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Abstract. The Schwinger multichannel method [K. Takatsuka and V. McKoy, Phys. Rev. A 30, 1734
(1984)], which is based on the Schwinger variational principle for the scattering amplitude [J. Schwinger,
Phys. Rev. 72, 742 (1947)], was designed to account for exchange, polarization and electronically mul-
tichannel coupling effects in the low-energy region of electron scattering from molecules with arbitrary
geometry. The applications of the method became more ambitious with the availability of computer power
combined with parallel processing, use of norm-conserving pseudopotentials and improvement of the de-
scription of target excited states (minimal orbital basis for single configuration interaction). The most
recent applications involving 33 and 45 electronically open channels for phenol and ethylene molecules,
represent good examples of the present status of the method. In this colloquium, we review the strategy
and point out new directions to apply the method in its full extension.

1 Introduction

Modeling of discharge environments is in general a good
motivation for experimental and theoretical activities for
examining electron-molecule scattering processes. Some of
the examples are: (1) planetary atmospheres bombarded
by photons and charged particles [1,2], (2) practical un-
derstanding of atmospheric reentry physics in space pro-
grams [3], (3) modeling of chemical plasmas for surface
treatments [4–7], (4) DNA fragmentation induced by elec-
tron attachment (motivation for studying several biomo-
lecules)[8], (5) nanomaterials fabrication using focused e-
lectron-beam-induced processing [9,10] and more recently
(6) pre-treatment (de-lignification) of biomass to obtain
biofuels [11–13].

Studies of electron-molecule scattering resonances for
free electrons can be useful to understand anion-molecule
collisions or even for neutral molecular donors of electrons
reacting with other molecules. In these cases, the electron
is just dressed in a different way (wave package shaped by
its carrier) but the underlying physical/chemical process
is similar.

From the theoretical point of view it is a many-body
problem that needs to be approximated in a realistic way,
in order to describe or predict experimental results. De-
scription of the target is the first challenge. A molecule
is composed by Nn nuclei and N electrons. This group
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of particles are bound together and form a molecule that
can rotate, vibrate and change its nuclei and electronic
structure (or a combination of these “motions”) as a re-
sult of its interaction with an electron. The time scale of
these processes is τelect � τvibr � τrot and when com-
pared with typical electron-molecule collision times, as
show in Table 1 (adapted from [14]), allows for a sepa-
ration of the electronic and the nuclear motion and gives
rise to a fixed-nuclei approximation. By evaluating the
cross sections for a frozen molecule in its lowest-energy
geometry (neglecting rotation and vibration), it is pos-
sible to obtain cross sections for a molecular gas in ac-
cord with experiments as long as the scattering electrons
are sufficiently fast and experience no delay due to res-
onances. Strategies of including nuclear motion through
a combination of snap shots of different molecular ge-
ometries are very common. The bottom line is that the
electronic dynamics represent a great challenge for most
of the electron-molecule scattering situations. The main
effects that should be accounted for are: (1) the static
potential (potential scattering due to the nuclei and elec-
tronic molecular density), (2) the exchange potential (po-
tential due to anti-symmetrization of the (N +1)-identical
electrons wave function), and (3) the polarization poten-
tial (short and long range potentials due to electronic
cloud deformation caused by the scattering electron pres-
ence), and by considering what is known as multichannel
coupling (flux competition among all possible electronic
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Table 1. Typical collision time scale (seconds). Adapted from
reference [14].

N2 CF3I Typical

Collision (1 eV) 1 × 10−16 4 × 10−16 1 × 10−16

Collision (10 eV) 5 × 10−17 1 × 10−16 3 × 10−17

Collision (30 eV) 3 × 10−17 7 × 10−17 2 × 10−17

Electronic Exc. 4 × 10−17 1 × 10−16 5 × 10−17

Rotation 1 × 10−12 1 × 10−11 1 × 10−12

Vibration 1 × 10−15 5 × 10−15 1 × 10−14

transitions, including ionization, with all being due to the
electron impact).

The first group of theoretical methods to address ele-
ctron-molecule scattering was based on single-particle po-
tential scattering [15,16]. The electron is subjected to an
average potential and the method only describes the elas-
tic processes. This strategy along the years included op-
tical potentials for full electronic inelasticity [17–19]. For
electronic excitation, the initial strategy was to use wave
functions obtained in the single-particle potential scat-
tering to evaluate inelastic cross sections within the dis-
torted wave approximation method [20]. This could give,
at best, what one would obtain in a two channel close-
coupling calculation1. In order to include the electronic
multichannel coupling, using the many-particle charac-
ter of the wave function, several initiatives took place.
Among them, we find (1) close-coupling calculations [21],
(2) the linear algebraic method [22], (3) the R-matrix tech-
nique [23], (4) the Schwinger multichannel method [24,25],
and (5) the complex-Kohn variational method [26]. Here
we will discuss the evolution of the SMC method towards
the Schwinger multichannel method with pseudopoten-
tials (SMCPP) and its most interesting applications.

Takatsuka and McKoy constructed the fully ab ini-
tio Schwinger multichannel method [24,25], including all
the above mentioned effects, except the ionization chan-
nel, in a (N + 1)-particle wave function description. In
order to be applicable to polyatomic molecular targets
with arbitrary geometries, the natural strategy was to
use Cartesian Gaussian functions for the expansion of
the scattering wave function. For this, they relied on the
Schwinger method strategy that allows a L2 type (square
integrable) expansion and puts all exit channels in a (N
electrons bounded and one electron free) Green’s function
(expressed in a V G

(+)
P V term better described below). The

whole strategy was based on the fact that 2-electron in-
tegrals involving 4 Cartesian Gaussian functions or one-
plane wave and 3 Cartesian Gaussian functions could be
evaluated analytically [27–29]. As a result the variational
method would be transformed in simple matrix multipli-
cations (in the same spirit of bound state quantum chem-
istry computer codes) involving these integrals. In order
to achieve this goal, the first version of the SMC method
relied on a Cartesian Gaussian projector (approximation
of the unity operator) insertion technique on the left and
right side of G

(+)
P in the V G

(+)
P V term. This strategy

1 For a close-coupling calculation, see, for example [21].

was not precise and convergence of the cross sections,
even for the elastic channel, needed a large number of tri-
als of Cartesian Gaussian functions. Historically, the evo-
lution of the method went through the following steps:
(1) Cartesian Gaussian insertion with the computer code
running in central memory [30,31]; (2) numerical integra-
tion of the residue part of the V G

(+)
P V term2; (3) NASA’s

reorganization of the computer codes aiming at intense use
of I/O (disk memory instead of central memory) [33,34].
From this point two different versions of the program
evolved in different ways, the version at Caltech bet on:
(4) parallelization of the computer codes [35]; while the
version at the State University of Campinas (UNICAMP)
returned to a central memory strategy and bet on: (5) the
use of norm-conserving pseudopotentials (SMCPP) [36];
both versions relied on a (6) three-dimension integration
of the V G

(+)
P V term [37]. From this point, the Brazilian

version that produced the results described in this paper
evolved to: (7) single excitation configuration interaction
for the target description of the excited states and a strat-
egy of a minimal orbital basis for single configuration in-
teraction (MOBSCI) [38] for choosing the appropriate and
feasible level of multichannel coupling computation; and
finally moved to (8) consolidation of the central memory
strategy with parallelization of the computer codes with
all properties cited above [39].

In what follows, we present, in some detail, the result-
ing SMCPP method for electron-molecule scattering, de-
veloped along the last years. We also present a summary
of its most ambitious applications and point new direc-
tions to consolidate the multichannel convergence process
in order to obtain reliable cross sections.

2 Theory

The Schwinger multichannel (SMC) method [24,25] is a
variational strategy that uses (N + 1)-particle square in-
tegrable basis functions to obtain the scattering amplitude
for electron-molecule collisions. It considers the fixed-nu-
clei approximation and includes important effects such as
exchange, polarization, and electronic multichannel cou-
pling. In the present implementation the SMC method
does not describe ionization. The scattering equation was
obtained by Takatsuka and McKoy [24,25] by mixing the
integral and differential forms of the Schrödinger equation
to obtain:

A(±)
∣
∣Ψ

(±)
ki

〉

= V |Ski〉, (1)

where A(±) is an operator that includes the free (electron
plus target with N electrons) Green’s Function G

(±)
0 =

(1 − H0 ± iε)−1 projected in the electronic open channel

2 The strategy for numerical evaluation of the residue of the

V G
(+)
P V term was developed by Gibson, it was first applied for

e−-CH4 scattering in [32].
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space. For the outgoing Green’s function, we have

A(+) =
Ĥ

N + 1
− (ĤP + PĤ)

2
+

(V P + PV )
2

− V G
(+)
P V.

(2)
In the expressions above, P is a projector onto the Nopen

energy-allowed target electronic channels, i.e.

P =
Nopen∑

�=1

| Φ�〉〈Φ� |, (3)

G
(+)
P is the free-particle Green’s function projected onto

the P space, V is the projectile-target interaction poten-
tial and Ĥ = E − H is the total energy (ground state
energy plus kinetic energy of the incoming electron) mi-
nus the Hamiltonian of the (N + 1) electrons under the
field of the fixed nuclei. The latter is given by H = H0+V ,
where H0 describes the non-interacting electron-molecule
system and Sk�

is a solution of H0, namely the product of
a plane wave (projectile) and a target state Φ�. Later on,
Lima and McKoy [40] showed that equations (1) and (2)
could be obtained by simply enforcing the combination

aP
∣
∣Ψ

(+)
ki

〉

+ (1 − aP )
∣
∣Ψ

(+)
ki

〉

=
∣
∣Ψ

(+)
ki

〉

(4)

to be a solution of the Schrödinger equation

(E − H)
∣
∣
∣Ψ

(+)
ki

〉

= (E − H)
(

aP
∣
∣
∣Ψ

(+)
ki

〉

+(1 − aP )
∣
∣
∣Ψ

(+)
ki

〉)

= 0 (5)

and by replacing the first P |Ψ (+)
ki

〉 term with the projected
Lippmann-Schwinger equation, i.e.

