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Abstract— Visual speech information from the speaker’s mouth speech perception level, and robust enough to be deployable in
region has been successfully shown to improve noise robustnessield applicationsVisual speecltonstitutes a promising such
of automatic speech recognizers, thus promising to extend their ¢4 rce clearly not affected by acoustic noise.

usability in the human computer interface. In this paper, we . . .
review the main components of audio-visual automatic speech Both human speech production and perceptionbameodal

recognition and present novel contributions in two main areas: N nature [4], [5]. The visual modality benefit to speech
First, the visual front end design, based on a cascade of linear intelligibility in noise has been quantified as far back as in

image transforms of an appropriate video region-of-interest, 1954 [6]. Furthermore, bimodal integration of audio and visual
and subsequently, audio-visual speech integration. On the latter stimuli in perceiving speech has been demonstrated by the

topic, we discuss new work on feature and decision fusion .
combination, the modeling of audio-visual speech asynchrony, McGurk effect [7]: When, for example, the spoken sound /ga/

and incorporating modality reliability estimates to the bimodal IS superimposed on the video of a person uttering /ba/, most
recognition process. We also briefly touch upon the issue of people perceive the speaker as uttering the sound /da/. In ad-

audio-visual adaptation. We apply our algorithms to three (dition, visual speech is of particular importance to the hearing
multi-subject bimodal databases, ranging from small- to large- impaired: Mouth movement is known to play an important

vocabulary recognition tasks, recorded in both visually controlled le in both sian | d simult icati
and challenging environments. Our experiments demonstrate that folein boul Sign lahguage and Simulianeous communication

the visual modality improves automatic speech recognition over Petween the deaf [8]. The hearing impaired speechread well,
all conditions and data considered, though less so for visually and possibly better than the general population [9].

challenging environments and large vocabulary tasks. There are three key reasons why vision benefits human
Index Terms— Audio-visual speech recognition, speechreading, Speech perception [10]: It helps speaker (audio source) local-
face tracking, visual feature extraction, audio-visual fusion, ization, it contains speech segmental information that supple-
hidden Markov models, multi-steam HMM, product HMM,  ments the audio, and it provides complimentary information
stream reliability, adaptation, multimedia databases. about the place of articulation. The latter is due to the partial
visibility of articulators, such as the tongue, teeth, and lips.

|. INTRODUCTION Place of articulation information can help disambiguate, for

UTOMATIC speech recognitionfASR) is viewed as example, the unvoiced consonants /p/ (a bilabial) and /k/ (a
an integral part of future human-computer interface¥élar), the voiced consonant pair /b/ and /d/ (a bilabial and

that are envisioned to use speech, among other means?‘]t{?‘)'ar’ respectively), and the na;al m/ (a bilabial) from the
achieve natural, pervasive, and ubiquitous computing. HO\W@S?“ alveolar /_n/ [11]. All three.palrs_are highly confusable on
ever, although ASR has witnessed significant progress in wdlasis of acoustics alone. In addition, jaw and lower face muscle

defined applications like dictation and medium vocabular_i?ov_em?_nt is correlated to the produced acoustics [12-14], and
transaction processing tasks in relatively controlled envirofts Visibility has been demonstrated to enhance human speech

ments, its performance has yet to reach the level require@rception [15], [16]. , o , ,
for speech to become a truly pervasive user interface. Indeed! "€ above facts have motivated significant interest in
even in “clean” acoustic environments, state of the art ASR/tomatic recognition of visual speech, formally known as
system performance lags human speech perception by ugtiomatic lipreadingor speechreadingd]. Work in this field

an order of magnitude [1]. Moreover, its lack of robustnedMs at improving ASR by exploiting the visual modality of
to channel and environment noise continues to be a ma}BF speaker’s mouth region in addition to the traditional audio
hindrance [2], [3]. Clearly, non-traditional approaches, th&podality, leading t@udio-visual automat.ic speech recognition
use sources of information orthogonal to the audio inpdfY-ASR) systems. Compared to audio-only speech recog-

are needed to achieve ASR performance closer to the hurfdiiPn, AV-ASR introduces new challenging tasks, that are
highlighted in the block diagram of Fig. 1: First, in addition
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AUD'OI Iw ‘ oo AUDIO-ONLY in the visual front end of our automatic speechreading system

. EXTRACTION and a number of new contributions in the area of audio-

N auplovisuaLl AURIOWISUAL visual integration. Furthermore, We_benchmark the discussed

j F;ART DETECT*'ON — methods on three data sets, reporting AV-ASR of both small

lﬂ ROT] [FACE/LIP ]| FEATURE > susony ase and Iarg(_a vocab_ularles, as well as of data recorded in visually
- crion | " |EsTivaTION T challenging environments.

SUAL PaoNT END In more detail, Section Il of the paper concentrates on

the visual front end, first summarizing relevant work in the

Fig. 1. The main processing blocks of an audio-visual automatic spe rature, and subsequently discussing its three main blocks
recognizer. The visual front end design and the audio-visual fusion modules '

introduce additional challenges, compared to traditional audio-only ASR. N Our_syStem- It a|5(_3 rgports recen_t imprOV_emem_S in the
extraction and normalization of the visual region of interest.

Section Il presents issues in visual speech modeling, that are
are nowtwo streams of features available for recognition, oneelevant to audio-visual fusion, and also serves to introduce
for each modality. The combination of the audio and visu#tie notation used in the remainder of the paper. Section IV
streams should ensure that the resulting system performaiscdevoted to an overview of audio-visual fusion, considering
is better than the best of the two single modality recognizethyee classes of algorithms, i.e., feature, decision, and hybrid
and hopefully, significantly outperform it. Both issues, namelgsion. In particular, it introduces a novel technique within the
the visual front end desigandaudio-visual fusionconstitute last category, and also discusses the issue of audio-visual asyn-
difficult problems [17] and have generated much research warkrony modeling. Section V concentrates on a very important
by the scientific community. aspect of decision fusion based AV-ASR, namely modeling

The first automatic speechreading system was reportedttie reliability of the audio and visual stream information. A
1984 by Petajan [18]. Given the video of the speaker’s faceymber of local stream reliability indicators are considered,
and by using simple image thresholding, he was able to extracid a function that maps their values to appropriate decision
binary (black and white) mouth images, and subsequentiysion parameters is introduced. Section VI is devoted to
mouth height, width, perimeter, and area, as visual speemhdio-visual adaptation, necessary for improving recognition
features. He then developed a visual-only recognizer bageetformance on datasets of small duration, or for particular
on dynamic time warping [19] to rescore the best two choicssibjects. Section VII discusses our audio-visual databases, and
of the output of the baseline audio-only system. His meth@&kction VIII reports experimental results on them. Finally,
improved ASR for a single-speaker, isolated word recognitidggection 1X concludes the paper with a summary and a brief
task on a 100-word vocabulary that included digits and lettexdiscussion on the current state and open problems in AV-ASR.

Since then, over a hundred articles have concentrated on Av-

ASR, with the vast majority appearing during the last decade. Il. THE VISUAL FRONT END

The reported systems differ in three main aspects [17]: TheThe first major issue in audio-visual ASR is the visual front
visual front end design, the audio-visual integration strateggnd design (see also Fig. 1). Over the past 25 years, a number
and the speech recognition method used. Unfortunately, @fesuch designs have been proposed in the literature. Given the
diverse algorithms suggested in the literature are difficult tadeo input they produce visual speech features that in general
compare, as they are rarely tested on a common audio-visfilain one of the following three categorie8ppearancéased
database. Nevertheless, the majority of systems outperfdeaturesshapebased ones, or combination of both [17].
audio-only ASR over a wide range of conditions. Such im- Appearance features assume that all video pixels within
provements have been typically demonstrated on databasea ofgion-of-interest(ROI) are informative about the spoken
small duration, and, in most cases, limited to a very smaltterance. To allow speech classification, they consider mostly
number of speakers and to small vocabulary tasks [17], [2Uhear transforms of the ROI pixel values, resulting in feature
Common tasks typically include recognition of non-senseectors of reduced dimensionality that contain most relevant
words [21], [22], isolated words [18], [23-29], connectedpeech information [23], [26], [29], [34], [37], [39-44]. In
digits [30], [31], letters [30], or of closed-set sentences [32¢ontrast, shape based feature extraction assumes that most
mostly in English, but also in French [21], [33], German [34]speechreading information is contained in the contours of the
[35], and Japanese [36], among others. Recently however, sigeaker’s lips, or more generally in the face contours, e.g.,
nificant improvements have also been demonstratetafge jaw and cheek shape, in addition to the lips [37]. Within this
vocabulary continuous speech recognitiftVCSR) [37], as category belong geometric type features, such as mouth height,
well as cases of speech degraded due to speech impairnveidth, and area [18], [21], [25], [27], [28], [31], [32], [45—47],
[38] or Lombard effects [28]. These facts, when coupled withourier and image moment descriptors of the lip contours
the diminishing cost of quality video capturing systems, maj27], [48], statistical models of shape, such as active shape
automatic speechreading tractable for achieving robust ASibdels [37], [49], or other parameters of lip-tracking models
in certain scenarios and tasks [17]. [41], [50-52]. Finally, features from both categories can be

In this paper, we provide a brief overview of the mairtoncatenated into a joint shape and appearance vector [26],
techniques for AV-ASR that have been developed over the pg&t], [53], or a joint statistical model can be learned on such
two decades, with emphasis on the algorithms investigatedviectors, as is the case of the active appearance model [54],
our own research. In addition, we present recent improvemeunsed for speechreading in [37].
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Clearly, a number of video pre-processing steps are r
quired before the above mentioned visual feature extracti
technigues can commence. One such step is face and fa
part detection, followed by ROI extraction (see also Fig. 1
Of course, the pre-processing depends on the type of vist
data provided to the AV-ASR system, being unnecessary f
example, when a properly head-mounted video camera is u
[55]. In case shape-based visual features are to be extract
the additional step of lip and possibly face shape estimation
required. Some popular methods that are used in this task :
snakes [56], templates [57], and active shape and appear
models [54], [58]. Alternative image processing and statistic
image segmentation techniques can also be employed [59—

possibly making use of the image color information, especialllg_/ s Face. facial detect 4 ROl f e vid
; e i S [iati ig. 2. Face, facial part detection, an extraction for example video
if the speaker's lips are marked with lipstick [21], [47], [61]'frames of two subjects recorded at a controlled studio environment (upper row)

Our AV-ASR system extracts solely appearance based f@ad in a typical office (lower row). The following are depicted for each set

tures, and operates on full face video with no artificial fadgft to right): Original frame with eleven detected facial parts super-imposed;

markings. As a result, both face detection and ROI extractiﬁﬂjefarea enhanced frame; size-normalized mouth-only ROI (upper); and size-,
. . fotation-, and lighting-normalized, enlarged ROI (lower).

are required. All stages of the adopted visual front end

algorithm are described below.

