure 3 [28]. The system 
has a halogen lamp as the excitation source, while a 
liquid crystal tunable filter (LCTF) was used for fast inci-
dent wavelength scanning with a bandwidth of 8  nm. 
The reflected light is captured by a 12-bit CCD. With this 
system, we have achieved a sensitivity of 4.69 × 10−6 refrac-
tive index units (RIU) and a dynamic range of 5.55 × 10−2 
RIU. Using a feedback loop, the scanning wavelength 
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Figure 2: Schematic of a rhombic-shaped angle interrogation SPRi 
system based on a piezoceramic motor. Reprinted with permission 
from Ref. [25].
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range was dynamically adjusted to match the SPR dip and 
thus to achieve a high scanning speed. With this tech-
nique, about 700 ms is required for one cycle of scanning 
[29]. According to a unified theoretical model proposed by 
Wong et al. [30] the sensitivity of the SPR sensor depends 
upon the noise of the used optoelectronic components 
as opposed to the design of the SPR optical platform. To 
improve the sensitivity of our system, the halogen lamp 
was then replaced with a white light laser, which has 
higher intensity, a more stable spectrum in the visible 

range, and most importantly, a much lower noise level. To 
improve the scanning speed, the LCTF was replaced with 
an acousto-optic tunable filter, which is faster in switch-
ing the incident wavelength and also has a narrower 
output bandwidth. With such replacements, the sensitiv-
ity and dynamic range were improved to 1.27 × 10−6 RIU 
and 4.63 × 10−2 RIU, respectively. The time required for one 
cycle of scanning is reduced to 340 ms [31].

5  �Phase interrogation SPR
The phase interrogation SPR technique requires a fixed 
angle of incidence and wavelength for the incident light 
while the phase of the reflected light is measured. Com-
pared with the angle or wavelength interrogation mode, 
the phase interrogation mode is very suitable for integra-
tion with imaging technology to achieve high throughput, 
and it also provides a great potential for an ultrahigh sen-
sitivity [15]. However, direct optical phase measurement is 
not as simple, as no detectors are fast enough to resolve 
the oscillating intensity of an optical beam. Thus, phase 
measurement normally relies on the interference between 
a signal beam and a reference beam, from which a low-fre-
quency signal can be generated and resolved by a photode-
tector [32]. In 1996, Nelso et al. [33] proposed an SPR phase 
sensor based on optical heterodyne detection (Figure 4). 
An acousto-optic modulator (AOM) was used to divide the 
laser source into two beams with a frequency difference of 
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Figure 4: Schematic of phase detection sensing configuration with AOM. Reprinted with permission from Ref. [33].
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140 MHz. Then, a polarizing splitter was used to generate 
the reference and signal light beams for the phase detec-
tion. With this setup, an accurate measurement of the 
SPR-generated phase shift was obtained, and the authors 
could achieve an ultrahigh sensitivity of up to 5 × 10−7 RIU. 
Following that, Xinglong et  al. introduced a transverse 
Zeeman laser as the light source, which includes both 
p- and s-polarized light, and demonstrated a heterodyne 
phase detection SPR sensor for immunosensing [34]. Later 
on, Wu et al. reported another similar heterodyne phase 
detection sensor and pushed the sensitivity to 2 × 10−7 
RIU [35]. Subsequently, by integrating the features of a 
common-path optical heterodyne interferometer and the 
amplitude-ratio detection mode, Chou et al. developed a 
paired surface plasma wave biosensor that had achieved 
a record-high detection sensitivity of up to 10−9 RIU [36, 
37]. Besides AOM, a photoelastic modulator (PEM) can 
also be used to modulate the laser frequency. Peng et al. 
developed a single-beam approach where the input beam 
is modulated by a PEM and the SPR-induced phase change 
was obtained by an analytical signal-processing algorithm 
[38]. This single-beam system was then used for real-time 
monitoring of biomolecule binding reactions with detec-
tion sensitivity up to 6 × 10−7 RIU or 15 ng/ml [39, 40].

