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Advances have been made in the development of drought-tolerant transgenic plants, includ-

ing cereals. Rice, one of the most important cereals, is considered to be a critical target

for improving drought tolerance, as present-day rice cultivation requires large quantities

of water and as drought-tolerant rice plants should be able to grow in small amounts of

water. Numerous transgenic rice plants showing enhanced drought tolerance have been

developed to date. Such genetically engineered plants have generally been developed

using genes encoding proteins that control drought regulatory networks. These proteins

include transcription factors, protein kinases, receptor-like kinases, enzymes related to

osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins.

Of the drought-tolerant transgenic rice plants described in this review, approximately one-

third show decreased plant height under non-stressed conditions or in response to abscisic

acid treatment. In cereal crops, plant height is a very important agronomic trait directly

affecting yield, although the improvement of lodging resistance should also be taken into

consideration. Understanding the regulatory mechanisms of plant growth reduction under

drought stress conditions holds promise for developing transgenic plants that produce

high yields under drought stress conditions. Plant growth rates are reduced more rapidly

than photosynthetic activity under drought conditions, implying that plants actively reduce

growth in response to drought stress. In this review, we summarize studies on molecular

regulatory networks involved in response to drought stress. In a separate section, we

highlight progress in the development of transgenic drought-tolerant rice plants, with

special attention paid to field trial investigations.
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INTRODUCTION

Drought is inevitable. For example, the U.S. suffered an agri-

cultural drought in 2012, in which a 12% decrease in corn

production was recorded compared with the previous year (USDA,

2014). Because such decreases in crop production cause enor-

mous economic disruption, demand for the development of

drought-tolerant crops is increasing.

Rice (Oryza sativa L.) is one of the world’s most important

cereals, with production comparable to that of wheat. In 2013,

rice and wheat were cultivated in 124 and 126 countries, respec-

tively, with corresponding worldwide production of 745 and 713

million tons (FAOSTAT). Compared with other cereal crops such

as maize and wheat, rice is sensitive to decreases in soil water con-

tent because rice cultivars have been historically grown under flood

irrigation conditions where the soil matric potential is zero. As a

consequence, large amounts of water are required for production

of rice compared with other crops. Production of 1 kg of rice seed

requires 3,000 to 5,000 L of water, with less than half that amount

needed for 1-kg seed production in other crops such as maize or

wheat (Singh et al., 2002). Improvement of water-use efficiency

during rice production should thus contribute significantly to

agricultural water conservation and deserves much attention. Rice

cultivars showing normal or even increased yield under drought

stress conditions are expected to be closely related to those with

high water-use efficiency.

Transgenic engineering approaches in plants have opened the

door to the development of new cultivars with improved drought

tolerance. Progress has been made in the generation of trans-

genic drought-tolerant rice plants. In this review, we begin with an

overview of abiotic stress signaling pathways coordinated by a wide

range of regulatory proteins, including key factors for the develop-

ment of transgenic drought-tolerant rice plants, and then describe

advances in the development of transgenic drought-tolerant rice.

We also discuss growth regulatory mechanisms operating under

water deficit stress conditions. Special attention is paid to trans-

genic rice plants showing improved drought tolerance under field

conditions.

REGULATORY MECHANISMS OF RESPONSES TO ABIOTIC

STRESSES, INCLUDING DROUGHT, IN Arabidopsis
Abiotic stresses, such as drought, high salinity, and low temper-

ature, induce the expression of a large number of genes. The
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induction of these genes under stress is regulated through complex

transcriptional networks (Yamaguchi-Shinozaki and Shinozaki,

2006). The key genes functioning in these transcriptional net-

works have been revealed by molecular studies and are important

candidates for the development of transgenic plants tolerant to

abiotic stress. Here, we highlight two important pathways of

transcriptional networks under abiotic stress conditions in Ara-

bidopsis: an abscisic acid (ABA)-dependent signaling pathway

and an ABA-independent regulatory network mediated by dehy-

dration responsive element-binding (DREB)-type transcription

factors (Figure 1A). Numerous excellent review articles on global

abiotic stress regulatory networks have previously been published

(Zhu, 2002; Bartels and Sunkar, 2005; Chinnusamy et al., 2007;

Hua, 2009; Thomashow, 2010; Qin et al., 2011; Deinlein et al.,

2014; Golldack et al., 2014; Yoshida et al., 2014).

THE ABA-DEPENDENT SIGNALING PATHWAY

In Arabidopsis, significant progress has been made in the elu-

cidation of molecular mechanisms of transcriptional networks

involved in abiotic stress response. The phytohormone ABA is

a major molecule facilitating signal transduction during drought

stress response. A key enzyme for ABA biosynthesis is 9-cis-

epoxycarotenoid dioxygenase (NCED; Iuchi et al., 2001). Among

five genes encoding NCED in Arabidopsis, expression of NCED3

has been found to increase under water deficit conditions (Iuchi

et al., 2001). A G-box recognition sequence located -2,248 bp

from the NCED3 transcriptional start site has recently been

shown to be important for this gene’s expression under water

deficit conditions (Behnam et al., 2013). It has also emerged

that ABA intercellular transport mechanisms are important for

ABA-dependent drought responses. Kuromori et al. (2014) have

demonstrated that specific cells in vascular tissue synthesize ABA

and transport the molecule to target cells. Bauer et al. (2013)

have proposed that ABA is autonomously synthesized in guard

cells.

Synthesized or transported ABA is perceived by a recep-

tor complex, which consists of PYR (PYRABACTIN RESIS-

TANCE)/PYL (PYR1-LIKE)/RCAR (REGULATORY COMPO-

NENT OF ABA RESPONSE), PP2C (protein phosphatase 2C), and

SnRK2 (sucrose non-fermenting 1-related protein kinase 2; Cutler

et al., 2010; Raghavendra et al., 2010; Umezawa et al., 2010; Weiner

et al., 2010). A suite of studies has clarified the molecular struc-

tural changes that occur during ABA perception and in the ABA

signaling cascade (Cutler et al., 2010; Raghavendra et al., 2010;

Umezawa et al., 2010; Weiner et al., 2010; Miyakawa et al., 2013). In

the absence of ABA, PP2Cs repress the ABA signaling pathway by

dephosphorylation-triggered inactivation of SnRK2s. In the pres-

ence of ABA, ABA-bound PYL/PYR/RCARs recognize and bind to

PP2Cs, thereby releasing SnRK2s from PP2C-dependent negative

regulation. The activated SnRKs phosphorylate downstream pro-

teins including AREB/ABF (ABA-responsive cis-element binding

protein/ABA-responsive cis-element binding factor) transcription

factors. The AREB/ABF transcription factors have a bZIP domain

and four conserved domains containing SnRK2 phosphoryla-

tion sites. The phosphorylated AREB/ABFs are activated and

bind to the ABA-responsive cis-element (ABRE; PyACGTGG/TC),

which is enriched in promoter regions of drought-inducible

genes. AREB/ABFs function as master transcriptional activators

regulating ABRE-dependent gene expression in ABA signaling

under drought stress conditions.