A F d Facial Part Detect estimation, as well as the facial feature location statistics. Such
- Face and Facial Fart Detection training requires a number of frames manually annotated with

Face and facial part detection has attracted significant int@fe faces and their visible features (see Section VIII).
est in the literature [59], [62—64], and it constitutes a difficult

problem, especially in cases where the background, head pose .
and lighting are varying. Many reported systems use traditional Region of Interest
image processing techniques, such as color segmentation, edge most automatic speechreading systems, the ROl is a
detection, image thresholding, template matching, or motiéquare containing the image pixels of the speaker’s mouth
information [59], while others consider a statistical modelintggion, following possible normalization, for example, scale,
approach, employing neural networks for example [62]. Ou@tation, and lighting compensation, or windowing with an
system belongs to the second category, using the algorita@propriate mask [29]. The ROI can also include larger parts
reported in [64]. of the lower face, such as the jaw and cheeks [67], or even the
In more detail, given a video frame, face detection is firsintire face [37]. Often, it can be a three-dimensional rectangle,
performed by searching for face candidates that containcantaining adjacent frame rectangular ROls, in an effort to cap-
relatively high proportion of skin-tone pixels over an imagéure dynamic speech information [40], [42]. In other systems,
“pyramid” of possible locations and scales. Each face caifie ROI corresponds to a number of image profiles vertical to
didate is size-normalized to a chosen template size (heifeg lip contour [26], or is a disc around the mouth center [39].
an 11x11 square), and its greyscale pixel values are plac€@ncatenation of the ROI pixel greyscale [26], [34], [39], [40]
into a 121-dimensional face candidate vector. Every vector color values [41] results into a high-dimensional ROI vector
is given a score based on a two-class (face versus ndmat captures visual speech information.
face) Fisher linear discriminant [65], as well as its “distance In our system, the ROI contains the grey-scale values of a
from face space” (DFFS), i.e., the face vector projectioddx64 size square region, centered around the mouth center,
error onto a lower, 40-dimensional space, obtained by mearsd normalized for variations in mouth scale. Both mouth
of principal components analysiéCA) [66]. All candidate center and scale parameters are obtained after appropriate
regions exceeding a threshold score are considered as fatgmporal smoothing of their frame-level estimates, provided by
Among such faces at neighboring scales and locations, the d¢ine face detection algorithm. Originally, the ROl was limited
achieving the maximum score is returned by the algorithm t& the mouth region alone [44], but subsequent experiments
a detected face [64]. demonstrated that enlarging it to contain the jaw and cheeks
Once a face has been detected, an ensemble of fawias beneficial [67]. Such enlarged ROIs are used in AV-
feature detectors are used to estimate the locations of 26 faédi€R results reported in Section VIII on the controlled studio
features, including the lip corners and centers (eleven suetivironment data. However, recent work on more challenging
facial features are marked on the frames of Fig. 2). Eagfsual domains, for example on data recorded using a cheap PC
feature location is determined by using a score combinatigitleo camera in varying lighting conditions, demonstrated that
of prior feature location statistics, linear discriminant, anddditional ROI processing steps are necessary for improved
“distance from feature space” (similar to the DFFS discusseobustness of the visual front end. We have thus added
above), based on the chosen feature template size. histogram equalization of the face-region image followed by
A training step is required to estimate the Fisher discrimiew-pass filtering, and ROl compensation for head rotation and
nant and PCA eigenvectors for face detection and facial featimead height-to-width ratio recording variations. ROI examples
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(field) of the video, available at 60 Hz, and are immediately
Loz o up-sampled to the audio feature rate, 100 Hz, by means of
2 ;.I; ‘ linear interpolation, a process followed by mean normalization
MLLT (FMN). To further reduce their dimensionality, an intra-frame
LDA/MLLT is applied, resulting in a 30-dimensional “static”
feature vector. To capture dynamic speech information, 15
consecutive feature vectors (centered at the current frame)
are concatenated, followed by an inter-frame LDA/MLLT for
dimensionality reduction and improved statistical modeling.
A — 1/' The resulting “dynamic” visual features are of length 41. The
Lpéﬂ%f‘m 1 <[] o [ioa ] 4n|f 1. visual front end block diagram is given in Fig. 3. It is depicted
Fo“?u“sz%’l]ioo “z%.Mc?NL"_'I]io_o’MLLT'ao q *{ 2 ;.ﬂ; in parallel with the audio front end processing, which produces
) ) 1 MetTla Ty “static” 24-dimensionalmel frequency cepstral coefficients
450 (MFCCs) at 100 Hz [19], [72], followed by FMN, LDA,
N VISUAL FRONT END and MLLT, thus providing 60-dimensional “dynamic” audio
features [75].

Fig. 3. Block diagram of the front end for AV-ASR. The algorithm
generates time-synchronous 60-dimensional audio feature veotpgs,and

41-dimensional visual observations, ;, both at a 100 Hz rate. lIl. VISUAL SPEECHMODELING FORASR

Once features become available from the visual front end,

one can proceed with automatic recognition of the spoken

using the original [44] and newly added processing steps &ferance by means of the video only information (automatic

depicted in Fig. 2. speechreading), or combine them to synchronously extracted
_ acoustic features for audio-visual ASR (see also Fig. 1). The
C. Visual Features and Post-Processing first scenario is primarily useful in benchmarking the perfor-

The dimensionality of the extracted ROI vector (4096 #ance of visual feature extraction algorithms, with visual-only
64x64, in our case) is too large to allow successful statisticASR results typically reported on small-vocabulary tasks [23],
modeling [66] of speech classes, by means bidalen Markov [24], [27-30], [34], [38—40], [43], [49], [60], [71], [76-81].
model(HMM) for example [19]. The required dimensionalityVisual speech modeling is required in this process, its two
reduction is typically achieved by traditional linear transformgentral aspects being the choice of speech classes, that are
borrowed from the image compression and pattern classifi@ssumed to generate the observed features, and the statistical
tion literatures [65], [66], [68], [69], in the hope that theymodeling of this generation process. Both issues are important,
will preserve most relevant to speechreading information. Mo they are also embedded into the design of audio-visual
commonly applied transforms are PCA [26], [34], [39-42fusion (see Section IV), and are discussed next.

[49], [70], [71], the discrete cosine transforn(DCT) [29],

[36], [37], [39], [40], [43], discrete wavelet transform [40],A- Speech Classes

Hadamard and Haar transforms [43], anighaar discriminant ~ The basic unit that describes how speech conveys linguistic
analysis(LDA) based data projection [39]. information is the phoneme[19]. However, since only a

The resulting visual features are often post-processedstmall part of the vocal tract is visible, not every pair of
facilitate and improve AV-ASR. For example, audio and visudghese units can be disambiguated by the video information
feature stream synchrony is required in a number of algorithrakne. Visually distinguishable units are callesemes[4],
for audio-visual fusion, although the modality feature extra¢s], [11], and consist of phoneme clusters that are derived by
tion rates typically differ. This can be easily resolved by simpleuman speechreading studies, or are generated using statistical
element-wise linear interpolation of the visual features to thechniques [32], [82]. An example of a phoneme-to-viseme
audio frame rate. Variations between speakers and recordingpping is depicted in Table | [37].
conditions can be somewhat remedied by videature mean  In audio-only ASR, the hidden speech classes, estimated on
normalization(FMN), i.e., by subtraction of the vector mearthe basis of the observed feature sequence, typically consist
over each utterance [72]. In addition, improved recognitiosf context-dependensub-phonetic units, that are obtained
by capturing important visual speech dynamics [73] can lxy decision tree based clustering of the possible phonetic
accomplished by augmenting “static” visual features with thetiontexts [19], [72]. For automatic speechreading, it seems
first- and second-order temporal derivatives [19], [72]. Finallgppropriate to use swisemicclasses, obtained by decision
when using HMMs with diagonal covariances for ASR, &ee clustering of visemic contexts on the basis of visual
feature vector rotation by means ofrmaximum likelihood feature observations [37]. Naturally, visemic based speech
linear transform(MLLT) can be beneficial [74]. classes are often considered in the literature [44], [79], [82].

