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Abstract: Lignin is an important commercially produced polymeric material. It is used extensively in
both industrial and agricultural activities. Recently, it has drawn much attention from the scientific
community. It is abundantly present in nature and has significant application in the production
of biodegradable materials. Its wide usage includes drug delivery, polymers and several forms of
emerging lignin nanoparticles. The synthesis of lignin nanoparticles is carried out in a controlled
manner. The traditional manufacturing techniques are costly and often toxic and hazardous to the
environment. This review article highlights simple, safe, climate-friendly and ecological approaches
to the synthesis of lignin nanoparticles. The changeable, complex structure and recalcitrant nature of
lignin makes it challenging to degrade. Researchers have discovered a small number of microorgan-
isms that have developed enzymatic and non-enzymatic metabolic pathways to use lignin as a carbon
source. These microbes show promising potential for the biodegradation of lignin. The degradation
pathways of these microbes are also described, which makes the study of biological synthesis much
easier. However, surface modification of lignin nanoparticles is something that is yet to be explored.
This review elucidates the recent advances in the biodegradation of lignin in the ecological system.
It includes the current approaches, methods for modification, new applications and research for
the synthesis of lignin and lignin nanoparticles. Additionally, the intricacy of lignin’s structure,
along with its chemical nature, is well-described. This article will help increase the understanding
of the utilization of lignin as an economical and alternative-resource material. It will also aid in the
minimization of solid waste arising from lignin.

Materials 2022, 15, 953. https://doi.org/10.3390/ma15030953 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15030953
https://doi.org/10.3390/ma15030953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-3969-9122
https://orcid.org/0000-0001-5069-0888
https://orcid.org/0000-0002-8208-7183
https://orcid.org/0000-0002-4228-2726
https://orcid.org/0000-0001-5082-6132
https://orcid.org/0000-0002-5478-765X
https://doi.org/10.3390/ma15030953
https://www.mdpi.com/journal/materials
http://www.mdpi.com/1996-1944/15/3/953?type=check_update&version=3


Materials 2022, 15, 953 2 of 28

Keywords: lignin; nanoparticles; ligninolytic enzymes; degradation; nanobioremediation

1. Introduction

Lignin is one of the main renewable sources of aromatic molecules and is regarded
as the second-largest renewable source. After cellulose, it is the best prolific polymer to
procure carbon [1]. It gives rise to about 30% of woody plant tissues and is involved with
the cross-connecting of cellulose. It gives strength, inelasticity and firmness to cell divisions.
Lignin is a highly complex compound for enzymatic depolarization as it is insoluble in
water, is artificially convoluted and lacks hydrolyzable linkages [2]. Lignin constituents are
an important component of plant litter input, which constitutes nearly 20% of the soil [3,4].
It is an amorphous, 3-dimensional polymer, whose shape represents its material-binding
property [5]. In plant cell walls, lignin is a part of the lignocellulosic compound, which
consists of 40–60% cellulose, 20–40% hemicelluloses and 10–25% lignin [5,6]. Globally
about 50 million tons of lignin are manufactured annually by the paper and pulp industries,
with around 2% recuperated for its application in chemical manufacturing [7,8]. The
interest in lignin has drastically increased in the scientific and industrial community over
the last decade. The reason for this is the growing concern over climate change and the
fundamental need to decrease industrial pollution [9].

Due to the complex structure of lignin, it cannot be degraded by most degradation
methods, which makes it a recalcitrant material and poses a challenge that needs to be
resolved [10]. The degradation of lignin improves the earth’s biofuel resources and would
also provide a substitute for the harsh technologies that are implemented in industries
such as the paper and pulp sector [11]. The key lignin-degradation investigations are based
on biotic, oxygen-dependent and co-metabolic methods. Many researchers have already
proven that specific microorganisms, such as bacteria and certain fungi, are capable of
biodegrading different biopolymers in soil [12]. For example, wood-rotting basidiomycetes
fungi can degrade lignin. During the degradation of lignocellulosic biomass (LCBM), three
common lignin peroxide enzymes are secreted: laccase (Lac), manganese peroxidase (MnP)
and lignin peroxidase (LiP) [13]. Additionally, lignin degradation was also observed in
Phanerochaete chrysosporium crust fungi culture [14]. The degradation of lignin by microbes
such as white-rot fungi (WRF) occurs under conditions of biodegradation that acquire a
great oxidative order with some substrate specificity [15]. Certain fungi, as well as their
extracted enzymes, have shown increased biodegradation of lignin, and may be especially
applicable to industries such as pulp, agriculture, paper and bioremediation [16].

LCBM has been accredited for prospective use to produce chemicals and various
biomaterials [17]. The inclusion of lignin is a great challenge in the current scenario.
Several investigations have been performed to increase lignin utilization in value-added
applications [18]. Lignin is considered an ideal component for the preparation of a various
range of chemicals due to its abundant sources and inexpensiveness. Lignin is a by-
product produced by paper mills and lignocellulose feedstock biorefineries. In paper mills,
98% of scientific lignin is consumed internally for energy restoration and about 2% is
applied economically [19]. It is essential to degrade lignin completely in order to prepare
different chemicals. However, there are several challenges in preparing chemicals from
lignin. The degradation of lignin can be performed by chemical, thermal or enzymatic
pathways [20–22].

Lignin is comprised of various functional groups, such as hydroxyl (-OH), methoxy
(CH3-O), carbonyl (-C=O-), carboxyl (-COOH) and benzene (C6H6) [23], which makes
it a suitable material for numerous applications. Many researchers are trying to combat
the challenges associated with transforming lignin into different valuable products by
developing diverse procedures and pathways. They are exploring different research studies
and production techniques together in order to make lignin a precious raw material. Lignin
can also have a very crucial role in petroleum refineries, as it can supply a continual source
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for the preparation of valuable aromatic molecules [24]. Europe, the USA and Canada are
manufacturing various types of lignin products, such as adhesives, binders and chemicals.
Some Asian countries, such as India, Japan and China, are also creating lignin-derived
products. China is presently the leader in lignin-based chemical production among all the
countries [25].