In the phase interrogation mode, Mach-Zehnder and 
Michelson interferometers have been widely adopted to 
get the SPR-induced phase shift [15, 32]. Kabashin and 
Nikitin firstly reported the use of Mach-Zehnder interfer-
ometer for SPR sensing [41, 42]. The SPR-induced phase 
change could be obtained by analyzing the interference 
fringes and their spatial displacements. The system dem-
onstrated a sensitivity threshold of 4 × 10−8 RIU. Wu et al. 
proposed a similar Mach-Zehnder interferometer-based 
SPR sensor, as shown in Figure  5 [43]. In their setup, a 
piezoelectric transducer was used to introduce a periodic 
linear phase shift to the reference light, and a Wollaston 

prism was used to extract the p- and s- polarization for the 
two detectors. The optimum sensitivity of the setup can 
achieve 2 × 10−8 RIU [44].

In general, a phase interrogation SPR sensor gives 
a higher sensitivity as compared to the angle or wave-
length interrogation mode; however, the dynamic range 
is usually limited. In order to improve the detection 
dynamic range, Ng et al. [45] developed an optimized SPR 
biosensing system that had incorporated the temporal 
carrier technique with a common-path spectral interfer-
ometry. The system achieved a sensitivity of up to 2 × 10−8 
RIU over a dynamic range of 3 × 10−2 RIU and was used for 
drug screening [46]. The phase interrogation mode can 
also be incorporated with the SPRi technique for high-
throughput analysis. In 2000, Nikitin et al. [47] proposed 
a micro-array interferometry SPR biosensor for bio- and 
chemical sensing. Xinglong et  al. [48] demonstrated a 
common-optical-path interferometry-based SPRi sensor 
combining SPR and spatial phase modulation measure-
ment. The arrayed SPR sensor was then demonstrated 
for antigen-antibody binding and dissociation process 
with an improved sensitivity of >10−6 RIU [49, 50]. More 
recently, they have shown an improved system for protein 
microarray experiments with a wide dynamic range over 
0.015 RIU and a sensitivity down to 5 × 10−7 RIU [51]. We 
also have proposed a wavelength-multiplexing phase-sen-
sitive SPRi sensor, as shown in Figure 6 [52]. In this setup, 
a xenon lamp was used as the excitation source, followed 
by an LCTF to sweep the input wavelength and a liquid 
crystal modulator to modulate the optical retardation for 
phase dithering. An image sensor was used to capture the 
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intensity response of the sensor surface. With this system, 
we could find the SPR phase at any wavelength of interest, 
thus achieving a detection sensitivity of 2.7 × 10−7 RIU with 
a wide dynamic range of 0.0138 RIU.

6  �Recent advances in nanoparticle- 
and nanomaterial-based 
SPR sensing

6.1  �Plasmonic nanoparticle-based 
SPR sensing

With the developments in nanostructure engineering, 
nanotechnology has found many ways of enhancing 
the sensitivity of conventional SPR sensing techniques. 
Among these methods, one of the most commonly used 
strategies is the introduction of different metallic plas-
monic nanostructures, especially those made of gold or 
silver. Typically, for a metallic nanostructure with a size in 
the range of several tens of nanometers or smaller, the free 
electrons were trapped on the nanoparticle surface. Under 
proper optical excitation, these free electrons would oscil-
late collectively in accordance with the incident light 
and thus results in localized SPR (LSPR). Similar to the 
conventional SPR, LSPR is also sensitive to the localized 
dielectric environment [53]. In addition, as the quantum 
size effect is involved in the LSPR effect, the size, shape, 
and composition of the metallic nanostructure would also 
affect the resonance dramatically. As for this plasmonic 
nanostructure-induced sensitivity enhancement, the key 
factor lies in the coupling between the surface plasmon 
polaritons (SPPs) from the conventional SPR sensor chip 
and the localized surface plasmon (LSP) from the plas-
monic nanostructures.

