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RECENT ADVANCES IN THE CONSTRUCTION 

OF HADAMARD MATRICES 

Jennifer Seberry Wallis* 

University of Newcastle, N.S.W., 2308, Australia 

ABSTRACT. In the past few years exciting new 

discoveries have been made in constructing 

Hadamard matrices. These discoveries have been 

centred in two ideas: 

(i) the construction of Baumert-Hall 
arrays by utilizing a construction 
of L. R. Welch, and 

(ii) finding suitable matrices to put 
into these arrays. 

We discuss these results, many of which 

are due to Richard J. Turyn or the author. 

* This paper was prepared while the author was visiting the 
Department of Computer Science, University of Manitoba, 
Canada. 
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1. Introduction. 

An Hadamard matrix H 

order n with elements + 1 or -

(hij ) is a square matrix of 

which satisfies the matrix 

equation 

(1.1) nI 
n 

where HT denotes H transposed and I is the identity matrix. 

Unless specifically stated the order of matrices 

should be determined from the context. We use for -1 and 

J for the matrix with every element + 1. 

The matrices 

(1.2) [1 _1] , 1 
[

- 1] [1 1 1] 1 1 Il-
III -
1 - 1 1 

are Hadamard matrices of orders 1, 2, 4 and 4 respectively. 

It can be shown, see [5], [12], that the order of an 

Hadamard matrix is necessarily 1, 2 or 4m for some 

m = 1, 2, 3, .••• It has been conjectured that Hadamard 

matrices of all these orders exist. For many years the first few 

unresolved cases have been 188, 236, 268 and 292 but 

Richard J. Turyn has announced, [8], that he has found Hadamard 

matrices for the orders 188 and 236 leaving 268 the first 

unresolved case. 

The book [12J of Wallis, Street and Wallis gives all 

the constructions for Hadamard known to this author early in 

1972 but many exciting results have been discovered more 

recently. 
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2. Definitions and Preliminary Results 

DEFINITION 2.1. A circulant matrix A = (a
ij

) of order n is 

one in which a .. 
~J a 1,j_i+1 where j-i+l is reduced modulo 

n. For example: 

DEFINITION 2. 2 • A matrix of order n will be 

called back circulant if a ij = a 1,i+j-1 

reduced modulo n. For example: 

[ill i] 

where i+j-1 is 

DEFINITION 2.3. A(1,-) matrix is a matrix whose only elements 

are +1 and -1 

LEMMA 2.4. A back circulant matrix is symmetric. 

LEMMA 2.5. The product of a back circulant matrix with a circul

ant matrix of the same order is symmetric. In particular, if 

A is back circulant and B is circulant 

Proof. Let 

where 

A = (a
ij

) 

hl, i+j-l 

where 

Then 

a .. 
~J al,j-i+l 

0: h.ka. k ) 
k ~ J 
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(E a. k .+.b j ·+k .) k ~,-J ~ ,~ -J 

= ABT 

LEMMA 2.6. Any two circuZant matrices of the same order commute. 

Proof· With A = (a
ij

) and both circulant 

(E b .. k+.a. k+i .) = (E b.,a,.) 
k ~,J- ~ J- oJ £=j-k+i ~" "J 

= BA 

We now generalize the concepts of circulant and back

circulant matrices by considering two special incidence 

matrices of subsets of an additive abelian group. 

DEFINITION 2.7. Let G be an additive abelian group with elements 

Zi' Let X be a subset of G. 

incidence matrices M = (mij ) and 

an ordering for the elements of G 

defined by 

We define two types of 

First we fix 

of order IGI , 

Zj-Zi E a, 
otherwise, 

will be called the type 1 incidence matrix of X 

and N of order IGI , defined by 

in G . , 

<j>(z.+:t.) , 
J ~ 

Zj+Zi : X, 
otherw~se, 

will be called the type 2 incidence matrix of X in G . 

LEMMA 2.8. Suppose 

matrices of a subset 

M and N 

C {c.} 
~ 

are type 1 and type 2 incidence 

of an additive abeZian group 
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MMT = NNT 

Proof. The inner products of distinct rows i and k in M 

and N respectively are given by 

L ~(z,-z,)~(z,-zk) 
z. £G J ~ J 

J 

= L ~(g)~(g+zi-zk) 
g£G 

since as Zj runs through 

G so does Zj-Zi = g 

and 

number of times c+zi-zk £ C 

For the same row 

L [~(z._z.)]2 
z. £G J ~ 

and 

J 

number of elements in C 

L ~(h+z,-zk)~(h) 
h£G ~ 

since as Zj runs through 

G so does Zj+zk = h 

L [Hz.+z.)]2 
z. £G J ~ 

J 

number of elements in C • 

Now type and type 2 incidence matrices of X in G 

are (O,i)-matrices, but we shall on occasion use the 
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corresponding matrices which have elements from a commutative 

ring. So we extend the definition to 

DEFINITION 2.9. Let G be an additive abelian group with 

elements z. , which are ordered in some convenient way and 
~ 

ordering fixed. Let X = {xi} be a subset of G, X n {O} 

Then two matrices M = (mij ) and N (nij ) defined by 

m .. = 1j!(z.-z.) and n .. = <P(z/zi) 
~J J ~ ~J 

where lj! and cp map G into a commutative ring, will be 

called type 1 and type 2 respectively. 