Bulk and composite materials of lignin have limited application. Moreover, if they
are produced from expensive precursors then the final material itself will be very expen-
sive. Therefore, the use of lignin waste to synthesize lignin nanoparticles will drastically
revolutionize the lignin production cycle. There are several reports where lignin or lignin
composites have been developed and used for various applications. Recently, Bonilla
and Bonilla, 2021 reported the synthesis of a lignin-based biopolymer from gorse (Ulex
europaeus), which is an invasive plant [26]. Larrenata et al., 2018 reported the synthesis
of lignin hydrogels by combining LiG with poly(ethylene glycol) and poly(methyl vinyl
ether-co-maleic acid) by an esterification process, where the synthesis was carried out in a
solid state and could be accelerated by using microwave (MW) radiation. The hydrophobic
nature of the LiG helped in the loading of the hydrophobic drug curcumin. Moreover
investigators also found that the LiG had antimicrobial properties due to its macromolecule
nature, with antimicrobial activity observed against Staphylococcus aureus and Proteus
mirabilis [27]. Liangliang An et al., reported the synthesis of tailor-made zwitterionic lignin
with protein resistance by applying a two-step grafting reaction. The LiG was modified by
using 3-Dimethylamino-1-propyl chloride hydrochloride and 1,3-Propanesultone and con-
firmation was performed by multiple instruments. The synthesized LiG had negative zeta
potential, indicating hydrophilicity [28]. Spiridon et al., 2021 reported the synthesis of new
ferrite lignin-hybrids, which were obtained by the combustion of cobalt nitrate and ferric
nitrate, two types of LiG being used as combustion agents at calcination temperature of
500 ◦C and 900 ◦C, respectively. Further, the authors investigated the synthesized material
by using Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD),
scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray photoelectron
spectroscopy (XPS) and vibrating sample magnetometer system (VSM) for magnetic proper-
ties. This particular hybrid had a spinel structure whose crystal size increased with greater
calcination temperature [29]. Kumar et al., 2021 has used LiG particles for gene/drug
delivery and for tissue-engineering applications [30].

Nanoparticles and nanotechnology have played an immense role in the field of drug
delivery, medicine, research and environmental cleanup [31–35]. Due to their high surface-
area-to-volume ratio and high surface energies they are considered much more useful than
bulk materials [34,36–39]. Thus various LiG NPs, either synthesized chemically in the
laboratory or derived from lignin-rich waste, are increasingly used in day-to-day life. For
instance, due to their structural diversity and biodegradability, LiG NPs have emerged as
a promising alternative for some of the value-added materials traditionally created from
fossil fuel-based chemicals and products.

Understanding the detailed environmental biodegradation mechanism will help in
lignin’s utilization and will also minimize solid waste accumulation [40]. Very little infor-
mation is available in the scientific domain about the application of surface-functionalized
lignin and lignin nanoparticles. The expense of lignin precursors and synthesis routes
have restricted lignin and lignin nanoparticles to scientific applications. Thus there is
need to develop new methods for the synthesis of lignin particles which are biodegrad-
able/compostable and/or recyclable, from lignin-rich waste, which would otherwise
accumulate in the environment. Despite significant efforts in producing value-added prod-
ucts, lignin is still underutilized, and future, integrated biorefineries strongly depend on
the ability to effectively isolate, purify and utilize lignin [41]. Debate continues on which
microbes use lignin as a source of carbon, as detailed information from scientific studies
does not exist. One such recent study carried out by Cerro et al., 2021, where the role
of WRF in the utilization of lignin as a carbon source has been controversial [42]. White
rot fungi have been shown to be more efficient lignin degraders than soft rot fungi, but
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detailed explanation supported by scientific evidence is lacking. Complete biodegradation
of brown-rotted wood has not yet been achieved. The current review work seeks to address
these gaps in research.

The current review work emphasizes the state-of-the-art, latest advancements in
the synthesis of lignin micro- and nanoparticles by physical, chemical and biological
routes. Moreover, this review work also emphasizes the various microbial approaches
for the remediation of lignin in the environment and in simulated laboratory conditions.
Another objective of this review work is to provide the latest biodegradation pathways
for mineralization by various fungi and bacteria. Finally, this review provides emerging
applications for lignin and lignin nanoparticles in research, environmental cleanup and
biodegradable materials. The suggested applications will help reduce pollution arising
from the accumulation of non-degradable material in our environment.

2. Structure and Biosynthesis of Lignin

Lignin is a well-branched phenol polymer and accounts for about 15–20% of the total
weight of LCBM [43]. Based on its molecular structure, lignin is made up of three main
components that are connected by a variety of bonds [29]. As per the nature of LCBM, the
structure of lignin is also variable, and the process of degradation powerfully dependent on
its constitution. Proper structural characterization is essential for organization and usage of
lignin. Efficient lignin degradation has traditionally been the major technique for the analysis
of its molecular structure. Various advanced spectroscopic analysis techniques, such as
ultraviolet spectroscopy (UV-Visible), Fourier-transform infrared spectroscopy (FTIR), Raman
spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, can give both qualitative
and quantitative data on functional groups, bonds, characterization of molecular structure
and constitutional properties of lignin and its degradation products [44,45]. Different NMR
methods, such as proton NMR (1H), carbon-13 (13C), 19F and 31P plus 2D-NMR, are used
for the complete study of the structure of lignin [45]. Quantitative 13C-NMR and a range
of 2D-NMR approaches provide both qualitative and quantitative data for the complete
lignin [46]. In the plant cell, lignin biosynthesis takes place via the arrangement of three
principles: hydroxycinnamoyl, alcohol monomers or monolignols (MLGs: p-coumaryl
alcohol, coniferyl alcohol (CA) and sinapyl alcohol (SA)). These MLGs are typically denoted
as phenylpropanoids (PP), which vary in the compositions at the 3- and 5-C positions in the
aromatic ring structure. The preparation of lignin begins with the random polymerization of
a phenoxy radical coupling that produces an oligomeric yield [47]. After the polymerization
process, these polymers are known as p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S)
for p-coumaryl alcohol [48]. The MLGs are attached by ether bonds. The various molecular
bonds present in lignin molecules are given in Figure 1.
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Figure 1. Molecular structure representation of bonds present in lignin molecules.

3. Microbial Synthesis of Lignin Nanoparticles (LNPs)

The production of nanomaterials using physicochemical techniques can cause toxic
conditions in the surrounding environment and sometimes requires costly materials and
equipment. The application of economically feasible, simple, safe and environmentally
friendly methods for the synthesis of nanomaterials that comply with green chemistry is
vital [49]. The synthesis of lignin nanoparticles (LiG NPs) is a good approach for enhancing
the blending behavior of lignin. These synthesized LiG NPs have new and enhanced
behavior compared to the original materials [50]. LiG NPs can be suitable nanosized
components for several biomaterial applications due to their smooth structures and stability
in various physiological conditions. The nanosized form of lignin can also overcome the
hurdles faced by bulk lignin particles due to their heterogeneity and decreased water
solubility [51].

4. Different Methods for LiG NPs Synthesis

Different chemical methods, such as CO2 saturation, solvent exchange, ultrasonica-
tion, continuous solvent exchange, sonication, dialysis, water-in-oil micro-emulsion, acid
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precipitation, self-assembly, interfacial cross-linking and emulsion, freeze-drying, thermal
stabilization, homogenization and microbial and enzyme-mediated, have been developed
to synthesize LiG NPs from bulk lignin particles [52–63]. All of these chemical methods
have a common approach, which is shown schematically in the Figure 2. Here we will
discuss some of the frequently applied methods used to produce LiG NPs.

Figure 2. Schematic diagram for synthesis of LiG NPs by chemical routes, adapted with permission
from Meng et al., 2021 [41], American Chemical Society.