THE ABA-INDEPENDENT SIGNALING PATHWAY MEDIATED BY DREB2

AND DREB1/CBF

Evidence has revealed that ABA-independent signaling pathways

are also important in abiotic stress response. DREB2 proteins are

members of the AP2/ERF family of plant-specific transcription

factors. Among the eight DREB2 genes in Arabidopsis, DREB2A

and DREB2B are highly induced by drought, high salinity, and

heat stress, and function as transcriptional activators in the ABA-

independent pathway. A negative regulatory domain has been

identified in the DREB2A amino acid sequence and is reported

to be involved in DREB2A protein stability (Sakuma et al., 2006a;

Mizoi et al., 2012). Under non-stressed conditions, degradation

of DREB2A proteins occurs via ubiquitination of DREB2A by

the C3HC4 RING domain-containing proteins DRIP1 (DREB2A-

interacting protein1) and DRIP2 (Qin et al., 2008; Morimoto et al.,

2013). Kim et al. (2012a) have proposed that DREB2A expres-

sion is repressed by GRF7, a growth-regulating factor, to prevent

growth inhibition under non-stressed conditions. DREB2A also

plays a role in high temperature stress response and increased heat

stress tolerance (Sakuma et al., 2006b). The use of HsfA1 multiple

mutants has revealed that DREB2A expression under heat stress

conditions is regulated by HsfA1 (heat shock factor A1) proteins

(Yoshida et al., 2011).

DREB1/CBF transcription factors are another subfamily that

regulates expression of many abiotic stress-responsive genes.

DREB1/CBFs are key regulators in low-temperature stress-

responsive gene expression. Transgenic Arabidopsis plants over-

expressing DREB1/CBF genes have been found to improve

low-temperature stress tolerance as well as drought and salin-

ity stress tolerance (Kasuga et al., 1999; Yamaguchi-Shinozaki

and Shinozaki, 2006). Several studies have reported that expres-

sion of DREB1/CBF genes is directly or indirectly modulated

by regulatory factors such as HOS1 (Dong et al., 2006), ICE1

(Chinnusamy et al., 2003), SIZ1 (Miura et al., 2007), MYB15

(Agarwal et al., 2006), PIF7 (Kidokoro et al., 2009), CAMTA3

(Doherty et al., 2009), and a clock component (Dong et al.,

2011). Recent excellent reviews by Medina et al. (2011) and

Mizoi et al. (2012) are highly informative regarding DREB tran-

scription factor proteins and the related signaling cascade in

Arabidopsis.

MOLECULAR RESPONSES TO DROUGHT STRESS IN RICE

In rice, more than 5,000 genes are up-regulated and more

than 6,000 are down-regulated by drought stress (Maruyama

et al., 2014). A comparison between rice and Arabidopsis by

Maruyama et al. (2014) demonstrated that different metabolites

are accumulated under abiotic stress conditions. For exam-

ple, high expression levels of genes encoding isocitrate lyase

and malate synthase in the glyoxylate cycle along with glu-

cose accumulation under abiotic stress conditions were observed

in rice, but not in Arabidopsis. Additionally, reduced expres-

sion of the cytochrome P450 735A gene was correlated with

decreased cytokinin levels in rice, but not in Arabidopsis. Similar
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comprehensive analyses of drought stress-responsive genes, pro-

teins, and metabolites in rice have been performed as follows.

Wang et al. (2011a) identified 5,284 drought stress-responsive

genes. Lenka et al. (2011) compared drought-responsive genes

in indica rice genotypes having contrasting drought tolerances.

Up-regulation of the α-linolenic acid metabolic pathway was

observed in the drought-tolerant genotype. Degenkolbe et al.

(2009) also investigated comprehensive expression profiles of

drought-responsive genes in both drought-sensitive and drought-

tolerant rice genotypes. They found that senescence-related degra-

dation processes and expression of photosynthesis-related genes

were reduced in drought-tolerant cultivars compared with those

in drought-sensitive ones. Using the comprehensive expression

data, the authors also identified marker transcripts for selec-

tion of drought tolerance in a range of rice germplasm resources

through integrated analyses of gene expression and stress toler-

ance (Degenkolbe et al., 2013). The marker transcripts showed

a significant correlation between expression level and tolerance

under drought stress conditions. One of the markers was a gene

for cytosolic fructose-1,6-bisphosphatase, an enzyme that cat-

alyzes a highly regulated step in C-metabolism. Ray et al. (2011)

have reported that genes responsive to drought stress condi-

tions significantly overlap with those expressed during panicle

and seed development. Shu et al. (2011) performed integrated

analyses of two-dimensional electrophoresis – mass spectrometry

– mass spectrometry, cDNA microarray, and gas chromatogra-

phy – mass spectrometry data from rice seedlings after drought

stress treatment to, respectively, determine protein expression lev-

els, gene expression levels, and metabolite contents. The authors

speculated that energy conversion from carbohydrates and/or

fatty acids to amino acids increased under drought stress condi-

tions. Epigenetic research on drought response in rice has been

also reported. Wang et al. (2011b) examined drought-induced

genome-wide DNA methylation and its association with drought

tolerance. Zong et al. (2013) investigated the genome-wide dis-

tribution pattern of histone H3 lysine 4 tri-methylation and

found that methylation levels were positively correlated with

expression levels of some of the evaluated drought-responsive

genes.

While these large data sets have provided much information

on drought responses in rice, studies on associated signaling cas-

cades have been limited. Evidence indicates that O. sativa NCED

transcripts are up-regulated along with ABA accumulation under

drought stress conditions (Maruyama et al., 2014), and that a core

ABRE sequence in the promoter regions of drought-inducible

genes is enriched in rice, Arabidopsis and soybean (Maruyama

et al., 2012). These results suggest that the ABA-dependent sig-

naling pathway in rice is activated by drought stress, similar

to that of Arabidopsis and other plant species. He et al. (2014)

determined the crystal structure of the ABA–OsPYL2–OsPP2C06

complex and suggested that the complex has the potential to

be an ABA receptor in rice. Kim et al. (2012b) identified a rice

ABA signaling unit composed of OsPYL/RCAR5, OsPP2C30,

SAPK2, and OREB1 for ABA-dependent gene regulation. They

have reported that OsPYL/RCAR5 functions as a positive regula-

tor of abiotic stress-responsive gene expression and that transgenic

rice plants overexpressing OsPYL/RCAR5 have improved drought

tolerance. The OREB1 bZIP-type transcription factor, which is

ortholog to Arabidopsis AREB, has been shown to regulate the

ABA-dependent pathway in rice (Chae et al., 2007; Hong et al.,

2011).

Experimental evidence has demonstrated that rice DREB

transcription factors also function as important regulators in

ABA-independent drought responses. The rice genome con-

tains five DREB2-type genes, two of which—OsDREB2A and

OsDREB2B—are up-regulated by abiotic stress (Matsukura et al.,

2010). Transgenic rice plants overexpressing these two genes have

been found to have increased drought tolerance (Chen et al., 2008;

Cui et al., 2011). OsDREB2B generates two forms of the tran-

scripts, OsDREB2B1 and OsDREB2B2. OsDREB2B1 encodes a

non-functional protein (Short ORF in Figure 1B). OsDREB2B2

contains a coding region with AP2/ERF DNA binding domain

(Long ORF in Figure 1B). OsDREB2B2 transcripts were accumu-

lated by heat, cold, drought, and high salinity stress treatments,

while OsDREB2B1 transcripts were not changed except for cold

stress. These results suggest that OsDREB2B2 plays an important

role in the abiotic stress response of rice through the alternative

splicing regulatory system (Matsukura et al., 2010). Expression of

OsDREB1A and OsDREB1B is up-regulated by low-temperature

stress (Dubouzet et al., 2003), while expression of OsDREB1F and

OsDREB1G is increased by water deficit stress (Chen et al., 2008;

Wang et al., 2008). In contrast to other DREB1-type genes in rice,

OsDREB1F likely participates as a regulatory factor in the ABA-

dependent pathway. Transgenic rice plants overexpressing these

genes also exhibit increased drought tolerance. It has been reported

that OsICE1, OsICE2, OsSIZ1, and OsSIZ2 are involved in the

cold stress signaling pathway that regulates OsDREB1B expression

(Park et al., 2010; Nakamura et al., 2011).