Further 

lj!(x) {~ 

if lj! 

X E X 
X = 0 

and 

x i X u {O} 

cp are defined 

q,(x) 

by 

X E X 
X 0 
x i X u {O} 

the 

= til 

then M and N will be called type 1 matrix of lj! on X 

and type 2 matrix of q, on X respectively. But if lj! and 

¢ are defined by 

lj!(x) = {-i X E X 
x i X cp (x) = { -1 

X E X 
x i X 

then M and N will be called type 1 (1,-1) incidence matrix 

and type 2 (1,-1) incidence matrix respectively. 

EXAMPLE. Consider the additive group GF(32) , which has elements 

O,I,2,x,x+l,x+2,2x,2x+l,2X+2 

Define the set X {y: y = z2 for some z E GF(32)} 

{x+l, 2, 2x+2, l} 
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using the irreducible equation 2 = x+1 Now type 1 matrix x a 

of 1jJ on X , A = (aij ) , is determined by the function of the 

type 

Lr 
x = 0 

a .. = 1jJ(g .-g.) where 1jJ(x) x E X 
l.J J l. otherwise 

So let us order the elements as we have above and put 

g1 0, g2 = 1, g3 = 2, g4 = x, g = x+1, g6 x+2, 
5 

g7 2x, gs = 2x+1, g9 = 2x+2 

Then the type 1 matrix of 1jJ on X is 

• 
0 1 1 -1 1 -1 -1 -1 1 
1 0 1 -1 -1 1 1 -1 -1 
1 1 0 1 -1 -1 -1 1 -1 

-1 -1 1 0 1 1 -1 1 -1 
A = 1 -1 -1 1 0 1 -1 -1 1 

-1 1 -1 1 1 0 1 -1 -1 

-1 1 -1 -1 -1 1 0 1 
-1 -1 1 1 -1 -1 0 1 

1 -1 -1 -1 1 -1 1 0 

LI 
x = 0 

Let the function q,(x) x EO X and a .. = q, (gi+gj) 
otherwise l.J 

define a type 2 matrix B Then keeping the same ordering as 

above the type 2 matrix of q, on X is 
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0 1 -1 -1 -1 -1 1 
1 0 1 -1 -1 -1 1 -1 
0 1 -1 -1 1 -1 -1 

-1 1 -1 -1 -1 0 1 1 
B 1 -1 -1 -1 1 -1 1 1 :) 

-1 -1 1 1 -1 -1 1 0 

-1 -1 1 0 -1 1 -1 
-1 -1 0 1 -1 -1 

-1 -1 0 1 -1 -1 1 

LEMMA 2.10. Suppose G is an additive abelian group of order 

v with elements zl,z2' ... 'zv. Say ~ and ~ are maps from 

G to a commutative ring R. Define 

A = (a
ij

) a .. <P(Zj-zi) 
~J 

B (b
ij

) b .. ~ (Zj -zi) 
~J 

C (c
ij

) c .. j.l(z/zi) 
~J 

Then (independently of the ordering of zl,z2' .•. 'zv save only 

that it is fixed) 

Proof· 

(i) C
T 

C, 

(ii) AB BA, 

(iii) ACT = CAT 

(ii) (AB)ij = LG<P(g-zi)~(Zj-g) 
gE 

putting h = Zi+Zj-g, it is clear that as g 

ranges through G so does h, and the above 

equation becomes 
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(iii) 

L ~(z.-h)~(h-z.) 
hEG J 1. 

L ~(h-z.)~(z.-h) 
hEG 1. J 

(since R is commutative); 

T 
(AC ) ij L ~(g-z.)w(z.+g) 

gEG 1. J 

L Hh-z.)w(z.+h) 
hEG J 1. 

T 
(CA ) ij 

this is (BA).. • 
1.J 

COROLLARY 2.11. If X and Yare type 1 matrices and Z is 

a type 2 matrix then 

LENI1A 2.12. If X is a type i, i ; 1,2, matrix then so is 

xT • 

Proof· (i) If x; (x
ij

) ; ¢(Zj+zi) is type 2 then so is 

XT ; (Yij ) ; ¢(zi+Zj) . 