P
∣
∣Ψ

(+)
ki

〉

= P |Ski〉 + PG
(+)
0 V

∣
∣Ψ

(+)
ki

〉

. (6)

This strategy gives

A(+) =
Ĥ

a
− (ĤP + PĤ)

2
+

(V P + PV )
2

−V G
(+)
P V. (7)

The value a = N + 1 leads to A(+) of equation (2) and it
was obtained by enforcing the matrix elements of the dif-
ferential operator Ĥ

N+1 + ĤP+PĤ
2 , between asymptotically

non-zero wave functions, to vanish. In this case, or in the
earlier demonstration by Takatsuka and McKoy [24,25],
the form of the operator A(+) is for general target wave-
functions and it remains the same either in a Hartree-Fock
description or in cases where electronically correlated tar-
gets are necessary. Here we now make a review of the basic
concepts of the method and introduce a more formal way
of finding the value of a in equation (4).

The scattering amplitude (in atomic units) for an elec-
tron arriving in a ki plane wave, hitting a target in its
ground state Φi(1, . . . , N), exciting it to Φf (1, . . . , N) and
leaving the scattering region in a k′

f plane wave, is given by

f(k′
f ,ki) = −4π2〈Sk′

f
|V ∣

∣Ψ
(+)
ki

〉

. (8)

It is important to note that |Ψ (+)
ki

〉 is anti-symmetric with
respect to any exchange of two electrons but Sk′

f
is not, if

the scattering particle is involved in the exchange. A con-
venient way of dealing with this asymmetry is to enforce
the normalization of Skj to be 〈Sk′

f
|Ski〉 = δ(k′

f − ki)δif ,

with the normalization of |Ψ (+)
kj

〉 being

〈

Ψ
(+)
k′

f

∣
∣Ψ

(+)
ki

〉

= (N + 1)δ
(

k′
f − ki

)

δif . (9)

This normalization is convenient because it gives the fol-
lowing asymptotic condition

lim
r→∞Ψ

(+)
ki

(r1, . . . rN , r) = Φi(r1, . . . rN )
eiki·r

(2π)3/2

+
Nopen∑

f

(−4π2
) 〈Sk′

f
|V ∣

∣Ψ
(+)
ki

〉

Φf (r1, . . . rN )
eik′

f r

r
, (10)

while, the normalization 〈Ψ̄ (+)
k′

f
|Ψ̄ (+)

ki
〉 = δ(k′

f−ki)δif , gives
asymptotically

lim
r→∞ Ψ̄

(+)
ki

(r1, . . . rN , r) =
1√

N + 1
Φi(r1, . . . rN )

eiki·r

(2π)3/2

+
Nopen∑

f

(−4π2
) 〈Sk′

f
|V ∣

∣Ψ̄
(+)
ki

〉

Φf (r1, . . . rN )
eik′

f r

r
. (11)

Both amplitudes give the same cross sections, if we con-

sider that Ψ̄
(+)
ki

=
Ψ

(+)
ki√
N+1

and that the incident flux of
equation (10) is (N + 1) times bigger than the incident
flux of equation (11). With the convenient normalization
(Eq. (9)) in mind, let us define an anti-symmetrization
operator A such as

A{Φi(1, . . . , N)ϕj(N + 1)} = χm, (12)

where m = {i, j} is a combined index and χm has a similar
normalization as given by equation (9). If Φi(1, . . . , N)
belongs to the P projector and ϕj is a genuine continuum
function (orthogonal to all bound orbitals), it is clear that

Pχm = Φi(1, . . . , N)ϕj(N + 1). (13)

This type of configuration (χm) given by equations (12)
and (13) (an anti-symmetrized product of an ener-
getically open target state with an orthogonal contin-
uum orbital) defines the open-channel Feshbach projector
PFesch [41,42]. All the other configurations, either involv-
ing energetically closed target states or those given by
products of open target states with bound orbitals (not
orthogonal to the target orbitals3), belong to the closed-
channel Feshbach projector QFesch. In the original demon-
stration of the method [24,25], although not using this

3 This kind of configuration was kidnamed by Barry
Schneider as correlation terms. In H2, for instance, the
1σg1σ2

u configuration has its origin in the b3Σu state. See, for
example [43].
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terminology, the authors showed that

PFesch

[

Ĥ

N + 1
− (ĤP + PĤ)

2

]

PFesch = 0. (14)

This is an important property to keep the L2 expansion
strategy for the (N + 1)-particle wave function of the
Schwinger method. All matrix elements of this operator
(the piece of A(+) between the two PFesch’s in Eq. (14)),
involving configurations of the QFesch space, can be evalu-
ated using exclusively L2 type of functions due to the short
range nature of QFesch (ionization excluded). The matrix
elements of all other operators in A(+) (see Eq. (2)) con-
tain V , and so they also can be evaluated exclusively with
L2 type of functions provided that V vanishes faster than
the Coulomb potential at infinity (r → ∞). Therefore, the
condition given by equation (14) is sufficient to guarantee
the desired property of expanding the scattering functions
in square integrable functions.

In order to demonstrate equation (14) we first combine
equations (12) and (13) to obtain

APχ� = χ�, (15)

and note that, with the normalization given by equa-
tion (9), it is simple to verify that

Aχ� = (N + 1)χ� ⇒ A2{Φi(1, . . . , N)ϕj(N + 1)}
= (N + 1)A{Φi(1, . . . , N)ϕj(N + 1)}, (16)

or yet

A =
1

N + 1
A2. (17)

For any pair, χm and χn, of configurations belonging to
PFesch, we can write

〈χm|ĤP |χn〉 = 〈AΦiϕj |ĤP |χn〉 =
〈A2Φiϕj |ĤP |χn〉

N + 1

=
〈AΦiϕj |ĤAP |χn〉

N + 1
=

〈χm|Ĥ |χn〉
N + 1

, (18)

where we have used equations (15) and (17) and that
[A, Ĥ ] = 0. An identical result can be obtained for the
matrix element involving PĤ , which combined with equa-
tion (18) proves equation (14). This result is general and
independent of the level of correlation used for describing
the target states Φi.

A more straightforward way of obtaining a Schwinger
multichannel equation was proposed by Germano and
Lima [44] for positron-molecule scattering. With the help
of the open (P ) and closed channel (Q) projectors, where
P + Q = 1, the Schrödinger equation was written as

(E − H)|Ψki〉 = (E − H)(P + Q)|Ψki〉 = 0 (19)

and the open channel part P |Ψki〉 was again replaced by
the projected Lippmann-Schwinger equation (Eq. (6)) to
obtain

A(+)|Ψki〉 = V |Ski〉 ⇒ A(+) = QĤQ + PV P − V G
(+)
P V.

(20)

The elegance of this operator comes from the fact that
QĤQ and PV P only couple closed- and open-space con-
figurations, respectively, while V G

(+)
P V couples the P and

Q spaces. Why therefore can’t we follow a similar ele-
gant strategy for electron-molecule scattering? The dif-
ficulty lies in the definition of the Q space. For any
given target state belonging to P space, which gives
rise to an (N + 1)-particle configuration through anti-
symmetrization (Eq. (12)), there exist N other target
states belonging to the Q space giving rise to the same
configuration. These N states in Q are constructed by ex-
changing the continuum state ϕ, associated to the scatter-
ing electron, with each one of the N functions associated
to the N target electrons. This redundancy, indeed, guar-
antees that (P +Q) = 1 in the (N +1)-particle space, even
if restricted to anti-symmetric states (i.e. (P + Q)|Ψki〉 =
|Ψki〉). To construct Q, with this redundancy removed, we
should first separate this specific set of continuum states
(Qredundancy) of the target and use it for defining a new
projector R = Q−Qredundancy. This can be very cumber-
some. A better strategy is to note that the target states
of P +Q gives rise to (N +1) times the number of linearly
independent (N + 1)-particle configurations that can be
constructed with the help of equation (12). We, therefore,
could make use of A(P + R) = A(P + Q)/(N + 1) = A

N+1

in equation (19) and in order to avoid constructing R,
employ AR = A

N+1 − AP . Bringing A to the left of the
Hamiltonian (they commute) in equation (19) and follow-
ing the path described in reference [40], we obtain

A
{

A(±)
∣
∣Ψ

(±)
ki

〉 − V |Ski〉
}

= 0. (21)

This is exactly the equation (1) obtained by the authors of
the method [24,25], except that it is multiplied by the anti-
symmetrizer A. If we multiply this equation from the left
by 〈Ψ (−)

kf
|, we get two of the usual definitions of the scat-

tering amplitude, and the presence of A is just to remind
us that the (N + 1)−particle wave function must be anti-
symmetrized. This becomes even more evident in the bi-
linear form of the variational method for the scattering
amplitude, given by

[f ] = − 4π2
{

〈Sk′
f
|V ∣

∣Ψ
(+)
ki

〉

+
〈

Ψ
(−)
kf

∣
∣V |Ski〉

−〈

Ψ
(−)
kf

∣
∣A(+)

∣
∣Ψ

(+)
ki

〉}

. (22)

For independent variations of |δΨ (+)
ki

〉 and 〈δΨ (−)
kf

|, we now
get

〈Sk′
f
|V ∣

∣δΨ
(+)
ki

〉 − 〈

Ψ
(−)
kf

∣
∣A(+)

∣
∣δΨ

(+)
ki

〉

= 0
〈

δΨ
(−)
kf

∣
∣V |Ski〉 −

〈

δΨ
(−)
kf

∣
∣A(+)

∣
∣Ψ

(+)
ki

〉

= 0. (23)

This gives equation (21) (analogous to the original Eq. (1))
as long as the variations are arbitrary and on the anti-
symmetric space as it should be. This procedure makes
clear that the a = (N + 1) factor in equation (4) is de-
fined simply by the removal of the above mentioned ex-
change redundancy. It also shows that, as in the positron

http://www.epj.org
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scattering case, the electron scattering A(+) operator in
equation (2) is obtained without specifying the level of
approximation of the N -electron target and the (N + 1)-
particle scattering functions, i.e. P can contain the num-
ber of open channels of choice and it can be built with or
without target correlation.