Our visual front end system uses a 2-dimensional, separattiewever, having different speech classes in its audio- and
fast DCT, applied to the ROI vector, and retains 100 transfomisual-only components complicates audio-visual integration.
coefficients at specified locations of large DCT energy, dypically therefore, identical classes for both modalities are
computed over a set of training video sequences. The D@%ed. Here, such classes are defined over eleven-phone con-
feature vectors are extracted for each de-interleaved half-frategts (see Section VIII).
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TABLE |

In = nsi f all f re v rs in
A 44 PHONEME TO13 VISEME MAPPING OF THEHTK PHONE SET[72]. (3). Os {037,5,7567‘} consists of all feature vectors

training set7, andQ(e,e|e) represents the EM algorithaux-

[ Viseme class || Phonemes in cluster | iliary function, defined as in [19]. Alternativelyiscriminative
Silence Tsill, Ispl training methods can be used [85], [86].
Taol, lanl, faal, lerl, loyl, Jawl, IhH/ In this papersingle-streanHMMs with emissiorprobabili-
Lip-rounding fuwl, luh/, fow/ ties (1), and trained as in (3), are exclusively used to model the
based vowels lael, lehl, leyl, layl two single-modality classifiers of interest (audio- and visual-
finl, fiyl, Iaxt only). Such models are used as the basis of all audio-visual

Alveolar-semivowels| /I/, /ell, Irl, Iyl

o integration techniques, discussed next.
Alveolar-fricatives Isl, Iz|

Alveolar 1/, 1dl, Inl, len/

Palato-alveolar Jshi, J2hi, fch/, fih/ IV. AUDIO-VISUAL INTEGRATION FOR ASR

Bilabial Ipl, Ibl, Im/ As already mentioned in Section I, audio-visual integration
Dental fth/, fdh/ constitutes a major research topic in AV-ASR, aiming at the
Labio-dental 1, NI combination of the two available speech informative streams
Velar Ingl, IKI, Igl, Iw/

into a bimodal classifier with superior performance to both
audio- and visual-only recognition. Various information fusion
algorithms have been considered for AV-ASR, differing both
B. Speech Classifiers in their basic design, as well as in the terminology used
17], [21], [26], [30], [34], [37], [46], [78], [80], [82]. In

A number of classification approaches are proposed in tigg paper, we adopt their broad grouping iféature fusion
literature for automatic speechreading, as well as audio-visyaly decision fusiormethods. The first are based on training
ASR. Among them: A simple weighted distance in visugy single classifier (i.e., of the same form as the audio- and
feature space [18], artificial neural networks [34], [35], [39)yisual-only classifiers) on the concatenated vector of audio and
[47], and support vector machines [79], used possibly {jsyal features, or on any appropriate transformation of it [21],
conjunction with dynamic time warping [18], [39] or HMMs[37] [46]. In contrast, decision fusion algorithms utilize the
[47], [79]. By far though, the most widely used classifiers argo single-modality (audio- and visual-only) classifier outputs
traditional HMMs that statistically model transitions betweeg, recognize audio-visual speech. Typically, this is achieved
the speech classes and assume a class-dependent geneggfiyi@early combining the class-conditional observation log-
model for the observed features, similarly to HMMs in audiqikelihoods of the two classifiers into a joint audio-visual
only ASR [19], [72]. classification score, using appropriate weights that capture the

Let us denote the set of speech classe<’bwpnd thel;-  reliability of each single-modality classifier, or data stream
dimensional feature vector in streamat timet by o, ; €R', [17], [26], [30], [33], [37]. In addition to the above categories,
wheres=uv in the case of visual-only features. In generatinghere exist techniques that combine characteristics of both.
a sequence of such vectors, the HMM assumes a sequencgi&fe, we introduce one suchybrid fusion method. The
hidden states that are sampled according tdréngsitionprob-  presentation of all techniques initially assumes aarly’
ability parameter vectoa,=[{Pr[c'|c"], ¢, c"€C}]. These temporal level of audio-visual integration, namely at the HMM
states subsequently “emit” the observed features with claggate (see also Fig. 4). So-calledsynchronousmodels of

conditional probabilities” (o, |c), c€C. In the automatic fysjion are discussed at the end of the section. The latter are
speechreading literature, the latter are sometimes considegdvant to decision and hybrid fusion only.

as discrete probability mass functions (after vector quantiza-

tion of the feature space) [83], or non-Gaussian, parametiC Feature Fusion
continuous densities [22]. However, in most cases, they ar
assumed to b&aussian mixturelensities of the form

€Audio-visual feature fusion techniques include: Plain fea-
ture concatenation[21], feature weighting [46], [78], both

K.« also known asdirect identificationfusion [46], hierarchical
P(ogilc) =Y weer N, (05timgck,sscr), (1) discriminantfeature extraction [37], as well as ti@minant
k=1 andmotorrecording fusion [46]. The latter seek a data-to-data

mapping of either the visual features into the audio space, or
of both modality features to a new common space, followed
by linear combination of the resulting features. Audio feature
enhancemendn the basis of either visual input [13], [87], or
concatenated audio-visual features [88-90] falls also within
b, = [{ (W Mg ek Ssck]s k=1, Kse, ceC}], ) this categqry of fusion. In this paper, we briefly review two
feature fusion methods.
is typically estimated iteratively, using thexpectation- Given time-synchronous audio and visual feature vectors
maximization(EM) algorithm [84], as o,,: and o, ; respectively, concatenative feature fusion con-
siders

G+1) — ) L
Ps N argIBaXQ(ps P | 03)7 )= 071’ o (3) Oav,t = [Oa,t ’ Ov,t] € Rlav, where lav = la + lv ’ (4)

where theK; . mixture weightsws . are positive and add
to one, andV; (o;m,s) is the [-variate normal distribution
with meanm and a diagonal covariance matix The HMM
parameter vectop, = [as,bs], where
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1 STATE ¢ POyl 9) In the case where single-stream HMMs, with the same
»/\ 12 set of speech classes (states), are used for both audio- and
A €9 visual-only classification, as in (1), this type of likelihood
/1A combination can be considered at a frame (HMM state) level,

1 “ee 101 "
o[ roA(ta E fffoq

MLLT(Ma) e [feo

p NI

VISUAL
FRONT:
END

:3"(":“‘” o nverio rusion and modeled by means of theulti-streamHMM. Such an
DE/C)SIAOVN CUsion /K%OE"E‘/?TURE CUsion HMM has first been introduced for audio-only ASR [72], [95],

[96], and, subsequently, its two-stream variant was deemed
Fig. 4. Representative techniques of the three fusion categories, considgtidtable for AV-ASR [26], [30], [36], [37], [45], [97]. For a

in this paper for AV-ASR. Feature vector dimensionalities are also depicteflyo-stream HMM, the state-dependent emission of the audio-
visual observation vectas,, . is governed (see also (1) and

- o . . 1)) b
as the joint audio-visual observation of interest, modeled ISy)) Y
a single-stream HMM, as in (1). In practicé,, can be P(ou:|c) = P(oai|c)**=*P(0,]|c) =, (6)
large, causing inadequate modeling in (1) due to the cu

rse .
of dimensionality [66] and insufficient data. fsor all HMM statesc € C . Notice that (6) corresponds to a

Discriminant feature fusion aims to remedy this, by applyinlg]ear combination in the Iog-_||_kellhoo_d d_oma_m, however it
oes not represent a probability distribution in general, and

an LDA projection on the concatenated vectgy, . Such i

projection results in a lower dimensional representation of ( ,'" thterefore be refertred to gshtzs(io;ﬁ. ln (6), Asc der;pte d

while seeking the best discrimination among the speech clas {g Stream exponents (weights), that aré non-negative, an
model stream reliability as a function of modality HMM

of interest. In [37], LDA is followed by an MLLT rotation . .
b?atecec , and utterance frame (time) In this paper, we also

of the feature vector to improve statistical data modeling train th tsto add up t dfor th ind
means of Gaussian mixture emission probability densities wi nstrain the exponents 1o add up to one, and for the remainder
Ith|s section, we assume that they are set to global, modality-

diagonal covariances, as in (1). The transformed audio-vis® .
feature vector then becomes only dependent values, i.6\; <~ A5+, for all c andt.

The multi-stream HMM parameters are (see also (1), (2),
Od,t = Ogqu,t Loy My, € Rld ) (5) and (6))

whergLav denotes the_ LDA matrix of size ;izlgv X lg, ar)d Puy = [Pav>Na>Av], where pay = [agy,ba,by] (7)
M,,, is the MLLT matrix of sizelg x [4. In this work,o4; is ) . .

assumed to be of the same dimension as the audio observaff@7sists of the HMM transition probabilities,, and the
i.e.,l;=1, . Both concatenative and discriminant feature fusigfmission probability parametefs, and b, of its single-

techniques are implementable in most existing ASR systeffi§am components. The parameterppf can be estimated
with minor changes, due to their use of single-stream HMMSEParatelyor each stream component using the EM algorithm,
namely (3) fors=a, v, and subsequently, by possibly setting

- . the joint HMM transition probability vector equal to the
B. Decision Fusion . . o
) ) o audio-one, i.e.a,, = a,, or to the product of the transition
Although many feature fusion techniques result in improveggpapilities of the two HMMS, i.ea,, = diag (a] a,). The
H . . ) - a ) .
ASR over audio-only performance [37], they cannot explicitly|iernative is tojointly estimate parameters,.,, in order to
model the reliability of each modality. Such modeling ignforce state synchrony in training. In the latter scheme, the

extremely important, due to the varying speech informatiqfy pased parameter re-estimation becomes [72]
content of the audio and visual streams. The decision fu-
G+

sion framework, on the other hand, provides a mechanism Py, = argrgaXQ(ﬁa({,) ; P1Oav) (8)

for capturing these reliabilities, by borrowing from classifier o
combination theory, an active area of research with maf§e€ &/S0 (3)). The two approaches thus differ in the E-step of

applications [91-93]. _the EM_aIgorithm. In both separate and joint HMM training,
Various classifier combination techniques have been consid-2ddition top,, , the stream exponents, and A, need to

ered for audio-visual ASR, including for example a cascade Bf oPtained. The issue is deferred to Section V.

