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Since 1995, more than 100 transgenic (Tg) mouse models of Alzheimer’s disease (AD)
have been generated in which mutant amyloid precursor protein (APP) or APP/presenilin
1 (PS1) cDNA is overexpressed (1st generation models). Although many of these
models successfully recapitulate major pathological hallmarks of the disease such as
amyloid β peptide (Aβ) deposition and neuroinflammation, they have suffered from
artificial phenotypes in the form of overproduced or mislocalized APP/PS1 and their
functional fragments, as well as calpastatin deficiency-induced early lethality, calpain
activation, neuronal cell death without tau pathology, endoplasmic reticulum stresses,
and inflammasome involvement. Such artifacts bring two important uncertainties into
play, these being (1) why the artifacts arise, and (2) how they affect the interpretation
of experimental results. In addition, destruction of endogenous gene loci in some
Tg lines by transgenes has been reported. To overcome these concerns, single App
knock-in mouse models harboring the Swedish and Beyreuther/Iberian mutations with
or without the Arctic mutation (AppNL−G−F and AppNL−F mice) were developed (2nd
generation models). While these models are interesting given that they exhibit Aβ

pathology, neuroinflammation, and cognitive impairment in an age-dependent manner,
the model with the Artic mutation, which exhibits an extensive pathology as early
as 6 months of age, is not suitable for investigating Aβ metabolism and clearance
because the Aβ in this model is resistant to proteolytic degradation and is therefore
prone to aggregation. Moreover, it cannot be used for preclinical immunotherapy
studies owing to the discrete affinity it shows for anti-Aβ antibodies. The weakness
of the latter model (without the Arctic mutation) is that the pathology may require up
to 18 months before it becomes sufficiently apparent for experimental investigation.
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Nevertheless, this model was successfully applied to modulating Aβ pathology by
genome editing, to revealing the differential roles of neprilysin and insulin-degrading
enzyme in Aβ metabolism, and to identifying somatostatin receptor subtypes involved in
Aβ degradation by neprilysin. In addition to discussing these issues, we also provide
here a technical guide for the application of App knock-in mice to AD research.
Subsequently, a new double knock-in line carrying the AppNL−F and Psen1P117L/WT

mutations was generated, the pathogenic effect of which was found to be synergistic.
A characteristic of this 3rd generation model is that it exhibits more cored plaque
pathology and neuroinflammation than the AppNL−G−F line, and thus is more suitable
for preclinical studies of disease-modifying medications targeting Aβ. Furthermore, a
derivative AppG−F line devoid of Swedish mutations which can be utilized for preclinical
studies of β-secretase modifier(s) was recently created. In addition, we introduce a
new model of cerebral amyloid angiopathy that may be useful for analyzing amyloid-
related imaging abnormalities that can be caused by anti-Aβ immunotherapy. Use of the
App knock-in mice also led to identification of the α-endosulfine-KATP channel pathway
as components of the somatostatin-evoked physiological mechanisms that reduce Aβ

deposition via the activation of neprilysin. Such advances have provided new insights
for the prevention and treatment of preclinical AD. Because tau pathology plays an
essential role in AD pathogenesis, knock-in mice with human tau wherein the entire
murine Mapt gene has been humanized were generated. Using these mice, the carboxy-
terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) was discovered as a
mediator linking tau pathology to neurodegeneration and showed that tau humanization
promoted pathological tau propagation. Finally, we describe and discuss the current
status of mutant human tau knock-in mice and a non-human primate model of AD that
we have successfully created.

Keywords: Alzheimer’s disease, amyloid – beta, amyloidosis, tau propagation, somatostatin, mouse model, non-
human primate (NHP)