Because of the facile way of synthesis and surface 
modification, gold and silver nanoparticles have been 
widely introduced into conventional SPR sensors to 
achieve ultrahigh sensitivity. Theoretically, the coupling 
between the LSP and SPP could be studied through various 
numerical models [54]. In a simulation shown by Lévêque 
and Martin, the coupling between the LSP and the SPP can 
produce a dramatic enhancement of the electromagnetic 
(EM) field by a factor of up to 5000 in the space between 
the nanoparticles and the plasmonic film [55, 56]. More-
over, according to a recent report from Li et al. when plas-
monic nanoparticles are introduced into a conventional 
Kretschmann-Raether configuration for SPR sensing, the 
LSPs will be excited through extended surface plasmons 

(ESPs). Owing to the strong confinement of the ESP waves 
in the vertical direction, the EM field between the plas-
monic film and the nanoparticles could be enhanced at 
a much higher level (1–3 orders higher) than that directly 
excited from free space [57]. Although the numerical 
simulation could be straightforward, one should still pay 
attention to certain details. As an example, Golden et al. 
pointed out that the dielectric function of gold nanopar-
ticles is not only wavelength dependent, which is well 
understood, but also dependent on the particle-to-metal-
substrate distance in an angle-resolved SPRi configura-
tion. It would be necessary and important to take these 
details into consideration in simulations [58].

Based on the LSP-SPP coupling-induced enhance-
ment, many ultrasensitive biometric detectors for 
sensing subtle environmental changes have been dem-
onstrated since the late 1990s [59–63]. In the LSP-SPP 
coupling configuration, numerical simulation shows 
that the EM field enhancement is usually the strongest in 
the gap between the nanoparticle and the film. To get an 
optimized sensitivity enhancement, it is important to put 
the analyte into the gap to induce perturbation, and this 
in most cases requires a sandwich configuration. In the 
past decades, various techniques making use of different 
parameters, which include the gap distance between the 
nanoparticle and the metal film and the physical prop-
erties of the nanoparticles, have been developed and 
optimized based on this phenomenon [64]. The colloidal 
synthesis of rod-shaped gold nanoparticles (nanorods) 
has offered another dimension of tunability than spheri-
cal ones. The gold nanorods have two LSPR wavelength 
peaks, of which the longitudinal LSPR-induced peak 
could be fine-tuned over a large range by changing its 
aspect ratio [65]. This has thus given us the opportunity 
to optimize the coupling efficiency between the LSP 
and SPP in the nanoparticle-film configuration. In this 
regard, we had demonstrated the use of functionalized 
gold nanorods as amplification labels for ultrasensitive 
SPR biosensing with a sensitivity estimated to be ~40 pg/
ml for antibody detection [66]. More recently, a similar 
ultrasensitive sandwich immunoassay setup was intro-
duced for the tumor necrosis factor-α antigen detection 
in cancer-related disease research, while the detection 
limit of the antigen concentration was further pushed 
to the femtomolar range [61]. The same report has indi-
cated that the orientation of gold nanorods toward the 
gold film is also a factor for the sensitivity enhance-
ment. For further investigation, Kwon et  al.  [67] have 
made a detailed comparison over the nanoparticle size 
and shape. In their study, different gold nanoparticle 
shapes (cubic cages, rods, and quasi-spherical) were 
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systematically compared through thrombin detection. 
They found that the greatest enhancement in signal 
was observed for the quasi-spherical particles with the 
detection of thrombin concentrations as low as ~1 am, 
followed by the nanorods where ~10 am was detected. 
It is worth mentioning that the size of all the nanopar-
ticles were in the range of 40–50 nm, which was proved 
to be more efficient than smaller nanoparticles. In 
general, the sandwich configuration for maximum sen-
sitivity enhancement usually requires careful design and 
modifications of the gold film and/or the nanoparticle 
surface, which leads to complications of the SPR chip. 
To break this restriction, Maurer et  al. [68] introduced 
a graphene spacer between the gold film and the nano-
particles. Their numerical simulations suggested that 
the LSP mode of the gold nanoparticles is dipolar and 
that the hotspots of the electric field are pushed to the 
top corners of the nanoparticles, which represents a 33% 
gain in sensitivity and opens up new sensing strategies.

