
Article appears in: Proceedings of the IEEE, vol. 91, no. 9, September 2003 1

Recent Advances in the Automatic Recognition of
Audio-Visual Speech

Gerasimos Potamianos,Member, IEEE,Chalapathy Neti,Member, IEEE,Guillaume Gravier,
Ashutosh Garg,Student Member, IEEE,and Andrew W. Senior,Senior Member, IEEE

(Invited Paper)

Abstract— Visual speech information from the speaker’s mouth
region has been successfully shown to improve noise robustness
of automatic speech recognizers, thus promising to extend their
usability in the human computer interface. In this paper, we
review the main components of audio-visual automatic speech
recognition and present novel contributions in two main areas:
First, the visual front end design, based on a cascade of linear
image transforms of an appropriate video region-of-interest,
and subsequently, audio-visual speech integration. On the latter
topic, we discuss new work on feature and decision fusion
combination, the modeling of audio-visual speech asynchrony,
and incorporating modality reliability estimates to the bimodal
recognition process. We also briefly touch upon the issue of
audio-visual adaptation. We apply our algorithms to three
multi-subject bimodal databases, ranging from small- to large-
vocabulary recognition tasks, recorded in both visually controlled
and challenging environments. Our experiments demonstrate that
the visual modality improves automatic speech recognition over
all conditions and data considered, though less so for visually
challenging environments and large vocabulary tasks.

Index Terms— Audio-visual speech recognition, speechreading,
face tracking, visual feature extraction, audio-visual fusion,
hidden Markov models, multi-stream HMM, product HMM,
stream reliability, adaptation, multimedia databases.

I. I NTRODUCTION

A UTOMATIC speech recognition(ASR) is viewed as
an integral part of future human-computer interfaces,

that are envisioned to use speech, among other means, to
achieve natural, pervasive, and ubiquitous computing. How-
ever, although ASR has witnessed significant progress in well-
defined applications like dictation and medium vocabulary
transaction processing tasks in relatively controlled environ-
ments, its performance has yet to reach the level required
for speech to become a truly pervasive user interface. Indeed,
even in “clean” acoustic environments, state of the art ASR
system performance lags human speech perception by up to
an order of magnitude [1]. Moreover, its lack of robustness
to channel and environment noise continues to be a major
hindrance [2], [3]. Clearly, non-traditional approaches, that
use sources of information orthogonal to the audio input,
are needed to achieve ASR performance closer to the human
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speech perception level, and robust enough to be deployable in
field applications.Visual speechconstitutes a promising such
source, clearly not affected by acoustic noise.

Both human speech production and perception arebimodal
in nature [4], [5]. The visual modality benefit to speech
intelligibility in noise has been quantified as far back as in
1954 [6]. Furthermore, bimodal integration of audio and visual
stimuli in perceiving speech has been demonstrated by the
McGurk effect [7]: When, for example, the spoken sound /ga/
is superimposed on the video of a person uttering /ba/, most
people perceive the speaker as uttering the sound /da/. In ad-
dition, visual speech is of particular importance to the hearing
impaired: Mouth movement is known to play an important
role in both sign language and simultaneous communication
between the deaf [8]. The hearing impaired speechread well,
and possibly better than the general population [9].

There are three key reasons why vision benefits human
speech perception [10]: It helps speaker (audio source) local-
ization, it contains speech segmental information that supple-
ments the audio, and it provides complimentary information
about the place of articulation. The latter is due to the partial
visibility of articulators, such as the tongue, teeth, and lips.
Place of articulation information can help disambiguate, for
example, the unvoiced consonants /p/ (a bilabial) and /k/ (a
velar), the voiced consonant pair /b/ and /d/ (a bilabial and
alveolar, respectively), and the nasal /m/ (a bilabial) from the
nasal alveolar /n/ [11]. All three pairs are highly confusable on
basis of acoustics alone. In addition, jaw and lower face muscle
movement is correlated to the produced acoustics [12–14], and
its visibility has been demonstrated to enhance human speech
perception [15], [16].

The above facts have motivated significant interest in
automatic recognition of visual speech, formally known as
automatic lipreading, or speechreading[4]. Work in this field
aims at improving ASR by exploiting the visual modality of
the speaker’s mouth region in addition to the traditional audio
modality, leading toaudio-visual automatic speech recognition
(AV-ASR) systems. Compared to audio-only speech recog-
nition, AV-ASR introduces new challenging tasks, that are
highlighted in the block diagram of Fig. 1: First, in addition
to the usual audio front end (feature extraction stage), visual
features that are informative about speech must be extracted
from video of the speaker’s face. This requires robust face
detection, as well as location estimation and tracking of the
speaker’s mouth or lips, followed by extraction of suitable
visual features. In contrast to audio-only recognizers, there
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Fig. 1. The main processing blocks of an audio-visual automatic speech
recognizer. The visual front end design and the audio-visual fusion modules
introduce additional challenges, compared to traditional audio-only ASR.

are nowtwo streams of features available for recognition, one
for each modality. The combination of the audio and visual
streams should ensure that the resulting system performance
is better than the best of the two single modality recognizers,
and hopefully, significantly outperform it. Both issues, namely
the visual front end designandaudio-visual fusion, constitute
difficult problems [17] and have generated much research work
by the scientific community.

The first automatic speechreading system was reported in
1984 by Petajan [18]. Given the video of the speaker’s face,
and by using simple image thresholding, he was able to extract
binary (black and white) mouth images, and subsequently,
mouth height, width, perimeter, and area, as visual speech
features. He then developed a visual-only recognizer based
on dynamic time warping [19] to rescore the best two choices
of the output of the baseline audio-only system. His method
improved ASR for a single-speaker, isolated word recognition
task on a 100-word vocabulary that included digits and letters.

Since then, over a hundred articles have concentrated on AV-
ASR, with the vast majority appearing during the last decade.
The reported systems differ in three main aspects [17]: The
visual front end design, the audio-visual integration strategy,
and the speech recognition method used. Unfortunately, the
diverse algorithms suggested in the literature are difficult to
compare, as they are rarely tested on a common audio-visual
database. Nevertheless, the majority of systems outperform
audio-only ASR over a wide range of conditions. Such im-
provements have been typically demonstrated on databases of
small duration, and, in most cases, limited to a very small
number of speakers and to small vocabulary tasks [17], [20].
Common tasks typically include recognition of non-sense
words [21], [22], isolated words [18], [23–29], connected
digits [30], [31], letters [30], or of closed-set sentences [32],
mostly in English, but also in French [21], [33], German [34],
[35], and Japanese [36], among others. Recently however, sig-
nificant improvements have also been demonstrated forlarge
vocabulary continuous speech recognition(LVCSR) [37], as
well as cases of speech degraded due to speech impairment
[38] or Lombard effects [28]. These facts, when coupled with
the diminishing cost of quality video capturing systems, make
automatic speechreading tractable for achieving robust ASR
in certain scenarios and tasks [17].

In this paper, we provide a brief overview of the main
techniques for AV-ASR that have been developed over the past
two decades, with emphasis on the algorithms investigated in
our own research. In addition, we present recent improvements

in the visual front end of our automatic speechreading system
and a number of new contributions in the area of audio-
visual integration. Furthermore, we benchmark the discussed
methods on three data sets, reporting AV-ASR of both small
and large vocabularies, as well as of data recorded in visually
challenging environments.

In more detail, Section II of the paper concentrates on
the visual front end, first summarizing relevant work in the
literature, and subsequently discussing its three main blocks
in our system. It also reports recent improvements in the
extraction and normalization of the visual region of interest.
Section III presents issues in visual speech modeling, that are
relevant to audio-visual fusion, and also serves to introduce
the notation used in the remainder of the paper. Section IV
is devoted to an overview of audio-visual fusion, considering
three classes of algorithms, i.e., feature, decision, and hybrid
fusion. In particular, it introduces a novel technique within the
last category, and also discusses the issue of audio-visual asyn-
chrony modeling. Section V concentrates on a very important
aspect of decision fusion based AV-ASR, namely modeling
the reliability of the audio and visual stream information. A
number of local stream reliability indicators are considered,
and a function that maps their values to appropriate decision
fusion parameters is introduced. Section VI is devoted to
audio-visual adaptation, necessary for improving recognition
performance on datasets of small duration, or for particular
subjects. Section VII discusses our audio-visual databases, and
Section VIII reports experimental results on them. Finally,
Section IX concludes the paper with a summary and a brief
discussion on the current state and open problems in AV-ASR.

II. T HE VISUAL FRONT END

The first major issue in audio-visual ASR is the visual front
end design (see also Fig. 1). Over the past 25 years, a number
of such designs have been proposed in the literature. Given the
video input they produce visual speech features that in general
fit in one of the following three categories:Appearancebased
features,shapebased ones, or combination of both [17].