TRANSGENIC RICE PLANTS THAT ENHANCE DROUGHT

STRESS TOLERANCE

Genetic engineering has opened the door to the development of

new cultivars with improved drought stress tolerance. Reports

on transgenic rice plants that show increased drought stress tol-

erance are accumulating. A selected list of transgenic rice plants,

which includes information on transgenes and promoters used for

the transformations as well as plant stress tolerance and growth

performance, is given in Table 1.

bZIP-TYPE TRANSCRIPTION FACTORS

OsbZIP23, which is closely related to the Arabidopsis homologs

ABF/AREB, is a major regulator of ABA-dependent pathways

(Xiang et al., 2008). In the study of Xiang et al. (2008), OsbZIP23-

overexpressing rice plants showed increased sensitivity to ABA

at both germination and post-germination stages. The trans-

genic plants also exhibited enhanced tolerance to drought and

salinity stresses. A transactivation assay indicated that OsbZIP23

functions as a transcriptional activator, with two regions of the

OsbZIP23 amino acid sequence—at N- (1–59) and C- (210–240)

termini—important for transcriptional activation. Microarray

analysis detected hundreds of downstream genes of OsbZIP23

with diverse functions. These downstream genes included genes

encoding stress-related transcription factors, protein kinases,

dehydrins, and LEA proteins.
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FIGURE 1 | Abiotic stress signaling networks mediated by AREB, DREB1, and DREB2-type transcription factors (A) in Arabidopsis and (B) in rice.

OsbZIP46 is a member of the subfamily that includes

OsbZIP23. A transactivation assay conducted by Tang et al. (2012)

revealed that an internal amino acid sequence (residues 122–219)

of the OsbZIP46 protein had a negative affected on transactivation

activity. A constitutively active form of OsbZIP46 (OsbZIP46CA1)

was developed by deletion of this internal region. Transgenic rice

plants overexpressing OsbZIP46CA1 showed increased drought

tolerance. Microarray analysis was then used to detect up-

or down-regulated genes in the OsbZIP46CA1-overexpressing

transgenic rice plants. These differentially regulated genes were

largely different from the OsbZIP23 downstream genes, suggesting

that OsbZIP46CA1 regulates a different set of genes than does

OsbZIP23. Although plant height under non-stressed conditions

did not appear to differ between overexpressors and control

plants, exogenous ABA application drastically decreased plant

height of OsbZIP46CA1 overexpressors. Similar growth inhibi-

tion was observed in OsbZIP23 overexpressors. These results

suggest that the ABA-dependent signaling pathway mediated by

OsbZIP23 or OsbZIP46 is closely related to growth retardation

mechanisms under drought stress conditions. This relationship

implies that growth of transgenic rice plants overexpressing

OsbZIP23 or OsbZIP46CA1 is decreased under drought stress con-

ditions, even though transgenic plants exhibit increased stress

tolerance.
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Arabidopsis ABF3 belongs to the same bZIP subfamily as

OsbZIP46 and OsbZIP23. Transgenic Arabidopsis plants over-

expressing ABF3 show improved drought tolerance (Kang et al.,

2002). Under non-stressed conditions, overexpressors are mor-

phologically identical to control plants. Transgenic rice plants

overexpressing ABF3 have also been found to exhibit improved

drought tolerance without growth inhibition (Oh et al., 2005).

OsbZIP16 and OsbZIP71 are classified into group IV of the

rice bZIP subfamily, which is different than the Arabidopsis

ABF/AREB subfamily (Nijhawan et al., 2008). Transgenic rice

plants overexpressing OsbZIP16 show improved drought tol-

erance and increased growth inhibition under exogenous ABA

treatment (Chen et al., 2012), while OsbZIP71-overexpressing

plants under the 35S promoter or a stress-inducible RD29A pro-

moter exhibit improved drought, salt, and osmotic stress tolerance

(Liu et al., 2014). Overexpression of these genes seems not to

change plant architecture under non-stressed conditions.

These reports suggest that the bZIP-type transcription factors

involved in the ABA signaling pathway are potentially useful for

transgenic engineering to develop rice cultivars with enhanced

drought tolerance. This notion is supported by the fact that ABA

content in rice is increased by drought stress (Maruyama et al.,

2014) and the finding that the ABRE cis-element is enriched in the

promoter regions of drought-responsive genes in rice (Maruyama

et al., 2012).

AP2/ERF-TYPE TRANSCRIPTION FACTORS

As mentioned above, the Arabidopsis DREB1A gene is a key

regulator of abiotic stress response. At least three independent

research groups have developed DREB1A-overexpressing trans-

genic rice plants. Oh et al. (2005) reported that overexpression of

DREB1A driven by the ubiquitin promoter in rice plants enhances

tolerance to drought and salinity stresses without growth retarda-

tion under non-stressed conditions. They observed up-regulated

expression of several genes, including those responsive to stress,

in transgenic rice plants. Datta et al. (2012) developed transgenic

rice plants expressing DREB1A under the control of the stress-

inducible RD29 promoter. The yield of the transgenic rice plants

under drought stress conditions was increased compared with

that of non-transgenic plants. Ito et al. (2006) also reported that

transgenic rice plants overexpressing DREB1A with the ubiqui-

tin promoter showed enhanced tolerance to drought, cold, and

salinity stresses. Elevated contents of osmoprotectants such as

free proline and soluble sugars were also observed. A microar-

ray analysis detected up-regulated genes in the transgenic rice

plants; among the uncovered genes were genes for α-amylase and

dehydrins, which were different from those identified by Oh et al.

(2005). Unlike Oh et al. (2005), Ito et al. (2006) found that shoot

growth retardation occurred in the transgenic plants under non-

stressed conditions. Ito et al. (2006) also developed transgenic

rice plants overexpressing DREB1A homologs, Arabidopsis par-

alogs DREB1B and DREB1C and rice orthologs OsDREB1A and

OsDREB1B under the control of the ubiquitin promoter. These

overexpressors showed enhanced tolerance to drought, salinity,

and low temperature and displayed reduced growth under non-

stressed conditions. Ishizaki et al. (2012) introduced Arabidopsis

DREB1C into the upland rice cultivar NERICA1, an interspecific

hybrid between stress-resistant O. glaberrima Steud. and high-

yield O. sativa. The transgenic rice plants showed improved

survival under drought stress conditions. HvCBF4, a member

of the Arabidopsis DREB1A subfamily, has been isolated from

barley as a low-temperature responsive gene. Overexpression of

HvCBF4 was found to enhance tolerance to drought, salinity,

and low temperature while shoot growth was unaffected (Oh

et al., 2007). ZmCBF3, a maize AP2/ERF-type transcription fac-

tor, is also a member of the Arabidopsis DREB1A subfamily.