Although LSP-SPP coupling is considered as the major 
contributor to the sensitivity enhancement, the mass dif-
ference between nanoparticles is regarded as another 
contributor, especially when the LSPR wavelength of the 
nanoparticle is away from the film SPR wavelength [69]. 
A more detailed study by Hong and Hall showed that for 
a 20-nm gold nanoparticle, the dominant enhancement 
associated with the LSP-SPP coupling effect only occurs 
when the gap is smaller than ~8 nm, while the mass asso-
ciated with the nanoparticle dominates the enhancement 
beyond that [70]. Besides the sensitivity consideration, the 
integrity and stability of the chip should not be ignored in 
practical sensing situations. As an example, Lumdee et al. 
developed a robust sensing platform where the gold film 
was coated with a thin layer of Al2O3 for both spectral tun-
ability and protection. The sensor chip has demonstrated 
extreme stability under high-power laser irradiation of 
100 W/mm2 at resonance wavelength [71].

6.2  �SPR sensing with non-plasmonic 
nanoparticles

In addition to plasmonic gold and silver nanoparticles, 
recent reports have shown other choices of nanomateri-
als for sensitivity enhancement in SPR sensing, such as 
quantum dots (QDs), graphene, magnetic nanoparticles, 
hydrogel nanoparticles, and silicon nanoparticles. QDs 
are semiconductor nanomaterials with a well-known 
size/composition tunable fluorescent property, and have 
been widely used in biomedical research for sensing 
and imaging [72]. With this unique optical property, QDs 

have first found applications in the early 2000s for DNA 
sequence detection using SPR fluorescence spectroscopy 
[73]. More recently, several ultrasensitive SPR biosensors 
involving QD-conjugated biomolecules have been devel-
oped [74–76]. In 2014, Sandros’ group introduced aptamer-
modified QDs into an SPRi biosensor and demonstrated 
a record-high sensitivity of zeptomole (10−21 moles) detec-
tion capability for C-reactive protein [77]. The same group 
had then shown that such an ultrasensitive platform 
could operate in multiplexed detection for clinical bio-
markers [78].

Graphene as a carbon-based 2D material with extraor-
dinary physicochemical properties has found its applica-
tions in a wide range of research areas [79]. In SPR sensing, 
Wu et al. have shown that a thin layer of graphene cover-
ing the gold thin film in a conventional SPR sensor would 
improve the sensitivity due to the increased adsorption of 
biomolecules on graphene and the optical property of gra-
phene [80]. The adsorption property through π-π stacking 
has also made label-free detection possible. Wang et  al. 
demonstrated a regenerative SPR sensor where aptam-
ers were assembled on the graphene surface and used 
for α-thrombin detection [81]. A similar strategy using 
reduced graphene oxide was later demonstrated in a label-
free SPR sensor by Subramanian et al. for selective detec-
tion of lysozymes with a detection limit of 0.5 nm [82]. 
More recently, using phase singularities of the reflected 
light, Zeng et  al. [83] demonstrated an ultralow ssDNA 
detection limit of 1 × 10−18 m through graphene-gold meta-
surface architectures. In a conventional SPR sensor chip, 
it is known that a thin film of silver would generally give 
a higher sensitivity than gold. However, as silver is more 
susceptible to harsh environment, gold has remained the 
first choice. This situation may be changed through gra-
phene coating. According to a numerical simulation from 
Choi et al. [84] a few layers of graphene on a 60-nm-thick 
silver film would significantly increase the SPR signal for 
more than three times. More importantly, the graphene 
layer also offers great protection against silver oxidation, 
which was then demonstrated in experiments by Zhao 
et al. [85].