2.1 Implementation and numerical procedures

Since the early 1990’s, two implementations of the SMC
approach were developed at Caltech [45,46] and in Brazil,
especially at UNICAMP. In the following, we briefly de-
scribe the key numerical aspects of the method and
the main features of the Brazilian code, namely the use
of pseudopotentials [36], the MOBSCI [38] approach to
multichannel coupling, and the parallelization based on
OpenMP directives [39].

2.1.1 The scattering amplitude

Once the essential properties of the A(+) operator have
been established, equation (1) can be viewed as an alterna-
tive form of the Lippmann-Schwinger equation, with the
operator A(+) given in equation (2) replacing the stan-
dard form A(+) = V − V G

(+)
0 V [47], which is not suit-

able for numerical implementation [24,25], where G
(+)
0 =

[E −H0 + iη]−1 is the free-particle Green’s operator. Fol-
lowing a well-known procedure (see for instance Ref. [47]),
equations (1) and (2) can be used to build up the bilinear
form of the Schwinger variational principle, given above
by equation (22). Then, by expanding the scattering state
in a trial basis {|χm〉},

∣
∣Ψ

(+)
ki

〉

=
∑

m

c(+)
m (ki) |χm〉, (24)

where c
(+)
m (ki) is a variational coefficient, the working ex-

pression for the scattering amplitude can be obtained as
(details given elsewhere [38])

f(k′
f ,ki) = − 1

2π

∑

m,n

〈Sk′
f
|V |χm〉(d−1)mn〈χn|V |Ski〉,

(25)
where now we consider the plane waves normalized as
8π3δ(k − k′) (note the factor −1/2π instead of −4π2

in the scattering amplitude). The dmn matrix element is
given by:

dmn = 〈χm|A(+)|χn〉, (26)

with A(+) given by equation (2).
The trial vectors |χm〉 are (N + 1)-particle configu-

ration state functions (CSFs), built from spin-adapted,
anti-symmetrized products of target electronic states and
projectile scattering orbitals. The open electronic collision
channels are included in the P space and the dynami-
cal response of the target electrons to the projectile field
(correlation-polarization effects) is accounted for through

virtual excitations of the target. In this case, the CSFs are
given by

|χm〉 = A|Φi(1, . . . , N)〉 ⊗ |ϕj(N + 1)〉, (27)

where for i > 0, |Φi〉 ≡ (2S+1)(hi → pi) is a singly ex-
cited state obtained by promoting one electron from a
hole orbital (hi) of the ground state Φ0(1, . . . , N) to a
particle orbital (pi), with either singlet (S = 0) or triplet
(S = 1) spin coupling, though only (N + 1)-electron con-
figurations with total spin S = 1/2 (doublets) are actually
taken into account. If we have Nopen states in equation (3),
this level of calculation is called an Nopen-channel coupling
scheme at the static-exchange-plus-polarization (acronym
is Nopench-sep) approximation.

Direct comparison between equations (25) and (8)
gives the L2 (short range) variational (N+1)-particle scat-
tering state

∣
∣Ψ

(+)
ki

〉

=
∑

m,n

|χm〉(d−1)mn〈χn|V |Ski〉. (28)

Comparison of equation (25) with another definition of
the amplitude given by

f(k′
f ,ki) = − 1

2π

〈

Ψ
(−)
k′

f

∣
∣V |Ski〉, (29)

gives
〈

Ψ
(−)
k′

f

∣
∣ =

∑

m,n

〈Sk′
f
|V |χm〉(d−1)mn〈χn|. (30)

It is important to note that the same scattering state,
given by equation (28), is used to calculate the elastic and
inelastic transitions by just using the appropriate 〈Sk′

f
|

state in equation (8). The inelastic transition and elastic
transition between excited states (including elastic, inelas-
tic and super-elastic processes) can be obtained by the
same scattering state, given by equation (30), using again
the appropriate |Ski〉. In other words, the variational cal-
culation that generates these scattering states, 〈Ψ (−)

k′
f
| and

|Ψ (+)
ki

〉, takes care of all the involved transitions at the
same time. Another way of seeing this is by noting that
once we have defined the (N + 1)-particle trial basis set
{χn} and the level of multichannel coupling through P
(where we have to choose the number and quality of tar-
get states), the operator

F =
∑

m,n

V |χm〉(d−1)mn〈χn|V (31)

is completely defined and furnishes all the transitions be-
tween any two states i and j in the P space through the
direct evaluation of

f(k′
f ,ki) = − 1

2π
〈Sk′

f
|F |Ski〉. (32)

Considering the level of coupling among states, the dif-
ferent ranges of the potentials of the elastic transitions
(either from the ground or from excited states), we need a
balanced choice of the (N +1)-particle configuration space
{|χm〉} and of the P space for obtaining reliable elastic, in-
elastic and super-elastic cross sections with the Schwinger
multichannel method.
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2.1.2 Numerator and Green’s operator matrix elements

Most of the matrix elements comprised in the dmn ma-
trix (Eq. (26)), often referred to as the denominator ma-
trix elements, are similar to those present in bound-state
electronic structure techniques, in particular Hartree-
Fock and Configuration Interaction. Noteworthy excep-
tions are the numerator matrix elements 〈Sk|V |χm〉 in
equation (25) and the projected Green’s operator ma-
trix elements in the configuration space 〈χm|V G

(+)
P V |χn〉

in equation (26), since these have no counterparts in
standard Quantum Chemistry methods. At the atomic-
orbital level, the former requires the computation of two-
electron repulsion integrals involving three CGs and a
plane wave [27–29],

∫

d3r1

∫

d3r2 e−ik·r1gα(r1)
1

r12
gβ(r2)gγ(r2), (33)

where gα denotes a CG function. The computational ef-
fort scales as ∼N3

g , where Ng is the dimension of the CG
set, and these integrals should be calculated for all scat-
tering energies and directions (employing angular numer-
ical quadratures in the latter case). In view of the very
large number of these integrals, we routinely resort to a
pseudopotential approach wherein the nucleus and core
electrons of the atoms heavier than hydrogen are replaced
by a pseudocore that produces the same field of the true
atomic core in the valence region. The pseudopotential im-
plementation of the SMCP method (SMCPP) is described
shortly in Section 2.1.4.

The computation of the Green’s operator matrix el-
ements is a key aspect of the method as it accounts
for the scattering boundary condition. The early algo-
rithms [24,25,30,31] were based on the insertion of nu-
merically complete Gaussian basis sets on both sides of
the G

(+)
P operator, but the slow convergence required very

large sets. To overcome this problem, an alternative ap-
proach to the off-the-energy-shell integration in momen-
tum space was proposed [37],

〈χμ|V G
(+)
P V |χν〉 =

open
∑

m

P

∫ ∞

0

k2dk
gm

μν(k)
1
2k2

m − 1
2k2

+
open
∑

m

iπgm
μν(k), (34)

where P denotes the Cauchy’s principal value, and

gm
μν(k) =

∫

dk̂ 〈χμ|Φmk〉〈kΦm|χν〉. (35)

In this procedure, the radial k-space is discretized on the
quadrature points {kj}, where the gm

μν(kj) matrix ele-
ments are calculated, and the {k̂l} angular quadratures
are also employed to obtain the gm

μν elements, according to
equation (35). While this numerical integration is signifi-
cantly more demanding than the previous implementation
based on a numerically complete single-particle space, it
provides a faster convergence with respect to the Gaussian
basis sets and proved to be more stable and reliable over
a large number of applications.

2.1.3 Multichannel coupling effects and the MOBSCI
approach for defining the P space

As mentioned before, the description of the many-body
dynamics in electron-molecule collisions is (at least at the
fixed-nuclei approximation) strongly affected by the in-
clusion and also by a proper balanced treatment of ex-
change, polarization and multichannel coupling effects.
At sufficiently low impact energies, only the elastic chan-
nel is open (i.e., it is the only channel that is energet-
ically accessible) and the collision process is dominated
by the description of the distortion of the target’s elec-
tronic cloud due to the presence of the incident electron,
an effect which is taken into account by allowing virtual
excitations (closed channel space) from the ground state,
as explained in Section 2.1.1. This effect combined with
the proper solution of the scattering problem, including
the exchange interaction, is known as the static-exchange-
plus-polarization (SEP) approximation. As the electron
impact energy increases, several discrete and continuum
states (above the ionization threshold) become energeti-
cally accessible giving rise to what is called the multichan-
nel coupling effect.

The aspect that basically determines the level of mul-
tichannel coupling in a scattering calculation is the num-
ber of energy-allowed target electronic states entering the
sum that appears in the projector operator P , as given
in equation (3). Depending on the impact energy and on
the thresholds of the electronic target states included in
the expansion of the open channel space, a number that
ranges from 1-channel up to Nopen-channels will be cou-
pled and will compete among themselves for the flux that
defines the cross section. In our strategy, the configura-
tion space is kept the same for all Nopench-sep approxi-
mations (i.e., for calculations with Nopen = 1, 2, 3, . . . ),
where more channels are open as the collision energy in-
creases. Here it is worth noting that, from the point of
view of the theoretical formalism of the SMCPP method,
there is no restriction on the number of energy-allowed
states that can be included in the P operator (i.e., Nopen

can be very large and, in principle, infinity). In practical
applications, however, the active space of coupled states
must be judiciously truncated due to the high cost of the
scattering calculation when too big a value of Nopen is
considered in equation (3). This happens because, for ev-
ery electronic channel, a large numerical quadrature must
be carried out in order to evaluate the projected Green’s
function of equation (2). From this, the first point that we
must have in mind, when dealing with the multichannel
coupling effect and analyzing its influence on the results,
is: how many (and perhaps, which) electronic states must
be included in a scattering calculation in order to provide
cross sections in reasonable agreement with carefully con-
ducted experiments, while still keeping the computational
effort manageable.