fusion modules, some of which possibly using only rank-order

classifier information about the speech classes of interest [18], Hybrid Fusion

[82]. However, by far the most commonly used decision fusion certain feature fusion techniques, for example discriminant

techniques belong to the paradigm of audio- and visual-oiysion by means of (5), outperform audio- and visual-only

classifier combination using a parallel architecture, adaptiygr (see [37] and Section VIII). It therefore seems natural

combination weights, and class score level information. Thege consider (5) as a stream in multi-stream based decision

methods derive the most likely speech class or word sequefig@gration (6), thus combining feature and decision fusion

by linearly combining the log-likelihoods of the two singleithin the framework of the latter. In this paper, we propose

modality classifier decisions, using appropriate weights [2%]yo such hybrid approaches, by generalizing the two-stream
[26], [27], [30], [37], [45], [46]. This corresponds to theypmm of (6) into

adaptive product rule in the likelihood domain [94], and it
is also known as theeparate identificatiomodel for audio- P(owslc) = [ Plostle)™, 9)
visual fusion [46], [82]. s€ES
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Fig. 5. (a) Phone-synchronous (state-asynchronous) two-stream HMM with

three states per phone and modality. (b) Its equivalent product (composite)

HMM; black circles denote states that are removed when limiting t']?]stead It consists m‘omposite;tateéc € CIS! with emission
degree of within-phone allowed asynchrony to one state. The single-stream S ’

emission probabilities are tied for states along the same row (column) to $€0re€s similar to (9), namely

corresponding audio (visual) state probabilities of form (1), according to (10). N
P(owile) = J[ Plosiles)™, (10)

seES

COMPOSITE HMM STATES . . . - .
Fig. 6. Three possible schemes for transition probability modeling between

the composite states of the product HMM. A two-stream model is depicted.

where S = {a,v,d}, or S = {a,d}. In the first case, wherec = {c;,s € S}. An example of such a model is
we obtain a three-stream HMM, with the added stream dgpicted in Fig. 5, for the typical case of one audio and
discriminant featureo,; of (5). In the second case, weone visual stream, and three states per phone and stream.
retain the two-stream HMM, however after replacing the leggotice that in (10), the stream components correspond to
speech-informative visual stream with its superior stream (%he emission probabilities of certain single-stream states, tied
As discussed above, stream exponents are constrainedabydemonstrated in Fig. 5. Therefore, compared to its corre-
As > 0andX;csAs = 1, whereas parameter estimation of thgponding state-synchronous multi-stream HMM, the product
HMM components can be performed separately, or jointly. AMM utilizes the same number of mixture weight, mean,
schematic representation of the two hybrid fusion approachwsd variance parameters (see also (1) and (2)). On the other
(9) is depicted in Fig. 4, together with all previously presentesand, additional transitionsP(c’|c”) , ¢, c"eC!SI} between
fusion algorithms. its composite states are required. Such probabilities are often
factored asP(c'|c") = Ises P(c|c"), in which case the
resulting model is typically referred to in the literature as
the coupled HMM [29], [80], [101], [103]. A further simpli-
fication of this factorization is sometimes employed, namely
In our presentation of decision and hybrid fusion, wé&(c'|c") = Il,cs P(c|c}), thus requiring the same number
have assumed thesé&rly’ temporal level of HMM states for of parameters as the original state-synchronous multi-stream
combining the stream likelihoods of interest (see (6) and (9))MM. The latter factorization is employed in the product
In ASR however, sequences of classes (HMM states or wordt§yIM of [104], as well as the factorial HMM of [29]. The
need to be estimated, therefore coarser levels for combinigee schemes are depicted in Fig. 6.
stream likelihoods can also be envisioned. One suate™ It is worth mentioning, that the product HMM allows
level of integration can be the utterance end, where typicallye restriction of the degree of asynchrony between the two
a number of N-best hypotheses (or all vocabulary wordsstreams, by excluding certain composite states in the model
in case of isolated word recognition) are rescored by thepology (see also Fig. 5). In the extreme case, when only the
stream log-likelihoods, independently computed over the entftates that lie in its “diagonal” are kept, the model becomes
utterance. An example of late fusion is the discriminativequivalent to (9).
model combination technique [98], applied for AV-ASR in Similar to the state-synchronous model, product HMM
[99]. Alternatively, the phone, syllable, or word boundary caparameter estimation can be performed either separately for
provide an fntermediaté level of integration. Such a schemeeach stream component, or jointly for all streams at once.
is typically implemented by means of tpeoductHMM [100], The latter scheme is preferable, as it consistently models
or the coupledHMM [101], and is discussed next. Noticeasynchrony at both training and testing. Notice however that
that both late and intermediate integration permit asynchropgoper stream parameter tying is required, as lack of tying
between the HMM state sequences of the streams of interésads to models with significantly more parameters compared
thus providing the means to model the actual audio and visti@al(9) (exponential on the number of streams). This would not
signal asynchrony, observed in practice to be up to the orddlow a fair comparison between (9) and (10), and could easily
of 100ms [34], [102]. lead to poor statistical modeling due to insufficient data. On the
The product HMM is a generalization of the stateotherhand, and as experiments reported in [104] indicate, tran-
synchronous multi-stream HMM (9) that combines the strea$ifion probability tying (i.e., factorization, discussed above)
log-likelihoods at an intermediate level, here assumed to be #es not seem necessary. In the audio-visual ASR literature,
Phone' The reSU|ting phone_synChronous.prOdUCt HMM aI.IOV.VSlFor example, in the case of two streams (€50= { a, v } ), the cardinality
its single-stream HMM components to be in asynchrony W'th@ S equals 2 ,($| = 2), and the compositewstate,s aré defined over the
each phone, forcing their synchrony at the phone boundar@stesian producs x S.

D. Audio-Visual Asynchrony in Fusion
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product (or, coupled) HMMs have been considered in sorpeoperties of the underlying signal. They are therefore used
small-vocabulary recognition tasks [26], [28], [29], [70], [80]in this paper, as discussed next. Following their presentation,
[105], where synchronization is sometimes enforced at themethod of exponent estimation based on these indicators is
word level, and recently for LVCSR [37], [104]. However, withintroduced.

few exceptions [29], [104], proper parameter tying is usually

not enforced. A. Stream Reliability Indicators

A number of functions have been proposed in the literature
as a means of assessing the reliability of the class information

We now address the issue of stream exponent (weigHpt is contained in an observation, assumed to be modeled by
estimation, when combining likelihoods in the audio-visud@ particular classifier [21], [24], [33], [47], [109]. Following
decision and hybrid fusion models of the previous sectighior work [109], we select two reliability indicators for each
(see (6), (9), and (10)). There, such exponents are setsteeam of interest. Given the stream observaiign, both
constant stream-dependent values, to be computed for a fagicators utilize the class-conditional observation likelihoods
ticular audio-visual environment and database, based on ffetheir N-best most likely generative classes, denoted by
available training, or more often, held-out data. Due to the,:» € C, n = 1,...,N. These are ranked according to
form of the emission scores, the stream exponents canfléscending values aP(os ¢|c), c€C (see also (1)).
be obtained by maximum likelihood estimation [30], [105]. The first reliability indicator is theV-best log-likelihood
Instead, discriminative training techniques are used. difference, defined as

Some of these methods seek to minimize a smooth function 1 N P(0ss]cort)
of the word classification error by the resulting audio-visual £,, = —— Z log ———ot1Zsbl ]
model on the data, and employ the generalized probabilistic N-1 n=2 P(ost]Cstn)

descent algorithm [86] for stream exponent estimation [3Q}, 5 syreamse S . This is chosen, since it is argued that the
[36], [97], [106]. Other techniques use maximum mutUgyeiinood ratios between the firs¥ classification decisions

information training [85], as in [45]. A different approach, .o informative about the class discrimination. The second

minimizes the frame classification error, by using the maxyecteq reliability indicator is tha/-best log-likelihood dis-
imum entropy criterion [106]. Alternatively, one can seek tBersion. This is defined as

directly minimize the word error rate of the resulting audio-

visual ASR system on a held-out data set. In the case of 2 N P(04i|Cstm)

two global exponents, constrained to add to a constant, tHest = N(N_—1) Z Z logm - (12)

problem reduces to one-dimensional optimization of a non- n=1n'=nt+1 T

smooth function, and can be solved using simple grid searthe main advantage of (12) over (11) lies on the fact that (12)

[97], [106]. In the case where additional streams are presentcaptures additionalV-best class likelihood ratios, not present

in (9), or when class-dependent stream exponents are desiied;11). In our analysis, we choos¥ to be 5. As desired,

the problem becomes of higher dimension, and the downHhilbth reliability indicators, averaged over the utterance, are well

simplex method can be employed [107]. In general howevenrrelated to the utterance word error rate of their respective

class dependency has not been demonstrated to be effectivelagsifier. This is demonstrated in Section VIII.