Similar to graphene, magnetic nanoparticles have 
also been used in SPR sensors for sensitivity enhance-
ment through analyte enrichment. Teramura et  al. first 
demonstrated the use of 50-nm streptavidin-conjugated 
magnetic nanobeads to amplify the SPR signal through 
a sandwich-type immunoassay. Because the SPR signals 
were highly intensified, the authors were able to detect 
brain natriuretic peptide at approximately 25 pg/ml [86]. 
Because of the unique physical property, magnetic nano-
particles not only enrich the concentration of the analyte, 
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but also have other advantages. Soelberg et al. [87] have 
shown that with antibody-linked magnetic nanoparticles, 
one can accomplish the two goals in SPR sensing simulta-
neously: increasing the sensitivity through concentration 
enrichment and reducing the background through puri-
fication. With these advantages, magnetic nanoparticles 
have found wide applications in SPR sensing during the 
past decade [88].

Apart from all the abovementioned nanostructures 
using analyte enrichment or signal amplification, there 
are also other means developed for sensitivity enhance-
ment in SPR sensors. Cho et  al. introduced hydrogel 
nanoparticles in SPR microscopy for dynamic monitor-
ing of bioactive peptide melittin uptake. The SPP point 
diffraction pattern of hydrogel nanoparticles attached to 
the gold film were recorded and analyzed for quantifying 
the melittin concentration [89]. Kuo et  al. demonstrated 
that silicon nanoparticles are also capable of enhanc-
ing the EM field when coupled with a gold film, which is 
mainly because of the high refractive index of silicon nan-
oparticle. More importantly, the enhancement is in the 
near-infrared region and is polarization dependent. This 
could have great potential in SPR sensing applications 
[90]. In addition to using a single type of nanoparticles 
for sensitivity enhancement, combinations of different 

nanomaterials have also been explored. As an example, 
Wang et al. [91] used a dual signal amplification strategy 
adopting gold nanoparticle-antibody and antibody-QD 
conjugates for quantitative detection of biomolecules in 
clinical samples with high specificity (Figure 7). The dual 
amplification configuration increased the signal ampli-
fication by 50-fold and achieved a detection limit as low 
as 0.1 ng/ml for α-fetoprotein, carcinoembryonic antigen, 
and cytokeratin fragment 21-1.

6.3  �SPR sensing with nanostructure arrays

As the colloidal synthesis method offers a mass produc-
tion ability of nanoparticles (at molar scale), plasmonic 
nanoparticle-based LSPR sensing has great potential in 
realizing miniaturized and high-throughput biomolecular 
nanoarrays. However, the variations in the peak-wave-
length location because of the constraints in synthesizing 
monodispersed nanoparticles have limited the screen-
ing precision. To reduce the influence from these vari-
ations, Guo et  al. developed a method to normalize the 
LSPR from geometrically different nanoparticles. After 
the normalization, different nanoparticles showed highly 
consistent plasmon responses and achieved well-fitted 
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Figure 7: Schematic illustration of an SPR biosensor using dual signal amplification strategy. (A) Coating of an SPR chip with Ab1@AuNP 
conjugates. (B) Preparation of Ab2@QD conjugates. (C) Sample was flowed along the sensor chip coated with Ab1@AuNP conjugates to 
capture the target, followed by running the Ab2@QD conjugates to amplify the signal, which could be detected by the SPR biosensor. 
Reprinted with permission from Ref. [91].
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dose-response curves [92]. Another way to reduce the 
abovementioned variations is to use lithography methods, 
such as electron beam lithography, interferometric lithog-
raphy, and colloidal lithography [93–95]. As compared 
with colloidal synthesis, lithography offers a much better 
control over the size, shape, and uniformity of the nano-
structures with high precision. Most importantly, it pro-
vides the capability of fabricating geometrically ordered 
nanostructure arrays. With these arrays, SPR could be 
generated through perpendicular excitation instead of a 
prism, and thus facilitate the integration of SPR sensor 
chips [96]. Early demonstrations usually use electron 
beam lithography for pattern generation. Sharpe et  al. 
demonstrated gold nanohole arrays for immunobiosens-
ing and achieved a spectral response of 393 nm/RIU [97]. 
Kim et al. then built arrays of nanogratings and nanoholes 
on a thin gold film for influenza DNA hybridization detec-
tion [98]. Using the nanostructure arrays, the angle inter-
rogation-based SPR sensitivity was amplified for 2.54 and 
4 times for the nanogratings and nanoholes, respectively. 
The sensitivity enhancement was found to be attributed to 