Another aspect that contributes to the accuracy of the
cross sections, obtained in a calculation carried out with
the inclusion of the multichannel coupling effect, is related
to the level of approximation used in the representation
of the target states. This aspect is especially important
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since it defines the quality of the electronic states used in
the expansion of the P operator. To put this statement
in a contextualized perspective, it is important to recall
that in methods such as the R-matrix and the complex-
Kohn, the description of the target electronic states allows
the inclusion of correlation. On the other hand, until re-
cently, the target electronic states in the SMCPP imple-
mentation were described in terms of the improved vir-
tual orbital (IVO) approximation [48]. The use of IVOs
in our computational codes provides a simple and good
representation of the excited states in terms of one or two
Slater determinants (depending on the desired spin cou-
pling), but implicitly implies a serious restriction because,
within this approximation, states with different spin cou-
pling may be not equally well described. Indeed, singlet
and triplet IVO states when simultaneously taken into
account in the same close coupling calculation would be
constructed from the same space orbital, and one of them
would be poorly described. The b3Σu and B1Σu states of
the hydrogen molecule illustrate this difficulty: although
they have very distinct characters (since they represent
typical valence and Rydberg states, respectively), in the
IVO approximation these states are constructed with the
same σu orbital. To work around this limitation, we have
improved the description of the target in the computa-
tional codes of the SMCPP method by replacing the IVO
approach with a single-excitation configuration interac-
tion (SCI) treatment of the excited states. However, a side
effect of using such a description is that all on-shell roots
of the target Hamiltonian (physical and pseudo states ly-
ing below the scattering on-shell energy) must be consid-
ered as open channels. In other words, the use of a SCI
representation for the target introduces a large family of
pseudo states that must be included in the scattering cal-
culation in order to properly account for the flux distri-
bution among the participant channels. In a typical scat-
tering calculation every channel brings complications since
the cross sections are very sensitive to new thresholds and,
just before a threshold, an upcoming channel can give rise
to spurious structures (narrow bumps and troughs - that
can become wide structures if you do not open a channel
that should be open). Moreover, as pseudo states usually
have inaccurate thresholds, lots of misplaced structures
would deteriorate the quality of the integral cross sections
(ICS) and, as a consequence, the energy dependence of a
calculated ICS can become very different from what may
be found in the experiment.

In summary, the intrinsic many-body character of the
electron-molecule collision problem imposes the use of ap-
proximations, and this occurs for both bound state and
scattering calculations. According to the above consider-
ations, a good description of the target states added to
the use of a strategy to minimize the open channel space
represent crucial steps towards the choice for the level
of multichannel coupling to be used in our calculations.
Aiming to address these two questions together, we have
recently developed the so called minimal orbital basis for
single configuration interaction strategy [38]. Through the
use of the this strategy, we constructed an open channel

space, composed by a set of hole-particle orbitals, which
is capable of reproducing the spectrum of excitation en-
ergies obtained with a full single configuration interaction
(FSCI) calculation for energies below a previously defined
cutoff energy value. At the same time, within this ap-
proach, the number of pseudo states is minimized and the
open channel space becomes as compact as possible.

2.1.4 Pseudopotential implementation in the SMC method

The pseudopotentials of BHS [49] were obtained from all-
electron atomic calculations carried out within the local-
density approximation. They have the property of norm-
conservation introduced by Hamann et al. [50], which
assures that the all-electron and pseudo-wave-function de-
scribing the valence electrons are identical beyond a core
radius rcore. As a consequence the norm-conserving pseu-
dopotentials are smooth near the origin, which makes eas-
ier any attempt to expand the wave function in a basis
set. This is also an attractive property for scattering cal-
culations, considering that the asymptotic region, where
the pseudo and real wave functions are equal, governs the
scattering properties.

The analytical expression for the BHS pseudopoten-
tials, which are non-local, is

V̂PP = V̂core + V̂ion (36)

where

V̂core = −Zval

r

2∑

i=1

ci erf
(

ρ
1/2
i r

)

, (37)

where erf is the error function, and

V̂ion =
1∑

n=0

3∑

j=1

2∑

�=0

Anj�r
2ne−σj�r2

+�∑

m=−�

|�m〉〈�m|. (38)

V̂core is finite at the origin and accounts for the valence
Coulomb tail due to a nuclei with charge Zval. V̂ion is short
ranged and accounts for the ionic part. The set of param-
eters Anj�, σj�, ci and ρi are tabulated in the article of
BHS [49].

In general, the pseudopotential implementation is done
by replacing the nuclear potential −Z/r by the pseudopo-
tential operator V̂PP. In the electronic-structure codes, the
three-center integrals of the nuclear potential −Z/r and
two (real) atomic orbitals φμ and φν

V Nucl
μν =

∫

drφμ

[

−Z

r

]

φν (39)

are replaced by the three-center integrals of the pseudopo-
tential V̂PP and two atomic orbitals

V PP
μν =

∫

drφμV̂PPφν . (40)

http://www.epj.org


Page 8 of 24 Eur. Phys. J. D (2015) 69: 159

In the scattering codes, the nuclear hybrid integrals of the
nuclear potential and one atomic orbital φμ and a plane
wave φk = eik.r describing the continuum electron, as
given by

V Nucl
kν =

∫

drφ∗
k

[

−Z

r

]

φν , (41)

are replaced by the nuclear hybrid integrals of the pseu-
dopotential

V PP
kν =

∫

drφ∗
kV̂PPφν . (42)

In our calculations, the atomic orbitals are represented by
Cartesian Gaussians functions, given by

glmn A
α (r) = Nlmn(x−Ax)l(y −Ay)m(z −Az)ne−α|r−A|2 .

(43)
With this choice the above integrals of the pseudopo-
tential, as given by equations (36)–(38), are evaluated
analytically. The Cartesian Gaussians functions are gen-
erated from atomic pseudo-wave-functions using a varia-
tional method, as described in reference [51]. This method
employs a functional based on the Poisson equation,
and provides Cartesian Gaussian functions which are ob-
tained from the numerical atomic radial pseudo-wave-
functions. As we will show below, this method provides
basis sets that are suitable for electronic elastic and in-
elastic calculations.

2.1.5 Parallel implementation

The computer code of the SMCPP method was recently
redesigned [39] to improve the RAM memory efficiency
and incorporate parallel processing. The parallelization
was based on OpenMP directives (www.openmp.org) and
significantly increased the performance in comparison
with the previous serial version. For large target molecules,
the number of numerator matrix elements 〈Sk|V |χm〉 in
equation (25) is very large even with the use of pseu-
dopotentials. The computation of these matrix elements
and their transformation from the atomic-orbital to the
molecular-orbital basis are now performed in parallel. The
calculation of the dmn matrix of equation (26) and its in-
version, according to equation (25), are also processed in
parallel, where the last step can be performed with either
the LU factorization or singular-value decomposition al-
gorithms implemented in the linear algebra subroutines
(BLAS) and LAPACK routines (www.netlib.org/lapack).
The computation of the Green’s operator elements and
the off-shell integration (see Sect. 2.1.2) have also been
parallelized, allowing for the use of either Gauss-Legendre
or Lebedev-Laikov angular quadratures to perform the in-
tegration in equation (35). While the overall performance
depends on the dimension of the GC and CSF bases, a
typical speed up with 6 shared memory cores would be
around a factor of 5 compared to a single core.

2.2 Cross sections

2.2.1 Integral cross sections

The integral cross section (ICS) for the electronic excita-
tion process Φn → Φn′ , where Φn denotes target states,
can be readily obtained from the scattering amplitude
given in equation (25),

σn→n′(E) =
kf

ki

1
4π

∫

dk̂i

∫

dk̂f |f(k′
f ,ki)|2. (44)

In the expression above, the magnitude of the final wave
vector is given by k2

f = k2
i − 2(ε′n − εn), where εn denotes

the energy of the n-th electronic target state. The integra-
tion over k̂f accounts for scattering into all the possible
directions, while (4π)−1

∫

dk̂i averages over the random
molecular orientations in the target gas. The integration
over both the incoming and outgoing directions makes the
ICS rotationally invariant and hence equal in both the
molecule-fixed and laboratory-fixed reference frames de-
fined below.

2.2.2 Total cross sections

The elastic amplitude contains information on both the
elastic and inelastic transitions through the optical the-
orem. We can thus obtain the total cross section (TCS)
from

σtot =
1
4π

∫

dk̂i
4π

k
Imf(ki,ki) =

Nopen∑

n=1

σ(1 → n), (45)

where σ(1 → n) is the integral cross section for the elec-
tronic transition Φ1 → Φn. We have learned in recent
applications that once the (N + 1)-particle configuration
space {|χn〉} is fixed, any change in P affects the compe-
tition in a very interesting way among the open channels.
The elastic cross sections, for instance, drops substantially
as we open more and more channels, especially at inter-
mediate energies (<50 eV). This point will be reviewed
later in the present paper.

2.2.3 Partial waves and differential cross sections

While the SMC method provides the scattering amplitude
in the linear momentum representation, partial waves can
be obtained from expansions of the ingoing and outgo-
ing angular dependencies in terms of spherical harmonics
(Y�m) [30,31]. For instance, it is often useful to expand the
outgoing wave vector in angular momentum components
as follows,

f(k′
f ,ki) ≡ 〈k′

f |f |ki〉 =
�max∑

�=0

�∑

m=−�

〈k̂f |�m〉f�m(kf ,ki),

(46)
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where 〈k̂f |�m〉 = Ylm(k̂f ) is a spherical harmonic and
k̂i and k̂f are the incoming and outgoing directions in
the molecule-fixed frame, where the scattering calculations
are carried out (see below). The coefficient f�m(kf ,ki) =
〈�m|f |ki〉 can be understood as the scattering amplitude
of an electron entering the interaction region in a plane-
wave |ki〉 and leaving it in a partial wave |�m〉. Another
way of calculating the scattering amplitude is by also ex-
panding ki in partial waves,

〈k′
f |f |ki〉 =

�max∑

�=0

�∑

m=−�

�max∑

�′=0

�′∑

m′=−�′
〈k′

f |�m〉

×f�m,�′m′(kf , ki)〈�′m′|ki〉, (47)

where f�m,�′m′(kf , ki) = 〈�, m|f |�′, m′〉 is the amplitude
of an electron entering the interaction region in a partial
wave |�′, m′〉 and leaving it in a partial wave |�, m〉.