1st, 2nd, AND 3rd GENERATION MOUSE
MODELS OF ALZHEIMER’S DISEASE

The deposition of amyloid β peptide (Aβ) in the brain is
the major pathological hallmark of Alzheimer’s disease (AD),
which is considered the most common type of dementia in
the world (Karran and De Strooper, 2016; Selkoe and Hardy,
2016). To date, disease-associated mutations in the presenilin
1 (PSEN1) and presenilin 2 (PSEN2) genes number more than
300, while more than 50 mutations have been reported in the
amyloid precursor protein (APP) gene (Alzforum1). In response
to these findings, many transgenic mouse models overexpressing
mutant APP or APP/PSEN1 cDNAs have been developed
(1st generation models) (Sasaguri et al., 2017), however they
often suffer from experimental limitations resulting from the
mislocalization of APP (Figure 1) and by the overproduction
of APP fragments such as the C-terminal fragment of APP
generated by β-secretase (CTF-β) and APP intracellular domain
(AICD). Neither of these fragments appears to accumulate in
AD brains, meaning that artificial endosomal abnormalities

1http://www.alzforum.org

(Kwart et al., 2019) and transcriptional malfunctions (Nalivaeva
et al., 2014), respectively, may be induced. Other overexpression
artifacts include calpain activation (Saito et al., 2016), calpastatin
deficiency-induced early lethality (Higuchi et al., 2012), and
endoplasmic reticulum stresses (Hashimoto et al., 2018).
Furthermore, it was demonstrated that the random insertion of
transgene(s) resulted in the destruction of unexpectedly large
regions of endogenous gene loci in the host animal (Gamache
et al., 2019). We suggest that all transgenic mouse models
being used in research in which APP or APP/PSEN1 are
overexpressed should undergo whole genome sequencing (WGS)
so that destroyed loci that possibly affect their phenotypes can be
identified (Sasaguri et al., 2017).

To overcome these drawbacks, single App knock-in mice, i.e.,
AppNL−G−F/NLG−F knock-in (AppNL−G−F) and AppNL−F/NL−F

knock-in (AppNL−F) lines, were generated that harbor the
Swedish (KM670/671NL) (Citron et al., 1992; Mullan et al.,
1992) and Beyreuther/Iberian (I716F) (Lichtenthaler et al., 1999)
mutations with or without the Arctic (E693G) (Nilsberth et al.,
2001) mutation (2nd generation models) (Figure 2) (Saito et al.,
2014; Sasaguri et al., 2017). These mice, which exhibit typical
Aβ pathology, neuroinflammation and memory impairment
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FIGURE 1 | Mislocalization of APP in APP-overexpressing mice. App KO
mice, WT mice, APP23 (APP-overexpressing mice) and App KI mice
(AppNL−F/NL−F ) were subjected to immunohistochemistry using antibodies to
APP, 22C11 (upper panels) and synaptophysin, a synaptic vesicle marker
(lower panels) as indicated. App KO mice were used as negative controls for
APP staining. While APP is selectively expressed in the axons of WT and KI
mice, APP23 expresses unphysiologically high levels of APP not only in the
axons but also in the soma and dendrites. The scale bar indicates 2 mm.

(Saito et al., 2014; Masuda et al., 2016), are being used in more
than 500 research laboratories world-wide. At present, the
AppNL−G−F line is being used more frequently than the AppNL−F
line given that it develops Aβ pathology approximately three
times faster (Saito et al., 2014) and can be used to analyze
downstream events such as neuroinflammation (Shirotani et al.,
2019; Chen et al., 2020; Sobue et al., 2021), pericyte signaling
(Nortley et al., 2019), oxidative stress (Hashimoto et al., 2019;
Hongo et al., 2020; Uruno et al., 2020), tau propagation (Saito
et al., 2019), and spatial memory impairment (Masuda et al.,
2016; Jun et al., 2020; Sutoko et al., 2021; Table 1). Human
Arctic mutation carriers are indistinguishable from other familial
and sporadic AD patients in pathological and neurological terms
except for low retention of 11C-labeled Pittsburgh compound B
(PiB) in PET study (Basun et al., 2008), indicating that the mutant
mice are relevant models for studying AD in general.

In addition toAppNL−F andAppNL−G−F models,App knock-in
mice devoid of the Swedish mutations (AppG−F mice) have been
recently developed, in which the Swedish mutations (NL) were
replaced by a wild-type sequence (KM) (Figure 3 and Table 2).
The AppG−F mice are more suitable for preclinical studies of β-
secretase inhibition given that the Swedish mutation affects the
reactivity of APP to β-site amyloid precursor protein cleaving
enzyme 1 (BACE1) and most AD patients do not carry Swedish
mutations (Watamura et al., 2021b).