(ii) If X; (xij ) ; ~(Zj-zi) is type 1 then so is 

(Yij ) ; w(Zj-Zi) where W is the map 

; ~(-z) w (z) 

COROLLARY 2.13. (i) If X and Yare type 1 matrices then 

XY ; YX , 

XTy ; YXT , 
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XyT yTX , 

XTyT yTXT 

(ii) If p is a type 1 matrix and Q is a 

type 2 matrix then 

PQT QpT , 

PQ QTpT 

pTQT QP , 

pTQ QTp 

We note that if the additive abelian group in 

definition 2.7 is the integers modulo p with the usual 

ordering then 

(i) the type 1 incidence matrix is circulant since 

mij = ~(j-i) = ~(j-i+l-l) = m1,i-j+l 

(ii) the type 2 incidence matrix is backcirculant since 

nij = ~(i+j) = ~(i+j-l+l) = n1,i+j-l 

In any case: 

a type 1 matrix is analogous to a circulant matrix; 

a type 2 matrix is analogous to a backcirculant 

matrix. 

All the theorems stated above remain true if for 

"type 1" we substitute "circulant" 

and for 

"type 2" we substitute "backcirculant" . 
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LEMMA 2.14. Let R = (r
ij

) be the permutation matrix of order 

n , defined on an additive abelian group G = {gi} of order 

n by 
if o , 

otherwise 

Let M by a type 1 matrix of a subset X = {xi} of G. Then 

MR is a type 2 matrix. In particular, if G is the set of 

integers modulo n then HR is a backcirculant matrix. 

Proof· Let where 

~ maps G into a commutative ring. Let ~(-x) = ~(x) . 

Then MR is 

where 

which is a type 2 matrix. 

o 

NOTATION. By [A] we will mean the type 1 incidence matrix of 

the set A 

DEFINITION 2.15. If is a m x p matrix and 

N (n
ij

) is an n x q matrix, then the Kronecker product 

M x N is the mn x pq matrix given by 

H x N 
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LEMMA 2.16. The following properties of Kronecker product follow 

immediately from the definition: 

(a) p(M x N) = (pM) x N = M x (pN) p a scalar , 
(b) (M

1 
+ M

2
) x N = (M

1 
x N) + (H2 

x N) 

(c) H x (N 1 + N2) = H x Nl + M x N2 

(d) (M1 x N1)(H2 x N2) = MIM2 x NIN2 

( e) (M x N)T = MT x NT 

(f) (M x N) x P = 11 x (N x P) 

EXAMPLE. Let H = I ~ -~ ] and Nl; 1 jJ Then 
-1 1 

1 -1 
1 1 

H x N l ~ -~] 
r_1 1 1 1 -1 1 1 1 

1 -1 1 1 1 -1 1 1 
1 1 -1 1 1 1 -1 1 
1 1 1 -1 1 1 -1 

-1 1 1 1 1 -1 -1 -1 
1 -1 1 1 -1 1 -1 -1 
1 1 -1 1 -1 -1 1 -1 

1 -1 -1 -1 -1 1 
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3. Baumert-HaZZ arrays. 

In 1944 Williamson [12] introduced a special type of 

Hadamard matrix 

[-: 
B C 

n A -D 
(3.1) H -c D A 

-D -c B 

based on a matrix representation of the quaternions. 

THEOREM 3. 1. H is an Hadamard matrix of order 4m whenever 

there exist four ±1 matrices A,B,C,D of order m satisfying 

(3.2) XyT yXT X,Y £ {A,B,C,D} 

(3.3) AAT + BBT + CC
T + DDT 4mI m 

Baumert and Hall, see [1] , in 1965 published the 

12 x 12 array given in (3.4) 

A A A B -B C -C -D B C -D -D 

A -A B -A -B -D D -c -B -D -C -c 
A -B -A A -D D -B B -C -D C -c 
B A -A -A D D D C C -B -B -C 

B -D D D A A A C -C B -C B 

(3.4) 
B c -D D A -A C -A -D C B -B 

D -C B -B A -C -A A B C D -D 

-C -D -C -D C A -A -A -D B -B -B 

D -C -B -B -B C C -D A A A D 

-D -B C C C B B -D A -A D -A 

C -B -C C D -B -D -B A -D -A A 

-C -D -D C -C -B B B D A -A -A 
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This array contains precisely 3 ± A's, 3 ± B's, 3 ± C's, 

3 ± D's in each row and column. Furthermore, its rows (hence 

also its columns) are formallY orthogonal, in the sense that if 

the A,B,C,D are realized as any elements from a commutative 

ring then the distinct rows of the array are pairwise orthogonal. 