To obtain the differential cross section (DCS), it is
necessary to transform the scattering amplitude from
the body-fixed (or molecule-fixed) reference frame (BF),
where the calculations are most conveniently performed,
to the laboratory-fixed frame (LF), where the experiments
are carried out. The latter is defined such that its z-axis is
aligned with the direction of the incident wave vector, i.e.
k′

i = kiẑ′ (from now on we employ primed unit vectors
to indicate directions in the LF). We thus use the out-
going angular momentum expansion, according to equa-
tion (46), and employ the well-known Wigner rotation
matrices (D�

mμ) [52] to obtain the scattering amplitude
in the LF,

fLF(k′
f ,ki) =

�max∑

�=0

�∑

m=−�

fLF
�m (kf ,ki)Y�m(k̂′

f ), (48)

with

fLF
�m (kf ,ki) =

�∑

μ=−�

D∗
mμ(Ω)Y�μ(k̂′

f ). (49)

In the latter expression, Ω = (α, β, γ) denotes the Euler
angles [52] accounting for the BF → LF transformation.
There is no need to transform the incoming angular de-
pendence because the average over molecular orientations
in the LF is equivalent to an average over incoming direc-
tions in the BF, such that k̂i can be related to the Euler
angles. The DCS is then obtained from integrating over
the azimuth angle (φ′

f ),

dσ

dΩ
(θ′f ) =

kf

ki

1
4π

∫

dk̂i

∫ 2π

0

dφ′
f |fLF(k′

f , k′
i)|2. (50)

Finally, we mention that momentum transfer cross sec-
tions (MTCS) can be readily obtained from the DCS
using,

σMT(E) =
∫ 1

−1

d(cos θ′f )
[

1 − cos θ′f
] dσ

dΩ
(θ′f ). (51)

2.2.4 Born-closure corrections

As pointed out in the previous Section, the finite basis
sets employed in the SMC method effectively truncate
the partial wave expansion of the scattering states. This
is a significant limitation to describe scattering by polar
targets since the dipole moment potential is very long-
ranged, Vdip = −D · r̂/r2, where D is the target perma-
nent dipole moment. To improve the description of higher
partial waves we routinely employ a Born-closure proce-
dure [53], wherein the scattering amplitude for the dipole
potential is obtained in closed form employing the first
Born approximation (FBA). This simple approximation
would be expected to properly describe the higher partial
waves (� → ∞), such that we conveniently replace the
lower angular momentum components as follows,

fLF
clos(k

′
f ,ki) = fFBA(k′

f ,ki) +
�max∑

�=0

�∑

m=−�

[

fLF
�m (kf ,ki)

−fFBA
�m (kf ,ki)

]

Y ∗
�m(k̂f ). (52)

In the above expression, fFBA(k′
f ,ki) is the FBA analyti-

cal scattering amplitude for the dipole potential obtained
in the LF (the frame is indicated by the primed wave vec-
tor k̂′

f , so we do not explicitly indicate the LF to simplify
the notation). The amplitude fFBA

�m (kf ,ki) is obtained
from an outgoing partial wave expansion of the analytical
FBA amplitude and fLF

�m (kf ,ki) is given in equation (48).
While the DCS obtained from the Born-closure ampli-

tude (fLF
clos) are significantly improved at low scattering an-

gles (below ∼30o), they are divergent in the very forward
direction (θ′f = 0) in elastic collisions, and hence do not
allow for ICS computations. As discussed elsewhere [54],
reasonable ICS estimates can be obtained by assuming ro-
tationally inelastic collisions (k2

i = k2
f +2ΔErot), since the

condition kf �= ki removes the singularity. It is straightfor-
ward to show that this procedure is equivalent to obtaining
approximate rotationally summed cross sections wherein
all rotational excitations are assumed to have the same
energy difference (ΔErot), and the DCS is fairly insensi-
tive to the choice of ΔErot beyond θ′f = 1o (the MTCS is
even less sensitive due to the weighting factor (1− cos θ′f )
in the integrand of Eq. (51)). For high-symmetry target
molecules [55,56] an advantage may be taken from rota-
tional selection rules, so this procedure can be stated on
more rigorous grounds (see Sect. 2.2.5).

There is a very important aspect concerning the Born
closure corrections to resonant elastic cross sections. The
high partial waves accounted for by the fFBA amplitude
in equation (52) essentially impact the background, such
that resonances are accounted for by the fLF

�m amplitudes
computed with the SMCPP method. For strongly polar
targets the dipolar background can become large enough
to obscure the resonance signatures [54,57]. In case the res-
onance spectrum is the problem of interest, we often avoid
the Born-closure procedure and survey symmetry-resolved
uncorrected cross sections that make the resonance states
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much more clear (at the expense of obtaining substantially
underestimated cross section magnitudes).

The Born-closure procedure described here is also use-
ful to improve the magnitude of electronically inelastic
cross sections for spin-preserving dipole-allowed transi-
tions. In these cases, the FBA scattering amplitude for
the 1 → n excitation is reasonably well described employ-
ing the dipole approximation,

fFBA = − 1
2π

〈kfΦn|V |Φ1ki〉 ≈ − 1
2π

〈kf | − d · r̂
r2

|ki〉,
(53)

where d is the 1 → n transition dipole moment. The above
FBA amplitude can also be used in equation (52), such
that the TCS in equation (45) can be alternatively ob-
tained as

σclos
tot =

Nopen∑

n=1

σclos(1 → n), (54)

where the rotationally inelastic approximation described
above is applied to the elastic transition (polar targets
only) and equation (53) is used to improve the elec-
tronically inelastic cross sections (spin-preserving dipole-
allowed transitions only).

2.2.5 Adiabatic excitation cross sections

Even though the scattering calculations are carried out
in the fixed-nuclei approximation, it is possible to obtain
vibrational and rotational excitation cross sections, a pos-
teriori, from the fixed-nuclei input. The simplest scheme
to this end would be employing the adiabatic approxima-
tion [58], which assumes that the time scale for the exci-
tation of some internal degree of freedom of the target is
much larger than the collision time. In view of the very
small energy spacings, rotational excitations are particu-
larly suited for this approximation. The adiabatic scatter-
ing amplitude for the 0 → Γ excitation, where Γ denotes
a complete set of rotational numbers, is given by

fADB
0→Γ (k′

f ,ki) = − 1
2π

〈ΨΓ |f(k′
f ,ki)|Ψ0〉, (55)

where |ΨΓ 〉 is a target rotational state and f(k′
f ,ki) is

a fixed-nuclei elastic scattering amplitude (which is para-
metrically dependent on the target orientation in the LF).

A very useful relation between the elastic DCS and the
rotationally summed DCS (RSDCS) can be easily derived
by assuming that the molecule is in the rotational ground
state and averaging the elastic cross section over the target
orientations (ΩT ),

dσ

dΩ

avr

(θ′f ) =
∫

dΩT |Ψ0(ΩT )|2 dσ

dΩ
(θ′f ; ΩT ), (56)

where the parametric dependence on the target orienta-
tion is indicated by the semicolon. It is thus straightfor-
ward to use the completeness of the rotational eigenstates
to obtain the rotationally summed (RS) cross section,

dσ

dΩ

avr

(θ′f ) ≡ dσ

dΩ

RS

(θ′f ) =
∞∑

Γ=0

dσ

dΩ
(0 → Γ ), (57)

where the 0 → Γ rotational excitation DCS is indi-
cated (this result assumes the validity of the adiabatic
approximation and negligible rotational excitation ener-
gies with respect to the collision energy [55]). The fact
that molecules are rotationally hot in gas-phase experi-
ments is not important since the RSDCS should be un-
derstood as an approximation to the elastic DCS. As a
consequence, we can profit in two different ways from the
adiabatic approximation for rotational excitations. First,
equation (55) provides a means to estimate the rotational
excitation cross sections (for any Γ → Γ ′ transition,
not only from the ground state). Second, the RSDCS in
equation (57) is particularly useful for highly symmetric
targets [55,56] that impose stringent selection rules for
dipole-allowed 0 → Γ rotational excitations. As a result,
the Born-closure procedure (Eq. (52)) can be applied only
to the dipole-allowed rotational excitations. Since these
are often inelastic, the divergence in the forward direction
is more rigorously removed, and the elastic DCS can be
obtained as

dσ

dΩ
=

∞∑

Γ=0

dσ

dΩ

clos

(0 → Γ ), (58)

with Born-closure corrections applied only to the dipole-
allowed transitions.

3 Results and discussion

3.1 Elastic scattering: single open channel

In this section we present our results for elastic scattering
in the static-exchange (SE) and in the static-exchange plus
polarization (SEP) approximations. In all calculations we
consider only the elastic channel opened.

The first applications of the SMCPP method consid-
ered elastic scattering by small molecules, such as CH4,
SiH4, and GeH4 [36]. After testing the pseudopotential
implementation in these molecules, we investigated elec-
tron collisions with molecules containing heavier atoms,
such as CF4, CCl4, SiF4, SiBr4 and SiI4 [59,60].

To illustrate the usefulness of pseudopotentials in the
scattering calculations, we shown in Figures 1–4 differen-
tial cross sections for electron collisions with CF3Br and
CF3I molecules obtained in the static-exchange approx-
imation [61]. With the use of pseudopotentials, bromine
and iodine are treated at the same level, since they have
the same number of valence electrons. We also present ex-
perimental data from references [62–66]. In general, our
results agree well with the experimental data for energies
below 20 eV. At higher energies, our calculations lie above
the experiment. This is understood in terms of the elec-
tronic inelastic channels that are closed, although they
should be open at those energies. As a consequence, there
is no flux loss from the elastic into the inelastic ones. As
we will show below, the opening of the inelastic chan-
nels influences the elastic one, lowering the magnitude of
the elastic cross sections. It is worth to mention that by
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Fig. 1. Differential cross sections for electron scattering by
CF3Br at 6, 8, 10 and 20 eV. Solid line, theoretical re-
sults from reference [61] obtained in the static-exchange ap-
proximation; triangles, experimental data from reference [62];
squares, experimental data from reference [63]. Adapted from
reference [61].

construction, the pseudopotentials of BHS include scalar
relativistic effects, which are important for heavier atoms.