In a study by Xu et al. (2011), overexpression of ZmCBF3 in

transgenic rice plants enhanced tolerance to drought, salinity,

and low-temperature stresses. Yields under control conditions

were unchanged in the overexpressors compared with those in

non-transgenic plants.

As mentioned above, the physiological role and molecular func-

tion of Arabidopsis DREB2A in abiotic stress responses have been

vigorously studied (Mizoi et al., 2012). Arabidopsis DREB2A is

widely recognized as a master regulator of both drought and heat

stress responses and has a high potential to enhance drought

and heat stress tolerance (Mizoi et al., 2012). The DREB2 regu-

latory mechanism seems to be well conserved in various plant

species. In rice, there are five DREB2 family genes: OsDREB2A,

OsDREB2B, OsDREB2C, OsDREB2E, and OsABI4. Transgenic Ara-

bidopsis plants overexpressing OsDREB2B are reported to show

increased expression of DREB2A target genes and enhanced tol-

erance to drought and heat stresses (Matsukura et al., 2010).

Transgenic rice plants overexpressing OsDREB2B have also been

found to increase drought tolerance (Chen et al., 2008). Overex-

pression of OsDREB2A under the control of an ABA-responsive

promoter in rice plants increased contents of soluble sugars and

proline at the seedling stage, resulting in increases in osmotic and

salinity stress tolerance (Cui et al., 2011). The transgenic rice plants

exhibited increased plant height and effective tiller numbers at the

reproductive stage following drought treatment.

In addition to DREB1A and DREB2 subfamily members, sev-

eral AP2/ERF-type and AP2/ERF-like transcription factors have

been used to develop transgenic rice plants with enhanced abiotic

stress tolerance. The Arabidopsis HARDY gene is an AP2/ERF-

like transcription factor that enhances drought and salinity stress

tolerance (Karaba et al., 2007). Transgenic rice plants overex-

pressing HARDY show enhanced photosynthetic assimilation

and reduced transpiration, leading to increased shoot and root

biomass. OsDERF1 is a protein that directly interacts with the

GCC box in the promoter regions of OsERF3 and OsAP2-39

(Wan et al., 2011). Knockdown of OsDERF1 increases ethylene

biosynthesis and drought tolerance, suggesting that OsDERF1

modulates drought response via ethylene production. Trans-

genic rice plants overexpressing OsERF3 show decreased drought

tolerance (Zhang et al., 2013). In contrast, Joo et al. (2013)

have reported that overexpression of OsERF3/OsERF4a decreases

expression levels of a repressor involved in defense responses, lead-

ing to increased drought tolerance and seedling shoot growth.

Overexpression of a tomato ERF gene, TSRF1, was found to

improve osmotic and drought tolerance without growth retar-

dation in rice seedlings. The improvement was attributed to

corresponding increases in the expression of genes encoding

MYC and MYB-type transcription factors and genes related to
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ABA synthesis, proline synthesis, and photosynthesis (Quan et al.,

2010). Another tomato ERF gene, JERF3, has also been observed

to increase drought tolerance when overexpressed in transgenic

rice plants (Zhang et al., 2010). The studied transgenic rice plants

showed higher contents of soluble sugars and proline compared

with those of non-transgenic plants. Transgenic rice plants over-

expressing AP37, a rice AP2/ERF transcription factor, showed

enhanced tolerance to drought, cold and high salinity stresses

(Oh et al., 2009). Microarray analysis identified AP37 down-

stream genes, which included genes for PHD zinc finger and iron

transporter.

Among the AP2/ERF transcription factor genes described here,

DREB1/CBF genes have been widely used for the development of

drought-tolerant transgenic crops. These developed crops include

chrysanthemum (Hong et al., 2006), peanut (Bhatnagar-Mathur

et al., 2013), soybean (Polizel et al., 2011), tobacco (Kasuga et al.,

2004), tomato (Hsieh et al., 2002), tall fescue (Zhao et al., 2007),

and wheat (Pellegrineschi et al., 2004).

NAC-TYPE TRANSCRIPTION FACTORS

NAC family proteins function in a wide variety of developmen-

tal processes and abiotic stress responses (Nakashima et al., 2012;

Nuruzzaman et al., 2013). Constitutive overexpression of OsNAC6

in rice plants was observed to increase tolerance to drought and

salinity stresses (Nakashima et al., 2007). The transgenic rice plants

showed decreased shoot growth under non-stressed conditions.

When a stress-inducible promoter was used for the transgene

expression, the transgenic plants showed normal growth under

non-stressed conditions and improved salinity stress tolerance. In

the same study, microarray analysis revealed OsNAC6 downstream

genes including stress-related genes. The transgenic rice plants

constitutively overexpressing OsNAC6 also showed enhanced tol-

erance to blast disease, suggesting that OsNAC6 can act as a

transcriptional regulator in both biotic and abiotic stress responses

in rice.

In a study by Hu et al. (2006), SNAC1 was demonstrated to be

predominantly expressed in guard cells under drought conditions.

Transgenic rice plants overexpressing SNAC1 showed reduced

water loss due to increased stomatal closure and enhanced expres-

sion of a large number of stress-related genes. As mentioned in the

following section, the transgenic rice plants exhibited enhanced

drought tolerance during field trials.

Transgenic rice plants overexpressing OsNAC10 under the con-

trol of a root-specific promoter showed thicker roots and higher

grain yields than those of control plants under drought stress

conditions (Jeong et al., 2010). An accompanying microarray

analysis identified various downstream genes, including P450, Zn-

finger, HAK5, 2OG-Fe(II), NCED, NAC, and KUP3 (Jeong et al.,

2010). Similar to OsNAC10 overexpressors, transgenic rice plants

overexpressing OsNAC5 (Jeong et al., 2013) and OsNAC9/SNAC1

(Redillas et al., 2012) under root-specific promoter control have

been shown to have thicker roots and higher grain yields than

control plants under drought stress conditions. The microarray

analysis of Jeong et al. (2013) identified 62 downstream genes of

OsNAC5, including NCED, calcium-transporting ATPase, germin-

like protein, and meristem protein 5. Only 17 of these downstream

genes were up-regulated in OsNAC10-overexpressing transgenic

rice plants (Jeong et al., 2013). With respect to OsNAC9/SNAC1

overexpressors, identified downstream genes included NCED and

calcium-transporting ATPase (Redillas et al., 2012). In addition

to stress-responsive genes, OsNAC family downstream genes

included genes involved in cell growth and development, sug-

gesting that the OsNAC family is involved in regulatory mech-

anisms of stress responses and developmental processes. Song

et al. (2011) observed that accumulations of proline and solu-

ble sugars in OsNAC5 overexpressors were higher than those of

non-transgenic plants. Takasaki et al. (2010) have reported that

OsNAC5 functions as a transcriptional activator and up-regulates

expression of some stress-responsive genes in OsNAC5 overex-

pressors. These authors also detected dimerization of OsNAC5

with OsNAC5, OsNAC5 with OsNAC6, and OsNAC5 with

SNAC1.