If the A,B,C,D are matrices which pairwise satisfy XyT = yXT 

then 

More generally we consider 

DEFINITION 3.2. A 4t x 4t array of the indeterminates ±A, 

±B, ±C, ±D in which 

(i) each indeterminate, ±X , occurs precisely t times 

in each row and column, and 

(ii) the distinct rows are formally orthogonal, in the 

sense that if the A, B, C, D are realized as 

any elements from a commutative ring then the 

distinct rows of the array are orthogonal, 

will be called a Baumert-HaZZ array of order t 

or BH[4t]. 

Then we have 

THEOREM 3. If there exist a Baumert-HaZZ array of order t 

and four ±l matrices A,B,C,D of order m satisfying 

X,y £ {A,B,C,D} 

AAT + BBT + CcT + DDT = 4mI 
m 

then there exists an Hadamard matrix of onier 4mt 
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Five years passed from the publication of the Baumert

Hall array of order 3 until Lloyd Welch (1971, unpublished) found 

his deceptively simple Baumert-Hall array of order 5, given 

in (3.5). 

(3.5) 

-D B -C -c -8 A -D -D -A -8 -A C -c -A A -B -D D -B 

-8 -D B -C -C -A A -D -D -A -B -A C -C -B A -8 -D D 

-c -8 -D 13 -C -D-A A -D -C -A -B -A D -B A -B -D 

-c -c -8 -D -D -D -A A c -c -A -8 -A -D D -8 A-8 

B -C -C -B -D A -D -D -A -A C -C -A -rl -B -D D -B A 

-C A DD -AD I -DB -_DB -C -C B I -A B -D D 

-A -C A -B -C -C I B -A B -D D 

-B -A -C -A 

-A -B -A -C 

: -~ ~~ _~ ~ I ~~ _: -: ~: ~~ 
ADD -A -c -8 -C -C B-D 

B -A -c -A A B -D 

-A B -A -c A B -D D 

C -A B -A -C A B-D 

-C C -A B -A -D D A 

B -A B -D 

-D D B -A 

C -A -8 -A -c 
-C C -A -B -A 

B -D D B -A -A-C -A -B 

-D -8 

B -D -B 

B -D -B 

B -C A -D -D -A 

-A -C A -D -D 

-D -A -C A -D 

B -D -B -D -D -A -C A 

-A -C C -A B -D D A -B B -D A -D -D -A -C 

-A -13 -D D -B B -A C -C -A CAD D -A -D B 

-8 -A -,I) -D D -A B -A C -C -A ADD -B -D 

C -B 

C 

D -B -A -B -D -C -A B -A 

-D D -8 -A -B C -c -A B -A 

-B -D D -8 -A -A C -C -A 

D -A A D 

D -A 

ADD -A 

A 

C -B -D 

-8 -D 

-B -D 

The author believes that Turyn has used this Welch 

array to allow certain Baumert-Hall arrays of order t to be 

multiplied by 5 to obtain a Baumert-Hall array of order 5t • 

We note that Welch's array is based on five 5 x 5 matrices: 
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I, o o 0 

000 

000 

o 0 o 
o 0 o 

o 0 o 
000 

000 

000 

000 

which satisfy for n ~ 5 

(3.6) 

W W T 
2' 3 

o o 0 

000 

000 

o 0 o 
o 0 o 

o 0 o 
000 

000 

000 

000 

If circulant (0,1,-1) matrices satisfying (3.6) can be found 

for other n than 5 then it will be possible to use Turyn's 

construction to multiply the orders of some Baumert-Hall arrays 

by these other n 

Shortly after Welch's matrix was discovered 

Jennifer Wallis [10J and Richard J. Turyn [9J independently 

announced that a construction of Goethals and Seidel [3J was 

important in finding Baumert-Hall arrays. Their theorem is 

THEOREM 3.4. (Goethals and Seidel) If X, Y, Z, Ware square 

circulant (1,-) matrices of order t > if U ~ X - I is skew 

symmetric, and if 
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then 

l-~ 
YR ZR 

~Rl 0.7) GS 
X _WTR 

-ZR WTR X _yTR 

-WR _ZTR yTR X 

is a skew-Hadamard matrix of order 4t when R 

n given by 

j = t + 1 - i 

o otherwise 

(rij ) of order 

Wallis and Whiteman [llJ showed how a similar matrix may 

be defined using an additive abelian group G 

THEOREM 3.5 (Wallis and Whiteman). Let X, y, W be type 1 (1,-) 

incidence matrices and Z be a type 2 (1,-) incidence matrix 

defined on the same additive abelian group of order t. If 

then 

0.8) 

I_~T Y Z 

H 
xT -w 

l-' W
T 

X 

_WT -Z Y 

is an Hadamard matrix of order 4t. Further if X - I is skew, 

H is a skew-Hadamard matrix. 