4.1. Acid Precipitation

This unique method is used to synthesize LiG NPs that are non-toxic for yeast and
microalgae [64]. Researchers have described two different methods, which result in different
stability of particles within mediums having varying pH ranges (low pH and high pH).
In the first method, there is precipitation of low-sulfonated lignin by using a solution of
ethylene glycol prepared in a dilute acidic-aqueous solution, which produces LiG NPs
that maintain higher stability at various ranges of pH. In the second method of acidic
precipitation the LiG NPs were synthesized in a high-pH aqueous solution. These LiG NPs
showed stability only at an acidic pH [65].

4.2. Ultrasonication

The ultrasonication method falls in the category of mechanical techniques. Similar
to other mechanical techniques, in this technique the size of the bulk particles is reduced
down to as small as the nanometer (10−9 m) range. Yet inconsistency in size and a broad
particle-size distribution are the principal impediments of this strategy. However, due to
its simplicity this process is preferred by the NP manufacturing industries and research
communities. This technique is also used for the synthesis of LiG NPs and other types
of nanomaterials, such as carbon-based nanoparticles (graphene oxide nanosheets, etc.)
In 2015, Gilca et al. used ultrasonic irradiation to obtain LiG NPs from wheat straw
and sarkanda grass [40]. Additionally, by using several characterization techniques, it
has also been confirmed that ultrasonication at the intensity applied for breaking down
bulk particles is not responsible for changes in either the structure or composition of the
synthesized LiG NPs [66–68].

4.3. Self-Assembly

In this method, an uncertain arrangement of pre-existing components produces ei-
ther an agglomerated, spherical-shaped pattern or an organized structure and a stable
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nano-sized particle. A spherical-shaped pattern is created due to specific non-covalent
interactions with the lack of any external direction. In this method, the nature of the solvent
and various non-covalent interaction forces play a significant role in the agglomerate and
self-assembled of LiG NPs. The significant non-covalent interaction that forces their bond
energies are π-π interactions (4 to 30 kJmol−1), hydrogen-bonding (4 to 30 kJmol−1), van
der Waals forces (1 to 4 kJmol−1) and chain entanglement [65,69]. In the self-assembly
process, cyclohexane (CHX) is incorporated into the lignin solution of alkaline pH. It is then
re-dissolved in dioxane. With the incorporation of CHX, flocculation as well as precipitation
of lignin micelles occurs. In 2019, Mishra and Ekielski published research related to the
synthesis of self-assembly of lignin (molecular and supramolecular) NPs by using a simple
spray freezing method [59]. In this work, dimethyl sulfoxide solvent was used because of
its two unique properties: its solubility of lignin and the high boiling point of the solvent.

4.4. Solvent Exchange Method

Solvent exchange is a straightforward system with a vast range of applications. In this
technique, the water-miscible organic solvent is used to prepare a solution of an organic
compound, and then excess water is mixed with it. After that, nanoparticles are produced
due to their decreased solubility. In one research study, dioxane LiG NPs and alkali LiG
NPs were synthesized by the utilization of the nanoprecipitation method from two different
sources of lignin: hardwood dioxane lignin and softwood alkali lignin. The fabricated
dioxane LiG NPs and alkali LiG NPs were analyzed by various advanced microscopy
techniques. The results revealed that both types of NPs had a spherical shape with a size
between 80–104 nm [70].

4.5. Biological Methods

The transformation of lignin into LiG NPs by enzymatic hydrolysis improves the
physicochemical properties of lignin bulk. In 2017, Rangan and colleagues were the first
to synthesize lignin-rich cuboidal nanoparticles using lignocellulosic fibers isolated from
Indian ridge gourd by using specific enzymes to crush the LC complex [71]. Microscopic
analysis of data revealed that the size of the nanoparticles varied between 20–100 nm
with consistent morphology. In another study, researchers isolated Aspergillus oryzae, a
mold-filamentous fungus, to obtain nanolignins. About 45.3% nanolignin was produced
from the microbial strain, 79.50% from homogenization and 62.60% from ultrasonication.
The microbially synthesized nanolignin exhibited antibacterial, antioxidant and ultraviolet-
resistant characteristics on the outer surfaces of cotton and linen fabrics [72]. Synthesis of
LiG NPs by an enzymatic cross-linking method using laccases could be a very effective
technique. Fungal laccase enzymes were purified from two different fungi (Trametes hirsute
(ThL) and Melanocarpus albomyces (MaL)) and were further utilized in the copolymerization
processes for LNP synthesis. The LiG NPs could be dried and resuspended in tetrahydrofu-
ran (THF) or water to retain the stable property of LiG NPs, such as their size and shape.
The reactivity of ThL and MaL on Lignoboost lignin and LiG NPs were analyzed and
confirmed by high-performance, size-exclusion chromatography and oxygen-utilization
measurements by synchronous recognition of red-brown color due to the development of
quinine [57]. Figure 3 shows the synthesis of LiG NPs from various sources.
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Figure 3. Schematic diagram of various methods for LiG NP synthesis.

4.6. Flash Nano Precipitation (FNP)

Copolymer stabilization is used to prepare nanoparticles in this method. The FNP
method is used for nanoparticle formulation for applications such as drugs and imaging
agents as it provides high solute loading and high encapsulation efficiencies. Most impor-
tantly, green solvents can be used for the synthesis of lignin nanoparticles, which makes
this method ecofriendly and sustainable [73]. Conner et al., 2020, reported the synthesis of
concentrated monodisperse LiG NPs by recirculation-enhanced FNP method. It was found
that LiG NPs were formed by continuous burst nucleation at the time of mixing, and that
there was no diffusive growth. A consequence of this technique was a highly uniform and
controlled size, followed by a modified LaMer nucleation and growth mechanism. Further,
they concluded that highly stable and uniformly sized LiG NPs could be synthesized
in large volume by the FNP method, and that it could be used for biological as well as
agricultural applications [74].

5. Biodegradation of Lignin

Several extracellular enzymes, such as lignin peroxidase, manganese peroxidase,
laccase, cellobiose and quinine oxidoreductase, have been extracted and purified from ligni-
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nolytic fungi. Among these, the first three enzymes have oxidative and reductive natures.
Various studies are currently seeking to elucidate the key function of these enzymes, and
how they degrade lignin through a biological process [2]. The degradation of LCBM by
a biological method is environmentally friendly and inexpensive. The lignin in tobacco
stalk is degraded by fungi belonging to Moniliales gliocephalias sp. and Aspergillus sp. [14].
However, the microbes which are involved in this biodegradation process are limited due to
the higher concentrations of lignifications and nicotine in the tobacco stalk [14]. Techniques
based on biological methods for the depolymerization and metabolism of the lignin show
the potential to reduce the cost of lignocellulosic biorefining. The pretreatment method en-
hances downstream processing and cellulosic fermentation, making an important outflow
stream of aromatic compounds for the production of valuable products [75]. Currently,
lignin effluent is also used for combustion and internal energy creation in biorefineries,
with a 60% surplus supply [2]. Among different fungi, basidiomycetes are the only fungi
that facilitate wide biodegradation of lignin. (Though certain white-rot and brown-rot
fungi have the ability to completely mineralize and modify lignin, respectively, when the
carbohydrates have been removed from the wood [42].)