AV-ASR [45], [106], with the exception of the late integration,

Q|scr!m|nat|ve model combination technique [99]. ThereforeB Reliability Indicators For Stream Exponents

in this paper, class dependence of global stream exponents

is not considered. These global exponents are then simplyrhe next stage is to obtain a mapping of the chosen

estimated by grid search on a held-out set. reliability indicators to the frame-dependent stream exponents.
Although the use of such exponents has led to significa¥e use a sigmoid function for this purpose, due to the fact that

impro\/ements in decision based fusion AV-ASR, it is not Veri)I} is monotonic, smooth, and bounded within zero and one. For

suitable for practical systems. There, the quality of captur&émplicity, let us assume that only two streams {a, v} are

audio and visual data, and thus the speech information pres@¥itilable, thus requiring the estimation of expon&pt and

in them, typically varies over time. For example, possiblés derivedA,; =1 — A,;, on basis of the vector of the four

noise bursts, face occlusion, or other face tracking failures ce@lected reliability indicatorsd; = [dy¢,d2,ds;,dae] =

greatly change the reliability of the affected stream. UtterandeCat » Lut s Pat ; Dut] . Then, the mapping is defined as

level or even frame-level dependence of the stream exponents 1

is clearly desirable. This can be achieved by first obtaining Aqt = 1 T a0 (13)

an estimate of the local environment conditions, using for +exp (= Xicy Wi dit)

example signal based approaches like the audio channel signdlerew = [w;,ws,ws,wy] is the vector of the sigmoid

to-noise ratio [21], [24], [27], [46], [47], [76], or theoicing parameters. In the following, we propose two algorithms to

index [108], as in [99]. Alternatively, statistical indicators ofstimatew, given frame-level labeled audio-visual observa-

classifier confidence on the stream data, can be used. Thémes {(04,,, ¢ ),t€T }, for a training set of time instants.

indicators capture the reliability of each stream at a locallotice that the required labets € C, t € 7, can be obtained

frame level, and have the advantage of not depending on thg a forced alignment of the training set utterances.

V. STREAM RELIABILITY MODELING FOR AV-ASR

; (11)
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The first algorithm seeksaximum conditional likelihood (MAP) adaptation [110]. Other adaptation techniques proceed
(MCL) estimates of paramete¥g in (13), under the observa-to transform the extracted features instead, so that they are
tion model (e.g., (6)). Given an audio-visual vectqy, : , we better modeled by the available HMMs with no retraining
first represent the conditional likelihood of classC by [114].

P(0n4) 1 Py 1]c)! Ao In this paper, we briefly discuss MLLR and MAP audio-

P(clogwt) = N ——, (14) visual adaptation in the case of discriminant feature fusion
2cee P(0ag|e) Ploy,gfc)t=Ae by means of (1) and (5). Extensions to multi-stream HMM
under the assumption of a uniform class prdfc) (see also based fusion techniques (e.g., (6), (9), or (10)) can be easily
(6)). We then seek parametexsof (13) as considered, as in [115]. We also discuss a simple feature
adaptation technique that transforms the LDA and MLLT
w = arg mngZ log P (ct|ogu,t) - (15) matrices used in both modality front ends, as well as in
teT discriminant feature fusion (5), in a manner akin to the MAP

The above optimization problem can be solved iteratively, @tgorithm. Adaptation experiments utilizing these techniques,
as well as their combination, are reported in Section VIII.

Wit = W) 4 g 3 M| ., ae)
byl Ow wEw A. MLLR Adaptation

for j=0,1,..., where the gradient vector elements are MLLR obtains a maximum likelihood estimate of a linear
transformation of the HMM means, while leaving unchanged
0log P(clogus) N RY) [1 P(0g,|ct) the covariance matrices, mixture weights, and transition proba-

dw; = Ao (1= Aas)dis | log P(o,|ct) bilities of the original HMM parameter vectgf°*¢). MLLR
Poasle) is most appropriate when a small amount of adaptation data
Y eccP(0aile)* >t Poy i|e)t ot log #’]) is available (rapid adaptation).
vtle ] , Let P be a partition (obtained b¥-means clustering [19],
cecP(0a]c)  Ploy tlc)! —Aa for example) of the set of all Gaussian mixture components of

for i=1,2,3,4 (see also (13)-(15)). In (16), we choose” = single-stream HMM (1), defined over the discriminant stream

[1,1,1,1. Parameten) controls the convergence speed, an§—@, and letp € P denote any member of this partition. Then,
since (15) is not a convex optimization problem, it needs ¥¢ Seek MLLR adapted HMM parameters (see also (2))

be kept relatively small. In our experiments, when choosing  p*™ = [ay, { [wa,cr , M7}, Sk ],
n = 0.01, convergence is typically achieved within few tens ”
of iterations. k=1,.,Ki.,ceC}], a7

The second technique adopted in this work for estimatighere the HMM means are linearly transformed as
the sigmoid parametens is theminimum classification error (AD)

(MCE) approach, seekings that maximizes the frame-level mg o= [1,mycr] Wy, (18)
classification performance on the training ddtaWe choose where (c,k) € p, and W,, p = 1,..,|P| are matrices

to solve this problem by a brute-force grid search over thg dimension(/,+ 1) x I;. The transformation matrices are
four-dimensional parameter space. To simplify the search, wetimated on basis of the adaptation dag™ [111], by

utilize the MCL parameter estimates, thus obtaining an appraxeans of the EM algorithm solving, similarly to (3),
imate parameter dynamic range and limiting the search within

i (AD) _ (ORIG) (AD)
it. Then, for each parameter vector value over the reduced p = arg max Q(p p|O;).

p satisfy (17), (18)

grid, we compute the frame error. The weight assignment trl‘?1tosed form solutions for the unknown matrices exist, since
results in the best performance is chosen as the output. the HMM covariances are diagonal, due to (2) [111]

VI. AUDIO-VISUAL ADAPTATION B. MAP Adaptation

Adaptation techniques are traditionally used in audio-only In contrast to MLLR, MAP follows the Bayesian paradigm
ASR to improve system performance across speakers, taggestimating the adapted HMM parameters. These eventually
or environments, when the available data in the condition gbnverge to their EM-obtained estimates as the amount of
interest are insufficient for appropriate HMM training [110-adaptation data becomes large. Such convergence is slow
114]. In the audio-visual ASR domain, adaptation is of gredbwever, thus MAP is not suitable for rapid adaptation. In
importance, especially since audio-visual corpora are scafsiactice, MAP is often used in conjunction with MLLR [112)].
and their collection expensive, as discussed in Section VII.  Our MAP implementation is similar to thapproximate

A number of audio-only adaptation algorithms can be reaftAP adaptation algorithm (AMAP) [112]. AMAP interpolates
ily extended to audio-visual ASR. Given few adaptation dathe “counts” of the original training dat®"™®, with the
of a new subject or environment, some of these techniques aelaptation data. Equivalently, the training dadg of the
estimate the parameters of an HMM that has been originaligapted HMM are
trained in a speaker-independent fashion and/or under different 0., — (OO QAP oGtD) 19
conditions. Two popular such methods areximum likelihood +=104 ’w] ' (19)
linear regression(MLLR) [111] and maximum-a-posteriori m times
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TABLE I
TYPICAL CORPORA USED IN THE LITERATURE FORAV-ASR, GROUPED
ACCORDING TO RECOGNITION TASK COMPLEXITY DATABASE NAME, OR

COLLECTING INSTITUTION, ASRTASK (ISOLATED (I) OR CONNECTED(C) 3

WORD RECOGNITION IS SPECIFIEPWHEREVER APPROPRIATE, NUMBER
OF SUBJECTSLANGUAGE, AND SAMPLE REFERENCES ARE LISTED

NameéiInstit. ASR Task | Sub| Lan. Sample references

ICP vowel/conson{ 1 | FR | [21]

ICP vowels 1 | FR | [46]

Tulips1 I-4 digits 12 | US| [23], [43], [49], [71], [77], [79
M2VTS I-digits 37 | FR | [26], [97], [116]

XM2VTS C-digits 295 | UK | [103], [117]

uluc C-digits 100 | US| [31]

CUAVE I/C-digits 36 | US| [27], [81]

IBM C-digits 50 | US| [39]

U.Karlsruhe|| C-letters 6 | D | [34],[39], [76]

U.LeMans || I-letters 2 | FR | [33], [82]

U.Sheffield || I-letters 10 | UK | [24]

AT&T C-letters 49 | US| [30], [40], [115]

UT.Austin || I-500 words 1| US|[83]

AMP-CMU || I-78 words 10 | US | [28], [29], [60], [78], [80]
ATR I-words JP | [36], [105]

AV-TIMIT || 150-sent. us | [32]

Rockwell 100-C&C sent. uUs | [25]

AV-ViaVoice|| LVCSR(10.4k) 290 | US | [37], [67], [99], [104], [106]

)

Fig. 7. Example video frames of five subjects from each of the three audio-

visual datasets considered in this paper for AV-ASR (top to bottom: studio-

LVCSR, studio-DIGIT, office-DIGIT). The sides of the 70480 size frames

are cropped in the upper two rows. Clearly, the office-DIGIT database presents
more challenges to the visual front end.

of developed methods to the wider population; they typically
have small duration, often resulting in undertrained statistical
models, or non-significant performance differences between
various proposed algorithms; and finally, they mostly address
simple recognition tasks, such as small-vocabulary ASR of
isolated or connected words.