Despite the advantages mentioned above, the AppNL−G−F line
is not suitable for investigating the metabolism, clearance or
deposition of Aβ because the Arctic mutation present in the
middle of the Aβ sequence results in an Aβ that is resistant to
proteolytic degradation (Tsubuki et al., 2003) and susceptible
to aggregation (Nilsberth et al., 2001). Moreover, this model
is not suitable for use in preclinical immunotherapy studies
due to its affinity for anti-Aβ antibodies, even in the presence
of guanidine hydrochloride (GuHCl) (Saito et al., 2014). The
Arctic mutation may also directly or indirectly interfere with
interactions between Aβ deposition and the apolipoprotein E

genotype (Morishima-Kawashima et al., 2000), although there
is no experimental evidence for this. In contrast, the AppNL−F
line accumulates wild-type human Aβ, but it may take up to
18 months for the pathology to become sufficiently evident for
investigational studies to be carried out (Saito et al., 2014), which
is too long for researchers to wait in a practical sense. Therefore,
a new mouse model that accumulates wild-type human Aβ as
quickly as the AppNL−G−F model, but did not depend on the
presence of the Arctic mutation was desired.

To achieve this, the heterozygous Psen1P117L/WT mutant
line (Psen1P117L) which, of the several Psen1 mutants, exhibits
the largest increase in Aβ42/Aβ40 ratio in the brain (Sasaguri
et al., 2018) was utilized. The Psen1P117L line was generated
by base editing technology (Komor et al., 2016). The AppNL−F
mice were crossed with Psen1P117L mice, despite it being
unclear whether their pathogenic effects, both of which act
on the γ-cleavage of CTF-β, would be additive or not in vivo
(Figure 4). The pathological phenotypes of AppNL−F mice were
markedly enhanced in a synergistic manner with the Psen1P117L

mutation (Sato et al., 2021), with AppNL−F X Psen1P117L/WT

mice showing a more aggressive cored plaque pathology and
neuroinflammation than the AppNL−G−F mice (Figure 5). These
double mutant mice (3rd generation model) will likely become
highly relevant tools for examining the pathologic mechanisms
upstream of Aβ deposition. Moreover, these mice can be highly
useful for the preclinical screening of disease-modifying therapy
candidates promoting Aβ degradation or disaggregation, without
the added concern associated with artificial effects caused by
the Arctic mutation. We expect the double homozygous line,
AppNL−F X Psen1P117L/P117L, to exhibit an even more-aggressive
pathology. In any case, the AppNL−F X Psen1P117L mice are
superior to the AppNL−G−F mice or the AppNL−G−I mice
(Xia et al., 2021) for universal and unbiased drug screening
particularly because the Aβ-degrading enzyme, neprilysin (NEP:
Neutral endopeptidase), has become a therapeutic target. The
AppNL−G−I mice are similarly designed as the AppNL−G−F mice,
in which the Beyreuther/Iberian mutation was replaced by the
Austrian mutation (Kumar-Singh et al., 2000). The characteristics
of the App knock-in mouse lines are listed in Table 3.

PRECAUTIONS REGARDING THE
UTILITY OF App KNOCK-IN MICE

There are several precautions to be aware of to make the best use
of the App knock-in mice.

Nomenclature
A number of the App knock-in mouse users use incorrect
nomenclature such as APP-NLF, APPNLF and APPNL−F instead
of the AppNL−F mice, which accords with international rules
of standard genomic nomenclature. Genetic names always need
to be italicized.

Line-Ups and Biochemical Analyses
Approximately 20 lines of mutant mice, published or
unpublished, can currently or in the very near future be
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FIGURE 2 | Second generation mouse models of Alzheimer’s disease. See text for detailed explanation.

TABLE 1 | Successful application of the 2nd generation mouse models.

(1) Behavioral analysis using IntelliCage (Masuda et al., 2016; Sutoko et al., 2021).

(2) Three-dimensional visualization of amyloid pathology by transparency (Hama et al., 2015; Susaki et al., 2020).