6. Lignin Degradation in Soil

Lignin is considered an important ingredient of soil organic matter. Additionally, it
helps to reserve the carbon dioxide in soil [2]. However, its complex structure and unman-
ageable nature make lignin’s degradation an essential task. From ancient times, various
scientists and researchers have tried to understand the long-chain polymeric complex
structure, and several attempts have been made to develop the easiest, eco-friendliest and
cheapest methods to degrade it. Several methodologies are currently applied in the paper
and pulp industries to degrade lignin and/or to use it for the manufacture of biofuels. How-
ever, these methods present several difficulties, and produce lower yields of biofuel than
other strategies. For overcoming these problems, plus increasing biofuel production, certain
bacteria and fungi can be used to break down a variety of lignin biopolymers in soil [76].
Enzymes that are isolated from specific species of bacteria and fungi are applied to catalyze
several reactions, such as oxidation and hydroxylation, depolymerization of phenolic as
well as non-phenolic polymers of lignin, and the mineralization of insoluble lignin [77].
The degradation rate of lignin in the soil is directly affected by the induction, adsorption
and diffusion of the ligninolytic enzymes [12]. In the last decade, various studies have
been performed on the degradation of LCBM by using biological methods, especially in
wood-rotting basidiomycetes microorganisms (i.e., white-rot and brown-rot fungi). Among
the wood-rot basidiomycetes microorganisms, the most effective biodegraders of LCBM
are white-rot fungi (WRF) (e.g., Penicillium chrysosporium). These fungi have also shown
a higher degradation rate for lignin (faster than brown-rot fungi and other microorgan-
isms) [78]. In 2016, the rate of degradation of lignin in tobacco stalk by P. chrysosporium was
investigated; it was found that around 53.57% of the lignin was degraded in 15 days [14].
Numerous extracellular enzymes are released by white-rot fungi. These enzymes solely
function to decompose the lignin, cellulose and hemicellulose that is present in the plant
cell wall [62]. These enzymes include laccases and peroxidases, such as LiP, MNP and
versatile peroxidase (VP). Laccases and peroxidases degrade lignin via free radicals of
lower molecular weight, such as hydroxyls (OH), that depolymerize the lignin polymers
containing phenolic and non-phenolic groups, and also mineralize insoluble lignin [2].
Lignin degradation by brown-rot fungi (BRF) generally includes oxidation reactions by
non-enzymatic methods, which produce -OH radicals by Fenton chemistry [79]. BRF leads
to partial oxidation of lignin via demethylation of the aromatic ring [80]. During this cycle,
the phenolic -OH composition of the reaction mixture increases due to partial oxidation
and incorporation of new carboxyl and carbonyl functional groups [81].
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7. Lignin-Degrading Enzymes

Specific species of bacteria and fungi release numerous enzymes that can catalyze
many oxidative and hydroxylation reactions [82]. LCBM biodegradation was investigated
in wood-rotting basidiomycetes microorganisms [76]. The enzyme-mediated degradation
of lignin consists of five different extracellular enzymes, which are shown below in Figure 4.

Figure 4. Different types of extracellular enzymes involved in lignin degradation.

Lacasse catalyzes the oxidation reaction of polyphenols and methoxy-substituted
phenols by generating free radicals [83]. The reduction of molecular oxygen to water
leads to oxidation. Laccase enzyme can evenly catalyze and disintegrate the non-phenolic
lignin structures, including the dissolution of β-O-4 linkages in the occupancy of redox
mediators [84]. Another enzyme, lignin peroxidase, uses hydrogen peroxide (H2O2) as
the oxidizing agent for the oxidative depolymerization of lignin [85]. These enzymes are
generally not specific, and, as a result, they oxidize various phenolic aromatic compounds
and a variety of non-phenolic lignin compounds. The manganese peroxidase enzyme makes
use of H2O2 to oxidize Mn2+, which is readily available in wood and different soils, therefore
producing Mn3+ ions [86]. The latter is stabilized by chelators and behaves as diffusive
charge-transfer intermediates that are capable of oxidizing phenolic substrates. The VP
enzyme merges the properties of LiP and MnP enzymes, with their multiple methods of
catalytic efficacy reflected in their name [87]. Not only do they oxidize Mn2+ to Mn3+, similar
to MnP enzyme, but they are also capable of oxidizing non-phenolic compounds in the same
manner as LiP enzyme. The DyP-type peroxidase enzyme, however, has different series,
structures and utility, and does not conform to the characteristics classically associated with
plant/microbial peroxidase [88]. The DyP-type peroxidase enzyme potentially degrades
lignin. It is capable of oxidizing dyes, non-phenolic lignin compounds, such as veratryl
alcohol, and β-O-4 linkages [1].
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8. Steps Involved in Lignin Degradation

Lignin biodegradation involves both depolymerization and aromatic ring cleavage [89].
Extracellular enzymes facilitate oxidation of lignin in the following steps, as shown in
Figure 5.

Figure 5. Oxidation of lignin by extracellular enzymes.

There are several hypotheses which purport the formation of humic acid from lignin.
First, the lignin is broken down into several smaller constituents, and then the smaller
particles reassemble to create a complex organic compound. Additionally, lignin can also
be broken down by enzymatic combustion. Enzymatic combustion is a process where
there is the formation of reactive intermediates from the enzyme, but there is no direct
control of the reaction [12]. Several economically important processes depend on lignin
decomposition, for instance decay of wood and biogeochemical cycling of woody biomass.

9. Lignin Degrading Fungi

The fungal breakdown of lignocelluloses depends upon two types of extracellular
enzymes. First, the fungi need hydrolase enzymes, such as cellulases and hemicellulases,
for breaking down the skeletal lignocellulosic polysaccharides (cellulose and hemicellu-
lose). Second, they need an excellent extracellular ligninolytic system for degradation or
modification of lignin [2]. Cu-containing laccases and heme peroxidases (such as LiP, MnP,
VP and Dye-decolorizing peroxidase) are the most prevalent fungal ligninases [90]. Fungal
accessory enzymes support these main lignin-degrading enzymes [1]. Fungi are the only
widely known organisms able to degrade lignin. Three types of fungi degrade the lignin
classified by the type of rot they are associated with, as shown below in Figure 6.



Materials 2022, 15, 953 12 of 28

Figure 6. Types of fungi involved in the degradation of lignin.

9.1. White-Rot Fungi

White-rot fungi (WRF) can decompose structural constituents of wood, such as cel-
lulose and lignin, and they are natural producers of extracellular oxidative enzymes [75].
Among the Holobasidiomycetidae are numerous WRF species belonging to various fungal
families, shown below in Figure 7 [91].

Figure 7. Members of Holobasidiomycetidae (WRF) involved in white-rot-based lignin degradation.