OTHER TRANSCRIPTION FACTORS

Other transcription factors have also been applied in the suc-

cessful development of transgenic rice plants with enhanced

drought tolerance. Some of these plants have shown increased ABA

sensitivity. Arabidopsis EDT1/HDG11 encodes a homeodomain-

leucine zipper transcription factor, which is likely involved in

reproductive development (Yu et al., 2008). Overexpression of

EDT1/HDG11 in rice plants has been found to enhance root

development, reduce stomatal density, and increase water-use

efficiency (Yu et al., 2013). In the cited study, levels of ABA, pro-

line and soluble sugars and activities of reactive oxygen species

(ROS)-scavenging enzymes under drought stress conditions were

higher in transgenic rice plants than in non-transgenic ones.

Global gene expression analysis showed that stress-responsive

genes, including SNAC1, SNAC2, OsbZIP23, and OsNCED3,

were up-regulated in the transgenic rice plants. Under drought

stress conditions, the transgenic rice plants exhibited higher

grain yields compared with non-transgenic plants. Zhao et al.

(2014) isolated a maize homeodomain-leucine zipper transcrip-

tion factor gene, Zmhdz10, and generated transgenic rice plants

overexpressing this gene. Overexpression of Zmhdz10 enhanced

tolerance to drought and salinity stresses and increased growth

inhibition under exogenous ABA treatments. In another study, a

rice R2R3-type MYB gene, OsMYB2, was overexpressed in rice

plants (Yang et al., 2012). The transgenic overexpressors showed

enhanced tolerance to drought, salinity and low-temperature

stresses, and normal growth rates under non-stressed conditions.

Exogenous ABA treatment resulted in greater growth inhibition

of shoots of the overexpressors than those of non-transgenic

plants.

Overexpression of OsWRKY30 in rice plants has been found

to enhance drought tolerance (Shen et al., 2012). In con-

trast, no improved drought tolerance due to overexpression

of OsWRKY30AA, where all serine residues followed by pro-

line are replaced by alanine residues in the encoded pro-

tein, has been observed. The observed interaction of these

OsWRKY30 proteins with various MAP kinase proteins suggests

that OsWRKY30 functions downstream of the MAPK cascades

(Shen et al., 2012). A few studies have reported that overex-

pression of genes encoding C2H2-type zinc finger transcription

factors improves drought tolerance in transgenic rice plants. For
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example, ZFP182-overexpressing transgenic rice plants exhibit

increased expression levels of OsDREB1A, OsDREB1B, OsP5CS,

and OsLEA3 and show enhanced tolerance to drought, salinity

and low-temperature stresses (Huang et al., 2012), suggesting that

ZFP182 may function in the upstream pathway of OsDREB1.

Overexpression of ZFP245 in rice plants has been found to increase

tolerance to drought and low-temperature stresses (Huang et al.,

2009). Transgenic rice plants display elevated proline levels and

ROS-scavenging enzyme activities. Overexpressing ZFP252 in

rice plants leads to enhanced tolerance to drought and salinity

stresses and increased proline and soluble sugar contents (Xu

et al., 2008). Increased drought tolerance has been observed in

transgenic rice plants overexpressing OsbHLH148, a gene encod-

ing MeJA-responsive transcription factor (Seo et al., 2011). In the

cited study, expression of OsDREB1 and OsJAZ family genes was

up-regulated in the overexpressors, and OsJAZ and OsCOI1 pro-

teins were demonstrated to interact with one another. These results

suggest that OsbHLH148 acts on the JA signaling cascade with

OsJAZ1 and OsCOI1 and functions as an upstream regulator of

OsDREB1.

PROTEIN KINASES

Transgenic rice plants overexpressing OsCPK4, a calcium-

dependent protein kinase, showed enhanced tolerance to drought

and salinity stresses in a study by Campo et al. (2014). In the

overexpressors, genes related to lipid metabolism, such as those

encoding proteins with lipid binding activities, lipid transfer pro-

teins, and lipases, were up-regulated. Oxidative stress-responsive

genes, including peroxidase, thioredoxin, GST, and laccase genes,

were also up-regulated in the transgenic plants. These findings

suggest that OsCPK4 is involved in the regulation of cellular mem-

brane protection against oxidative damage (Campo et al., 2014).

Ho et al. (2013) isolated OsCDPK1 from sucrose-starved rice sus-

pension cells and developed OsCDPK1-overexpressing transgenic

rice plants. The transgenic rice plants displayed improved drought

tolerance and activated (Ho et al., 2013) expression of a gene for

a 14-3-3 protein, GF14c. Transgenic rice plants overexpressing

GF14c also showed improved drought tolerance, suggesting that

enhanced drought tolerance due to OsCDPK1 may be mediated

by GF14c. Campo et al. (2012) have reported that transgenic rice

plants overexpressing the gene encoding ZmGF14-6, a maize 14-

3-3 protein, show enhanced drought tolerance. In their study,

expression of stress-responsive genes, including Rab21 and Dip1,

was higher under drought stress conditions in transgenic rice

plants than in non-transgenic ones, with transgenic plants also

exhibiting a higher susceptibility to infection by fungal pathogens.

These observations indicate that ZmGF14-6 functions as a positive

regulator in abiotic stress response, but as a negative regulator in

biotic stress response. Saijo et al. (2000) discovered that transgenic

rice plants overexpressing OsCDPK7 showed elevated tolerance to

drought, salinity, and low-temperature stresses. Overexpression

of OsCDPK7 increased the expression of several stress-responsive

genes, suggesting that OsCDPK7 is a positive regulator of abi-

otic stress response. Finally, transgenic rice plants overexpressing

OsCIPK12 have been found to exhibit enhanced drought toler-

ance, with increased accumulation of proline and soluble sugars

(Xiang et al., 2007).

RECEPTOR-LIKE KINASES

OsSIK1 is a putative receptor-like kinase (RLK) with extracel-

lular leucine-rich repeats (Ouyang et al., 2010). In the study by

Ouyang et al. (2010), transgenic rice plants overexpressing OsSIK1

showed enhanced tolerance to drought and salinity stresses.

Leaves of the transgenic plants exhibited elevated peroxidase,

superoxide dismutase and catalase activities and reduced accumu-

lation of H2O2 compared with those of non-transgenic plants.

Reduced stomatal density was also observed in the transgenic

plants, suggesting that OsSIK1 may act as a negative regula-

tor for stomatal development. Another rice RLK, OsSIK2, has

been reported by Chen et al. (2013). In their study, OsSIK2

was predicted to be an S-domain RLK. Transgenic rice plants

overexpressing OsSIK2 showed enhanced tolerance to drought

and salinity stresses, early leaf development, and a delayed

dark-induced senescence phenotype. Their results suggest that

OsSIK2 is involved in abiotic stress response and senescence

processes.

LEA PROTEINS

Late embryogenesis abundant (LEA) proteins are important stress-

inducible proteins involved in cellular protection against stresses

(Hanin et al., 2011). Their protective roles in cells include cryopro-

tective (Bravo et al., 2003) and osmoprotective (Swire-Clark and

Marcotte, 1999) behavior to stabilize proteins (Grelet et al., 2005),

membranes (Koag et al., 2003), and glassy states (Wolkers et al.,

2001). For example, recombinant pea LEA proteins have been

shown to protect two mitochondrial matrix enzymes, fumarase,

and rhodanese, during drying (Grelet et al., 2005). After transgeni-

cally introducing several LEA proteins into rice plants, Hong et al.