Figure 5 shows the integral cross sections for
SiY4 (Y= Cl, Br, I), obtained in the static-exchange-
polarization approximation, from reference [67]. These re-
sults also illustrate the importance of the pseudopotentials
in this type of calculations. The measured total cross sec-
tions from references [68,69] are shown for comparison.
Our results agree well with the experiment in shape and
also in the location of the shape resonance spectra, where
the computed resonance positions agree quite well with
the experimental positions.

Motivated by experimental works on electron collisions
with isomers of C3H4 and C4H6 [70–73], our group car-
ried out a series of calculations in order to discuss the iso-
mer (or isomeric) effect. The isomer effect allows one to
distinguish between different isomers of a given molecule
by differences in the scattering cross sections (total, in-
tegral elastic, differentials, rotation excitation). We inves-
tigated isomers of the hydrocarbons C3H4, C4H6, C4H8,
C4H10 and C3H6 [74–79]. The results for energies between
10 eV and 40 eV, suggested that the integral cross sections
for the isomeric group differed by a factor that could be
obtained through a scaling law based on geometrical op-
tics (in fact this is a general model that was applied for
molecules other than hydrocarbons) [80].

More recently, in collaboration with Vincent McKoy
and Carl Winstead, from Caltech, and with Murtadha A.
Khakoo, from CSFU, we investigated electron collisions
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Fig. 2. Differential cross sections for electron scattering by
CF3Br at 30 and 60 eV. Solid line, theoretical results ob-
tained in the static-exchange approximation; triangles, exper-
imental data from reference [62]; squares, experimental data
from reference [63].
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Fig. 4. Differential cross sections for electron scattering by
CF3I at 30 and 50 eV. Solid line, theoretical results in
the static-exchange approximation; diamonds, experimental
data from reference [65]; triangles, experimental data from
reference [66].

with alcohols, and discussed the behavior of the DCSs
in terms of the molecular chain: for isomers (of alcohols
and related alkanes and amines) with a straight chain, the
DCSs display a characteristic f -wave behavior around the
energy of the broad resonance which is present in the (elas-
tic or total) cross sections, while isomers with a branched
chain show a characteristic d-wave behavior [81–84].

The formic acid molecule can be considered a “toy
model”, before studying more complex molecules of bi-
ological relevance, since it has a characterized π∗ shape
resonance located at around 1.9 eV [85–92]. In Figure 6
we show our computed differential cross section at 135◦
as a function of the impact energy, compared to the
complex-Kohn results [90] and to the experimental results
of Allan [91]. The two theoretical methods locate the reso-
nance at the experimental location of 1.9 eV. The fact that
both theories provide the resonance thinner in width and
higher in magnitude than the experiment is explained in
terms of the fixed-nuclei approximation employed by both
methods, which fails in the case of resonant scattering.

In DNA, the bases are bounded by two or three hy-
drogen bonds, depending on the nature of the bases. In
order to explore the effect of the hydrogen bonds in the
shape resonance spectra, we investigated the elastic scat-
tering of electrons by two dimers, a formic acid dimer
(FAD) and a formamide dimer (FD), and the formic acid-
formamide complex (FAFC) [93]. All these systems con-
tain two hydrogen bonds. Formamide also presents a well
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Fig. 7. Integral cross sections for the resonant symmetries
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HCOOH and of HCONH2 in the gas phase, which are centered
at 1.9 eV and 2.5 eV respectively. The bars width represents
the width of the resonances estimated from the calculations.

characterized π∗ shape resonance at around 2 eV [94–98],
which also allows the investigation of the formation of
the resonances in the dimers and in the complex from
the resonances of the units. Figure 7 shows the integral
cross sections for the resonant symmetries of the FAD, FD
and FAFC. Each system presents two shape resonances.
The bars indicate the resonance of the units, which are
centered at the calculated positions (1.9 eV for formic
acid [92] and 2.5 eV for formamide [98]) and the width
is also estimated from the calculations. In the case of the
FAD and FD the Au shape resonance is located below

the resonance energy of the corresponding unit and the
Bg resonance is located above the resonance of the corre-
sponding unit. For the FAFC the resonances stabilize with
respect to the resonances of the units.

Figure 8 illustrates the formation of the resonances in
the FAD (the same discussion holds for FD) and FAFC
from the resonance of the units in a simple molecular
orbital model. For the FAD, which has a D2h symmetry,
the LUMO (au symmetry) and the LUMO+1 (bg symme-
try) are located on the units and are even (“ungerade”
with respect to the symmetry center) and odd (“gerade”
with respect to the symmetry center) combinations of the
LUMOs (a′ ′ symmetry) of the units. In the case of the
FAFC, the LUMO and LUMO+1 (both of a′ ′ symmetry)
are located on the corresponding unit.

Another problem that we were able to study was the
influence of microsolvation in the shape resonance of small
molecules such as formaldehyde [99], formic acid [100] and
phenol [101]. We show in Figures 9–11 the cross sections
for complexes of formic acid with one and two surround-
ing water molecules. These studies represent the first step
towards more complicated problems involving the effects
produced by solvation in the resonance spectra of more
complex molecules. It is important to remember, however,
that doing experiments on electron scattering with sol-
vated molecules is very difficulty, and theoretical efforts
must start simple in order to learn and control the ap-
proximations employed in the calculations.

In the complexes A to F, the water molecule plays
the role of proton donor in the hydrogen bond, and the
resonance of the complexes stabilize with respect to the
resonance of formic acid in gas phase. The same occurs for
the complexes K to M, where the two water molecules are
proton donors in the hydrogen bonds. The opposite occurs
when the water molecules play the role of proton accep-
tors. For the complexes G to J, where the water molecule
is the proton acceptor, the resonance of the complexes
destabilize with respect to the resonance in gas phase. In
the complexes N to P, one molecule is a proton donor
and the other is a proton acceptor, and the resonance of
the complexes also destabilizes. These results can be un-
derstood in terms of the net charge in the solute, where
the resonant orbital is more concentrated. The resonance
stabilization occurs when the net charge is positive, which
means that the continuum electrons feels a more attractive
potential than in the gas phase. The resonance destabiliza-
tion corresponds to a net negative charge in the solute.

Furan, pyrrole and thiophene, along with their aza
derivatives, can be considered prototypes of DNA/RNA
basis and other molecules of biological relevance. For ex-
ample, pyrrole is an analogue of one of the rings of adenine.
The knowledge of the shape resonance spectra of these
molecules can provide some insight to people investigating
DEA to DNA. We obtained the elastic cross sections for
these molecules [102–105] and also investigated electron
collisions with their aza derivatives [106] namely, pyrazole,
imidazole, isoxazole, oxazole, isothiazole and thiazole. We
present in Table 2 our results for the position of the two
π∗ shape resonances of furan, pyrrole and thiophene in
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Fig. 8. Model based on the molecular orbital theory showing a pictorial view of the formation of the shape resonances in the
FAD, FD and FAFC from the units formic acid and formamide.

comparison with the experimental data of Modelli and
Burrow [107]. In general, our calculations reproduce well
the experimental data. The same level of agreement was
found among the calculated positions for the two π∗ shape
resonances of the aza derivatives, as shown in Table 3. We
present in Figure 12 the cross sections for the A′ ′ symme-
try of the six aza derivatives. The bars are centered at the
experimental value of the resonance, and the widths were
estimated from the computed cross sections.

As mentioned before, the main motivation to study
electron interactions with biomolecules is related to the
radiation damage to DNA [108], i.e., the dissociation pro-
cesses induced by secondary electrons released by the pri-
mary interaction of high-energy radiation with the biolog-
ical matter. While these reactions triggered off by electron
attachment are generally detrimental, as they can result
in single and double DNA strand breaks, restricting their
effect to cancer cells can actually be beneficial. In fact,
it is possible to enhance the damage to tumor cells by
incorporating radiosensitising drugs to the gene sequence
through chemotherapy. Since halopyrimidines are found
among the chemicals with potential radiosensitising ac-

tivity [109,110], we have recently addressed 2-chloro, 2-
bromo, and 5-bromopyrimidine [111], and uracil (U), 5-
fluorouracil (FU) and 5-chlorouracil (ClU) in a scattering
study [57] (results for 5-bromouracil and 5-iodouracil [112]
are not shown here). The use of pseudopotentials in com-
bination with parallel processing is particularly important
for these systems.

U and the halouracils have complex anion state spec-
tra comprising dipole bound states (DBSs), valence bound
states and shape resonances (in addition to the core-
excited states not addressed in the single-channel scatter-
ing study). In each case, the DBS was obtained with basis
sets generated according to Skurski et al. [113] and incor-
porating coupled-cluster (CCSD(T)) perturbative correc-
tions, as shown in Table 4. For all systems, we obtained
three π∗ anion states, as shown in Figure 13 and also in
Table 4. The lowest-lying (π∗

1) is a valence bound state
in ClU and a shape resonance in U. For FU, the electron
transmission (ET) spectrum [114] indicates an extremely
low-lying π∗

1 resonance around 0.17 eV, while the SMCPP
calculations comprising 4 998 CSFs (A′′ symmetry) pre-
dict a shallow bound state, −0.09 eV (the binding energies
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Fig. 10. Same as in Figure 9 for the four complexes G to J. Adapted from reference [100].

were obtained from the diagonalization of the scattering
Hamiltonian represented in the CSF basis, and they are in-
dicated as negative values). With 2001 CSFs, we obtained
a shape resonance (+0.09 eV), in qualitative agreement
with the ET data, but we observe that both results are in
good agreement (<0.3 eV) with the experimental result
for FU. The π∗

2 and σ∗
CCl resonances are also consistent

with the ET data, even though the π∗
3 resonance energies

are overestimated due to the neglect of multichannel cou-
plings in the elastic calculations. For comparison, we also
show in Figure 13 the cross sections for 2-thiouracil (2-
S-U), another drug with radiosensitising potential [116].
The low-energy anion spectrum is similar to those of the
halouracils, comprising a DBS (−64 meV), three π∗ an-
ion states at −0.22 eV, 0.56 eV and 4.9 eV, according
to the SEP calculation, in addition to a σ∗ resonance
around 3.2 eV. The π∗

1 , π∗
2 and the σ∗ anion states have

significant probabilities on the C=S group. The latter re-

sults are also consistent with the recent calculations for
dimethyl-disulfide [117], a prototype system to model the
sulfide bridges that take part in the stabilization of the
secondary structure of proteins. In this case, the S-S bond
gives rise to a resonance with a strongly repulsive poten-
tial surface, which in turn leads to the cleavage within
the Franck-Condon region of the S-S stretch mode of the
neutral species.