A few ascomycetes belong to the Xylariaceae family, which causes wood decay sim-
ilar to that of white-rot. WRF is the most efficient natural lignin degrader among all the
ligninolytic microbial groups [91]. WRF fully degrades all structural constituents of lignin,
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forming carbon dioxide and water as the end products under appropriate environmental
conditions. They grow mostly on hardwoods and, due to the presence of syringyl lignin,
more efficiently decay hardwood than softwood. In culture, most white-rot fungi show
phenoloxidase activity. The phenoloxidase activity along with extracellular peroxidases and
laccases creates extracellular colored compounds from phenolic substrates. Ascomycotina
and fungi imperfecti are true representatives of eubacteria and actinomycetes, and are
well-known lignin-degraders. Ruel et al. observed that there was a modification in the
morphology of the lamellar structure of spruce wood lignin. There was also the forma-
tion of granulated modified lignin at a distance of up to 2–3 picometers from hyphae of
Sporotrichum pulverulentum, which is an anamorphic form of Phanerochaete chrysospo-
rium [92]. At present, among all the ligninolytic systems of WRF, P. chrysosporium-based
is the best understood and most widely studied. Recently, Cerro et al., 2021 reported
a detailed investigation on the intracellular catabolic pathways for lignin in WRF. The
investigators concluded that whether WRF uses lignin as a source of carbon is still con-
troversial. In the present study, investigators used 13C isotope labelling, systems biology
methods and in vitro enzyme assay to confirm that both fungi (Trametes versicolor and
Gelatoporia subvermispora) use carbon from the lignin. After detailed analysis it was
found that each utilizes T. versicolor and G. subvermispora 4-HBA and vanillic acid as
carbon sources. Such research may contribute to global carbon recycling in soil ecosystems
and may further establish a foundation for using WRF in the depolymerization of lignin
and its bioconversion into by-products [42].

9.2. Brown-Rot Fungi (BRF)

Brown-rot fungi are basidiomycetes evolved from WRF. They are most common in
softwood and generally lack phenol oxidase activity [77]. Brown-rot fungi are the wood-
rotting fungi that can decay and eliminate wood carbohydrates and leave a remnant of
“modified lignin”, which is characteristically brown and has the same mass as the lignin in
the wood [78]. Brown-rotters, being mostly basidiomycotina, are taxonomically comparable
to white rotters. The brown-colored modified lignin (lignin residue left in brown-rotted
wood) is called “enzymatically liberated lignin” [78]. Certain ascomycotina and various
fungi imperfecti have the potential to degrade wood under very moist conditions, [93].
These fungi are in many genera, including Paecilomyes sp., Xylaria sp., Stachybotrys sp.,
Humicola sp., Emericellopsis minima, Pestalotia multidea, Acremoniella sp., Chaetomium globosum,
Preussia sp., Graphium sp., Papulospora sp., Allescheria sp., Cytosporella sp., Pestalozzia sp.,
Thielavia sp. and Sporocybe sp. Soft-rot fungi (SRF) can reduce the polysaccharides in wood,
but lignin degradation is slow and incomplete [78]. The lignin in brown-rotted wood can be
partially degraded by demethylation, partial oxidation and depolymerization, but complete
degradation has not been achieved [2].

9.3. Soft-Rot Fungi (SRF): Soft Wood

Soft-rot is another form of wood decay that is carried out by ascomycetous fungi [94].
SRF favorably degrade wood carbohydrates, and few of them have established a notewor-
thy ability to mineralize lignin. In highly moist conditions, some species of ascomycetes
and imperfect fungi attack the wood widely. This form of rot exhibits a softening of wood
tissue together with a substantial reduction in weight. SRF infiltrate the secondary wall of
the wood cell and lead to the formation of cylindrical cavities where the propagation of
hyphae takes place. SRF are found amongst numerous genera, such as Allecheria, Monodic-
tys, Chaetomium, Cephalosporium, Papulospora, Graphium, Paecilomyces and Thielavia. There
are six SRF that degrade lignin in alder, poplar and pine woods, while all the fungi except
Paecilornyces and Allescheria favorably attack the polysaccharides in wood [78,86,87].

10. Soil Fungi as Lignin Degraders

Degradation of lignin by fungal cultures (including P. ostreatus, C. versicolor, E. nidulans,
A. wentii, A. terrus, A. niger, C. globosum, Trichoderma viride and T. harzianum) was tested by
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oxidative process with phenol oxidase as the key enzyme after a 7-day incubation period [2,16].
The fungi which degraded lignin consisted of ascomycetes (T. reesei), basidiomycetes
(white-rot and P. chrysosporium) and BRF (Fomitopsis palustris) [95]. This group comprises
mainly the strains of Aspergillus, Fusarium, Endoconidiophora and Alternaria. Most of the
previous research work conducted on mixed fungal species showed that soil-dwelling
fungi can degrade lignin. Work performed by Gulyas (1967) revealed that the pure strains
of Penicillium and Fusarium degraded about 20% of lignin in wheat straw, out of which
only 11% could be isolated. Waksman and Hutchings (1936) incubated phenol lignin
with a mixed culture containing Fusarium and Alternaria and reported approximately 25%
reduction in lignin, which could be collected by extraction of the incubation medium [95].
An efficiency of about 10–65% was achieved by Fischer (1953) for the degradation of phenol
lignin in a liquid medium by using numerous fungi imperfecti [96]. All the fungi that
degrade lignin by using various enzymes are summarized below in Table 1.

Table 1. Fungi and their lignolytic enzymes in biological degradation of lignin.

Enzyme Fungi Reference

DyP Auricularia auricular-judae [97]

LiP
P. chrysosporium [98]

Phlebia radiata [99]

P. tremellosa [100]

MnP

Phanerochaete sordida [101]

P. chrysosporium [102]

Trametes versicolor [103]

Ceriporiopsis subvermispora [104]

LaC

P. radiata [105]

C. subvermispora [106]

Pleurotus eryngii [107]

T. versicolor [108]

T. hirsuta [109]

T. ochracea [110]

VP
P. eryngii [111,112]

Pleurotus ostreatus [112]

Bjerkandera fumosa [113]