We illustrate the use of the Goethals-Seidel array in 

constructing Baumert-Hall arrays: Suppose X, Y, Z, Ware of 

order t and have elements which are (1,-) matrices A, B, C, 

D of order m which satisfy 
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(3.9) 

and that 

(3.10) 

= NM
T 

M,N A, B, C, D 

+ CCT + DDT = 4mI 
m 

Then X, Y, Z, W may be used in GS to form a Baumert-Hall 

array of order t and an Hadamard matrix of order 4mt. 

Example: t = 3 , use 

X 

[: 
B 

:] 
Y = 

[-: 
-C 

-n A B 

C D 

Z 

t~ 
D -:] W = 

t: 
A -n C D 

-A -B 

then provided (3.9) is satisfied (3.10) is satisfied and we have 

the following Baumert-Hall array of order 3 
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A B C B -c D C D -A D A -B 

C A B -c D B D -A C A -B D 

B C A D B -c -A C D -B D A 

-B C -D A B C -D B -A C -A D 

C -D -B C A B B -A -D -A D C 

-D -B C B C A -A -D B D C -A 

-c -D A D -B A A B C -B -D C 

-D A -c -B A D C A B -D C -B 

A -c -D A D -B B C A C -B -D 

-D -A B -c A -D B D -c A B C 

-A B -D A -D -c D -c B C A B 

B -D -A -D -c A -c B D B C A 

Example: t = 5, use 

X = 

t~ 
B B c 

-~l 
, y = [: A A -D 

-~l A B B -B A A 

-c A B -D D -B A 

C -c A A -D D -B 

B C -c A A -D D 

Z 

[C 
D D A 

-~ 
, W = [' -c -c B 

-11 
-A -c D D -B -D -c -c 

A -A -c D B -B -D -c -c 
D A -A -c -c B -B -D -c 
D D A -A -c -c -c B -B -D 
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then provided (3.9) is satisfied (3.10) is also satisfied and we 

can use the array GS to get a Baumert-Hall array of order 5 • 

We note that the example for t = 3 uses the matrices 

I 

and 

X I x A + T 

y I x B + T 

Z I x C + T 

H I x D + T 

T 

x B + T2 x C 

x -C + T2 x D 

x D + T2 x -A 

x A + T2 x -B 

o 
o 

while the example for t = 5 uses the matrices 

I 0 0 0 0 S 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 0 

R 0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 
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and 

X I x A + S x B + R x C 

Y I x -B + S x A + R x -D 

Z I x -C + S x D + R x A 

W = I x -D + S x -C + R x B 

Three examples illustrate the following result. 

THEOREM 3.6 (Joan Cooper and Jennifer Wallis). Suppose there 

exist four type 1 (0,1,-) matrices Xl' X2 ' X3' x4 of order 

t , defined on the same abelian group G of order t, such 

that each of the t Z positions is nonzero in precisely one of 

the Xi and that 

Further suppose that A, B, C, D satisfy MNT = NM
T and let 

X Xl x A + x
2 

x B + X3 x C + x
4 

x D 

Y Xl x -B + Xz x A + X x 
3 D + X

4 
x -C 

Z (Xl x -C + X
2 

x -D + X3 x A + X4 
x B)R 

W = Xl x -D + X
2 

x C + X x 
3 

-B + X
4 

x A 

with R = (rij ) defined on the elements of G, gl'gZ' .. • ,gt by 

if 
(3.11) 

o otherwise 

Then (3.8) gives a Baumert-Hall array of order 4t. 

We note from the preceding examples that for t 3: 

IJ + TJ + TZJ = J + J + J = aJ + bJ + cJ 

and a2 + bZ + cZ 
= t = 3 
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t = 5 

IJ + SJ + RJ = J + 2J + OJ aJ + bJ + cJ 

THEOREM 3.7 (Joan Cooper and Jennifer Wallis). Suppose there 

exist four (0,1,-) matrices Xl' X2' X3' X4 of order t 

and such that each of the t
2 positions is nonzero in precisely 

one of the Xi and for which 

T T T T 
XlXl + X2X2 + X3X3 + X4X4 tIt 

Further let Xi be the number of positive elements and 

Y
i 

be the number of negative elements in each row and column of 

Xi Then 

Proof. (a) is immediate from the suppositions. Now 

so consider 

Equating coefficients we have (b) • 
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L~1A 3.8 (Joan Cooper and Jennifer Wallis). There exist 

Baumert-Hall arrays of order t E {x: x is an odd integer, 

1 ~ x ~ 19} . 