To help bridge the growing gap between audio-only and AvV-
ASR corpora, we have recently collected the IBM ViaVdite
audio-visual database, a large corpus suitable for speaker-
independent audio-visual LVCSR (see also Table IIl). The

corpus consists of full-face frontal video and audio of 290
subjects, uttering ViaVoice" training scripts, i.e., continuous
read speech with mostly verbalized punctuation, dictation
Then, (3) is used to estimate the adapted HMM parametestyle. The data are collected using a teleprompter in a quiet
p“®. HMM parameters of all mixtures are re-estimatedstudio environment. In more detail, the video is of a X480
provided the adaptation data contain instances of the mixtyrixel size, interlaced, captured in color at a rate of 30 Hz (60
component in question. Here, we use= 15, in (19). fields per second are available at a resolution of 240 lines), and
it is MPEG2 encoded at the relatively high compression ratio
C. Front End Adaptation of qbout 50:1. Example vidgo frames are depicted in Fig. 7.
. . Notice that the lighting conditions, background, and head pose
In addition to updating HMM parameters, one may Seele quite uniform in the set, thus simplifying the visual front
to adapt the front end, so as to better capture the SpPegefy processing. In addition to the video, high quality wideband
information in the adaptation data. For the audio-visual fron,qig is synchronously collected at a rate of 16 kHz and a
end of Section Il and discriminant feature fusion (5), a Simpﬁgnal-to-noise ratio(SNR) of 19.5 dB. The duration of the
form of front end adaptations to re-estimate all appropriategpiire database is approximately 50 hours, from which about
LDA and MLLT matrices. Here, we simply compute suchyy hoyrs (21k utterances) with a 10.4k vocabulary are used in
matrices using the combination of the original and adaptatigg, experiments reported in the next section.
data, given by (19). HMM parameters for the updated front 1, o apje to study the visual modality benefit to a popular
end are then estimated using (3) on training data (19).  gya)i.yocabulary ASR task, we have also collected a 50-
subject connected digit database, in the same studio environ-
VII. AUDIO-VISUAL DATABASES ment as the LVCSR data just described. This DIGIT corpus
In contrast to the abundance of audio-only corpora, thetentains about 6.7k utterances (10 hrs) of 7- and 10-digit
exist only a few databases suitable for audio-visual AS&rings (both “zero” and “oh” are used).
research. This is because the field is relatively young, butFinally, we are interested in studying AV-ASR in domains
also due to the fact that audio-visual corpora pose additiorsald conditions that pose greater challenges to the visual front
challenges concerning database collection, storage, and disd processing, compared to the controlled studio environ-
tribution. A number of audio-visual datasets, commonly usedent of the previous sets. For this purpose, we have been
in the literature, are listed in Table Il. Notice that most areollecting data in two visually challenging domains: The first
the product of efforts by few university groups or individuaset is recorded inside moving automobiles, where dramatic
researchers with limited resources, and as a result, they suffariations in lighting due to shadows are observed [118]. The
from one or more shortcomings [17], [20]: They contain a sirsecond corpus is a DIGIT set (7- or 10-digit strings), collected
gle or small number of subjects, affecting the generalizability typical offices using a cheap camera that is connected via a
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TABLE IlI TABLE IV
THE IBM AUDIO-VISUAL DATABASES USED IN OUR EXPERIMENTSTHEIR ~ VISUAL-ONLY WER, %,0N THE TEST SETS OF THE THREE DATABASES OF
PARTITIONING INTO TRAINING, CHECK (HELD-OUT), ADAPTATION, AND TABLE Ill. PER-SPEAKER MLLR-ADAPTED PERFORMANCE IS ALSO
TEST SETS IS DEPICTEENUMBER OF UTTERANCES DURATION (IN SHOWN FOR THE TWO STUDIO SETSFOR THE OFFICEDIGIT SET,
HOURS), AND NUMBER OF SUBJECTS ARE SHOWN FOR EACH SBETBOTH RESULTS USING THE IMPROVED VISUAL FRONT END OFFIG. 2 ARE
LARGE-VOCABULARY CONTINUOUS SPEECHLVCSR)AND CONNECTED DEPICTED AT THE RIGHFMOST COLUMN (*).

DIGIT (DIGIT) RECOGNITION ARE CONSIDERED FOR DATA RECORDED AT
A STUDIO ENVIRONMENT. FOR THE LOW QUALITY OFFICE-DIGIT DATA,
DUE TO THE LACK OF SUFFICIENT TRAINING DATA ADAPTATION OF

Recognition mode [[ s-LVCSR] s-DIGIT[[ 0-DIGIT [ 0-DIGIT *|
Speaker—lndependEWt 9352 | 3853 || 83.94 | 65.00

Multi-Speaker o 23.58 71.12 35.00

HMM S TRAINED ON THE STUDIG-DIGIT SET IS CONSIDERED Speaker-Adapted 82.51 16.77 o o
[ Environ. | Task | Set | Utter. [ Dur. | Sub. |
Train 17111 | 3455 | 239
_ Check 2277 441 25 on these models, that the parameters of all HMMs considered
Studio | LVCSR ?:Satpt 233 gfgg gg in this paper are estimated (on their required front ends). The
Train 5290 1 801 50 total number of the resulting context-dependent HMM states
Studio | DIGIT | Ch/Adapt 670 | 0:58 | 50 are 159 for the DIGIT task (corresponding to 22 phones) and
Test 529 | 0:46 | 50 approximately 2.8k for LVCSR (for 52 phones). Note that
_ Adapt 1007 | 1:15) 10 all single-stream HMMs have identical number of Gaussian
Office | DIGIT (T::;Ck ;cl)g gfgg 18 mixture components, namely about 3.2k and 47k for the

DIGIT and LVCSR tasks, respectively. Since the amount of
data available in the visually challenging office-DIGIT task
does not suffice to properly train new decision trees and initial
USB-2.0 interface to a portable PC. In this paper, we discuggdio models, we just use the ones estimated on the studio-
experiments on this second set, as a means of also showcap@IT data.
audio-visual adaptation algorithms across datasets. Exampl®nce decision trees and initial DIGIT and LVCSR audio
video frames of this set are depicted in the third row aiMMs are developed, we proceed to estimate the parameters
Fig. 7. Notice the variation in lighting conditions, backgrouncf single-stream HMMs that model visual-only, as well as
and pixel ratio compared to the previous databases that havglio-only and audio-visual feature sequences at a number
been collected in a studio-like environment. The frame rag# audio channel conditions. Both the original clean database
and size are also inferior, as only 32B40 color pixels are audio at approximately 19.5 dB SNR, as well as noisy condi-
now available at 30 Hz. As expected, all these factors pogens, where speech babble noise is artificially added at various
challenges to the visual front end. SNRs, are considered. We use three EM algorithm iterations
The details of all three databases, as well as their partitiar training, with the E-step of the first iteration employing
ing into various subsets used in our experimental framewokke initial audio-only HMM (for bootstrapping). The resulting
are given in Table III. models may be further adapted on #daptationsets of Table
lll. Appropriate single-stream HMMs are also joined to form
VIII. EXPERIMENTS the decision and hybrid fusion models of Section 1V, i.e., (6),

We now proceed to report a number of ASR experimenk8), and (10), with the stream exponents set to global values,
on the three databases of Table IlI, using the algorithms d@stimated on theeld-outsets of Table IIl. Joint stream HMM
cussed in the previous sections. We first briefly introduce tH&ining is also considered.

experimental paradigm adopted, followed by a more detailedWith the exception of the reliability modeling experiments
presentation of our results. (where the SNR level is not assumed known), all results on the

studio-DIGIT and -LVCSR tasks are reported on recognition
A. The Experimental Paradigm of matchedestdata (same SNR as in training). For the DIGIT

' task, decoding is based on a simple digit-word loop grammar

For all single-stream recognition tasks considered, we use(;;n-th unknown string length), whereas for LVCSR, a trigram
state, left-to-right phone HMMs, with context-dependent sullynguage model is used. In both cases, a two-stage stack de-
phonetic classes (states). These classes are obtained by Mggiivg algorithm is employed, that uses a fast match followed
of decision trees that cluster contexts spanning up to 5 phorwsa detailed match [119]. Unless otherwise noted, LVCSR
to each side of the current phone, in order to better model G@syits are speaker-independent, whereas DIGIT recognition is

articulation and improve ASR performance. For both studigyti-speaker (due to the small number of subjects), as implied
quality databases, the DIGIT and LVCSR decision trees g5g Taple Il

estimated using the clean audio of the corresponding database

training set, by bootstrapping on a previously developed audio- .

only HMM (and its corresponding front end), which provide8: Visual-Only Recognition

data class labels by forced alignment [75]. Subsequehtly, Given our three datasets, the first task is to extract visual
means clustering is used to estimate audio-only HMMs, thgieech features from the available videos. To train the required
correspond to the newly developed trees. It is by bootstrappipigjections and statistics for face detection and facial feature
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Fig. 8. Visual-only ASR on the studio-LVCSR and -DIGIT datasets. (a) Improvements in speaker-independent and speaker-adapted (by MLLR,) per subject
visual-only LVCSR, due to the use of intra-frame LDA/MLLT, larger visual ROIls, and a larger temporal window for inter-frame LDA/MLLT. (b,c) WER
histogram of the 50 subjects in the studio-DIGIT dataset, using visual-only HMMs trained in a speaker-independent or multi-speaker fashion.

localization, we annotate 26 facial features on approximatelysulting improvements due to larger ROIs and temporal
4k video frames across the three databases (see also Figwi)dows are consistent with human bimodal speech perception
The face detection accuracy is quite high for the two studgiudies [10], [16], [73]. The second point is demonstrated in
quality datasets (in excess of 99.5%), however it degradesRigs. 8(b,c), and concerns the variation in visual-only ASR
about 95% on the visually more challenging office-DIGIT seperformance across subjects. There, a WER histogram of
After face detection is completed, ROI extraction and visu#tie 50 studio-DIGIT dataset subjects is depicted, when us-
speech feature extraction follow, as described in Section ithg speaker-independent or multi-speaker visual-only HMMs.
Visual-only HMMs can subsequently be trained, providing €learly, there is a large variance in automatic speechreading
means to benchmark the visual front end performance.  performance, with some subjects resulting in about a tenth of