an increased surface reaction area and stronger coupling 
between analytes and the excited LSPs. Rodríguez-For-
tuño et al. fabricated gold nanocross arrays on silicon sub-
strate for chemical sensing [99]. Owing to the flexibility 
of electron beam lithography, the parameters of the nano-
cross structures could be optimized for successful sensing 
of chemical monolayers with an ultrahigh sensitivity of 
500–700 nm/RIU. In general, electron beam lithography 
could fabricate structures of arbitrary topography with 
high precision. However, it is usually time consuming 
and expensive for large-scale fabrication. To overcome 
this limitation, nanoimprint lithography has been intro-
duced and received great attention. Using this technique, 
McPhillips et  al. [100] fabricated arrays of gold-coated 
nanodomes on glass substrates. These nanodomes were 
highly sensitive to the refractive index of the surrounding 
medium due to their complex plasmonic resonances. In 
addition, the authors could adjust the array dimensions 
and the thickness of the gold layer for resonance tuning. 
Large-scale gold microhole and nanohole arrays as well 
as silver nanocave arrays have also been fabricated and 

Figure 8: Large-scale and high-throughput nanofabrication technique for nanoscale patterns with different designs. Combining the features of 
nanoimprint and soft lithography, nanostructures could be reproduced rapidly in large amounts for chip devices. (A) Fabrication process flow 
diagram. (B) Pictures of an EBL patterned master on the silicon substrate, a poly(N,N-dimethylacrylamide) (PDMA) stamp, and a nanostructure 
replica with a gold thin film layer on a glass slide. (C) Atomic force microscopic images showing the surface morphology of an EBL patterned master 
(before) and a stamped replica (after) (D). Scanning electron microscopic (SEM) images of a cross section of the structure. (E) A nanograting struc-
ture. (F) A bulls-eye structure. (G) A silver array of ~250-nm-diameter nanodots spaced every 600 nm. Reprinted with permission from Ref. [106].
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demonstrated for highly sensitive refractive index sensing 
[101–104]. Dou et  al. reported a simple and scalable col-
loidal lithography technology for fabricating gold nano-
donuts, which demonstrated a high SPR sensitivity of 
~758  nm/RIU [105]. Combining the features of nanoim-
print and soft lithography, Xiao et  al. demonstrated a 
large-scale and high-throughput nanofabrication tech-
nique to construct metal thin films with nanoscale pat-
terns of different designs (Figure 8) [106]. Structures such 
as nanogratings, bulls-eye, and nanodot arrays could be 
reproduced rapidly in large amounts for chip devices. 
With these structures, the authors demonstrated label-
free SPR sensing with perpendicular transmission con-
figuration using an incoherent white light source. More 
recently, Aristov et al. [107] reported a 3D plasmonic nano-
structure for ultrasensitive biosensing (Figure 9). In their 
design, a 3D silver-coated woodpile crystal structure was 

fabricated by direct laser writing followed by electroless 
silver plating. By breaking the diffraction-related limita-
tion of 2D periodic structures, the proposed 3D structure 
showed a delocalized plasmon mode and demonstrated 
an extremely high spectral sensitivity of >2600  nm/RIU. 
More importantly, this 3D structure offers a large area for 
biomolecule immobilization with potential size selectivity 
option, which enables the implementation of new sensing 
geometries and strategies that are not feasible with film-
based SPR or 2D SPR.