(1988) investigated stress tolerance in the transgenic rice plants. A

barley group-3 LEA protein, HVA1, was specifically accumulated

in aleurone layers and embryos at the seed maturation stage. In

another study, HVA1-overexpressing transgenic rice plants were

found to have increased tolerance to drought and salinity stresses,

with the increased stress tolerance correlated with HVA1 protein

accumulation (Xu et al., 1996). Overexpression of OsLEA3-1 or

OsLEA3-2 in rice plants leads to enhanced drought tolerance (Xiao

et al., 2007; Duan and Cai, 2012). Overexpression of OsLEA3-2 in

yeast improved growth under salinity or osmotic stress conditions,

with the OsLEA3-2 protein inhibiting protein aggregation in an in

vitro assay (Duan and Cai, 2012).

PHYTOHORMONES

OsPYL/RCAR5 has been shown to be one of the ABA-signaling

components in rice (Kim et al., 2012b). A protein-protein inter-

action assay and a transient gene expression assay performed

by these authors identified an ABA-signaling unit composed

of OsPYL/RCAR5, OsPP2C30, SAPK2, and OREB1. Kim et al.

(2014) found that overexpression of OsPYL/RCAR5 induced

expression of numerous stress-responsive genes in rice and

caused enhanced tolerance to drought and salinity stresses; how-

ever, field-grown transgenic rice plants had shorter heights

and lower yields than their non-transgenic counterparts. DSM2

encodes a chloroplast protein, a putative β-carotene hydrox-

ylase involved in biosynthesis of the ABA precursor zeaxan-

thin (Du et al., 2010). Overexpression of DSM2 in rice plants
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enhanced resistance to drought and oxidative stresses and

increased xanthophyll levels and non-photochemical quench-

ing.

Zhang et al. (2012) identified and investigated OsPIN3t, a

putative auxin efflux carrier protein in rice. GFP proteins fused

to OsPIN3t were expressed in the plasma membrane, while

GUS activity in OsPIN3t promoter-driven GUS transgenic plants

was detected in vascular tissues. These subcellular expressions

and tissue-specific localization were changed by treatment with

auxin transport inhibitors. Transgenic rice plants overexpress-

ing OsPIN3t exhibited improved drought tolerance. These results

suggest that OsPIN3t regulates polar auxin transport, thereby

enhancing drought tolerance.

Isopentenyltransferase (IPT) is an enzyme that mediates

cytokinin synthesis. Transgenic tobacco plants expressing the IPT

gene under the control of a senescence-associated receptor kinase

(SAPK), a maturation- and stress-inducible promoter, were devel-

oped by Rivero et al. (2007, 2009). The transgenic tobacco plants

showed a drastic increase in plant productivity under drought

stress conditions. The observed increased plant productivity was

attributed to suppression of drought-induced leaf senescence

(Rivero et al., 2007) and involvement in photorespiration (Rivero

et al., 2009). Similarly, transgenic rice plants expressing the IPT

gene under the control of the SAPK promoter were generated

(Peleg et al., 2011). The developed transgenic rice plants displayed

expression changes in genes involved in hormone homeostasis and

resource mobilization, a delay in stress responses, and improve-

ment of drought tolerance. In a study by Sun et al. (2014), two

rice authentic histidine phosphotransfer proteins (OsAHP1 and

OsAHP2) were knocked down simultaneously via RNA inter-

ference. The transgenic rice plants showed enhanced tolerance

to osmotic stress and hyposensitivity to exogenous cytokinin,

suggesting that OsAHPs function as positive regulators of the

cytokinin signaling pathway in response to osmotic stress.

OSMOPROTECTANTS

Ornithine δ-aminotransferase is involved in proline and argi-

nine metabolism. OsOAT, a rice gene encoding ornithine δ-

aminotransferase, has been identified as a downstream gene of

SNAC2 (Hu et al., 2008). You et al. (2012) demonstrated that

SNAC2 can bind to the OsOAT promoter. In their study, over-

expression of the OsOAT gene in rice plants enhanced δ-OAT

activity and increased proline accumulation, glutachione content,

and ROS-scavenging enzyme activity. The OsOAT-overexpressing

transgenic rice plants displayed enhanced oxidative, drought, and

osmotic stress tolerance. While seedling shoot lengths were sim-

ilar between transgenic and non-transgenic plants under normal

conditions, reduced inhibition of shoot growth was observed in

transgenic plants under osmotic stress conditions compared with

non-transgenic plants.

OsTPS1, a gene encoding a rice trehalose-6-phosphate synthase,

acts as a key enzyme for trehalose biosynthesis. Overexpression of

the gene in rice plants improved tolerance to drought, salinity, and

low-temperature stresses in an investigation by Li et al. (2011).

In the transgenic rice plants, trehalose and proline contents were

increased and some stress-responsive genes, includingWSI18, were

up-regulated relative to those in non-transgenic plants.

OTHER GENES

Other genes encoding proteins with various characteristics have

also been shown to enhance drought tolerance. Some of these

proteins are stress responsive. The effect of overexpression of

O. sativa Drought-Induced LTP (OsDIL), a lipid transfer pro-

tein gene, on drought stress tolerance in rice was investigated

by Guo et al. (2013). The transgenic plants showed increased

tolerance to drought stress at both vegetative and reproductive

stages. Less severe tapetal defects and fewer defective anther

sacs were observed in the transgenic plants. These results

were consistent with data indicating that the OsDIL gene is

expressed in anthers. Overexpression of the heat shock pro-

tein gene OsHsp17.0, or OsHsp23.7, has been found to improve

tolerance to drought and salinity stresses in rice (Zou et al.,

2012). In that study, the transgenic rice plants had lower

relative electrical conductivities and malondialdehyde contents

and higher proline contents compared with non-transgenic rice

plants.

Modulation of ROS accumulation is also important for the

enhancement of drought tolerance. Transgenic rice plants over-

expressing the gene encoding manganese superoxide dismutase,

an antioxidant enzyme, have improved osmotic stress tolerance

(Wang et al., 2005). The cited authors found that electrolyte leak-

age in the transgenic plants was lower than in non-transgenic

plants under osmotic stress conditions, and that photosyn-

thetic rate was less affected by osmotic stress in the transgenic

plants. The enzyme OsMIOX, a rice myo-inositol oxygenase,

catalyzes the oxidation of myo-inositol to glucuronic acid. In

a study by Duan et al. (2012), the OsMIOX gene was overex-

pressed in rice plants and caused increases in ROS-scavenging

enzyme activities and proline content and enhancement of growth

performance under osmotic stress conditions. Ski-interacting

protein (SKIP), identified by yeast two-hybrid screening using

the avian retrovirus oncogene v-Ski as bait (Dahl et al., 1998),

has been well characterized as a transcriptional coregulator and

a spliceosome component in humans (Figueroa and Hayman,

2004). Transgenic rice plants overexpressing OsSKIPa have shown

improved drought tolerance and increased ROS-scavenging abil-

ity. Higher transcript levels of SNAC1, OsCBF2, OsPP2C, and

OsRD22 have been found in OsSKIPa-transformed rice plants

compared with their non-transgenic counterparts (Hou et al.,

2009).

Protein turnover via ubiquitin-dependent protein degradation

and ribosomal protein synthesis has been shown to be involved

in abiotic stress response regulatory networks. OsSDIR1 (O.

sativa SALT-AND DROUGHT-INDUCED RING FINGER 1) is

a functional RING-finger-containing E3 ligase, with the RING

finger region required for its activity (Gao et al., 2011). Trans-

genic rice plants overexpressing OsSDIR1 show enhanced drought

tolerance and stomatal closure (Gao et al., 2011), while those

overexpressing OsRDCP1, a rice RING domain-containing pro-

tein 1 gene, have improved drought tolerance (Bae et al., 2011).