11. Lignin-Degrading Bacteria

Bacterial wood decomposition was primarily measured for forestry rather than biotech-
nological applications. Genomic and proteomic examination of lignin-reducing bacteria
long ago established deficiencies of VP, MnP and LiP enzymes, while bacterial laccases and
DyP-type peroxidases have been recognized [89]. DyP-type peroxidases are less composite
than the other heme peroxidases and are widespread among bacteria, including the extra-
cellular enzyme systems of Rhodococcus jostii and Thermobifida fusca. Numerous bacterial
laccases as well as several laccase-like, multi-copper oxidases (as in Sinorhizobium morelense
and Agromyces salentinus) are also well-known. Even if knowledge of bacterial peroxidases
and laccases has improved recently, additional—as yet undiscovered—enzymes may be
necessary for bacterial lignin degradation, for example, oxidases for the making of H2O2 [1].
The lignin-degrading bacteria secluded from the soil are actinomycetes, α-proteobacteria
and γ-proteobacteria. By the mid-1980s, bacterial lignin degradation mechanisms from
Actinomycetes and Pseudomonas species were studied. The bacteria which degrade lignin are
comprised of Actinomycetes such as Sphingomonas paucimobilis SYK-6, Nocardia, Streptomyces
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viridosporus T7A and Rhodococcus, which, when grown on lignocellulose, create extracellular
peroxidases that degrade both the lignin and carbohydrate components of lignocelluloses.
The ligninolytic bacteria were segregated from various natural niches, such as soil, sewage
and compost. These isolates were able to decrease the basic dye and were confirmed to
be potent lignin degraders. The study of growth rate in different media demonstrated
that the isolated bacteria were able to make use of lignin as their only carbon source [114].
The organization of bacteria within rotting wood is well-recognized. Wide-ranging actino-
mycetes (e.g., Nocardia, Streptomyces, Thermomonospora and Micromonospora) and eubacteria
(e.g., Pseudomonas, Acinetobacter, Xanthomonas, Bacillus and Aeromonas) degrade a variety of
extracted lignin and ‘C-labeled dihydroxyl phenol (DHP). Recently Rashid and Bugg (2021)
observed the enhanced biocatalytic biodegradation of lignin by a combination of lignin-
degrading enzymes (isolated from bacteria) and accessory enzymes. Here the authors
used a set of three bacterial DyP-type peroxidase enzymes from Ps. fluorescens, Comamonas
testosteroni and Agrobacterium sp., two bacterial multi-copper oxidase enzymes CueO from
Ochrobactrum sp. and CopA from Ps. putida and Sphingobacterium sp. The concentration
of specific products obtained increased in the presence of accessory enzymes, and the
overall conversion of lignin into low-molecular-weight products increased by using the
combination of Agro DyP/Agro LigE [115]. All the bacteria that degrade lignin by using
various enzymes are summarized below in Table 2.

Table 2. Bacteria and their lignolytic enzymes in biological degradation of lignin.

Lignolytic Enzyme Bacteria Reference

DyP A

Amycolatopsis sp. [12]

E. coli [116]

Rhodococcus jostii [117]

Streptomyces viridosporus [117,118]

S. coelicolor [119]

Thermobifida fusca [120]

T. fusca YX [120]

DyP B

Escherichia coli [121]

Pseudomonas sp. [122]

R. jostii [117]

S. coelicolor [89]

Laccase

Bacillus atrophaeus [123]

B. licheniformis [124]

B. pumilus [125]

B. subtilis [12]

S. coelicolor [12]

S. griseus [126]

S. ipomoea [127]

S. lavendulae [128]

Streptomyces cyaneus [129]

Thermus thermophilus [130]

DyP-type peroxidase
Ps. fluorescens, Comamonas

testosteroni and Agrobacterium
sp.

[115]
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12. Mechanism of Lignin Biodegradation

Polymers such as lignin can be biologically degraded by extracellular means during
their preliminary stages [131]. During microbial degradation, lignin acidification and
ending of the discharge of CO2 occurs within the network of thread-like mycelium in fun-
gus [15]. Consequently, the extracellular responses should disintegrate lignin into pieces
that can diffuse to the hyphae crossing the cell membranes. In contrast to the additional
biopolymers, the lignin monomers are combined via non-hydrolyzed carbon-carbon and
ether bonds. The physiological and chemical proofs indicate that degradation of lignin
is principally oxidative, though reduction reactions could similarly contribute [124]. The
oxidation process of lignin includes unrestricted phenolic groups that would undergo fur-
ther polymerization [132]. Nevertheless, a few low-molecular-weight pieces are similarly
discharged. The lignin-degrading fungi are capable of maintaining polymerization vs.
depolymerization stability in favor of disintegration by glycosylation, methylation or by
eliminating the lightweight fragments from the reaction combination [2]. In ligninolytic
cultures, the DHPs can be rapidly polymerized before depolymerization and mineralization.
Lignin has an irregular and complex structure due to the random polymerization process
during synthesis. In lignin, the diverse nature of the inter-unit linkages, the occurrence of
the asymmetric, stereoisomeric forms at the Cα- and/3-carbons, along with inconsistency
within its organization perpetuate challenges for the ligninolytic fungus to create enzymes
which enable the break-down process. The fluids developed inside a xylophagous fungus
contain enzymes of little selectivity that start the oxidative reactions in lignin but do not
direct them. This process was named “the combustion of enzymes” by Kirk and Farrell.
They explained that the lignin is triggered by the enzymes to control the energy block and
initiate a thermodynamically preferred oxidative disintegration without any control of
the reaction pathway [133]. During lignin degradation, water-soluble intermediates can
be perceived in either submerged liquid fermentation or solid-state fermentation [134].
Aqueous DHP intermediate deprivation is predominantly oligomeric and has an exten-
sive molecular mass distribution. From decayed wood, partly degraded lignin can be
removed using polar organic solvents [135]. Most of this extracted material is oligomeric
or polymeric. The biodegradation of lignin does not progress by an arranged exclusion
of the peripheral subunits as single ring composites. It includes oxidation of the aromatic
rings and side chains inside the polymer, thus increasing the polymer core solubility and
hydrophilicity altogether. The unsystematic behavior of the degradation process settles the
idea of enzymatic combustion.

13. Significance of Lignin Biodegradation

Lignin degradation has garnered immense consideration from various scientists. En-
zymes from focused microbes, including fungi and bacteria, that can digest lignin and
consume carbon derived from lignin as a food source have been reviewed in the current
study [21]. Biodegradation of lignin is accomplished by several microbes that exist in the
soil and biomass of plants, and that create ligninolytic enzymes, such as VP, DyP, MnP
and LiP [12]. In the coming years, novel lignin-degrading microorganisms and detailed
exploration of their biochemistry, proteomics and genomics, will reveal the roles of ligni-
nolytic enzymes [76]. Lignin degradation is exemplified specifically by the capability
of white-rot fungi to attain a great extracellular oxidative regimen with little substrate
specificity. The biodegradation of lignin as a part of litter decomposition is a significant
procedure that has severe impact on human wellbeing. Enhancements in the biodegra-
dation of lignin through optimization of fungal and enzymatic treatments would have
widespread impact, affecting sectors such as agriculture, bioremediation and paper and
pulp industries [16]. The pathways of naturally occurring degradation of lignin are essential
for the expansion of actual bioprocesses centered on enzymatic lignin degradation. Further
research work is necessary to recognize the degradation of lignin by bacterial species. The
lignin degradation capability of bacterial DyP-type peroxidases and the potential to create
them—more-easily than fungal peroxidase—by recombinant expression schemes makes
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them attractive candidates for the utilization of lignin [136]. The degradation of lignin is
followed by sanitization of the reaction mixtures, comprising the elimination of remaining
partly tarnished or non-tarnished lignin, which can be used in the reaction to obtain better
lignin alteration rates and total procedure effectiveness [1]. Several household and agri-
cultural waste products consist of lignocelluloses-cellulose, hemicellulose and lignin [137].
Cellulose is the major constituent, followed by hemicellulose and lignin. The lignin and
hemicellulose cover the cellulose chains, creating a blockade that prevents the entrance
of moisture and cellulose-degrading enzymes. Usually a thermo-chemical technique is
utilized to treat the lignocellulosic biomass, but it is difficult to process and very expensive.
Lignin biodegradation is a vital step for carbon recycling in land ecosystems [4]. The trans-
formation of organic materials into humus by decomposers, such as microorganisms, is
known as humification and changes the properties of the soil. Hence lignin biodegradation
increases soil fertility [4].