Appearance features assume that all video pixels within
a region-of-interest(ROI) are informative about the spoken
utterance. To allow speech classification, they consider mostly
linear transforms of the ROI pixel values, resulting in feature
vectors of reduced dimensionality that contain most relevant
speech information [23], [26], [29], [34], [37], [39–44]. In
contrast, shape based feature extraction assumes that most
speechreading information is contained in the contours of the
speaker’s lips, or more generally in the face contours, e.g.,
jaw and cheek shape, in addition to the lips [37]. Within this
category belong geometric type features, such as mouth height,
width, and area [18], [21], [25], [27], [28], [31], [32], [45–47],
Fourier and image moment descriptors of the lip contours
[27], [48], statistical models of shape, such as active shape
models [37], [49], or other parameters of lip-tracking models
[41], [50–52]. Finally, features from both categories can be
concatenated into a joint shape and appearance vector [26],
[41], [53], or a joint statistical model can be learned on such
vectors, as is the case of the active appearance model [54],
used for speechreading in [37].
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Clearly, a number of video pre-processing steps are re-
quired before the above mentioned visual feature extraction
techniques can commence. One such step is face and facial
part detection, followed by ROI extraction (see also Fig. 1).
Of course, the pre-processing depends on the type of visual
data provided to the AV-ASR system, being unnecessary for
example, when a properly head-mounted video camera is used
[55]. In case shape-based visual features are to be extracted,
the additional step of lip and possibly face shape estimation is
required. Some popular methods that are used in this task are
snakes [56], templates [57], and active shape and appearance
models [54], [58]. Alternative image processing and statistical
image segmentation techniques can also be employed [59–61],
possibly making use of the image color information, especially
if the speaker’s lips are marked with lipstick [21], [47], [61].

Our AV-ASR system extracts solely appearance based fea-
tures, and operates on full face video with no artificial face
markings. As a result, both face detection and ROI extraction
are required. All stages of the adopted visual front end
algorithm are described below.

A. Face and Facial Part Detection

Face and facial part detection has attracted significant inter-
est in the literature [59], [62–64], and it constitutes a difficult
problem, especially in cases where the background, head pose,
and lighting are varying. Many reported systems use traditional
image processing techniques, such as color segmentation, edge
detection, image thresholding, template matching, or motion
information [59], while others consider a statistical modeling
approach, employing neural networks for example [62]. Our
system belongs to the second category, using the algorithm
reported in [64].

In more detail, given a video frame, face detection is first
performed by searching for face candidates that contain a
relatively high proportion of skin-tone pixels over an image
“pyramid” of possible locations and scales. Each face can-
didate is size-normalized to a chosen template size (here,
an 11�11 square), and its greyscale pixel values are placed
into a 121-dimensional face candidate vector. Every vector
is given a score based on a two-class (face versus non-
face) Fisher linear discriminant [65], as well as its “distance
from face space” (DFFS), i.e., the face vector projection
error onto a lower, 40-dimensional space, obtained by means
of principal components analysis(PCA) [66]. All candidate
regions exceeding a threshold score are considered as faces.
Among such faces at neighboring scales and locations, the one
achieving the maximum score is returned by the algorithm as
a detected face [64].

Once a face has been detected, an ensemble of facial
feature detectors are used to estimate the locations of 26 facial
features, including the lip corners and centers (eleven such
facial features are marked on the frames of Fig. 2). Each
feature location is determined by using a score combination
of prior feature location statistics, linear discriminant, and
“distance from feature space” (similar to the DFFS discussed
above), based on the chosen feature template size.

A training step is required to estimate the Fisher discrimi-
nant and PCA eigenvectors for face detection and facial feature

Fig. 2. Face, facial part detection, and ROI extraction for example video
frames of two subjects recorded at a controlled studio environment (upper row)
and in a typical office (lower row). The following are depicted for each set
(left to right): Original frame with eleven detected facial parts super-imposed;
face-area enhanced frame; size-normalized mouth-only ROI (upper); and size-,
rotation-, and lighting-normalized, enlarged ROI (lower).

estimation, as well as the facial feature location statistics. Such
training requires a number of frames manually annotated with
the faces and their visible features (see Section VIII).

B. Region of Interest

In most automatic speechreading systems, the ROI is a
square containing the image pixels of the speaker’s mouth
region, following possible normalization, for example, scale,
rotation, and lighting compensation, or windowing with an
appropriate mask [29]. The ROI can also include larger parts
of the lower face, such as the jaw and cheeks [67], or even the
entire face [37]. Often, it can be a three-dimensional rectangle,
containing adjacent frame rectangular ROIs, in an effort to cap-
ture dynamic speech information [40], [42]. In other systems,
the ROI corresponds to a number of image profiles vertical to
the lip contour [26], or is a disc around the mouth center [39].
Concatenation of the ROI pixel greyscale [26], [34], [39], [40]
or color values [41] results into a high-dimensional ROI vector
that captures visual speech information.

In our system, the ROI contains the grey-scale values of a
64�64 size square region, centered around the mouth center,
and normalized for variations in mouth scale. Both mouth
center and scale parameters are obtained after appropriate
temporal smoothing of their frame-level estimates, provided by
the face detection algorithm. Originally, the ROI was limited
to the mouth region alone [44], but subsequent experiments
demonstrated that enlarging it to contain the jaw and cheeks
was beneficial [67]. Such enlarged ROIs are used in AV-
ASR results reported in Section VIII on the controlled studio
environment data. However, recent work on more challenging
visual domains, for example on data recorded using a cheap PC
video camera in varying lighting conditions, demonstrated that
additional ROI processing steps are necessary for improved
robustness of the visual front end. We have thus added
histogram equalization of the face-region image followed by
low-pass filtering, and ROI compensation for head rotation and
head height-to-width ratio recording variations. ROI examples
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Fig. 3. Block diagram of the front end for AV-ASR. The algorithm
generates time-synchronous 60-dimensional audio feature vectors,oa;t , and
41-dimensional visual observations,ov;t , both at a 100 Hz rate.

using the original [44] and newly added processing steps are
depicted in Fig. 2.

C. Visual Features and Post-Processing

The dimensionality of the extracted ROI vector (4096 =
64�64, in our case) is too large to allow successful statistical
modeling [66] of speech classes, by means of ahidden Markov
model(HMM) for example [19]. The required dimensionality
reduction is typically achieved by traditional linear transforms,
borrowed from the image compression and pattern classifica-
tion literatures [65], [66], [68], [69], in the hope that they
will preserve most relevant to speechreading information. Most
commonly applied transforms are PCA [26], [34], [39–42],
[49], [70], [71], the discrete cosine transform(DCT) [29],
[36], [37], [39], [40], [43], discrete wavelet transform [40],
Hadamard and Haar transforms [43], and alinear discriminant
analysis(LDA) based data projection [39].

The resulting visual features are often post-processed to
facilitate and improve AV-ASR. For example, audio and visual
feature stream synchrony is required in a number of algorithms
for audio-visual fusion, although the modality feature extrac-
tion rates typically differ. This can be easily resolved by simple
element-wise linear interpolation of the visual features to the
audio frame rate. Variations between speakers and recording
conditions can be somewhat remedied by visualfeature mean
normalization(FMN), i.e., by subtraction of the vector mean
over each utterance [72]. In addition, improved recognition
by capturing important visual speech dynamics [73] can be
accomplished by augmenting “static” visual features with their
first- and second-order temporal derivatives [19], [72]. Finally,
when using HMMs with diagonal covariances for ASR, a
feature vector rotation by means of amaximum likelihood
linear transform(MLLT) can be beneficial [74].

Our visual front end system uses a 2-dimensional, separable,
fast DCT, applied to the ROI vector, and retains 100 transform
coefficients at specified locations of large DCT energy, as
computed over a set of training video sequences. The DCT
feature vectors are extracted for each de-interleaved half-frame

(field) of the video, available at 60 Hz, and are immediately
up-sampled to the audio feature rate, 100 Hz, by means of
linear interpolation, a process followed by mean normalization
(FMN). To further reduce their dimensionality, an intra-frame
LDA/MLLT is applied, resulting in a 30-dimensional “static”
feature vector. To capture dynamic speech information, 15
consecutive feature vectors (centered at the current frame)
are concatenated, followed by an inter-frame LDA/MLLT for
dimensionality reduction and improved statistical modeling.
The resulting “dynamic” visual features are of length 41. The
visual front end block diagram is given in Fig. 3. It is depicted
in parallel with the audio front end processing, which produces
“static” 24-dimensionalmel frequency cepstral coefficients
(MFCCs) at 100 Hz [19], [72], followed by FMN, LDA,
and MLLT, thus providing 60-dimensional “dynamic” audio
features [75].

III. V ISUAL SPEECHMODELING FOR ASR

Once features become available from the visual front end,
one can proceed with automatic recognition of the spoken
utterance by means of the video only information (automatic
speechreading), or combine them to synchronously extracted
acoustic features for audio-visual ASR (see also Fig. 1). The
first scenario is primarily useful in benchmarking the perfor-
mance of visual feature extraction algorithms, with visual-only
ASR results typically reported on small-vocabulary tasks [23],
[24], [27–30], [34], [38–40], [43], [49], [60], [71], [76–81].
Visual speech modeling is required in this process, its two
central aspects being the choice of speech classes, that are
assumed to generate the observed features, and the statistical
modeling of this generation process. Both issues are important,
as they are also embedded into the design of audio-visual
fusion (see Section IV), and are discussed next.

A. Speech Classes

The basic unit that describes how speech conveys linguistic
information is the phoneme[19]. However, since only a
small part of the vocal tract is visible, not every pair of
these units can be disambiguated by the video information
alone. Visually distinguishable units are calledvisemes[4],
[5], [11], and consist of phoneme clusters that are derived by
human speechreading studies, or are generated using statistical
techniques [32], [82]. An example of a phoneme-to-viseme
mapping is depicted in Table I [37].