Proof. In table 1 sets of elements gi from the cyclic group 

of order t are given, and to some of the gi a sign - is 

attached. This sign does not indicate inverse in the cyclic 

group. Rather, for each set one forms the circulant (type 1) 

incidence matrix of the subset of elements which are not 

preceded by - , and subtracts from it the circulant (type 1) 

incidence matrix of the subset of elements which are preceded by 

minus. The four matrices thus formed should be used in theorem 

3.6 to obtain the result. 
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141412+02 

2412+040 2 

22+12+12+12 

2422+1402 

34040402 

11 34141402 

13 34240402 

242422+12 

IS 32+z412+12 

17 4 2+12+0 2+0 2 

19 

(I), (Z), (J) 

(I,Z), (S), {J,-4} 

(I,2), (S), (J,6,-n, (4) 

or 

(I,-2,-3,-S), (4), (6), 0) 

(I,6), (2,B), (9), {3,4,-S,-n 

(I,2, n, D,-9), (4,-B),{S,-6) 

(l,S,7,8,-9), (ll), (2,3,-4,-6,lO) 

(l,7,9), (4,S,8,-IO), {-2,-3,6,ll,-12,13} 

(I,3,9), (Z,S,6,-l3), (4,-7,-B,IO,-Il,12) 

(I,S), (3,4,-6,-9,IO,12), (l,13), {-2,B,lll 

or 

{I,2,S,-9l, (3,4,-6,lO,-Il,12), (l,13), (B) 

(l,2,6), {8,9}, (IO,-ll,-13), (-3,-4,S,7,12,14,-lS) 

(I,4,B,16), (2,13,-lS), {9,-ln, (3,S,-6,-7 ,-10,-11,12,14) 

or 

(l,S,lO,12), (3,4,-9), (S,-lS), (2,-6,-7,ll,-13,14,16,-17) 

or 

(I,2,-3,-4,-S,-6,-9,-14,15,-16), (lO,ll,-ln, (l,-8), 02,-l3) 

(I,2,13), {l,ll,ln, (4,-9,-12,-14,15,16,lS), (3,5,-6,S,-10,-19) 

TABLE I 
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LE~ll1A 3.9 (David Hunt and Jennifer Wallis). There exist Baumert

Hall arrays of order t E {13, 19, 25, 31, 37, 41}. 

Proof. 

Cl 
q = p 

Let x be a primitive root of GF(q) where 

ef + is a prime power. Write G = <x>\{O}. The 

cyclotomic classes Ci in GF(q) are: 

{ es+i 
x : s=O,l, ••• ,f-l} i = O,l, ... ,e-l 

We note the C
i 

are pairwise disjoint and their union is G. 

We write [C J for the incidence matrix of C and 
a a 

define the incidence matrix of C
a 

- C
b 

and C
a 

& C
b 

by 

and 

The results of [6J may be used, or direct calculation, to 

show the matrices in table 2 give four matrices which can be used 

in theorem 3.6 to obtain the result. 

13~4.3+1 3 2+22+0 2+0 2 

19~6.3+1 32+3 2+12+0 2 

2s~a. 3+1 5 2+0 2+0 2+0 2 

31~10.3+1 3 2+3 2+3 2+22 

37=12.3+1 6 2+12+0 2+0 2 

41~a.S+1 52+4 2+0 2+0 2 

[Col, [CI-IO} l, [CZ-C3 l, [~l 

[Col, [Czl, [{a} & ~3-C4l, [C I-C5 l 

[Co & C
5
-IO} l, [C

I
-C

7
l, [CZ-C 3 l, [C

4
-C6 l 

[Co & C
3
-C

z
l, [C

4 
& C

5
-C

9
l, [C

7 
& C

a
-C

6
l, [CI-IO}l 

[Co & C
I
-C

Z
-C

3 
& C

4 
& C

5
l, [{O}l, [C

6
-C

7 
& C

S
-C

9 
& ClO-Clll,[,l 

[C
O
-C

2
-C

3
l, [C

4 
& C

6
-C

I
-{O}l, [C

5
-C

7
l, [~J 

TABLE Z 
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The following results have also been reported: 

LEMMA 3.11 (Richard J. Turyn). 

order t and 5t for t E {i 

negative integers, or i ~ 59}. 

There exist Baumert-HaZZ arrays of 

i = 1 + 2a lOb 26c , a, b, c non-
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4. r·h lZ:':JJl1f;,; Type Matrices 

Repeatedly in section 3 we have desired to form four 

(l,-} matrices A, B, C, D of order in which pairwise satisfy 

(4.1) (i) MN
T 

NM
T 

{and (ii) AAT + BBT + CC
T + DDT = 4mlm' 

Williamson first used such matrices and this is why 

we call them Williamson type. The matrices Williamson used 

were both circulant and symmetric but we will show neither the 

circulant nor symmetric properties are necessary. 

The following theorem is a summary of the results con

tained in the table of Marshall Hall Jr [5J or Wallis, Street 

and Wallis [12; pp 388-389J. The results are mainly due to 

IHlliamson but some are due to Baumert, Golomb and Hall. 

THEOREM 4.1. There exist four circulant, symmetric (1,-) matrices 

A, B, C, D of order m satisfying (4.1) for 

mE: fl, 3, 5, 7, ••• ,29,37, 43}. 