The incorporation of nanoparticles and nanostruc-
tures as sensing probes has brought a lot of new oppor-
tunities to the conventional SPR sensing technologies. 
As the typical size of the probes is in the nanometer 
range, these newly emerged nanoparticle/nanostructure-
assisted sensing technologies have enabled us to enter a 
new regime where localized microscopic changes down 
to single-molecule level has become accessible. More 
importantly, recent developments in nanotechnology 
have provided new tools, such as nanotweezers, to facili-
tate the manipulation of nanoparticles [108, 109]. With 
these tools and by combining the imaging techniques, 
it is now practical to observe the localized molecular 
interactions and monitor the dynamic process in biologi-
cal samples with high spatial resolution, sensitivity, and 
throughput.

7  �Conclusion
In this review, we summarized the four interrogation 
modes of intensity, angle, wavelength, and phase in the 
conventional SPR sensing configuration. Blended in each 
section of different interrogation modes, recent develop-
ments in SPRi technique have been highlighted. The emer-
gence of high-throughput, high-sensitivity, and real-time 
SPRi methods enables SPR biosensors to perform multi-
plex sensing of different target analytes with the highest 
sensitivity. However, the requirement of high throughput 
also brings the new challenges: (i) fast measurement of the 
SPR dip in the angle and wavelength interrogation SPRi; 
(ii) improvement in the performance of the SPRi sensors 
such as sensitivity, spatial resolution, and dynamic detec-
tion range; and (iii) miniaturizing the SPR instruments. 
Table  1 shows the typical performances of SPR sensors 
based on intensity, angular, wavelength, and phase inter-
rogations. It can be seen that phase interrogation SPR 
sensors offer better sensitivity, yet the angular and wave-
length interrogation SPR sensors offer better dynamic 
detection range.

Figure 9: A 3D plasmonic metamaterial nanoarchitecture offering 
a large area for biomolecule immobilization with a much improved 
spectral sensitivity of 2600 nm/RIU. The structure is based on Ag-
coated woodpile crystal produced by multiphoton laser polymeriza-
tion, followed by Ag-based metallization. (A) Schematic illustra-
tion of biosensing using the metamaterial. A receptor (green) is 
immobilized inside the woodpile structure and its selective partner 
(red) binds to the receptor sites, leading to a change of parameters 
for the reflected light. (B) Schematic representation of a woodpile 
crystal. (C) SEM image of the structure. Reprinted with permission 
from Ref. [107].
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During the past decades, continuous engineer-
ing efforts have been made to improve the overall per-
formance of SPR sensors. To further push the limits, 
state-of-the-art engineering methods are expected. The 
phase-sensitive SPRi sensor with wavelength multiplex-
ing approach we recently proposed has shown that the 
combination of different interrogation modes with the 
imaging technique could be a promising solution. Other 
than the performance, the portability of SPR sensors is 
another important consideration. In this respect, an all 
solid-state scheme with no mechanical moving parts is 
most possible to produce portable SPR instruments for 
achieving its full potential.

In recent years, the fast developments in biomedical 
research have shown great demand for biosensing with 
high sensitivity, specificity, and throughput. To detect the 
interactions between specific biomolecules, biosensors 
with ultrahigh sensitivity down to single molecules and 
high recognition specificity are expected. In this contri-
bution, we have also reviewed the vast developments in 
nanotechnology-associated SPR sensing for sensitivity 
enhancements during the past few years. With the help 
of colloidal synthesized nanomaterials as well as lithog-
raphy patterned nanostructures, different approaches 
have been demonstrated to enhance the sensitivity of con-
ventional SPR sensors of different interrogation modes 
through EM field enhancement, analyte immobilization, 
and enrichment. These advancements show that the inte-
gration of nanotechnology into SPR sensors has opened 
the microscopic regime for the conventional SPR sensing 
down to single-cell or even single-molecule level. With 
recent advancements in nanotechnology such as plas-
monic nanotweezers and super-resolution imaging, we 
believe that the incorporation of these newly emerged 
nanotechnology approaches into SPRi technology could 
bring lots of promising opportunities for future develop-
ments in biosensing applications.
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