In audio-only ASR, the hidden speech classes, estimated on
the basis of the observed feature sequence, typically consist
of context-dependentsub-phonetic units, that are obtained
by decision tree based clustering of the possible phonetic
contexts [19], [72]. For automatic speechreading, it seems
appropriate to use sub-visemicclasses, obtained by decision
tree clustering of visemic contexts on the basis of visual
feature observations [37]. Naturally, visemic based speech
classes are often considered in the literature [44], [79], [82].
However, having different speech classes in its audio- and
visual-only components complicates audio-visual integration.
Typically therefore, identical classes for both modalities are
used. Here, such classes are defined over eleven-phone con-
texts (see Section VIII).



Article appears in: Proceedings of the IEEE, vol. 91, no. 9, September 2003 5

TABLE I

A 44 PHONEME TO13 VISEME MAPPING OF THEHTK PHONE SET[72].

Viseme class Phonemes in cluster

Silence /sil/, /sp/
/ao/, /ah/, /aa/, /er/, /oy/, /aw/, /hh/

Lip-rounding /uw/, /uh/, /ow/
based vowels /ae/, /eh/, /ey/, /ay/

/ih/, /iy/, /ax/
Alveolar-semivowels /l/, /el/, /r/, /y/
Alveolar-fricatives /s/, /z/
Alveolar /t/, /d/, /n/, /en/
Palato-alveolar /sh/, /zh/, /ch/, /jh/
Bilabial /p/, /b/, /m/
Dental /th/, /dh/
Labio-dental /f/, /v/
Velar /ng/, /k/, /g/, /w/

B. Speech Classifiers

A number of classification approaches are proposed in the
literature for automatic speechreading, as well as audio-visual
ASR. Among them: A simple weighted distance in visual
feature space [18], artificial neural networks [34], [35], [39],
[47], and support vector machines [79], used possibly in
conjunction with dynamic time warping [18], [39] or HMMs
[47], [79]. By far though, the most widely used classifiers are
traditional HMMs that statistically model transitions between
the speech classes and assume a class-dependent generative
model for the observed features, similarly to HMMs in audio-
only ASR [19], [72].

Let us denote the set of speech classes byC, and thels-
dimensional feature vector in streams at timet by os;t2Rls ,
wheres=v in the case of visual-only features. In generating
a sequence of such vectors, the HMM assumes a sequence of
hidden states that are sampled according to thetransitionprob-
ability parameter vectoras=[fPr [ c0 j c00 ] ; c0; c002C g] . These
states subsequently “emit” the observed features with class-
conditional probabilitiesP (os;t j c ), c2C . In the automatic
speechreading literature, the latter are sometimes considered
as discrete probability mass functions (after vector quantiza-
tion of the feature space) [83], or non-Gaussian, parametric
continuous densities [22]. However, in most cases, they are
assumed to beGaussian mixturedensities of the form

P (os;t j c ) =

Ks;cX
k=1

ws;c;kNls (os;t ;ms;c;k ; ss;c;k ) ; (1)

where theKs;c mixture weightsws;c;k are positive and add
to one, andNl (o ;m ; s) is the l-variate normal distribution
with meanm and a diagonal covariance matrixs . The HMM
parameter vectorps = [ as ;bs ] , where

bs = [ f [ws;c;k ;ms;c;k ; ss;c;k ] ; k=1;:::;Ks;c ; c2C g ] ; (2)

is typically estimated iteratively, using theexpectation-
maximization(EM) algorithm [84], as

p(j+1)

s = argmax
p

Q(p(j)

s ; p jOs ) ; j = 0; 1; ::: : (3)

In (3), Os = fos;t ; t2T g consists of all feature vectors in
training setT , andQ(�;�j�) represents the EM algorithmaux-
iliary function, defined as in [19]. Alternatively,discriminative
training methods can be used [85], [86].

In this paper,single-streamHMMs with emissionprobabili-
ties (1), and trained as in (3), are exclusively used to model the
two single-modality classifiers of interest (audio- and visual-
only). Such models are used as the basis of all audio-visual
integration techniques, discussed next.

IV. A UDIO-VISUAL INTEGRATION FOR ASR

As already mentioned in Section I, audio-visual integration
constitutes a major research topic in AV-ASR, aiming at the
combination of the two available speech informative streams
into a bimodal classifier with superior performance to both
audio- and visual-only recognition. Various information fusion
algorithms have been considered for AV-ASR, differing both
in their basic design, as well as in the terminology used
[17], [21], [26], [30], [34], [37], [46], [78], [80], [82]. In
this paper, we adopt their broad grouping intofeature fusion
and decision fusionmethods. The first are based on training
a single classifier (i.e., of the same form as the audio- and
visual-only classifiers) on the concatenated vector of audio and
visual features, or on any appropriate transformation of it [21],
[37], [46]. In contrast, decision fusion algorithms utilize the
two single-modality (audio- and visual-only) classifier outputs
to recognize audio-visual speech. Typically, this is achieved
by linearly combining the class-conditional observation log-
likelihoods of the two classifiers into a joint audio-visual
classification score, using appropriate weights that capture the
reliability of each single-modality classifier, or data stream
[17], [26], [30], [33], [37]. In addition to the above categories,
there exist techniques that combine characteristics of both.
Here, we introduce one suchhybrid fusion method. The
presentation of all techniques initially assumes an “early”
temporal level of audio-visual integration, namely at the HMM
state (see also Fig. 4). So-called “asynchronous” models of
fusion are discussed at the end of the section. The latter are
relevant to decision and hybrid fusion only.

A. Feature Fusion

Audio-visual feature fusion techniques include: Plain fea-
ture concatenation[21], feature weighting [46], [78], both
also known asdirect identificationfusion [46], hierarchical
discriminantfeature extraction [37], as well as thedominant
andmotorrecording fusion [46]. The latter seek a data-to-data
mapping of either the visual features into the audio space, or
of both modality features to a new common space, followed
by linear combination of the resulting features. Audio feature
enhancementon the basis of either visual input [13], [87], or
concatenated audio-visual features [88–90] falls also within
this category of fusion. In this paper, we briefly review two
feature fusion methods.

Given time-synchronous audio and visual feature vectors
oa;t and ov;t respectively, concatenative feature fusion con-
siders

oav;t = [oa;t ; ov;t ] 2 R lav; where lav = la + lv ; (4)
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as the joint audio-visual observation of interest, modeled by
a single-stream HMM, as in (1). In practice,lav can be
large, causing inadequate modeling in (1) due to the curse
of dimensionality [66] and insufficient data.

Discriminant feature fusion aims to remedy this, by applying
an LDA projection on the concatenated vectoroav;t . Such
projection results in a lower dimensional representation of (4),
while seeking the best discrimination among the speech classes
of interest. In [37], LDA is followed by an MLLT rotation
of the feature vector to improve statistical data modeling by
means of Gaussian mixture emission probability densities with
diagonal covariances, as in (1). The transformed audio-visual
feature vector then becomes

od;t = oav;t LavMav 2 R ld ; (5)

whereLav denotes the LDA matrix of size sizelav � ld , and
Mav is the MLLT matrix of sizeld� ld . In this work,od;t is
assumed to be of the same dimension as the audio observation,
i.e., ld= la . Both concatenative and discriminant feature fusion
techniques are implementable in most existing ASR systems
with minor changes, due to their use of single-stream HMMs.

B. Decision Fusion

Although many feature fusion techniques result in improved
ASR over audio-only performance [37], they cannot explicitly
model the reliability of each modality. Such modeling is
extremely important, due to the varying speech information
content of the audio and visual streams. The decision fu-
sion framework, on the other hand, provides a mechanism
for capturing these reliabilities, by borrowing from classifier
combination theory, an active area of research with many
applications [91–93].

Various classifier combination techniques have been consid-
ered for audio-visual ASR, including for example a cascade of
fusion modules, some of which possibly using only rank-order
classifier information about the speech classes of interest [18],
[82]. However, by far the most commonly used decision fusion
techniques belong to the paradigm of audio- and visual-only
classifier combination using a parallel architecture, adaptive
combination weights, and class score level information. These
methods derive the most likely speech class or word sequence
by linearly combining the log-likelihoods of the two single-
modality classifier decisions, using appropriate weights [21],
[26], [27], [30], [37], [45], [46]. This corresponds to the
adaptive product rule in the likelihood domain [94], and it
is also known as theseparate identificationmodel for audio-
visual fusion [46], [82].

In the case where single-stream HMMs, with the same
set of speech classes (states), are used for both audio- and
visual-only classification, as in (1), this type of likelihood
combination can be considered at a frame (HMM state) level,
and modeled by means of themulti-streamHMM. Such an
HMM has first been introduced for audio-only ASR [72], [95],
[96], and, subsequently, its two-stream variant was deemed
suitable for AV-ASR [26], [30], [36], [37], [45], [97]. For a
two-stream HMM, the state-dependent emission of the audio-
visual observation vectoroav;t is governed (see also (1) and
(4)) by

P (o av;t j c ) = P (o a;t j c )
�a;c;tP (o v;t j c )

�v;c;t ; (6)

for all HMM statesc 2 C . Notice that (6) corresponds to a
linear combination in the log-likelihood domain, however it
does not represent a probability distribution in general, and
will therefore be referred to as a “score”. In (6), � s;c;t denote
the stream exponents (weights), that are non-negative, and
model stream reliability as a function of modalitys , HMM
statec2C , and utterance frame (time)t . In this paper, we also
constrain the exponents to add up to one, and for the remainder
of this section, we assume that they are set to global, modality-
only dependent values, i.e.,� s  � s;c;t , for all c and t .