We note that the condition that the four matrices are 

circulant and symmetric reduces the condition MNT 
= NM

T 
to 

MN=NM 

which is satisfied because A, B, C, D are all polynomials 

in the matrix F of order m given by (4.2) 
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010 0 
(4.2) 

F 001 o 

000 1 

100 0 

We now use a result of Goethals and Seidel which is 

most valuable. 

THEOREM 4.2 (Goethals and Seidel). Let q = 1 (mod 4) be 

a prime power, then there exists a square matrix P of order 

q + 1 with diagonal elements 0 and all other elements ± 1 

such that 

(4.3) and P 

where R, S are symmetric circulants. 

Proof. Any linear mapping u: V~V satisfies 

det (u(x), u(y)) det u.det (x,y) 

for all x, y £ V. We define linear mappings v and ",, which 

will be used in the proof of the theorem. Let z be any prim

itive element of GF(q2), the quadratic extension of GF(q). 

We choose any basis in V. With respect to this basis, v 

is defined by the matrix 
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(v) ( q-l l-q) ~(q+l)l z - z z 

zq-l + zl-q 

which has its elements in GF(q). Then det(v) = I and the 

eigenvalues of v are 

GF(q2) whose ~(q+l)th 

q-l 
z and l-q 

z • both elements of 

power. and no smaller. belongs to 

GF(q). Hence v acts on PG(I.q) as a permutation with 

period ~(q+l). without fixed points • .. I\hlt 1ft oi.tiilOll III .. ~d, ... 

which divides the pOints of PG(I.q) into two sets of transi

tivity each containing ~(q+l) points. In addition. w is 

defined by the matrix 

(w) [~ 
Then X det (w) = -X(-l). The eigenvalues of w 

elements of GP(q2) whose square is in GF(q). 

~(q+1) 
are ±z , 

Hence w acts 

on PG(I.q) as a permutation with period 2. which maps any 

point of one set of transitivity. defined above by v. into 

the other set. Indeed. for i = I . .... ~(q+l). the mapping 

viw has no eigenvalue in GF(q). Finally note vw = VIV. 

Represent the q+l points of PG(I.q) by the 

following q+l vectors in V: 

2 ~(q-l) 2 ~(q-l) 
x. v (x) • v (x) •...• v (x) • w (x) • vw (x) • v w (x) •...• v w (x) • 

Observing that. for i.j = O.l •.•.• ~(q-l). 

det (viw(x).vjw(x» = det (w) . det (vi(x).vj(x) 

= det (w) • det (x.vj-i(x». 
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det (vi(x),vjw(x» 

det (vi(x), vj(x» 

-det (viw(x),vj(x» = det (vj(x) ,viw)x», 

-det (vY,(q+1)+i(x) , vj(x», 

we conclude that the matrix P belonging to these vectors 

given by (2.4) has the desired form. 

(4.4) P = [X det (x., x.)J. 
l J 

with X the usual quadratic character (see, for example, [12]). 
EXAMPLE (with thanks to L.D. Baumert). 

Let q = 5, p = 3 and let a be a root of 

x2 + x + 2 = 0 [a primitive polynomial over GF(S)J, and 

consider 

5 a., a. , 
4p-3 p+1 p+5 5p-3 

a ,a. ,a , ... , a . 

We can take xO' ••• , Xs as 

a= (~) , a
5

= 4a + 4 = (1) 9 3a + 4 W 4 = 3a + 2 = U) a a 

8 
3a + 1 W 

12 = 4 W· a a 

Since X(l) X(4) 1 and X (2) X (3) -1, 

det (xi' x.) 0 4 4 2 1 4 and 
J 

1 0 4 1 2 1 

1 1 0 4 1 2 

3 4 1 0 2 2 

4 3 4 3 0 2 

1 4 3 3 3 0 
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p [x det (xi' x
j

) J 10 1 1 - 1 1 

1 0 1 1 - 1 

1 1 0 11-

- 1 1 0 

1 - 1 - 0 -

11- 0 

Then Turyn noted 

THEOREM 4.3 (Richard J. Turyn) Let Rand S be the 

matrices of order ~(p+1), p = 1 (mod 4) a prime power, of 

theorem 4.3. Then 

I + R, I - R, S,S 

are four circulant, symmetric, (1,-) matrices which pairwise 

satisfy 

2(p + 1) Iy,(p + 1) 

An alternate proof to the theorem of Goethals and 

Seidel and Turyn has been found by A.L. Whiteman '13J. 