The visual-onlyword error rate(WER), %, on all three sets the WER of others.
is reported in Table V. Clearly, for LVCSR, the visual features
do provide speech information, albeit very weak [37]. DIGITC. Audio-Visual ASR

recognition on the other hand is a visually less confusablel_kivin demonstrated that the proposed visual front end pro-
task, and the algorithm results in the multi-speaker WER g brop P

of 23.6%. Per-speaker, MLLR based visual HMM adaptatio\ﬂdes ip_eec.h inforrrrgtiv%feat?res, ourexpre] rimentst?ow dshi.fthto
significantly improves performance in both cases. quant ying |ts.resu ting ene itto ASR, when combine W.'t
the acoustic signal. We first apply all audio-visual integration
Recognition on the visually challenging office-DIGIT settrategies proposed in Section IV to the studio-DIGIT task.
is inferior to the studio-DIGIT task. Indeed, HMMs trainecRepresentative techniques are subsequently considered on the
on the latter achieve a poor 83.9% WER on the formegy,dio-LVCSR data. Audio-visual ASR on the office-DIGIT
with a small improvement to 71.1% after a cascade of froggt is deferred to Section VIII.E.
end / MLLR adaptation on the multi-speaker office-DIGIT For hoth studio quality datasets, we consider acoustic condi-
adaptation set. These WERs decrease with proper compghs at a wide range of SNRs, as discussed in Section VIILA,
sation for lighting and head pose, using the improved R@hd we compare fusion strategies in terms of their resulting
extraction algorithm of Section Il (see also Fig. 2), and reagfective SNR gaiin ASR. We measure this gain with ref-
a 35.0% visual-only WER after adaptation. This still laggrence to the audio-only WER at 10 dB, by considering the
when compared to the 23.6% WER achieved on the StudigNR value where the audio-visual WER equals the reference
DIGIT task. Our experiments indicate that approximately hagfygio-only WER.
of this difference is due to the inferior quality of the captured Tpe performance of all integration algorithms on the studio-
image sequences (lower frame rate and resolution), Whereag T set is summarized in Fig. 9. In more detail, we first
the remaining is most likely due to the visual challenges of “t%mpare AV-ASR by means of the two feature fusion methods
captured data (head pose, lighting, and background variatioghsection IV.A. As it becomes clear from Fig. 9, both concate-
that significantly affect face and mouth detection accuracy.native and discriminative feature fusion significantly improve
Two additional items of interest are showcased in Fig. 8. TR&SR performance at low SNRs, with the latter being somewhat
first, in Fig. 8(a), demonstrates the effect of certain blocks efiperior, yielding an approximate 6 dB of effective SNR gain.
the visual front end of Fig. 3 to ASR performance. In morEor example, at -2.2 dB SNR, discriminant fusion based AV-
detail, three aspects of the algorithm are considered: Intr&SR results in a 6.3% WER, representing a vast improvement
frame LDA use (as opposed to just obtaining the 30 highester the audio-only WER of 19.8%. Notice however that
energy DCT coefficients), utilizing larger ROIs (containindeature fusion fails to alter performance at the high end of
successively larger parts of the lower face region), and the ube SNR range considered. On the other hand, decision based
of longer temporal windows for inter-frame LDA (performancaudio-visual integration, by means of the state-synchronous
for 15 vs. 21 feature frames is depicted). Notice that theo-stream HMM discussed in Section IV.B, consistently
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Fig. 9. Audio-only and audio-visual ASR on the studio-DIGIT database teBtg. 10. Audio-only and audio-visual WER, %, on the studio-LVCSR test set
set using a number of integration strategies, discussed in Section 1V, nam&dyng discriminant feature fusion, as well as two-stream HMMs for decision
feature fusion, the state-synchronous two-stream HMM (decision fusiomnd hybrid fusion. All models are trained in matched noise conditions.

the state-synchronous three-stream HMM (hybrid fusion), and the state-

asynchronous product HMM (asynchronous decision fusion). In all cases,

WER, %, is depicted vs. audio channel SNR. The effective SNR gain using

the product HMM is also shown, reported with reference to the audio-on. Audio-Visual Reliability Estimation

WER at 10 dB. All HMMs are trained in matched noise conditions.

In the multi-stream HMM based fusion experiments re-

ported above, all stream exponents are kept constant over an
improves performance at all SNRs. In particular, joint streagntire dataset and for a particular SNR level. In this Sec-
training of the model seems clearly preferable, outperforminign, we investigate the benefit of frame-dependent exponents,
separate stream training and discriminant feature fusion, agstimated on basis of stream reliability indicators. To test
yielding a 7.5 dB effective SNR gain. Further improvementse algorithm of Section V over varying stream reliability
can be obtained by using the hybrid fusion approach of Sectiopnditions, we consider the studio-DIGIT task at a mixture
IV.C that utilizes the discriminant audio-visual features as aif SNR conditions. Babble noise is added to both test and
additional stream within a three-stream HMM. This techniqueeld-out sets of the database, however the audio-only HMMs
yields a 9 dB effective SNR gain. Finally, introducing statare trained on the original clean database audio.
asynchrony in decision fusion results in further gains. A jointly We first argue that the selected indicators (11) and (12)
trained product HMM achieves approximately a 10 dB SNRo capture the reliability of the speech class information,
gain, thus exhibiting at 0 dB the performance of audio-onlyailable in the two streams of interest. Indeed, as depicted
ASR at the much cleaner acoustic environment of 10 di Table V, the values of these indicators, averaged at the
Notice that at -2.2 dB SNR, the product HMM yields ajtterance level, are significantly correlated to the utterance
4.1% WER, which corresponds to a 35% improvement oV@YER using the corresponding single-stream HMM, with low
discriminant feature fusion and 79% over audio-only ASRsorrelation present across streams. In addition, as the audio
But even more remarkably, for the original database audio gfannel becomes corrupted by increasing levels of noise, the
19.5 dB, the audio-visual WER now stands at 0.28%, whidpeech information present in it is expected to degrade. Fig. 11
represents a 63% WER reduction over the audio-only WER @émonstrates that boify, ; andD, ; successfully convey such
0.75% (see also Fig. 9). A large percentage of this gain is dgegradation, since they are monotonic on the SNR, similarly
to the joint estimation of all product HMM parameters witho the optimal global audio-stream exponent. The observations
appropriate tying, since the composition of a product HMMbove argue favorably for using audio and visual stream
by separately trained single-stream models achieves an infefi@liability indicators in AV-ASR.
0.40% WER.

For LVCSR, the performance of a number of the presented

fusion techniques is summarized in Fig. 10. Similarly to the TABLE V
resu|tS on the Stud|O'DIGIT Set, hybrld fusion outperformSCORRELATION BETWEEN THE STREAM RELIABILITYINDICATORS(ll)
decision based integration, which in turn is superior to discrim- ~ ANP (12)AND THE AUDIO-ONLY AND VISUAL -ONLY WERS.

inant feature fusion, as well as audio-only ASR. For simplicity, Reliability || Correlation with | Correlation with
a two-stream HMM is considered in hybrid fusion, where Indicator || audio-only WER| visual-only WER
audio-visual discriminant features are used in place of the less 2“ '8-175‘:’;‘ %%118931
informative visual-only stream. The resulting system achieves o 0.7589 0.0126

. . . . a U, .
approximately an 8 dB effective SNR gain over audio-only D, 0.1014 -0.2066

ASR at 10 dB.
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10 TABLE VI
o . o . FRAME MISCLASSIFICATION ERROR RATE(FER)AND WER, %,FOR
or N-Likelihood Audio Reliability Indicator (11) i TWO-STREAMHMM BASED AV-ASR ON THE STUDIO-DIGIT TASK,
gl ® === N-Dispersion Audio Reliability Indicator (12) e USING GLOBAL VS. FRAME-DEPENDENT EXPONENTS ESTIMATED BY
¢ - ¢ -0 Optimal Audio Stream Exponent Aa(Xx 10) [ MEANS OF MAPPING(13). AUDIO-ONLY RECOGNITION RESULTS ARE
m ALSO DEPICTED. NOISE AT A NUMBER OF SNRS IS ADDED TO THE AUDIO
6L UTTERANCES, BUT ALL HMM S ARE TRAINED ON THE ORIGINAL DATA.
[ Conditon || FER [ WER |
5 I Audio-Only || 58.80 | 30.29
al | AV-Global 31.80 | 10.35
AV-Frame, MCL || 31.53 | 10.13
3L | AV-Frame, MCE || 31.18 8.64
2r ] TABLE VI
1k | SINGLE-MODALITY AND AUDIO -VISUAL ASR PERFORMANCE ON THE
OFFICEDIGIT TEST SET AT TWO AUDIO CHANNEL CONDITIONS
0 o 5 10 15 20 (ORIGINAL DATA AT 15DB SNRAND ARTIFICIALLY CORRUPTED AT 8
SIGNAL-TO-NOISE RATIO (SNR), dB DB). HMMS TRAINED ON THE STUDIODIGIT DATASET ARE ADAPTED TO
THE OFFICE DATA USING VARIOUS ALGORITHMS ALL HMM S ARE
Fig. 11. Mean values of the audio reliability indicatofs,,; and Dq ¢, TRAINED / ADAPTED ON THE ORIGINAL DATA AUDIO.
depicted as a function of the audio channel SNR. The corresponding “optimal” _
audio exponents\, in two-stream HMM based AV-ASR are also shown, | Method ][ Visual [[AU-15dB|AV-15dB[|AU-8dB[ Av-8dB]
scaled by a factor of 10. Results are reported on the studio-DIGIT database, | Unadapted 65.00 8.71 7.18 35.00 | 31.06
with all HMMs trained in clean audio. MLLR 62.71 4.59 4.24 2594 | 19.47
MAP 45.65 2.24 1.65 19.47 | 10.00
MAP+MLLR || 45.18 2.00 1.71 19.24 | 10.41
We now proceed to estimate stream exponents by means| FE 36.24 || 212 | 176 | 2035 | 9.41
of the four selected reliability indicators and the sigmoid L FE*MLLR || 3500 ]| 206 | 176 || 2029 ] 9.64