The multi-stream HMM parameters are (see also (1), (2),
and (6))

pav = [pav ; � a ; � v ] ; where pav = [ aav;ba;bv ] (7)

consists of the HMM transition probabilitiesaav and the
emission probability parametersba and bv of its single-
stream components. The parameters ofpav can be estimated
separatelyfor each stream component using the EM algorithm,
namely (3) fors=a; v , and subsequently, by possibly setting
the joint HMM transition probability vector equal to the
audio-one, i.e.,aav = aa, or to the product of the transition
probabilities of the two HMMs, i.e.,aav = diag (a>a av) . The
alternative is tojointly estimate parameterspav , in order to
enforce state synchrony in training. In the latter scheme, the
EM based parameter re-estimation becomes [72]

p(j+1)

av = argmax
p

Q(p (j)

av ; p jOav ) (8)

(see also (3)). The two approaches thus differ in the E-step of
the EM algorithm. In both separate and joint HMM training,
in addition topav , the stream exponents� a and� v need to
be obtained. The issue is deferred to Section V.

C. Hybrid Fusion

Certain feature fusion techniques, for example discriminant
fusion by means of (5), outperform audio- and visual-only
ASR (see [37] and Section VIII). It therefore seems natural
to consider (5) as a stream in multi-stream based decision
integration (6), thus combining feature and decision fusion
within the framework of the latter. In this paper, we propose
two such hybrid approaches, by generalizing the two-stream
HMM of (6) into

P (o av;t j c ) =
Y
s2S

P (o s;t j c )
�s ; (9)
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AUDIO  HMM  STATES

VISUAL  HMM  STATES

COMPOSITE  HMM  STATES

(a)
(b)

Fig. 5. (a) Phone-synchronous (state-asynchronous) two-stream HMM with
three states per phone and modality. (b) Its equivalent product (composite)
HMM; black circles denote states that are removed when limiting the
degree of within-phone allowed asynchrony to one state. The single-stream
emission probabilities are tied for states along the same row (column) to the
corresponding audio (visual) state probabilities of form (1), according to (10).

where S = fa ; v; d g , or S = fa ; d g . In the first case,
we obtain a three-stream HMM, with the added stream of
discriminant featuresod;t of (5). In the second case, we
retain the two-stream HMM, however after replacing the less
speech-informative visual stream with its superior stream (5).
As discussed above, stream exponents are constrained by
�s � 0 and�s2S�s = 1 , whereas parameter estimation of the
HMM components can be performed separately, or jointly. A
schematic representation of the two hybrid fusion approaches
(9) is depicted in Fig. 4, together with all previously presented
fusion algorithms.

D. Audio-Visual Asynchrony in Fusion

In our presentation of decision and hybrid fusion, we
have assumed the “early” temporal level of HMM states for
combining the stream likelihoods of interest (see (6) and (9)).
In ASR however, sequences of classes (HMM states or words)
need to be estimated, therefore coarser levels for combining
stream likelihoods can also be envisioned. One such “late”
level of integration can be the utterance end, where typically
a number ofN -best hypotheses (or all vocabulary words,
in case of isolated word recognition) are rescored by the
stream log-likelihoods, independently computed over the entire
utterance. An example of late fusion is the discriminative
model combination technique [98], applied for AV-ASR in
[99]. Alternatively, the phone, syllable, or word boundary can
provide an “intermediate” level of integration. Such a scheme
is typically implemented by means of theproductHMM [100],
or the coupled HMM [101], and is discussed next. Notice
that both late and intermediate integration permit asynchrony
between the HMM state sequences of the streams of interest,
thus providing the means to model the actual audio and visual
signal asynchrony, observed in practice to be up to the order
of 100ms [34], [102].

The product HMM is a generalization of the state-
synchronous multi-stream HMM (9) that combines the stream
log-likelihoods at an intermediate level, here assumed to be the
phone. The resulting phone-synchronous product HMM allows
its single-stream HMM components to be in asynchrony within
each phone, forcing their synchrony at the phone boundaries

oa,t

ov,t

c

ca
cv

c

ca
cv

P(      )c c

c

ca
cv

c

ca
cv

P(       )ca c

P(       )cv c c

ca
cv

c
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cv

P(       )ca ca

P(       )cv cv

Fig. 6. Three possible schemes for transition probability modeling between
the composite states of the product HMM. A two-stream model is depicted.

instead. It consists ofcompositestates1 c 2 CjSj, with emission
scores similar to (9), namely

P (o av;t j c ) =
Y
s2S

P (o s;t j cs )
�s ; (10)

where c = f cs ; s 2 S g . An example of such a model is
depicted in Fig. 5, for the typical case of one audio and
one visual stream, and three states per phone and stream.
Notice that in (10), the stream components correspond to
the emission probabilities of certain single-stream states, tied
as demonstrated in Fig. 5. Therefore, compared to its corre-
sponding state-synchronous multi-stream HMM, the product
HMM utilizes the same number of mixture weight, mean,
and variance parameters (see also (1) and (2)). On the other
hand, additional transitionsfP (c0jc00) ; c0; c002CjSj g between
its composite states are required. Such probabilities are often
factored asP (c0jc00) = �s2S P (c0sjc

00) , in which case the
resulting model is typically referred to in the literature as
the coupled HMM [29], [80], [101], [103]. A further simpli-
fication of this factorization is sometimes employed, namely
P (c0jc00) = �s2S P (c0sjc

00
s ) , thus requiring the same number

of parameters as the original state-synchronous multi-stream
HMM. The latter factorization is employed in the product
HMM of [104], as well as the factorial HMM of [29]. The
three schemes are depicted in Fig. 6.

It is worth mentioning, that the product HMM allows
the restriction of the degree of asynchrony between the two
streams, by excluding certain composite states in the model
topology (see also Fig. 5). In the extreme case, when only the
states that lie in its “diagonal” are kept, the model becomes
equivalent to (9).

Similar to the state-synchronous model, product HMM
parameter estimation can be performed either separately for
each stream component, or jointly for all streams at once.
The latter scheme is preferable, as it consistently models
asynchrony at both training and testing. Notice however that
proper stream parameter tying is required, as lack of tying
leads to models with significantly more parameters compared
to (9) (exponential on the number of streams). This would not
allow a fair comparison between (9) and (10), and could easily
lead to poor statistical modeling due to insufficient data. On the
other hand, and as experiments reported in [104] indicate, tran-
sition probability tying (i.e., factorization, discussed above)
does not seem necessary. In the audio-visual ASR literature,

1For example, in the case of two streams (e.g.,S = f a; v g ), the cardinality
of S equals 2 (jSj = 2 ), and the composite states are defined over the
Cartesian productS � S .
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product (or, coupled) HMMs have been considered in some
small-vocabulary recognition tasks [26], [28], [29], [70], [80],
[105], where synchronization is sometimes enforced at the
word level, and recently for LVCSR [37], [104]. However, with
few exceptions [29], [104], proper parameter tying is usually
not enforced.

V. STREAM RELIABILITY MODELING FOR AV-ASR

We now address the issue of stream exponent (weight)
estimation, when combining likelihoods in the audio-visual
decision and hybrid fusion models of the previous section
(see (6), (9), and (10)). There, such exponents are set to
constant stream-dependent values, to be computed for a par-
ticular audio-visual environment and database, based on the
available training, or more often, held-out data. Due to the
form of the emission scores, the stream exponents cannot
be obtained by maximum likelihood estimation [30], [105].
Instead, discriminative training techniques are used.

Some of these methods seek to minimize a smooth function
of the word classification error by the resulting audio-visual
model on the data, and employ the generalized probabilistic
descent algorithm [86] for stream exponent estimation [30],
[36], [97], [106]. Other techniques use maximum mutual
information training [85], as in [45]. A different approach
minimizes the frame classification error, by using the max-
imum entropy criterion [106]. Alternatively, one can seek to
directly minimize the word error rate of the resulting audio-
visual ASR system on a held-out data set. In the case of
two global exponents, constrained to add to a constant, the
problem reduces to one-dimensional optimization of a non-
smooth function, and can be solved using simple grid search
[97], [106]. In the case where additional streams are present, as
in (9), or when class-dependent stream exponents are desired,
the problem becomes of higher dimension, and the downhill
simplex method can be employed [107]. In general however,
class dependency has not been demonstrated to be effective in
AV-ASR [45], [106], with the exception of the late integration,
discriminative model combination technique [99]. Therefore,
in this paper, class dependence of global stream exponents
is not considered. These global exponents are then simply
estimated by grid search on a held-out set.