(3) Impairment of gamma oscillations in medial entorhinal cortex (Nakazono et al., 2017).

(4) Additional genetic manipulation of the 2nd generation models through genome editing (Nagata et al., 2018; Watamura et al., 2021b).

(5) Generation of the double knock-in mouse models (Hashimoto et al., 2019; Saito et al., 2019; Sato et al., 2021).

(6) Assessment of vascular dysfunction in the 2nd generation models (Nortley et al., 2019; Tachida et al., 2020).

(7) Assessment of sleep dysfunction in the 2nd generation models (Maezono et al., 2020).

(8) Assessment of place cell dysfunction in the 2nd generation models (Jun et al., 2020; Takamura et al., 2021).

(9) Analyses of various aspects of neuroinflammation (Shirotani et al., 2019; Chiasseu et al., 2020; Salobrar-García et al., 2020; Barrett et al., 2021; Sobue et al., 2021).

(10) Application of spatial transcriptomics (Chen et al., 2020).

FIGURE 3 | AppG−F mice suitable for studies of BACE1 inhibitors. The AppG−F line is devoid of the Swedish mutation that influences the β-secretase activity and
elevates the quantity of CTFβ. (The AppG−F line instead carries a wild-type sequence: KM.) The AppG−F model would be appropriate for use in preclinical studies of
β-secretase inhibitors without the interference of the Swedish mutation.

provided to academic and not-for-profit researchers for
non-commercial research in a timely fashion with minimum
restrictions (Table 2; Saito et al., 2014; Sasaguri et al., 2018). It
is also recommended that scientists use optimized protocols for

isolating Aβ from animal brain as previously described (Iwata
et al., 2005; Figure 6). The method allows the most sensitive
quantification of both soluble and insoluble Aβ with the smallest
protocol deviations.
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TABLE 2 | List of mutant mice that are and will be made available to the research community.

Strains Gene(s) Modification Information Availability*5 References*5

AppNL KI App*1 KM670/671NL (Swedish) RBRC*6 (RBRC06342) Saito et al., 2014

AppNL−F KI App*1 KM670/671NL (Swedish), I716F
(Iberian/Beyreuther)

RBRC (RBRC06343) Saito et al., 2014

AppNL−G−F KI App*1 KM670/671NL (Swedish), E693G
(Arctic), I716F (Iberian/Beyreuther)

RBRC (RBRC06344) Saito et al., 2014

AppG−F KI App*1 E693G (Arctic), I716F
(Iberian/Beyreuther)

Soon to be available from RBRC Watamura et al., 2021b

ApphuAβ KI App*1 No mutation (humanized Aβ

sequence)
Soon to be available from RBRC Watamura et al., 2021b

Psen1P436S KI Psen1*2 P436S Available*7 Sasaguri et al., 2018

Psen1P117L/A KI Psen1*3 P117L/A Available*7 Sasaguri et al., 2018; Sato
et al., 2021

AppNL−F KI/ Psen1P117L KI App*1, Psen1*3 App: KM670/671NL, I716F Psen1:
P117L

Soon to be available from RBRC Sato et al., 2021

MAPT KI MAPT∗4 Humanization of the Mapt gene RBRC (RBRC09995) Hashimoto et al., 2019;
Saito et al., 2019

AppNL KI/hMAPT KI App*1, MAPT*4 App: KM670/671NL MAPT: No
mutation

RBRC (RBRC10041) Saito et al., 2019

AppNL−F KI/hMAPT KI App*1, MAPT*4 App: KM670/671NL, I716F, MAPT:
No mutation

RBRC (RBRC10042) Saito et al., 2019

AppNL−G−F KI/hMAPT KI App*1, MAPT*4 App: KM670/671NL E693G, I716F,
MAPT: No mutation