14. Modern Applications of Lignin Micro- and Nanoparticles

Lignin exploration, including its uses, has been going on for many years. Much
research has described the prospect of using lignin as a high-value product. Lignin has
numerous prospective industrial applications due to its low toxicity and high adaptabil-
ity [138]. There are several high-value lignin properties, including bulk accessibility, cost-
effectiveness and the rising need for bio-based and renewable elements. Lignin can be
utilized efficiently for dye or tanning agent dispersal. The dynamic groups present in lignin,
such as organosulfur and amino, help effectively scatter dye elements homogenously in
aqueous solutions [139]. The utilization of lignin has been restricted to a small number of
low-value uses, as shown in Figure 8. The main lignin-derived ingredients, useful products
and their applications have been highlighted in Table 3.

Figure 8. Potential applications of lignin.
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The burning of lignin is broadly accomplished in the pulp and paper industries to
produce electricity. Lignin is used very efficiently (~90%) as a fuel for the generation
of electricity. Lignin combustion in combination with coal is widely applied as fuel for
the pulping tank [25]. The lignin salts are particularly water-soluble and are generally
utilized as a binder in water-based dye printing [140]. Similarly, lignin-extracted binders
may be applied within a silicon anode, which is the best anode substance for lithium-ion
batteries [25].

Lignin-Based Cement, Phenolic Compounds, Carbon Materials and Hydrocarbon Compounds

Lignin-based cement is cost-effective for cement upgradation, as has been described
in numerous research investigations [4]. The modified form of lignin produces highly
effective concrete, with increased strength, simplified grating and less harm to exterior
barriers caused by moisture and acid rain [141]. Innovative applications for lignin products
are emerging in diverse research areas. Lignin is identified as a building block for various
significant chemicals. Current techniques are mainly dedicated to lignin depolymerization,
synthesis of chemically reactive portions, hydroxyl group functionalization and manu-
facturing of lignin implant copolymers [142]. There are a few innovative applications of
lignin that have been described, including lignin-based products, such as carbon fibers,
phenolic and oxidized products [143]. Lignin likely has applications in polymeric and
polyelectrolytes substances, as it can be significantly extended to produce larger monomers
for incorporation into polymers. Current advances seek to optimize lignin reactivity to
improve its usage in a diverse range of macro-molecules, such as carbon fiber, polymer alloy,
polyurethane and filler [142,144]. Carbon fiber is extensively applied in different areas,
such as athletics and the aeronautical business. The automotive industry might also be an
obvious area for carbon fiber to substitute steel. Lignin-based carbon substances have been
utilized as strengthening in advanced energy-storing and electro-chemical applications, as
absorbent ingredients and for refining gas from organic and inorganic contaminants [143].
Lignin may be converted into phenolic composites by synthesizing original chemical sites
via hydroxyalkylation. This process includes phenolation, demethylation and methylation.
Phenols are reactive acidic-natured compounds because of the occurrence of the −OH
group and facilitate the oxidation of phenolic compounds to produce polymers. The bi-
ological synthesis of lignin contributes to various forms of phenolic mixtures. Phenols
are manufactured by benzene, which is generally petroleum-based. The phenol products
can be utilized in the manufacturing of cosmetic [138]. Lignin can be used to make hydro-
carbons in a very cost-effective way. Hydrocarbons can be obtained using heterogeneous
processes from Klason birch lignin, organosolv, wood sawdust and acidolysis carried out
by enzymes [145], and their making is highly dependent on the temperature, catalyst and
feed-stock. Ecofriendly thermoset resin polyurethane can be prepared using lignin. It has
an exceptional power-to-weight ratio (WR), energy absorption enactment and also has
significant usages in the construction of ships, furniture insulation, automobile business
and packing trade [146]. The current advancement in nanotechnology has revealed a strong
association between the structure of material, properties and performance. Nanoscale lignin
alteration to design high-value ingredients is still in the beginning phase. Many research
investigations have noted the difficult transition from macromolecular lignin structure to
nanoparticles, nanotubes and nanofibers. This methodology supports converting lignin
into a more uniform size and shape.
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Table 3. Categories of lignin-derived products and their applications.

Category Type Products Applications References

Aromatic
macromolecules and

fine
Chemicals

Klason (Kn), kraft
lignin (KL),

organosolv (OGs)

Lignin monomers and dimers,
aromatic phenols, alkyl

phenols,
aromatic aldehydes, aromatic
alcohols, acids, aryl ketones,

antioxidants,
dispersants, polyurethanes,

phenolic resins, vanillin

Industrial chemicals,
bio-based adhesives,

multifunctional
materials, building

blocks for
bio-based products

[145]

Polymer and
nanomaterials

KL,
OGs,
straw

lignin (SL)

3D printing resin (cationic
surfactant), scaffolds, lignin

nanotubes,
hydrogels, lignin nanotubes

Biomedical
applications, tissue

engineering,
drug delivery

[147]

Carbon materials,
biofuels

KL,
sulfite,
soda,
OGs

Biochar, bio-oil, syngas,
activated carbon, carbon fibers,

carbon black

Light-weight polymer
composites, adsorbents,
electrochemical devices,

automotive

[148]

Specialized
applications

KL,
sulfite,
soda,
OGs

Soil conditioner, controlled
release agent in fertilizers and

pesticides,
sequestering agent,

contaminant absorbent, fire
retardant

agriculture, textiles, soil
reclamation, water

purification, fire
suppression

[145]

15. Lignin-Derived Polymers

Lignin has immense potential as a raw substance for the development of various
materials. Extensive usage of polymers and chemicals derived from biomass is requisite
for ecological sustainability and protection [149]. Currently, lignin is applied in low-end
markets, such as fuel or cement supplements and also the pulp and paper industries [8].
The physicochemical properties and uniqueness of lignin make it an excellent candidate
for the development of novel polymeric constituents. Lignin derivatization with the help
of polymer chemistry has developed as a very precious path to enhance its thermochemical
properties and chemical functionalization to accomplish special usages. The valorization
of lignin using polymeric conversions can be categorized into diverse classes, as shown
in Figure 7. Lignin is used as monomers to form polymers, and lignin graft polymers are
given focus. The well-ordered polymerization approaches allow the control of polymer con-
figurations, functionalities and architectures which enable the improvement of innovative
constituents with modified physicochemical properties [7]. These versatile methods are
used to produce precise polymers with regulated molecular weight, fine molecular disper-
sal and site-specific functionality. Some examples are: atom transfer radical polymerization
(ATRP) [150], nitroxide-mediated polymerization (NMP) [151], reversible addition frag-
mentation chain transfer (RAFT) [152], ring-opening polymerization (ROP), ring-opening
metathesis polymerization (ROMP) [7] and acyclic diene metathesis (ADMET) [153]. Addi-
tionally, versatile methods also permit the production of high grafting densities on graft
polymers and control over end-group composition. Numerous reports explore the use of
these approaches to prepare lignin-based biopolymers; it must be acknowledged that there
are plentiful opportunities for advanced investigation.