Although the use of such exponents has led to significant
improvements in decision based fusion AV-ASR, it is not very
suitable for practical systems. There, the quality of captured
audio and visual data, and thus the speech information present
in them, typically varies over time. For example, possible
noise bursts, face occlusion, or other face tracking failures can
greatly change the reliability of the affected stream. Utterance-
level or even frame-level dependence of the stream exponents
is clearly desirable. This can be achieved by first obtaining
an estimate of the local environment conditions, using for
example signal based approaches like the audio channel signal-
to-noise ratio [21], [24], [27], [46], [47], [76], or thevoicing
index [108], as in [99]. Alternatively, statistical indicators of
classifier confidence on the stream data, can be used. These
indicators capture the reliability of each stream at a local,
frame level, and have the advantage of not depending on the

properties of the underlying signal. They are therefore used
in this paper, as discussed next. Following their presentation,
a method of exponent estimation based on these indicators is
introduced.

A. Stream Reliability Indicators

A number of functions have been proposed in the literature
as a means of assessing the reliability of the class information
that is contained in an observation, assumed to be modeled by
a particular classifier [21], [24], [33], [47], [109]. Following
prior work [109], we select two reliability indicators for each
stream of interest. Given the stream observationos;t , both
indicators utilize the class-conditional observation likelihoods
of their N -best most likely generative classes, denoted by
cs;t;n 2 C , n = 1; ::: ; N . These are ranked according to
descending values ofP (os;tjc), c2C (see also (1)).

The first reliability indicator is theN -best log-likelihood
difference, defined as

Ls;t =
1

N � 1

NX
n=2

log
P (o s;t j cs;t;1 )

P (o s;t j cs;t;n )
; (11)

for a streams2S . This is chosen, since it is argued that the
likelihood ratios between the firstN classification decisions
are informative about the class discrimination. The second
selected reliability indicator is theN -best log-likelihood dis-
persion. This is defined as

Ds;t =
2

N (N � 1)

NX
n=1

NX
n0=n+1

log
P (o s;t j cs;t;n )

P (o s;t j cs;t;n0 )
: (12)

The main advantage of (12) over (11) lies on the fact that (12)
captures additionalN -best class likelihood ratios, not present
in (11). In our analysis, we chooseN to be 5. As desired,
both reliability indicators, averaged over the utterance, are well
correlated to the utterance word error rate of their respective
classifier. This is demonstrated in Section VIII.

B. Reliability Indicators For Stream Exponents

The next stage is to obtain a mapping of the chosen
reliability indicators to the frame-dependent stream exponents.
We use a sigmoid function for this purpose, due to the fact that
it is monotonic, smooth, and bounded within zero and one. For
simplicity, let us assume that only two streamss2fa; vg are
available, thus requiring the estimation of exponent�a;t and
its derived�v;t=1 � �a;t , on basis of the vector of the four
selected reliability indicators,dt = [ d1;t ; d2;t ; d3;t ; d4;t ] =
[La;t ;Lv;t ;Da;t ;Dv;t ] . Then, the mapping is defined as

�a;t =
1

1 + exp (�
P4

i=1wi di;t )
; (13)

wherew = [w1 ;w2 ;w3 ;w4 ] is the vector of the sigmoid
parameters. In the following, we propose two algorithms to
estimatew , given frame-level labeled audio-visual observa-
tionsf(oav;t; ct ); t2T g, for a training set of time instantsT .
Notice that the required labelsct 2 C, t2T , can be obtained
by a forced alignment of the training set utterances.
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The first algorithm seeksmaximum conditional likelihood
(MCL) estimates of parametersw in (13), under the observa-
tion model (e.g., (6)). Given an audio-visual vectoroav;t , we
first represent the conditional likelihood of classc2C by

P ( c joav;t ) =
P (oa;tjc)�a;tP (ov;tjc)1��a;tP
c2C P (oa;tjc)�a;tP (ov;tjc)1��a;t

; (14)

under the assumption of a uniform class priorP (c) (see also
(6)). We then seek parametersw of (13) as

ŵ = arg max
w

X
t2T

logP ( ct joav;t ) : (15)

The above optimization problem can be solved iteratively, by

w(j+1) = w(j) + �
X
t2T

@ logP (ctjoav;t)

@w
j
w=w(j)

; (16)

for j=0;1;:::; where the gradient vector elements are

@ logP (ctjoav;t)

@ wi

= �a;t (1� �a;t ) di;t [ log P (oa;tjct)

P (ov;tjct)

�

P
c2CP (oa;tjc)�a;tP (ov;tjc)1��a;t log

P (oa;tjc)
P (ov;tjc)P

c2CP (oa;tjc)�a;tP (ov;tjc)1��a;t
] ;

for i=1;2;3;4 (see also (13)-(15)). In (16), we choosew(0)=
[1;1;1;1]. Parameter� controls the convergence speed, and
since (15) is not a convex optimization problem, it needs to
be kept relatively small. In our experiments, when choosing
� = 0:01, convergence is typically achieved within few tens
of iterations.

The second technique adopted in this work for estimating
the sigmoid parametersw is theminimum classification error
(MCE) approach, seekinĝw that maximizes the frame-level
classification performance on the training dataT . We choose
to solve this problem by a brute-force grid search over the
four-dimensional parameter space. To simplify the search, we
utilize the MCL parameter estimates, thus obtaining an approx-
imate parameter dynamic range and limiting the search within
it. Then, for each parameter vector value over the reduced
grid, we compute the frame error. The weight assignment that
results in the best performance is chosen as the output.

VI. A UDIO-VISUAL ADAPTATION

Adaptation techniques are traditionally used in audio-only
ASR to improve system performance across speakers, tasks,
or environments, when the available data in the condition of
interest are insufficient for appropriate HMM training [110–
114]. In the audio-visual ASR domain, adaptation is of great
importance, especially since audio-visual corpora are scarce
and their collection expensive, as discussed in Section VII.

A number of audio-only adaptation algorithms can be read-
ily extended to audio-visual ASR. Given few adaptation data
of a new subject or environment, some of these techniques re-
estimate the parameters of an HMM that has been originally
trained in a speaker-independent fashion and/or under different
conditions. Two popular such methods aremaximum likelihood
linear regression(MLLR) [111] and maximum-a-posteriori

(MAP) adaptation [110]. Other adaptation techniques proceed
to transform the extracted features instead, so that they are
better modeled by the available HMMs with no retraining
[114].

In this paper, we briefly discuss MLLR and MAP audio-
visual adaptation in the case of discriminant feature fusion
by means of (1) and (5). Extensions to multi-stream HMM
based fusion techniques (e.g., (6), (9), or (10)) can be easily
considered, as in [115]. We also discuss a simple feature
adaptation technique that transforms the LDA and MLLT
matrices used in both modality front ends, as well as in
discriminant feature fusion (5), in a manner akin to the MAP
algorithm. Adaptation experiments utilizing these techniques,
as well as their combination, are reported in Section VIII.

A. MLLR Adaptation

MLLR obtains a maximum likelihood estimate of a linear
transformation of the HMM means, while leaving unchanged
the covariance matrices, mixture weights, and transition proba-
bilities of the original HMM parameter vectorp(ORIG). MLLR
is most appropriate when a small amount of adaptation data
is available (rapid adaptation).

Let P be a partition (obtained byK-means clustering [19],
for example) of the set of all Gaussian mixture components of
single-stream HMM (1), defined over the discriminant stream
s=d , and letp2P denote any member of this partition. Then,
we seek MLLR adapted HMM parameters (see also (2))

p
(AD)

d = [ ad ; f [wd;c;k ;m
(AD)

d;c;k; sd;c;k ] ;

k=1;:::;Kd;c ; c2C g ]; (17)

where the HMM means are linearly transformed as

m
(AD)

d;c;k = [ 1 ;md;c;k ]Wp ; (18)

where (c ; k) 2 p , and Wp , p = 1;:::; jPj are matrices
of dimension(ld+1)� ld . The transformation matrices are
estimated on basis of the adaptation dataO(AD)

d [111], by
means of the EM algorithm solving, similarly to (3),

p(AD) = arg max
p satisfy (17); (18)

Q(p(ORIG);p jO(AD)

d ) :

Closed form solutions for the unknown matrices exist, since
the HMM covariances are diagonal, due to (2) [111].

B. MAP Adaptation

In contrast to MLLR, MAP follows the Bayesian paradigm
for estimating the adapted HMM parameters. These eventually
converge to their EM-obtained estimates as the amount of
adaptation data becomes large. Such convergence is slow
however, thus MAP is not suitable for rapid adaptation. In
practice, MAP is often used in conjunction with MLLR [112].

Our MAP implementation is similar to theapproximate
MAP adaptation algorithm (AMAP) [112]. AMAP interpolates
the “counts” of the original training data,O(ORIG)

d , with the
adaptation data. Equivalently, the training dataOd of the
adapted HMM are

Od = [O(ORIG)

d ;O(AD)

d ;:::;O(AD)

d| {z }
m times

] : (19)
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TABLE II

TYPICAL CORPORA USED IN THE LITERATURE FORAV-ASR, GROUPED

ACCORDING TO RECOGNITION TASK COMPLEXITY. DATABASE NAME, OR

COLLECTING INSTITUTION, ASR TASK (ISOLATED (I) OR CONNECTED(C)

WORD RECOGNITION IS SPECIFIED, WHEREVER APPROPRIATE), NUMBER

OF SUBJECTS, LANGUAGE, AND SAMPLE REFERENCES ARE LISTED.