Turyn has also noted the fo11mving result announced 

in r9J: 

THEOREM 4.4 (Richard J. Turyn). There exist four symmetric 

(1,-) matrices A,B,C,D of order m = 9a, a = 0, 1, 2, ... 

which pairwise satisfy 
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'iN T N1'1T 

and for which 

AAT + BBT + eeT 
+ nDT 

L~mI 
m 

Finally we observe that 

TREOREH 4.5 (Jennifer r,allis) Let p ::' 1 (mod 4) be a prime 

power then there exist foW' (1,-) matrices A,B,C,D of order 

~ p(p+l) which pairwise satisfy 

MN
T 

= NM:
T 

and for lJhich 

AAT + BBT + ee T + DDT 2p(p + 1)1, ( 1)' 
'2p P + 

Proof· 

The matrices R, S of theorems 4.2 and 4.3 satisfy 

R2 2 
S, 1 + + S = (p + l)l~(p+l) 

For p a prime power, it is well known, see for example 

ao' a
1

, ... , ap_1 

ordered in some way and X is the quadratic character then 

[12; p 291J, that if the elements are 

has zero diagonal and other elements ±l and satisfies 

QQT = pI _ J, QJ JQ 0, QT = (_1)~(p-1) O. 

Let X I + Q and Y -1 + Q, then X, Yare 
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(1,-) matrices satisfying XT 

xy T YXT and 

X, yT y, XJ J -YJ, 

2 (QQ T +1) 2(p + 1) I - 2J. 

Consider 

A I x J + R x X 

B S x X 

C I x J + R x Y 

D S x Y. 

It is easy to verify that MN T ~ NM
T 

for M, Ns {A,B,C,D} 

and the result follows by noting 

AAT+ BBT+ CCT+DDT~ 2IxpJ+STx(JXT+JyT)+sx(XJ+YJ)+(SST+RRT)x(XXT+ yyT) 

~2plxJ + p1x2(p + 1)1 + plx2J 

~2p(p + l)l~p(p + 1)' 

We note the matrices A,B,C,D we have just constructed 

were symmetric but not circulant. hTe will now indicate another 

construction for the X and Y of the proof which will not 

yield symmetric matrices: 

LEMMA 4.6 (Jennifer Wallis). Let p = 5 (mod 8) be a prime power 

then there exist four (1,-) matrices A,B,C,D of order 

~(p + 1) which pairwise satisfy 

MNT NMT 

for which 

AAT + BBT T T + cc + DD ~ 2p(p + l)I~p(p + 1) 

cut which are neither circulant '1or sY.'7metric. 
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Proof. We use a construction of Szekeres [12; p. 321]. Let 

x be a primitive root of GF(p) and consider the cyclotomic 

classes of p= 4f + 1 (f odd) defined by 

0, 1, ... , f - I} i 0, 1, 2, 3. 

Then we take (using notation given previously) 

-leC2 so pT = -P, 

ppT + QQT = 2 

QT = -Q. Further 

3 3 

L ][C.JT _ L [C 
i=O i l. i=O 

2(f-1)(J-l) + 8fl 

(8f + 2)1 - 2J. 

[C i ][Ci+2] 
T 

2f(J-l) using results of [6J 

Let X = P + 1 and Y (Q - l)V where V is the R is 

given 

Then 

lemmas 

by (3.11) . 

xyT=YXT 
as X is type 1 and Y is type 2 (see 

2.13 and 2.14) . 

XJ = PJ + J J, YJ = QVJ - QJ = -J and 

XXT + yyT (P + l)(P + l)T + (Q _ l)VVT(Q _ l)T 

ppT + 1 + QQT + 1 

(8f + 4)1 - 2J 

2(p + 1)1 - 2J 

Now A, B, C, D may be constructed as in theorem 4.5 since 

p = 1 (mod 4) and the Rand S of theorems 4.2 and 4.3 exist, 

but XT;t X so A and B are not symmetric. 
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5. Conclusion. 

We summarize the results quoted in this paper. 

THEOREM 5.1. If there exists a Baumert-Hall array of order t 

and four (1.-) matrices A. B. e. D of order m which 

(5.1) 
(i) pairwise satisfy MNT 

= NMT • and 

(ii) satisfy AAT + BBT + eeT + DDT 4mI 
m 

then there is an Hadamard matrix of order 4mt 

THEOREl1 5.2. There exist Baumert-Hall arrays of order t and 

5t for 

(5.2) 
(i) t € {1. 3. 5 • •.•• 59} • 

(ii) t € {i : i = 1 + 2a 10b26 c • a. b. c. non-negative 

integers}. 

THEOREM 5.3. There exist Williamson type matrices A. B. e. D 

or order m . which are 0.-) matrices satisfying (5. 1) for 

(i) m € {l. 3. 5. ... , 29. 37. 43} 

(5.3) (ii) m ~(p+l) . p " (mod 4). a prime power . 
(iii) m = {9

a . a O. 1. ... } 

(iv) m ~p (p+1) P " 1 (mod 4) a prime power . 
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