mapping of (13). The obtained results are summarized in
Table VI, where we report both WER, as well &ame
classificationerror rate (FER), assuming 22 DIGIT phonein Table VII. To simplify experiments, the original HMMs
classes of interest. As an AV-ASR baseline, we first estimaage trained on the studio-DIGIT corpus at the clean audio
a global audio exponent, constant over the entire dataset aaddition, and adapted on the 15 dB office-DIGIT data.
all SNRs. The resulting two-stream HMM is labeled “Av- As it is clear from Table VII (*Unadapted” entries), the
Global” in Table VI, and clearly outperforms audio-only ASRoriginal studio-DIGIT HMMs perform poorly on the new set.
We subsequently use the MCL and MCE algorithms to esfihis is due to the inferior quality of the office-DIGIT data. We
mate the sigmoid parameters in (13). Both approaches furtitleen consider MLLR and MAP HMM adaptation. Notice that
improve FER and WER, with the MCE based estimatioMAP performs better due to the relatively large adaptation set
resulting in a 17% relative WER reduction, over the use @vailable. Applying MLLR after MAP typically improves re-
global fusion weights. It is interesting to compare these WERSlts. Front end (FE) adaptation significantly helps visual-only
to the scenario that uses utterance-dependent exponents,randgnition, improving for example performance from 45.6%
assumes a-priori knowledge of the SNR (a best case scen&i®6.2%, or from 45.1% to 35.0% when used in conjunction
for SNR-dependent exponent estimation). Such exponents with MLLR. However, it does not seem to consistently help
estimated on held-out data matched to the noise level, andneither audio-only nor AV-ASR. In conclusion, adaptation
are also depicted in Fig. 11 (scaled by a factor of 10). Evéechniques can be successfully applied to bimodal recognition,
in this “cheating” case, the resulting 9.08% WER is worsend bridge performance gaps across datasets.
than the WER achieved by frame-dependent exponents with
MCE estimation of the sigmoid parameters. In conclusion, the IX. SUMMARY AND DISCUSSION
proposed scheme of Section V is beneficial to AV-ASR. In this paper, we provided a brief literature review of the
basic techniques necessary in the automatic recognition of
audio-visual speech. We mainly concentrated on the two most
relevant issues to the design of audio-visual ASR systems,
In the final set of experiments, we apply the adaptatioramely first, the visual front end that captures the speech
techniques of Section VI to the office-DIGIT set. As alreadinformation present in the video signal, and second, the
indicated, the small amount of such data collected (see Tableegration of the extracted audio and visual features into
) is not sufficient for HMM training, thus adaptation tech-the automatic speech recognizer. While presenting these, we
nigues are required to improve performance. A number of sufdtused in the algorithms used in our speechreading system,
methods are used for adapting audio-only, visual-only, amathd we introduced a number of advances in both areas.
audio-visual HMMs using discriminant feature fusion. Two In particular, with respect to the visual front end design, we
SNR conditions are considered, and the results are depictistussed in detail our algorithm for extracting appearance-

E. Adaptation
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type visual features, based on a compressed representabietween face appearance and shape based features for speaker-
of the image pixel values within a suitably defined region afependent vs. speaker-independent automatic speechreading is
interest. We demonstrated that it is beneficial for such a regialso unavailable. Joint shape and appearance three-dimensional
to contain the jaw and cheeks, in addition to the mouth ardace modeling, used for both tracking and visual feature ex-
Furthermore, by properly compensating this region for simpteaction has not been considered in the literature, although such
lighting and head pose variations, we were able to significantiyp approach could possibly lead to the desired robustness and
improve robustness to visual data recorded in challengiggnerality of the visual front end. In addition, when combining
environments. On basis of our experiments, we concludaddio and visual information, a number of issues relevant to
that the extracted visual features provide meaningful speeacision fusion require further study, such as the optimal level
information, although quite weak compared to the traditionaf integrating the audio and visual log-likelihoods and the
acoustic signal. optimal function for this integration.

It is of course by combining the audio and visual features, Further investigation of these issues is clearly warranted,
that the benefit of the visual modality becomes appareand it is expected to lead to improved robustness and per-
In this work, we discussed a number of such fusion tecfermance of audio-visual ASR. Progress in addressing some
niques, based on the popular hidden Markov model framewask all of these questions can also benefit other areas where
for speech recognition. We presented methods that integrpfiat audio and visual speech processing is suitable [120],
speech information at either the feature or the classificatisach as speaker identification and verification [20], [45], [60],
score level, and introduced a hybrid fusion algorithm th#94], [121-123], visual text-to-speech [124-128], speech event
combines the benefits of both approaches. In addition, wletection [129], video indexing and retrieval [130], speech
discussed asynchrony modeling in audio-visual fusion, and wahancement [88], [90], coding [131], signal separation [132],
argued for the joint training of all properly tied parameters aind speaker localization [133], [134]. Improvements in these
the resulting model. In a first attempt to capture the varyirggeas will clearly result in more robust and natural human-
reliability of the two streams of information, we investigatedomputer interaction.
appropriate indicators of speech information content, and we
proposed a trainable mapping from such indicators to time-
dependent fusion parameters.

We applied these algorithms on three audio-visual corporalll R.P.Lippmann, “Speech recognition by machines and humapsech
spanning po_th small- and Iargg—vopabulary recognition tasks, 2] golr%nnj]ltjjgn\gﬂszsegfh :rLe_closg;n:iLt?c?r?in adverse environmegesrhputer
and containing data collected in visually “clean”, as well @S~ speech Langwvol. 5, pp. 275-294, 1991.
in challenging environments. Our best technique, utilizing the[3] R. Stern, A. Acero, F.-H. Liu, and Y. Ohshima, “Signal processing for
product hidden Markov model, resulted in an effective SNR  robust speech recognition,” iutomatic Speech and Speaker Recogni-

. .. . tion. Advanced Topi¢cC.-H. Lee, F. K. Soong, and Y. Ohshima, Eds.
gain of 10 dB for connected-digit recognition, though the  Norwell, MA: Kluwer Academic Pub., 1997, ch. 15, pp. 357—384.
best achieved gain on the large-vocabulary task was some4] D. G. Stork and M. E. Hennecke, EdSpeechreading by Humans and

what inferior. r hin roxim I B. For nn _ Machines Berlin, Germany: Springer, 1996.
at inferior, reaching appro ately 8 d or connected [5] R. Campbell, B. Dodd, and D. Burnham, Edslearing by Eye I

digit recognition of visually challenging data, our algorithms ™ oye United Kingdom: Psychology Press Ltd. Publishers, 1998.
significantly improved performance compared to audio-only[6] W. H. Sumby and I. Pollack, “Visual contribution to speech intelligi-
recognition, only after utilizing a number of adaptation tech- tl’ig”gli” noise,” J. Acoustical Society Americaol. 26, pp. 212-215,
niques discussed in this work. [7]1 H. M.cGurk and J. MacDonald, “Hearing lips and seeing voices,’

The paper clearly demonstrates that over the past twenty Nature vol. 264, pp. 746-748, 1976.
years, much progress has been accomplished in capturing] ZI r']\gzrscgﬁmn'?c-alt-iﬁsgmzaﬁgd t';- Eef':?lné ‘gﬂ;gthbéﬂoée%%fgdand
and mtegratlng_ visual mfo_rmatlon into speech rec‘?g”'t'o_”- ar?d D. Burnham, Eds. Hove, U?lite)é K)i/ngélom: Psygholégy Press Ltd.
However, the visual modality has yet to become utilized in  publishers, 1998, ch. 13, pp. 245-266.
mainstream ASR systems. This is due to the fact that issue®l L. E. Bernstein, M. E. Demorest, and P. E. Tucker, “What makes a
of both practical and research nature remain challenging. On gocg’arsnppef;rrgag%gdf'fgdyg“ stfh;%ﬂ%ddgne,ﬂ)?e”Bgni?ng%f\g:Lom.
the practical side of things, the hlgh requirements in the Psychology iDress Ltd,, Publishers, 199‘8, ch. 11, pp', 211-227.
captured video frame rate and size, necessary for extractifig] A.Q. Summerfield, “Some preliminaries to a comprehensive account of
visual speech information that is capable of enhancing ASR g;JdL'fg_VF'fe“;}jiﬁgeﬁ C'g;’ﬁ]ﬁgﬁ"’;,;d”;a&%ﬁ Ve Londen. Unind
performance, place increased demands on cost, storage, and Kingdom: Lawrence Erlbaum Associates, 1987, pp. 3-51.
computer processing. In addition, the lack of common, largé1] D. W. Massaro and D. G. Stork, “Speech recognition and sensory
audio-visual corpora that address a wide variety of ASR tasks,  [ntgration”American Scientistvol. 86, pp. 236244, 1998.
conditions, and environments, hinders development of audi 2! Ef' Jf:;iiric?iﬁﬂ"fZEilEsﬁﬁﬁ?ﬁfféﬁsgg’manﬂ?nr)Slta%e S‘Ssgg'f“"”
visual systems suitable for use in particular applications. 43, 1998. '

On the research side, key issues in the design of audio-visUa$! J: P- Barker and F. Berthommier, *Estimation of speech acoustics from
ASR systems remain open and subject to more investigation. ﬁf;?c',(f_ p§§?,?_ f:j;?gﬁ'sﬁa‘f°§2‘e’i2ﬁ°2rﬁ,’fcl_iiﬁ;”‘;gi?;’ 2?3;','”5,‘3 ,’l‘u‘ﬁe's’
In the visual front end design, for example, face detection, fa-  7-9, 1999, pp. 112-117.
cial feature localization, and face shape tracking, robust to uft4] ;-n dJii‘”gE' /g-e r’:g’;’g‘ig' “'Z.)nAt.herggrt]i%n S‘i-i Cbhe"icviﬁn Eféc-lc; n%veerhg:iis
constrained speaker, pose, lighting, and environment variation  5ngue movements, and speech acoustiEuRAs,p J. Appl. Signal

constitute challenging problems. A comprehensive comparison Processingvol. 2002, pp. 1174-1188, Nov. 2002.
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