Name/Instit. ASR Task Sub. Lan. Sample references

ICP vowel/conson. 1 FR [21]

ICP vowels 1 FR [46]

Tulips1 I-4 digits 12 US [23], [43], [49], [71], [77], [79]

M2VTS I-digits 37 FR [26], [97], [116]

XM2VTS C-digits 295 UK [103], [117]

UIUC C-digits 100 US [31]

CUAVE I/C-digits 36 US [27], [81]

IBM C-digits 50 US [38]

U.Karlsruhe C-letters 6 D [34], [39], [76]

U.LeMans I-letters 2 FR [33], [82]

U.Sheffield I-letters 10 UK [24]

AT&T C-letters 49 US [30], [40], [115]

UT.Austin I-500 words 1 US [83]

AMP-CMU I-78 words 10 US [28], [29], [60], [78], [80]

ATR I-words 1 JP [36], [105]

AV-TIMIT 150-sent. 1 US [32]

Rockwell 100-C&C sent. 1 US [25]

AV-ViaVoice LVCSR(10.4k) 290 US [37], [67], [99], [104], [106]

Then, (3) is used to estimate the adapted HMM parameters,
p(AD). HMM parameters of all mixtures are re-estimated,
provided the adaptation data contain instances of the mixture
component in question. Here, we usem = 15 , in (19).

C. Front End Adaptation

In addition to updating HMM parameters, one may seek
to adapt the front end, so as to better capture the speech
information in the adaptation data. For the audio-visual front
end of Section II and discriminant feature fusion (5), a simple
form of front end adaptationis to re-estimate all appropriate
LDA and MLLT matrices. Here, we simply compute such
matrices using the combination of the original and adaptation
data, given by (19). HMM parameters for the updated front
end are then estimated using (3) on training data (19).

VII. A UDIO-VISUAL DATABASES

In contrast to the abundance of audio-only corpora, there
exist only a few databases suitable for audio-visual ASR
research. This is because the field is relatively young, but
also due to the fact that audio-visual corpora pose additional
challenges concerning database collection, storage, and dis-
tribution. A number of audio-visual datasets, commonly used
in the literature, are listed in Table II. Notice that most are
the product of efforts by few university groups or individual
researchers with limited resources, and as a result, they suffer
from one or more shortcomings [17], [20]: They contain a sin-
gle or small number of subjects, affecting the generalizability

Fig. 7. Example video frames of five subjects from each of the three audio-
visual datasets considered in this paper for AV-ASR (top to bottom: studio-
LVCSR, studio-DIGIT, office-DIGIT). The sides of the 704�480 size frames
are cropped in the upper two rows. Clearly, the office-DIGIT database presents
more challenges to the visual front end.

of developed methods to the wider population; they typically
have small duration, often resulting in undertrained statistical
models, or non-significant performance differences between
various proposed algorithms; and finally, they mostly address
simple recognition tasks, such as small-vocabulary ASR of
isolated or connected words.

To help bridge the growing gap between audio-only and AV-
ASR corpora, we have recently collected the IBM ViaVoiceTM

audio-visual database, a large corpus suitable for speaker-
independent audio-visual LVCSR (see also Table III). The
corpus consists of full-face frontal video and audio of 290
subjects, uttering ViaVoiceTM training scripts, i.e., continuous
read speech with mostly verbalized punctuation, dictation
style. The data are collected using a teleprompter in a quiet
studio environment. In more detail, the video is of a 704�480
pixel size, interlaced, captured in color at a rate of 30 Hz (60
fields per second are available at a resolution of 240 lines), and
it is MPEG2 encoded at the relatively high compression ratio
of about 50:1. Example video frames are depicted in Fig. 7.
Notice that the lighting conditions, background, and head pose
are quite uniform in the set, thus simplifying the visual front
end processing. In addition to the video, high quality wideband
audio is synchronously collected at a rate of 16 kHz and a
signal-to-noise ratio(SNR) of 19.5 dB. The duration of the
entire database is approximately 50 hours, from which about
44 hours (21k utterances) with a 10.4k vocabulary are used in
the experiments reported in the next section.

To be able to study the visual modality benefit to a popular
small-vocabulary ASR task, we have also collected a 50-
subject connected digit database, in the same studio environ-
ment as the LVCSR data just described. This DIGIT corpus
contains about 6.7k utterances (10 hrs) of 7- and 10-digit
strings (both “zero” and “oh” are used).

Finally, we are interested in studying AV-ASR in domains
and conditions that pose greater challenges to the visual front
end processing, compared to the controlled studio environ-
ment of the previous sets. For this purpose, we have been
collecting data in two visually challenging domains: The first
set is recorded inside moving automobiles, where dramatic
variations in lighting due to shadows are observed [118]. The
second corpus is a DIGIT set (7- or 10-digit strings), collected
in typical offices using a cheap camera that is connected via a
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TABLE III

THE IBM AUDIO-VISUAL DATABASES USED IN OUR EXPERIMENTS. THEIR

PARTITIONING INTO TRAINING, CHECK (HELD-OUT), ADAPTATION, AND

TEST SETS IS DEPICTED(NUMBER OF UTTERANCES, DURATION (IN

HOURS), AND NUMBER OF SUBJECTS ARE SHOWN FOR EACH SET). BOTH

LARGE-VOCABULARY CONTINUOUS SPEECH(LVCSR) AND CONNECTED

DIGIT (DIGIT) RECOGNITION ARE CONSIDERED FOR DATA RECORDED AT

A STUDIO ENVIRONMENT. FOR THE LOW QUALITY OFFICE-DIGIT DATA ,

DUE TO THE LACK OF SUFFICIENT TRAINING DATA, ADAPTATION OF

HMM S TRAINED ON THE STUDIO-DIGIT SET IS CONSIDERED.

Environ. Task Set Utter. Dur. Sub.

Train 17111 34:55 239
Check 2277 4:47 25

Studio LVCSR Adapt 855 2:03 26
Test 670 2:29 26
Train 5490 8:01 50

Studio DIGIT Ch/Adapt 670 0:58 50
Test 529 0:46 50
Adapt 1007 1:15 10

Office DIGIT Check 116 0:09 10
Test 200 0:15 10

USB-2.0 interface to a portable PC. In this paper, we discuss
experiments on this second set, as a means of also showcasing
audio-visual adaptation algorithms across datasets. Example
video frames of this set are depicted in the third row of
Fig. 7. Notice the variation in lighting conditions, background,
and pixel ratio compared to the previous databases that have
been collected in a studio-like environment. The frame rate
and size are also inferior, as only 320�240 color pixels are
now available at 30 Hz. As expected, all these factors pose
challenges to the visual front end.

The details of all three databases, as well as their partition-
ing into various subsets used in our experimental framework,
are given in Table III.

VIII. E XPERIMENTS

We now proceed to report a number of ASR experiments
on the three databases of Table III, using the algorithms dis-
cussed in the previous sections. We first briefly introduce the
experimental paradigm adopted, followed by a more detailed
presentation of our results.

A. The Experimental Paradigm

For all single-stream recognition tasks considered, we use 3-
state, left-to-right phone HMMs, with context-dependent sub-
phonetic classes (states). These classes are obtained by means
of decision trees that cluster contexts spanning up to 5 phones
to each side of the current phone, in order to better model co-
articulation and improve ASR performance. For both studio
quality databases, the DIGIT and LVCSR decision trees are
estimated using the clean audio of the corresponding database
training set, by bootstrapping on a previously developed audio-
only HMM (and its corresponding front end), which provides
data class labels by forced alignment [75]. Subsequently,K-
means clustering is used to estimate audio-only HMMs, that
correspond to the newly developed trees. It is by bootstrapping

TABLE IV

VISUAL-ONLY WER, %,ON THE TEST SETS OF THE THREE DATABASES OF

TABLE III. PER-SPEAKER, MLLR- ADAPTED PERFORMANCE IS ALSO

SHOWN FOR THE TWO STUDIO SETS. FOR THE OFFICE-DIGIT SET,

RESULTS USING THE IMPROVED VISUAL FRONT END OFFIG. 2 ARE

DEPICTED AT THE RIGHT-MOST COLUMN (*).

Recognition mode s-LVCSR s-DIGIT o-DIGIT o-DIGIT �

Speaker-Independent 93.52 38.53 83.94 65.00
Multi-Speaker ���� 23.58 71.12 35.00
Speaker-Adapted 82.51 16.77 ���� ����

on these models, that the parameters of all HMMs considered
in this paper are estimated (on their required front ends). The
total number of the resulting context-dependent HMM states
are 159 for the DIGIT task (corresponding to 22 phones) and
approximately 2.8k for LVCSR (for 52 phones). Note that
all single-stream HMMs have identical number of Gaussian
mixture components, namely about 3.2k and 47k for the
DIGIT and LVCSR tasks, respectively. Since the amount of
data available in the visually challenging office-DIGIT task
does not suffice to properly train new decision trees and initial
audio models, we just use the ones estimated on the studio-
DIGIT data.