Molecular mechanisms underlying the improved drought tol-

erance of these transgenic rice plants remain largely unclear.

Jiang et al. (2012) observed that transgenic rice plants overex-

pressing OSRIP18, a rice ribosome-inactivating protein 18 gene,

exhibited improved drought and salinity tolerance. Microarray
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analysis detected differentially expressed genes, most of which

were not regulated by abiotic stresses, in the transgenic rice

plants.

RNA turnover may also be involved in abiotic stress-response

regulatory networks. OsSUV3 encodes an NTP-dependent

RNA/DNA helicase (Tuteja et al., 2013). Transgenic rice plants

overexpressing OsSUV3 show reduced lipid peroxidation, elec-

trolyte leakage, and H2O2 production, and enhanced antioxidant

enzyme activities, thereby leading to enhanced tolerance to

osmotic and salinity stresses (Tuteja et al., 2013). GRP encodes

a glycine-rich RNA-binding protein. In a study by Yang et al.

(2014), transgenic rice plants overexpressing Arabidopsis GRP2

or GRP7 displayed increased grain yield under drought con-

ditions. The increased grain yield was caused by improved

grain filling. Several stress-responsive genes, including OSE2,

Dip1, and PBZ1, were up-regulated in the transgenic rice

plants.

The application of genes encoding metabolic enzymes is also

thought to be useful for the enhancement of drought tolerance.

Squalene synthase (SQS) is one of several farnesyl-diphosphate

farnesyltransferase proteins that catalyze the first reaction of

the branch of the isoprenoid metabolic pathway involved in

sterol biosynthesis (Tansley and Shechter, 2001). Disruption

of SQS gene function by RNA interference has been found

to improve drought tolerance in rice plants, with the trans-

genic plants showing increased root length, an elevated number

of lateral roots and reduced stomatal conductance (Manavalan

et al., 2012). Polyamines, such as putrescine, spermidine, and

spermine, are compounds implicated in plant embryo devel-

opment, stem elongation and stress response (Takahashi and

Kakehi, 2010). Polyamine levels can be modulated by the regu-

lation of metabolic enzymes, including arginine decarboxylase.

Because rice plants overexpressing Datura stramonium argi-

nine decarboxylase show improved drought tolerance along with

increased putrescine content, Capell et al. (2004) have pro-

posed a regulatory mechanism linking putrescine metabolism

to drought tolerance. In contrast to putrescine, spermidine,

and spermine are not involved in drought stress tolerance, as

increased spermidine and spermine content has not been observed

to enhance drought tolerance in rice plants (Peremarti et al.,

2009).

Transgenes originating from non-plant species have also

been used to enhance stress tolerance. Harpin proteins are

secreted by the type-III protein secretion system of Gram-

negative plant pathogenic bacteria (Wei et al., 1992). Harpin

proteins trigger the hypersensitive response, a well-characterized

defense response against various bacteria, fungi, nematodes,

and viruses. Transgenic rice plants overexpressing the harpin-

encoding gene hrf1 showed improved drought tolerance along

with increased stomatal clousure and ABA, proline, and sol-

uble sugar contents (Zhang et al., 2011). Increased expres-

sion of stress-responsive genes including OsLEA3-1 was also

observed in the transgenic rice plants. As reviewed by

Sharma et al. (2013), the evidence that pathogenic-related

genes can also improve abiotic stress tolerance suggests an

overlapping regulatory cascade between biotic and abiotic

stresses.

CHANGES IN SHOOT GROWTH OF DROUGHT-TOLERANT

TRANSGENIC RICE PLANTS

Among the transgenic rice plants described in this review, 37%

have been reported to display growth retardation under nor-

mal conditions or exogenous ABA application (Table 1). Such

decreased shoot growth performance is also observed in non-

transgenic plants subjected to drought stress conditions. Shoot

growth retardation due to low soil water content is one of the

earliest stress responses in plants, occurring even earlier than

decreases in leaf water potential (Michelena and Boyer, 1982; Par-

ent et al., 2010). This phenomenon suggests that plants actively

decrease shoot growth instead of it being a consequence of

decreased cell turgor (Claeys and Inzé, 2013). Growth regula-

tion in proportion to soil water content is thus an important

plant morphological response to water deficit. Molecular mech-

anisms underlying growth regulatory responses to water deficit

have been investigated in Arabidopsis. DELLA proteins, which

are negative regulators of gibberellic acid (GA) signaling, have

been shown to integrate growth and abiotic stress tolerance in

Arabidopsis (Achard et al., 2006). Skirycz et al. (2010) performed

transcript profiling of expanding Arabidopsis leaves subjected to

mild osmotic stress. Their results indicated that an ethylene-

and gibberellin-dependent regulatory circuit modulated growth

under the mild osmotic stress conditions, with no involve-

ment from ABA. Rapid accumulation of 1-aminocyclopropane-

1-carboxylic acid (1-ACC), an ethylene precursor, was observed

in the expanding leaf tissue under the mild osmotic stress con-

ditions of their study. This accumulation has been proposed to

activate a cascade of the growth regulatory circuit in Arabidop-

sis as follows (Claeys and Inzé, 2013). After activation by 1-ACC

accumulation through a MAP kinase cascade, ethylene respon-

sive factor 6 (ERF6) increases expression of GA2OX6, which

encodes an enzyme that inactivates GAs. By the operation of

GA2OX6, GAs are inactivated, with this inactivation stabilizing

DELLA proteins. The DELLA proteins modulate the activity of

ANAPHASE-PROMOTING COMPLEX/CYCLOSOME (APC/C),

which controls the activity of CDK-cyclin complexes, through the

repression of APC/C inhibitors DEL1 and UVI4. Finally, the mod-

ulated APC/C activity abolishes potential for cell proliferation and

inhibits growth.

A similar growth regulatory circuit does not seem to hold

for rice, as it has been generally accepted that ethylene and

1-ACC act as positive growth regulators under various condi-

tions in rice (Bailey-Serres and Voesenek, 2008, 2010; Fukao

and Xiong, 2013; Wang et al., 2013). In rice, growth regulatory

mechanisms that are distinct from those in Arabidopsis should

therefore be taken into consideration. We recently identified O.

sativa phytochrome interacting factor like 1 (OsPIL1), a gene that

regulates internode elongation under drought stress conditions

in rice (Todaka et al., 2012). The bHLH-type transcription fac-

tor OsPIL1 functions as a transcriptional activator and modulates

expression of cell elongation-related genes such as expansins.

Increased expression of OsPIL1 observed in the daytime under

normal growth conditions was canceled under drought stress

conditions. We proposed the following growth regulatory mech-

anistic model involving OsPIL1 in response to drought stress.

Under normal growth conditions, OsPIL1 elevates expression of
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cell elongation-related genes such as expansins, causing normal

shoot growth. When rice plants are exposed to drought stress,

the canceled OsPIL1 expression leads to reduced expression of

cell elongation-related genes, resulting in shoot growth reduc-

tion that likely conserves photosynthetic products and decreased

shoot surface area. The saved energy may be used for activa-

tion of mechanisms involved in stress tolerance. Ogawa et al.