3.2 Applications of the SMC for open-shell molecules

Over the years we had very few applications of the
SMC method to study electron scattering from open-shell
molecular targets. Open shell molecules are usually very
reactive and some can be found as neutral radicals pro-
duced in discharge environments. The most famous open-
shell molecule is O2, followed by NO that can be formed in
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Table 2. Measured vertical attachment energies (VAEs)
from [107], and the calculated π∗ resonances positions with the
SMCPP (SEP) method for furan [103], pyrrole [104] and thio-
phene [105]. All values are in eV. Adapted from reference [105].

π∗(b1) π∗(a2)
VAEexpt. SMCPP VAEexpt. SMCPP

Furan 1.73 1.95 3.15 3.56
Pyrrole 2.36 2.70 3.45 3.80
Thiophene 1.15 1.00 2.63 2.82

Table 3. Calculated π∗ resonance positions with the SMCPP
(SEP) method [106] and the measured vertical attachment
energies (VAEs) from [107], for the aza-derivatives of furan,
pyrrole and thiophene. All values are in eV. Adapted from
reference [106].

π∗
1 π∗

2

SMCPP VAEexpt. SMCPP VAEexpt.

Pyrazole 1.98 1.89 3.61 3.15
Imidazole 2.33 2.12 3.36 3.12
Isoxazole 0.87 1.09 3.26 2.77
Oxazole 1.53 1.44 3.14 2.81
Isothiazole 0.35 0.63 2.81 2.43
Thiazole 0.71 0.80 2.56 2.27

a turbulent atmosphere of N2 and O2. A very interesting
feature of electron collisions against an open-shell target,
is that it allows the spin flip of the scattering electron even
at zero impact energy. Hegeman et al. [118] have shown
that in atomic target gases (Na and Hg), the spin flip dif-
ferential cross sections vary strongly with respect to scat-
tering angle while for molecules like O2 and NO they were
relatively smooth. In our first application [119] of the SMC
method for electron scattering from the open-shell O2, we
confirmed the experimental data and showed a strong de-
pendence of the DCS with respect molecular orientation
and that the interference pattern (so common in atomic
cases) was washed out by the molecular orientational av-

eraging. For this application, we have not designed a new
computer program specifically to account for the spin cou-
pling of a triplet ground state. Rather we used a complex
Cartesian Gaussian version of our programs, and consid-
ered the initial state as a closed shell 1Δg state and have
used equation (31) to obtain all transitions among the
a1Δg, b1Σg, and X3Σ−

g states of O2.
Following this application, the superelastic and elec-

tronic transitions out of excited states of H2 [120,121] were
calculated with our regular computer codes (with the as-
sumption of a Hartree-Fock closed shell molecule acting as
the reference state). We have obtained superelastic cross
sections as large as the elastic ground to ground state
cross sections. We have also found elastic cross section be-
tween excited states almost an order of magnitude larger
than the ground to ground state cross sections. The most
important consequence of such large cross sections could
be seen in a H2 plasma simulation carried out by Amorim
et al. [122]. In that paper, a substantial change in the elec-
tron energy density distribution was obtained in a simu-
lation of a discharge environment of H2 molecules, if the
superelastic processes were included in the model. This
change in electron energy density distribution can pro-
foundly modify the chemistry of a plasma, and it should
represent a good motivation for theoretical and experi-
mental efforts to obtain cross sections from excited meta-
stable states.

Nevertheless for addressing open-shell molecules, we
have calculated cross sections for molecules containing one
unpaired electron, like NO. To do so we had to develop a
new set of computer codes that were specially designed for
this purpose. Due to limited possibilities of applications
at that time (lack of experimental data for a substantial
number of those interesting open shell molecules of this
type and little demand from the plasma simulation com-
munity), the goals of the computer codes were relatively
modest. In particular, they allowed only to carry out the
dynamics involving the unpaired electron (all the other
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Fig. 12. Integral cross sections for the A′ ′ symmetry for the aza-derivatives of furan, pyrrole and thiophene. Adapted from
reference [106].

Table 4. Negative ion spectra of uracil (U), 5-fluorouracil (5-
F-U) and 5-chlorouracil (5-Cl-U). The energies are given in
units of eV, where bound and resonant states are indicated
by negative and positive values, respectively. The theoretical
results (thr) were obtained from SMCPP calculations [57] (res-
onances and valence bound states) and from CCSD(T) calcu-
lations for the dipole bound states (DBS [112]). The exper-
imental data (exp) were obtained from electron transmission
(resonances [114]) and photodetachment (DBS [115]) measure-
ments. Non visible (nv) anion states are also indicated.

DBS π∗
1 π∗

2 π∗
3 σ∗

CX

U thr −0.065 0.14 1.76 4.83
exp −0.090 0.22 1.58 3.83

5-F-U thr −0.067 0.09 1.70 4.97 nv
exp – 0.17 1.5 4.1 nv

5-Cl-U thr −0.070 −0.23 1.63 4.59 2.5
exp – nv 1.3 3.6 1.8

electrons were kept frozen). As a result, the application
were limited to energies where polarization effects were not
too important. The first application was for NO [123], and
it included spin flip cross sections. These results supported
our previous explanation that molecular orientational av-
eraging can smooth the interference pattern present in
atomic cases, and produce spin-flip DCS’s in accord to the
experiments of reference [118]. Following this application,
we employed that computer program version to calculate
cross sections for a molecular radical CF3 [124], as present
in CF4 plasmas.

3.3 Electronic excitation and elastic scattering
under the influence of multichannel coupling effects

The first applications of the SMCPP in electronic excita-
tion of molecules, by electron impact, considered small
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Fig. 13. Integral cross sections for uracil (top left), 5-F-uracil
(top right), 5-Cl-uracil (bottom right) and 2-S-uracil (bottom
left). In all panels, the back dashed lines and blue dotted lines
are the SE and SEP approximations to the A′ symmetry com-
ponent. The solid black lines and the blue chain lines are the
SE and SEP approximations to the A′′ symmetry component.
For 5-F-uracil the long-dashed green line (A′′ component) was
obtained with a smaller CSF space.

polyatomic molecules such as formaldehyde, in a three
state calculation [36], and methane, silane, germane, stan-
nane and plumbane, in a two-state calculation [125]. These
calculations, following the study for electron-H2 scatter-
ing [126], aimed to compare the all-electron results with
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the results obtained with the SMCPP method, in order
to verify the efficacy of the pseudopotentials in inelastic
calculations. In general, the excitation cross sections ob-
tained considering the all-electron and pseudopotentials
approaches were in very good agreement. All these appli-
cations employed IVOs to describe the excited states of the
target molecules. After this successful verification, we car-
ried out a 25-state calculation for e−-Na2 scattering [127],
using the IVO strategy described previously. We found
good agreement below ≈4 eV (all 25 channels are open at
3.6 eV) with the experimental total cross section. Above
4 eV our TCS was much lower in magnitude suggesting
the importance of inclusion of more electronic channels.

The first attempt to investigate the influence of the
multichannel coupling effect in electron-molecule colli-
sions, through the use of the MOBSCI strategy, involved
the study of the electronic excitation (from the ground
state to the lowest lying triplet and singlet states) of
H2 [38,128] and N2 [129,130] by electron impact. In both
cases, for a particular excitation process, the open chan-
nel space was composed by the ground state, by the first
triplet and singlet states of a given symmetry (more specif-
ically, the symmetry of the excited state involved in the
transition) and by the pseudo states arising from the SCI
description of the target. Therefore, as a result of the use
of the MOBSCI strategy, the scattering calculations in
these studies were carried out at a 5ch-sep (or at a 9ch-
sep, for degenerate states) level of approximation. The
agreement of the electronic excitation cross sections ob-
tained according to this procedure, with the experimental
results, typically ranges from good to reasonable, depend-
ing on the specific transition and system that are being
considered. Following these studies, we concentrated our
efforts to systems with triplets states well separated from
the rest of the electronic spectra. Our expectation was
that only a few states would be necessary in P space to
describe these electronic excitation cross sections, at low
energies (around the threshold). We carried out calcula-
tions for electronic excitation of the first triplet states of
furan [131] and ethylene [132], and learned that these cross
sections were very sensitive to polarization effects. In both
systems, shape resonances that show up above the triplet
threshold in the Nopen close-coupling static-exchange ap-
proximation, would move below threshold if polarization
was included (in the Nopen-ch-sep approximation). By in-
cluding polarization effects our excitation cross sections
became in very good agreement with experiments, but
the comparison got worse by increasing the impact energy.
By increasing the energy, polarization gets less important
but as we discuss below multichannel effects become more
important.

Subsequent applications of the MOBSCI strategy in-
volving small polyatomic molecules, provide a clear indi-
cation that a very large number (i.e., a much bigger num-
ber than the ones considered in the previously mentioned
studies) of electronic states should be included in the ex-
pansion of the open channel space in order to achieve (or,
at least, move towards obtaining) converged elastic and
electronic excitation cross sections. In what follows we in-
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Fig. 14. Integral cross sections for the X1A1 → ã3B2 (left
panel) and X1A1 → b̃3A1 (right panel) electronic excitation
of furan (C4H4O) by electron impact. Solid line, theoreti-
cal results from reference [133] obtained up to the 9ch-sep
level of approximation; circles, experimental data from refer-
ence [133]; triangles, experimental data from reference [135].
Adapted from reference [133].

tend to illustrate this finding by presenting three sets of
results, each one of them obtained in calculations in which
the multichannel coupling effect was treated to a growing
level of complexity.