Once decision trees and initial DIGIT and LVCSR audio
HMMs are developed, we proceed to estimate the parameters
of single-stream HMMs that model visual-only, as well as
audio-only and audio-visual feature sequences at a number
of audio channel conditions. Both the original clean database
audio at approximately 19.5 dB SNR, as well as noisy condi-
tions, where speech babble noise is artificially added at various
SNRs, are considered. We use three EM algorithm iterations
for training, with the E-step of the first iteration employing
the initial audio-only HMM (for bootstrapping). The resulting
models may be further adapted on theadaptationsets of Table
III. Appropriate single-stream HMMs are also joined to form
the decision and hybrid fusion models of Section IV, i.e., (6),
(9), and (10), with the stream exponents set to global values,
estimated on theheld-outsets of Table III. Joint stream HMM
training is also considered.

With the exception of the reliability modeling experiments
(where the SNR level is not assumed known), all results on the
studio-DIGIT and -LVCSR tasks are reported on recognition
of matchedtestdata (same SNR as in training). For the DIGIT
task, decoding is based on a simple digit-word loop grammar
(with unknown string length), whereas for LVCSR, a trigram
language model is used. In both cases, a two-stage stack de-
coding algorithm is employed, that uses a fast match followed
by a detailed match [119]. Unless otherwise noted, LVCSR
results are speaker-independent, whereas DIGIT recognition is
multi-speaker (due to the small number of subjects), as implied
by Table III.

B. Visual-Only Recognition

Given our three datasets, the first task is to extract visual
speech features from the available videos. To train the required
projections and statistics for face detection and facial feature
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Fig. 8. Visual-only ASR on the studio-LVCSR and -DIGIT datasets. (a) Improvements in speaker-independent and speaker-adapted (by MLLR, per subject)
visual-only LVCSR, due to the use of intra-frame LDA/MLLT, larger visual ROIs, and a larger temporal window for inter-frame LDA/MLLT. (b,c) WER
histogram of the 50 subjects in the studio-DIGIT dataset, using visual-only HMMs trained in a speaker-independent or multi-speaker fashion.

localization, we annotate 26 facial features on approximately
4k video frames across the three databases (see also Fig. 2).
The face detection accuracy is quite high for the two studio
quality datasets (in excess of 99.5%), however it degrades to
about 95% on the visually more challenging office-DIGIT set.
After face detection is completed, ROI extraction and visual
speech feature extraction follow, as described in Section II.
Visual-only HMMs can subsequently be trained, providing a
means to benchmark the visual front end performance.

The visual-onlyword error rate(WER), %, on all three sets
is reported in Table IV. Clearly, for LVCSR, the visual features
do provide speech information, albeit very weak [37]. DIGIT
recognition on the other hand is a visually less confusable
task, and the algorithm results in the multi-speaker WER
of 23.6%. Per-speaker, MLLR based visual HMM adaptation
significantly improves performance in both cases.

Recognition on the visually challenging office-DIGIT set
is inferior to the studio-DIGIT task. Indeed, HMMs trained
on the latter achieve a poor 83.9% WER on the former,
with a small improvement to 71.1% after a cascade of front
end / MLLR adaptation on the multi-speaker office-DIGIT
adaptation set. These WERs decrease with proper compen-
sation for lighting and head pose, using the improved ROI
extraction algorithm of Section II (see also Fig. 2), and reach
a 35.0% visual-only WER after adaptation. This still lags
when compared to the 23.6% WER achieved on the studio-
DIGIT task. Our experiments indicate that approximately half
of this difference is due to the inferior quality of the captured
image sequences (lower frame rate and resolution), whereas
the remaining is most likely due to the visual challenges of the
captured data (head pose, lighting, and background variation),
that significantly affect face and mouth detection accuracy.

Two additional items of interest are showcased in Fig. 8. The
first, in Fig. 8(a), demonstrates the effect of certain blocks of
the visual front end of Fig. 3 to ASR performance. In more
detail, three aspects of the algorithm are considered: Intra-
frame LDA use (as opposed to just obtaining the 30 highest
energy DCT coefficients), utilizing larger ROIs (containing
successively larger parts of the lower face region), and the use
of longer temporal windows for inter-frame LDA (performance
for 15 vs. 21 feature frames is depicted). Notice that the

resulting improvements due to larger ROIs and temporal
windows are consistent with human bimodal speech perception
studies [10], [16], [73]. The second point is demonstrated in
Figs. 8(b,c), and concerns the variation in visual-only ASR
performance across subjects. There, a WER histogram of
the 50 studio-DIGIT dataset subjects is depicted, when us-
ing speaker-independent or multi-speaker visual-only HMMs.
Clearly, there is a large variance in automatic speechreading
performance, with some subjects resulting in about a tenth of
the WER of others.

C. Audio-Visual ASR

Having demonstrated that the proposed visual front end pro-
vides speech informative features, our experiments now shift to
quantifying its resulting benefit to ASR, when combined with
the acoustic signal. We first apply all audio-visual integration
strategies proposed in Section IV to the studio-DIGIT task.
Representative techniques are subsequently considered on the
studio-LVCSR data. Audio-visual ASR on the office-DIGIT
set is deferred to Section VIII.E.

For both studio quality datasets, we consider acoustic condi-
tions at a wide range of SNRs, as discussed in Section VIII.A,
and we compare fusion strategies in terms of their resulting
effective SNR gainin ASR. We measure this gain with ref-
erence to the audio-only WER at 10 dB, by considering the
SNR value where the audio-visual WER equals the reference
audio-only WER.

The performance of all integration algorithms on the studio-
DIGIT set is summarized in Fig. 9. In more detail, we first
compare AV-ASR by means of the two feature fusion methods
of Section IV.A. As it becomes clear from Fig. 9, both concate-
native and discriminative feature fusion significantly improve
ASR performance at low SNRs, with the latter being somewhat
superior, yielding an approximate 6 dB of effective SNR gain.
For example, at -2.2 dB SNR, discriminant fusion based AV-
ASR results in a 6.3% WER, representing a vast improvement
over the audio-only WER of 19.8%. Notice however that
feature fusion fails to alter performance at the high end of
the SNR range considered. On the other hand, decision based
audio-visual integration, by means of the state-synchronous
two-stream HMM discussed in Section IV.B, consistently
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Fig. 9. Audio-only and audio-visual ASR on the studio-DIGIT database test
set using a number of integration strategies, discussed in Section IV, namely
feature fusion, the state-synchronous two-stream HMM (decision fusion),
the state-synchronous three-stream HMM (hybrid fusion), and the state-
asynchronous product HMM (asynchronous decision fusion). In all cases,
WER, %, is depicted vs. audio channel SNR. The effective SNR gain using
the product HMM is also shown, reported with reference to the audio-only
WER at 10 dB. All HMMs are trained in matched noise conditions.

improves performance at all SNRs. In particular, joint stream
training of the model seems clearly preferable, outperforming
separate stream training and discriminant feature fusion, and
yielding a 7.5 dB effective SNR gain. Further improvements
can be obtained by using the hybrid fusion approach of Section
IV.C that utilizes the discriminant audio-visual features as an
additional stream within a three-stream HMM. This technique
yields a 9 dB effective SNR gain. Finally, introducing state
asynchrony in decision fusion results in further gains. A jointly
trained product HMM achieves approximately a 10 dB SNR
gain, thus exhibiting at 0 dB the performance of audio-only
ASR at the much cleaner acoustic environment of 10 dB.
Notice that at -2.2 dB SNR, the product HMM yields a
4.1% WER, which corresponds to a 35% improvement over
discriminant feature fusion and 79% over audio-only ASR.
But even more remarkably, for the original database audio at
19.5 dB, the audio-visual WER now stands at 0.28%, which
represents a 63% WER reduction over the audio-only WER of
0.75% (see also Fig. 9). A large percentage of this gain is due
to the joint estimation of all product HMM parameters with
appropriate tying, since the composition of a product HMM
by separately trained single-stream models achieves an inferior
0.40% WER.

For LVCSR, the performance of a number of the presented
fusion techniques is summarized in Fig. 10. Similarly to the
results on the studio-DIGIT set, hybrid fusion outperforms
decision based integration, which in turn is superior to discrim-
inant feature fusion, as well as audio-only ASR. For simplicity,
a two-stream HMM is considered in hybrid fusion, where
audio-visual discriminant features are used in place of the less
informative visual-only stream. The resulting system achieves
approximately an 8 dB effective SNR gain over audio-only
ASR at 10 dB.
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Fig. 10. Audio-only and audio-visual WER, %, on the studio-LVCSR test set
using discriminant feature fusion, as well as two-stream HMMs for decision
and hybrid fusion. All models are trained in matched noise conditions.

D. Audio-Visual Reliability Estimation

In the multi-stream HMM based fusion experiments re-
ported above, all stream exponents are kept constant over an
entire dataset and for a particular SNR level. In this Sec-
tion, we investigate the benefit of frame-dependent exponents,
estimated on basis of stream reliability indicators. To test
the algorithm of Section V over varying stream reliability
conditions, we consider the studio-DIGIT task at a mixture
of SNR conditions. Babble noise is added to both test and
held-out sets of the database, however the audio-only HMMs
are trained on the original clean database audio.

We first argue that the selected indicators (11) and (12)
do capture the reliability of the speech class information,
available in the two streams of interest. Indeed, as depicted
in Table V, the values of these indicators, averaged at the
utterance level, are significantly correlated to the utterance
WER using the corresponding single-stream HMM, with low
correlation present across streams. In addition, as the audio
channel becomes corrupted by increasing levels of noise, the
speech information present in it is expected to degrade. Fig. 11
demonstrates that bothLa;t andDa;t successfully convey such
degradation, since they are monotonic on the SNR, similarly
to the optimal global audio-stream exponent. The observations
above argue favorably for using audio and visual stream
reliability indicators in AV-ASR.