(2011) have revealed that the rice protein RSS1 plays an important

role in the maintenance of meristematic activity under salinity

stress conditions. RSS1 proteins interact with protein phosphatase

1, a regulator of various cellular processes including the cell

division cycle. RSS1 stability is regulated by the APC/C 26S pro-

teasome pathway, which is responsible for degradation of mitotic

cyclins.

Use of the growth regulatory genes described in this section may

ameliorate the growth reduction observed in drought-tolerant

transgenic rice plants. Although stress-inducible promoters are

often useful for development, their efficacy seems to be limited

under moderate long-term drought stress conditions. Long-term

drought stress maintains a high level of transgene expression,

thereby affecting growth performance.

EVALUATION OF ABIOTIC STRESS TOLERANCE UNDER FIELD

CONDITIONS

When developing abiotic stress tolerant transgenic crops, plant

productivity should be taken into consideration. Plant productiv-

ity is extensively affected by natural drought episodes under field

conditions. Droughts are unpredictable events and vary in stress

severity and duration. Simultaneously occurring stresses, such

as drought and heat, are also observed. Results obtained under

laboratory or greenhouse conditions are therefore not perfectly

comparable to observations made under field conditions. Field

trials are thus critical for the proper evaluation of stress-tolerant

transgenic crops.

Xiao et al. (2007) analyzed drought tolerance of transgenic rice

plants constitutively overexpressing OsLEA3-1, a gene encoding

proteins that highly accumulate in water-stressed tissues, as well

as plants expressing the transgene with a stress-inducible promoter

under field conditions. Drought stress was initiated at the panicle

development stage by draining surface water in paddy fields and

halting irrigation until leaves were rolled. Although T1 generations

of both transgenic lines showed reduced yields under non-stressed

conditions, T2 and T3 generations exhibited no yield penalty under

non-stressed conditions and exhibited increased grain yield under

drought conditions.

Xiao et al. (2009) also examined drought tolerance of transgenic

rice plants overexpressing seven well-documented stress-related

genes with an actin promoter under field conditions. These

seven genes were CBF3/DREB1A, an AP2/ERF-type transcrip-

tion factor; SOS2, a serine/threonine protein kinase; NCED2 and

LOS5, enzymes involved in ABA biosynthesis; NPK1, a mitogen-

activated protein kinase kinase kinase; ZAT10, a C2H2-type

zinc finger transcription factor; and NHX1, a vacuolar Na+/H+

antiporter. Although drought stress in the field decreased grain

yield in these transgenic plants, grain yields in LOS5, ZAT10,

and NHX1 overexpressors were less affected. The authors also

developed transgenic rice plants that expressed these genes with a

stress-inducible promoter and field-tested their drought tolerance.

Grain yields in these transgenic plants were similarly decreased

by drought stress under field conditions. Grain yields in trans-

genic rice plants expressing CBF3/DREB1A, SOS2, NPK1, LOS5,

ZAT10, and NHX1 with the stress-inducible promoter were the

least affected. Because absolute grain yields under normal growth

conditions were lower in these transgenic rice plants than in

non-transgenic ones, further improvement is needed for practical

application.

Hu et al. (2006) subjected field-grown transgenic rice plants

overexpressing SNAC1, a NAC-type transcription factor, to two

different levels of drought stress treatments at the anthesis stage:

severe stress with 15% soil moisture and moderate stress with

28% soil moisture. Both drought stress conditions increased

spikelet fertility in the transgenic plants. Under non-stressed

conditions, agronomic traits, including plant height, panicle num-

ber, spikelet number, spikelet fertility, and grain yield, were

similar between transgenic plants and the controls. Drought resis-

tance of transgenic rice plants overexpressing OsNAC5 (Jeong

et al., 2013), OsNAC9/SNAC1 (Redillas et al., 2012), or OsNAC10

(Jeong et al., 2010) under the control of the root-specific pro-

moter has also been examined in the field. In these studies,

exposure to drought stress was performed at the panicle head-

ing stage by draining surface water and halting irrigation until

leaves were rolled. Similar results were observed among the three

transgenic rice lines. Grain yield decreases under drought condi-

tions were significantly smaller in all three transgenic lines than

those observed in their non-transgenic counterparts. Drought

tolerance of transgenic rice plants overexpressing OsOAT has

also been investigated under field conditions (You et al., 2012).

The OsOAT protein, an enzyme that increases proline content,

is a direct target gene of the stress-responsive NAC transcrip-

tion factor SNAC2. The field drought test was performed by

stopping irrigation at the flowering stage in a refined paddy

field covered with a movable rain-off shelter. Slower wilt-

ing, fewer withered leaves, and a higher rate of seed-setting

were noted in the transgenic rice plants than in non-transgenic

ones.

Increased grain yield was observed in transgenic rice plants

overexpressing the AP37 gene, an AP2/ERF-type transcription fac-

tor, when the transgenic plants were subjected to drought stress

in the field (Oh et al., 2009). The field drought stress was per-

formed at the panicle heading stage by draining the surface water

and halting irrigation until leaves were rolled. The increased grain

yield was due to the higher grain-filling rate in the drought-

treated transgenic plants compared with the drought-treated

non-transgenic plants. Finally, field evaluation of transgenic rice

plants overexpressing EDT1/HDG11, a homeodomain-leucine

zipper transcription factor, has also been carried out (Yu et al.,

2013). The transgenic rice plants were grown in the field for

a month after transplanting; irrigation was then stopped until

the seed maturation stage. The drought-treated transgenic rice

plants had higher grain yields than those observed in the drought-

treated non-transgenic rice plants. The grain yield increase in

the transgenic plants was a consequence of their larger panicle

sizes and higher tiller numbers compared with the non-transgenic

plants.
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FUTURE DIRECTIONS IN THE DEVELOPMENT OF

DROUGHT-TOLERANT TRANSGENIC RICE PLANTS

Although several studies have reported transgenic rice plants with

improved drought tolerance during field trials, further research is

needed to uncover the regulatory mechanism of drought response

and tolerance under field conditions. Such investigations should

lead to the discovery of new genes that increase drought tolerance

without yield penalty even under drought conditions. Another

approach to new gene exploration is to study stress tolerance

mechanisms of stress-adapted extremophiles such as desert plants,

halophilic plants, cold-water fishes, and thermophilic bacteria

(Mittler and Blumwald, 2010). Even in well-characterized species,

the functions of 18–38% of total proteins remain unknown

(Gollery et al., 2006). The elucidation of these unknown func-

tion proteins should aid the discovery of new genes. Modification

of root architecture is also important for the development of

drought-tolerant rice plants. In this regard, Uga et al. (2013)

reported that the QTL Deeper Rooting 1 (DRO1) increased the

root growth angle in rice, leading to high-yield performance under

drought conditions.

Rice has the highest potential of any crop to grow under sub-

mergence conditions. Studies of submergence-tolerance mecha-

nisms and the development of submergence-tolerant rice cultivars

have progressed significantly (Bailey-Serres and Voesenek, 2008,

2010; Hattori et al., 2009; Fukao and Xiong, 2013; Voesenek and

Bailey-Serres, 2013). The results of these studies indicate that

drought-tolerant rice plants with submergence-tolerant cultivar

backgrounds are exceptional crops that can survive under both

low and excessive soil–water content conditions. In the future,

crops may be alternately exposed to drought and flood because of

global climate change. Efforts to develop rice cultivars having high

water usage flexibility should help solve this crisis.
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