In Figure 14 we present integral cross sections for the
X1A1 → ã3B2 and X1A1 → b̃3A1 electronic transitions in
furan induced by electron impact [133]. In that case, the
scattering calculations were performed at a 9ch-sep level
of approximation. As can be seen, the energy dependence
of the ICS is strongly affected by the presence of several
spurious peaks, whose origin is associated to states that
become energetically accessible but were treated as closed
channels in the calculations. In spite of this, the agreement
with the experimental data is reasonable, in the sense that
the calculated ICS reproduces the gradual rise in the re-
gion comprised between near-threshold to around 8 eV.
For higher energies, the agreement is definitely poorer.
The corresponding differential cross sections obviously fol-
low the same trends discussed above, and representative
DCSs at the energy of 7.5 eV are shown in Figure 15
for each one of the excitation processes considered in that
work. Much more encouraging results were obtained when
the complementary investigation for the elastic scattering
of electrons by furan under the influence of the multichan-
nel coupling effect was considered, as shown Figure 16. At
1 eV only the elastic channel is open under a fixed nu-
clei framework and the DCS obtained at the 1ch-sep level
of approximation is in good agreement with the experi-
ments, while at 5 eV the results obtained at the 1ch-sep
and the 2ch-sep levels of approximation are almost iden-
tical and in excellent agreement with the experimental
data. As the impact energy is increased, the importance
of the multichannel coupling effect is clearly highlighted,
as expected. In fact, for the energies of 20 and 50 eV the
DCSs obtained at the 9ch-sep level of approximation are
in much better agreement with experiments than the those
obtained at the 1ch-sep level of approximation. Finally, it
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is also important to mention that the difference between
the 9ch-sep result and the experimental results, at 50 eV,
points out that the convergence of the cross sections due
to multichannel coupling has not been reached within the
9ch-sep scheme for this energy.
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line, dash-dotted (green) line, dash-dot-dotted (blue) line and
solid (black) line, theoretical results from reference [137] ob-
tained at the 3ch-sep, 8ch-sep, 13ch-sep and 23ch-sep levels of
approximation, respectively. Adapted from reference [137].

More recently, the development of the parallel version
for the SMCPP computational codes allowed us to explore
the effects of multichannel coupling in an even more com-
prehensive way. Latest applications involving phenol [137]
and ethylene [138] molecules were carried out with the in-
clusion of 33 and 45 electronically open channels, respec-
tively. With regard to the use of the MOBSCI strategy,
these are the most sophisticated calculations performed
to date. In Figure 17 we present the cross sections for the
electronic excitation from ground state to the first triplet
state (3A′) of phenol by electron impact. Comparison be-
tween results obtained at the 3ch-sep, 8ch-sep, 13ch-sep
and 23ch-sep levels of approximation indicate that the
probability flux to the 3A′ state decreases as more chan-
nels are included in the calculations and, although not
shown here, the same trend was observed for higher en-
ergies. Figure 18 displays the DCSs for elastic electron
scattering from phenol at the energies of 5, 10, 20 and
40 eV. These results indicate that the difference between
cross sections obtained at the 1ch-sep and the Nopench-sep
levels of approximation (with Nopen = 3 for 5 eV, 21 for
10 eV, 23 for 20 eV and 33 for 40 eV) becomes larger as
the impact energy increases. In addition, at higher ener-
gies, the agreement with the experimental data for ben-
zene [141] is improved as more channels are included in
the calculations. Basically, the same remarks apply to the
results obtained for the elastic and electronically inelas-
tic electron collisions with ethylene. In short, the elastic
DCSs presented in Figure 19 denote that the results ob-
tained within the 45ch-sep scheme are systematically in
much better agreement with the experimental data if com-
pared to those obtained at the 1ch-sep level of approxima-
tion. The same is true for the X1Ag → ã3B1u electronic
excitation DCSs, except that now the agreement with ex-
periments is good only for energies near to the threshold
of the ã3B1u excited state. For higher energies, the cal-
culated DCSs reproduce in qualitative terms the shape
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but are larger in magnitude than the experimental cross
sections by a factor of around 3.

Finally, it is important to mention that these results
highlighted the fact that for any system having a high den-
sity of energetically accessible states, as is the case for the
molecules considered here, the rate of convergence of the
multichannel coupling for electronically inelastic processes
should be very slow. In order to overcome this difficulty,
and aiming at future applications using a redesigned com-
puter code, we tested the possibility of defining a fictitious
arbitrary threshold at 10 eV, meaning that all states open-
ing up at energies between 10 and 18 eV were treated as
degenerate open states with a threshold at 10 eV. Upon
doing so, for the remaining 27 states (45 minus the ground
state and the 17 excited states below 10 eV) we could use
the same integrals (Coulomb potential integrals involv-
ing Cartesian Gaussians and plane waves) to evaluate the
numerators and the Green function appearing in equa-
tion (2). Through the use of the same on-shell energy for
all these states, the number of integrals is substantially
decreased. The results for this approximation, represented
by the solid (brown) line in Figures 19 and 20, are quite
satisfactory if compared to those obtained at the 45ch-sep
level of approximation. The use of the fictitious thresh-
olds, therefore, represents a very promising strategy that
will be further explored in future applications of the SM-
CPP method for studying electron-molecule collisions.
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Fig. 19. Differential cross sections for elastic electron scat-
tering from ethylene (C2H4) at the energies of 10, 15, 20 and
30 eV. Solid (black) line, theoretical results from reference [138]
obtained up to a 45ch-sep level of approximation; dashed (red)
line, theoretical results from reference [138] obtained at the
1ch-sep level of approximation; solid (brown) line, theoreti-
cal results obtained up to a 45ch-sep with fictitious thresholds
level of approximation from reference [138]; circles, diamonds,
squares and stars, experimental data from references [143–146],
respectively.

The existing discrepancies observed in these phenol
and ethylene studies help to illustrate the difficulties in
readily establishing reliable cross sections of polyatomic
molecules by low-energy electrons. In addition they high-
light the very special role played by the multichannel cou-
pling effect, in particular, showing how the number of ex-
cited states included in the open channel space impacts
upon the convergence of the cross sections at intermedi-
ate and higher collision energies.

An alternative to the use of ab initio description of
the multichannel effect in the elastic channel is the use of
model complex (absorption) potential, as that developed
by Staszewska et al. [147–149]. This potential mimics the
flux loss from the elastic channel to all other channels (ex-
citation, ionization, etc.), and as a result the elastic cross
sections agree well with the experiment even at higher en-
ergies. The potential of Staszewska et al. [147–149], and its
improvements [150–152], have been successfully employed
in cross section calculations for collisions of electrons by
molecules [18,19,153].

4 Conclusions

We have presented recent advances in the application of
the Schwinger multichannel method to collisions of low-
energy electrons with molecular targets. In the last years,
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substantial progress related to our ability in determining
reliable cross sections has been achieved through the de-
velopment of efficient computational strategies especially
designed with the aim of dealing with some of the current
challenges posed to the community.

An important step towards this direction was the con-
solidation of the use of pseudopotentials in the study
of electron-molecule collisions, since this achievement en-
abled us to handle heavy targets (molecular targets con-
taining any atom of the periodic table) by performing cal-
culations with a reduced computational cost compared to
the all-electron calculations. This methodology has been
employed to compute cross sections for collisions of slow
electrons by a large number of molecular targets, in very
good agreement with results from different all-electron
methods and with the experiments. It has also been em-
ployed to investigate the shape resonance spectra of large
molecules.

In recent investigations concerning electron collisions
with furan and ethylene molecules we found that a proper
treatment of polarization effects was essential for an ac-
curate description of the electronic excitation, improving
the agreement between the calculated and measured cross
sections. That improvement is related to the fact that
the electronic excitation cross sections are dominated by
the tail contribution of the shape resonances present in
the elastic channel. In summary, these theoretical stud-
ies suggest that for molecular systems supporting res-

onances near low-energy electronic thresholds, standard
close-coupling calculations may produce inaccurate results
in view of the improper treatment of the polarization ef-
fects, which will give rise to misplaced resonances in the
elastic channel.

Another important finding raised by studies involv-
ing furan, ethylene and, more recently, phenol molecules
is related to the analysis of the influence of multichan-
nel coupling effects upon calculated elastic and electronic
excitation cross sections. Comparison among theoretical
results obtained with different channel-coupling schemes,
clearly indicates that convergence of the elastic cross sec-
tions, in terms of the number of excited states included in
the open-channel space, is relatively quickly achieved for
energies below 30 eV. For the electronic excitation pro-
cesses, our calculations revealed that at energies near to
the thresholds of the excited states we are in good agree-
ment with the experiment. However, for higher energies
our results lie systematically above the experimental data,
indicating that probably more open channels would be
needed in order to lower the magnitude of the computed
inelastic DCSs. This would be a problem, considering that
molecular systems typically present a high density of en-
ergetically accessible states. An interesting result for phe-
nol [137] was that for a fixed (N + 1)-particle configura-
tion space, the TCS for the 1ch-sep came very close to the
33ch-sep calculation. This indicates that as we open more
and more channels through the P projector, a strong flux
distribution takes place among the channels. Convergence
with respect to open channels is an important challenge.
Aiming to address this question in a more computation-
ally efficient way, we also introduced a simple but rather
effective method of representing multichannel-coupling ef-
fects through the use of fictitious thresholds. Exploratory
studies have shown that it provides DCSs in agreement
with the case where all thresholds are placed in the cor-
rect positions. That is, through the use of these fictitious
thresholds (which allow the creation of groups of degener-
ate states), a scattering calculation can be carried out with
the same energy dependent two-electron integrals for each
group. All channels lying within a pre-determined energy
interval are treated as a single group of degenerate chan-
nels, capable of reproducing the results of a calculation
in which the number of coupled channels would demand
a much larger set of integrals. We thus intend to make a
much more intense use of the fictitious thresholds strategy
in the future.
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Antônio S. Oliveira, Dr. Adriana R. Lopes, Dr. Eliane M. de
Oliveira, Prof. Thiago C. de Freitas, Prof. Sergio d’A. Sanchez,
Dr. Andreia N.S. Hisi, Prof. Emerson Joucoski, and the gradu-
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