TABLE V

CORRELATION BETWEEN THE STREAM RELIABILITY INDICATORS(11)

AND (12) AND THE AUDIO-ONLY AND VISUAL -ONLY WERS.

Reliability Correlation with Correlation with
Indicator audio-only WER visual-only WER

La -0.7434 0.0183
Lv 0.1041 -0.2191
Da -0.7589 0.0126
Dv 0.1014 -0.2066
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We now proceed to estimate stream exponents by means
of the four selected reliability indicators and the sigmoid
mapping of (13). The obtained results are summarized in
Table VI, where we report both WER, as well asframe
classificationerror rate (FER), assuming 22 DIGIT phone
classes of interest. As an AV-ASR baseline, we first estimate
a global audio exponent, constant over the entire dataset and
all SNRs. The resulting two-stream HMM is labeled “AV-
Global” in Table VI, and clearly outperforms audio-only ASR.
We subsequently use the MCL and MCE algorithms to esti-
mate the sigmoid parameters in (13). Both approaches further
improve FER and WER, with the MCE based estimation
resulting in a 17% relative WER reduction, over the use of
global fusion weights. It is interesting to compare these WERs
to the scenario that uses utterance-dependent exponents, and
assumes a-priori knowledge of the SNR (a best case scenario
for SNR-dependent exponent estimation). Such exponents are
estimated on held-out data matched to the noise level, and
are also depicted in Fig. 11 (scaled by a factor of 10). Even
in this “cheating” case, the resulting 9.08% WER is worse
than the WER achieved by frame-dependent exponents with
MCE estimation of the sigmoid parameters. In conclusion, the
proposed scheme of Section V is beneficial to AV-ASR.

E. Adaptation

In the final set of experiments, we apply the adaptation
techniques of Section VI to the office-DIGIT set. As already
indicated, the small amount of such data collected (see Table
III) is not sufficient for HMM training, thus adaptation tech-
niques are required to improve performance. A number of such
methods are used for adapting audio-only, visual-only, and
audio-visual HMMs using discriminant feature fusion. Two
SNR conditions are considered, and the results are depicted

TABLE VI

FRAME MISCLASSIFICATION ERROR RATE(FER)AND WER, %,FOR

TWO-STREAM HMM BASED AV-ASR ON THE STUDIO-DIGIT TASK,

USING GLOBAL VS. FRAME-DEPENDENT EXPONENTS ESTIMATED BY

MEANS OF MAPPING(13). AUDIO-ONLY RECOGNITION RESULTS ARE

ALSO DEPICTED. NOISE AT A NUMBER OFSNRS IS ADDED TO THE AUDIO

UTTERANCES, BUT ALL HMM S ARE TRAINED ON THE ORIGINAL DATA.

Condition FER WER

Audio-Only 58.80 30.29
AV-Global 31.80 10.35

AV-Frame, MCL 31.53 10.13
AV-Frame, MCE 31.18 8.64

TABLE VII

SINGLE-MODALITY AND AUDIO -VISUAL ASR PERFORMANCE ON THE

OFFICE-DIGIT TEST SET AT TWO AUDIO CHANNEL CONDITIONS

(ORIGINAL DATA AT 15 DB SNRAND ARTIFICIALLY CORRUPTED AT 8

DB). HMM S TRAINED ON THE STUDIO-DIGIT DATASET ARE ADAPTED TO

THE OFFICE DATA USING VARIOUS ALGORITHMS. ALL HMM S ARE

TRAINED / ADAPTED ON THE ORIGINAL DATA AUDIO.

Method Visual AU-15dB AV-15dB AU-8dB AV-8dB

Unadapted 65.00 8.71 7.18 35.00 31.06
MLLR 62.71 4.59 4.24 25.94 19.47
MAP 45.65 2.24 1.65 19.47 10.00
MAP+MLLR 45.18 2.00 1.71 19.24 10.41
FE 36.24 2.12 1.76 20.35 9.41
FE+MLLR 35.00 2.06 1.76 20.29 9.64

in Table VII. To simplify experiments, the original HMMs
are trained on the studio-DIGIT corpus at the clean audio
condition, and adapted on the 15 dB office-DIGIT data.

As it is clear from Table VII (“Unadapted” entries), the
original studio-DIGIT HMMs perform poorly on the new set.
This is due to the inferior quality of the office-DIGIT data. We
then consider MLLR and MAP HMM adaptation. Notice that
MAP performs better due to the relatively large adaptation set
available. Applying MLLR after MAP typically improves re-
sults. Front end (FE) adaptation significantly helps visual-only
recognition, improving for example performance from 45.6%
to 36.2%, or from 45.1% to 35.0% when used in conjunction
with MLLR. However, it does not seem to consistently help
in neither audio-only nor AV-ASR. In conclusion, adaptation
techniques can be successfully applied to bimodal recognition,
and bridge performance gaps across datasets.

IX. SUMMARY AND DISCUSSION

In this paper, we provided a brief literature review of the
basic techniques necessary in the automatic recognition of
audio-visual speech. We mainly concentrated on the two most
relevant issues to the design of audio-visual ASR systems,
namely first, the visual front end that captures the speech
information present in the video signal, and second, the
integration of the extracted audio and visual features into
the automatic speech recognizer. While presenting these, we
focused in the algorithms used in our speechreading system,
and we introduced a number of advances in both areas.

In particular, with respect to the visual front end design, we
discussed in detail our algorithm for extracting appearance-
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type visual features, based on a compressed representation
of the image pixel values within a suitably defined region of
interest. We demonstrated that it is beneficial for such a region
to contain the jaw and cheeks, in addition to the mouth area.
Furthermore, by properly compensating this region for simple
lighting and head pose variations, we were able to significantly
improve robustness to visual data recorded in challenging
environments. On basis of our experiments, we concluded
that the extracted visual features provide meaningful speech
information, although quite weak compared to the traditional
acoustic signal.

It is of course by combining the audio and visual features,
that the benefit of the visual modality becomes apparent.
In this work, we discussed a number of such fusion tech-
niques, based on the popular hidden Markov model framework
for speech recognition. We presented methods that integrate
speech information at either the feature or the classification
score level, and introduced a hybrid fusion algorithm that
combines the benefits of both approaches. In addition, we
discussed asynchrony modeling in audio-visual fusion, and we
argued for the joint training of all properly tied parameters of
the resulting model. In a first attempt to capture the varying
reliability of the two streams of information, we investigated
appropriate indicators of speech information content, and we
proposed a trainable mapping from such indicators to time-
dependent fusion parameters.

We applied these algorithms on three audio-visual corpora,
spanning both small- and large-vocabulary recognition tasks,
and containing data collected in visually “clean”, as well as
in challenging environments. Our best technique, utilizing the
product hidden Markov model, resulted in an effective SNR
gain of 10 dB for connected-digit recognition, though the
best achieved gain on the large-vocabulary task was some-
what inferior, reaching approximately 8 dB. For connected-
digit recognition of visually challenging data, our algorithms
significantly improved performance compared to audio-only
recognition, only after utilizing a number of adaptation tech-
niques discussed in this work.

The paper clearly demonstrates that over the past twenty
years, much progress has been accomplished in capturing
and integrating visual information into speech recognition.
However, the visual modality has yet to become utilized in
mainstream ASR systems. This is due to the fact that issues
of both practical and research nature remain challenging. On
the practical side of things, the high requirements in the
captured video frame rate and size, necessary for extracting
visual speech information that is capable of enhancing ASR
performance, place increased demands on cost, storage, and
computer processing. In addition, the lack of common, large
audio-visual corpora that address a wide variety of ASR tasks,
conditions, and environments, hinders development of audio-
visual systems suitable for use in particular applications.

On the research side, key issues in the design of audio-visual
ASR systems remain open and subject to more investigation.
In the visual front end design, for example, face detection, fa-
cial feature localization, and face shape tracking, robust to un-
constrained speaker, pose, lighting, and environment variation
constitute challenging problems. A comprehensive comparison

between face appearance and shape based features for speaker-
dependent vs. speaker-independent automatic speechreading is
also unavailable. Joint shape and appearance three-dimensional
face modeling, used for both tracking and visual feature ex-
traction has not been considered in the literature, although such
an approach could possibly lead to the desired robustness and
generality of the visual front end. In addition, when combining
audio and visual information, a number of issues relevant to
decision fusion require further study, such as the optimal level
of integrating the audio and visual log-likelihoods and the
optimal function for this integration.

Further investigation of these issues is clearly warranted,
and it is expected to lead to improved robustness and per-
formance of audio-visual ASR. Progress in addressing some
or all of these questions can also benefit other areas where
joint audio and visual speech processing is suitable [120],
such as speaker identification and verification [20], [45], [60],
[94], [121–123], visual text-to-speech [124–128], speech event
detection [129], video indexing and retrieval [130], speech
enhancement [88], [90], coding [131], signal separation [132],
and speaker localization [133], [134]. Improvements in these
areas will clearly result in more robust and natural human-
computer interaction.
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