Recently Kim and Chung (2021) reported the synthesis and characterization of lignin-
graft poly(ethylene-brassylate) which is actually a biobased polyester with remarkable
mechanical properties. Here the biosynthesized LiG was surface modified by using chemi-
cal sebacic acid in order to add a carboxylic group. The researchers obtained a condensed
copolymer of lignin and poly(ethylene brassylate) (PEB), which improved several physical
properties of LiG.
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Bass and Epps (2021) provided a detailed overview on the latest efforts towards
creating performance-enhanced, LiG-based polymers. The authors have emphasized
the possibilities and challenges for utilization of LiG blends and composites, thermosets,
thermoplastics and vitrimers [154].

16. Applications of Lignin in Medicine

There are several reported works where lignin has been used for various biomedical
applications either directly or in the form of composite materials. The major advantage of
using LiG in this field is their biocompatible and biodegradable nature and easy availability.
Lignin is considered antioxidant, antibacterial, antiviral, biodegradable, biocompatible
and nontoxic and can thus be used as a medicine against many diseases. Additionally, it
has also been used for drug delivery and tissue engineering. LiG NPs are widely applied
in the biomedical field, especially for coating of biomedical devices, gene delivery and
personal health care [155]. Larraneta et al., 2018, synthesized LiG hydrogels and, after
characterization, applied them as drug-eluting antimicrobial coatings for medical devices
to prevent the growth of microbial pathogens [27]. Numerous investigators have used
LiG and LiG NPs for drug delivery, especially for anticancer drugs. For instance, Garg
et al., 2022, described in detail the application of LiG NPs in the delivery of anticancer
drugs [156].

17. Present Challenges

There is very little information in the literature about the degradation of lignin in
the environment. Lignin degradation is a complex process [115], and multidimensional
scientific investigation should be undertaken to understand it. Moreover, there is a sur-
prising lack of research on the synthesis of lignin nanoparticles, especially from lignin-rich
waste materials. It is well known that fungi, such as brown-rot, soft-rot and white-rot,
and a few bacteria are involved in mineralization of lignin, but the exact mechanism is
hardly known [157]. For example, brown-rot fungi perform incomplete degradation of
lignin, whereas as white- and soft-rot fungi can degrade lignin completely. For some of the
microbial lignin degraders the detailed enzymatic pathway is not known; this knowledge
would allow the biodegradation pathway to be made more efficient, more effective and
faster. This can be made possible by applying certain molecules, such as nanoparticles.
Another question relates to whether the fungi are utilizing lignin as their sole source of
carbon. If yes, then in which form is the carbon utilized. Cerro et al., 2021, performed 13C
isotope labelling and provided very detailed intracellular lignin degradation pathways [42].
Apart from these, there are many more current challenges which need to be addressed
in more detail in this domain. Some of the lignin biodegraders have a very slow rate of
degradation [158]; this is one more challenge for the investigators in this field, which may
increase the speed of lignin degraders in the ecosystem and prevent solid-waste-based
pollution arising from agricultural and industrial sources.

The current applications of lignin particles in bulk form is not effective either in
research or in medicine as drug delivery, so more in-depth research is needed in the
synthesis of lignin nanoparticles, especially from lignin-rich waste materials. Further
investigation is required in the development of value-added products from agricultural
and industrial lignin waste. Applicability of such lignin products could be enhanced by
surface functionalization. Gao et al., 2021, showed present use as well as future prospects
of lignin-based materials in the biomedical field [155].

18. Conclusion and Future Perspectives

There is very little information regarding the degradation of lignin in soil. Lignin
degradation has received significant consideration from different researchers. Some re-
search is exploring the productive deconstruction and degradation of complex lignin
molecules. The major microbial degraders of lignin in our ecosystem are white-, brown-
and soft-rot fungi and soil fungi, which produce several extracellular enzymes, such as lac-
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cases, lignin peroxidases (LiP), manganese-dependent peroxidase (MnP), dye-decolorizing
peroxidase (DyP) and versatile peroxidase for the effective degradation of lignin through
the generation of free radicals. The detailed pathways, along with all the enzymes and
molecules involved in the degradation of lignin by microorganisms can be made efficient
and rapid by introducing nanotechnology and nanoparticles. Lignin nanoparticles offer
an adaptable platform for significant applications. The synthesis of LiG NPs by biological
routes will be ecofriendly, and the NPs will act as potential candidates for drug delivery in
medicine. Much current research has shown that both lignin and lignin nanoparticles have
promising applications in the medical field, especially in drug and gene delivery. Though
lignin and lignin nanoparticles are biodegradable, their utilization rate is very low in the
fields of medicine and research. Surface modifications by various functional groups will
increase their application in medicine, especially drug delivery. Formation of magnetic
nanoparticles and lignin-hybrid-based nanocomposites could be a boon to medicine and
cancer treatment, as the functional groups would allow loading with multiple particles,
and magnetic particles could respond to magnetic fields. Due to their biodegradable and
biocompatible nature, they could be the most desirable material for the loading of anti-
cancer drugs. Various challenges are encountered by researchers in preparing the chemicals
from lignin, which may end up with hazardous chemicals in the environment. Thus, more
focused research is required for enzyme-based synthesis of lignin-based chemicals, lignin
nanoparticles and other value-added materials. The development of such value-added
products from waste rich in lignin will not only minimize the solid waste, but will also
provide an alternate and economical material for the synthesis of lignin. In the future,
it will be necessary to develop alternate preparation methods for lignin-based nanopar-
ticles, nanocomposites and hybrid materials, which are not only low-cost, sustainable,
eco-friendly and easier for large-scale production, but should also be biocompatible and
surface-modified, especially for medical applications. Lignin’s antimicrobial properties
need to be explored more by extensive research in this filed, which may provide a replace-
ment for the current, toxic antimicrobial products. Additionally, to expand the application
performance, special functional groups can be introduced to improve the thermal sta-
bility, adsorption capacity, conductivity, magnetic and optical properties of lignin-based
nanoparticles.
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Abbreviations

ATRP atom transfer radical polymerization
ADMET acyclic diene metathesis
BRF brown-rot fungi
DHP di hydroxyl phenol
FTIR Fourier transform-infrared spectroscopy
LC lignocellulose
LCBM lingocellulosic biomass
Lac laccase
LiP lignin peroxidases
LNPs lignin nanoparticles
DyP dye-decolorizing peroxidase
KL Kraft lignin
LiG lignin
MnP manganese-dependent peroxidase
MLG monolignols
NMP nitroxide mediated polymerization
NMR nuclear magnetic resonance spectroscopy
NPs nanoparticles
OGs organosolv
PEB poly(ethylene brassylate)
RAFT reversible addition fragmentation chain transfer
ROP ring-opening polymerization
ROMP ring-opening metathesis polymerization
SRF soft-rot fungi
THF tetrahydrofuran
UV-Vis ultraviolet visible spectroscopy
VP versatile peroxidase
WRF white-rot fungi
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