RBRC (RBRC10043) Saito et al., 2019

hMAPTP301L KI MAPT*4 P301L Available*7 Watamura et al., 2021b

hMAPTP301S KI MAPT*4 P301S Available*7 Watamura et al., 2021b

hMAPTP301V KI MAPT*4 P301V Available*7 Watamura et al., 2021b

hMAPTIntron10+3G>A KI MAPT*4 Intron10 + 3 G > A Available*7 Watamura et al., 2021b

hMAPTP301L;Intron10+3G>A KI MAPT*4 P301L; Intron10 + 3 G > A Available*7 Watamura et al., 2021b

hMAPTP301S;Intron10+3G>A KI MAPT*4 P301S; Intron10 + 3 G > A Available*7 Watamura et al., 2021b

hMAPTS305N;Intron10+3G>A KI MAPT*4 S305N; Intron10 + 3 G > A Available*7 Watamura et al., 2021b

*1Knock-in of APP sequence (from intron 15 to intron 17) including a humanized Aβ region.
*2The mutation was introduced into the murine Psen1 gene by using Base Editor (BE) or Target-AID.
*3The mutation was introduced into the murine Psen1 gene by using VQR-BE.
*4Replaced the entire genomic sequence of the murine Mapt gene (from exon 1 to exon 14) with the human MAPT gene from the ATG codon of exon 1 to the 3′-UTR.
*5As of September 30, 2021.
*6RIKEN BioResource Research Center (https://web.brc.riken.jp/en/).
*7All strains are available through TCS (takaomi.saido@riken.jp).

Maintaining Mouse Lines on a Clean
C57BL6/J Background
In most cases, the knock-in mice are used in a homozygous
state to accelerate the generation of pathological and
behavioral phenotypes. However, the number of recessive
mutations increases over time if the breeding of mice is
maintained in this way. It is necessary therefore to back-cross
heterozygous mutant mice with the wild-type C57B6/J mice
to remove these extraneous mutations, preferentially for 5–10
generations at an interval of 5–10 generations. Those groups
dealing with poor reproductive output of mice due to their
extremely inbred nature can contact RIKEN BioResource
Research Center (email: animal.brc@riken.jp), a national
mouse repository of Japan (Mizuno-Iijima et al., 2021), to
renew their strains.

Choosing Appropriate Anti-Aβ Antibodies
It was previously indicated that some anti-Aβ antibodies are
inappropriate for biochemically and pathologically detecting

the Arctic Aβ produced by AppNL−G−F mice (Saito et al.,
2014; Figure 7). Note that the AppNL−G−F is the most
frequently used model because it recapitulates Aβ pathology and
neuroinflammation much faster than other lines. This applies
to all other transgenic and knock-in mice that carry intra-
Aβ mutations, including the Arctic and Dutch mutations (Van
Broeckhoven et al., 1990; Li et al., 2014). In contrast, there is
no restriction regarding use of antibodies for the AppNL−F X
Psen1P117L mice.

Preclinical Nature of Behaviors
In our experience, the most sensitive and reproducible test
involves contextual fear conditioning, although its irreversible
nature can be problematic. In a more complex sense, the
application of a multi-task paradigm such as IntelliCage
(NewBehavior AG, Zurich, Switzerland) would be more
informative (Codita et al., 2010; Masuda et al., 2016). We
recently showed that the mouse genotypes can be predicted
from their behavioral parameters by machine learning (Sutoko
et al., 2021). It should be emphasized that the App knock-in
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FIGURE 4 | Scheme of AppNL−F
× Psen1P117L double-mutant mice. For the generation of the double-mutant mice, the AppNL−F line was crossbred with the

Psen1P117L line whose mutation was introduced in the endogenous Psen1 gene utilizing base editing technology. The synergistic effects of the pathogenic
mutations in the App and Psen1 genes strongly accelerates the deposition of wild-type human Aβ in mouse brains.

FIGURE 5 | AD pathology in the hippocampus of a 3rd generation model
mouse. A 12-month-old AppNL−F X Psen1P117L/WT mouse was analyzed by
immunohistochemistry. Blue: Aβ plaques; red: microglia; green: astrocytes.
The bar indicates 25 µm.

mice are models of preclinical AD because the App knock-
in mice, like all the APP and APP/PS1 transgenic mice, do
not recapitulate tau pathology alone (Sasaguri et al., 2017).
Consistently, we observe only mild cognitive decline in
these mice. In contrast, the App knock-in mice crossbred
with mutant MAPT knock-in mice exhibited accelerated tau
pathology (Table 2).

A NEW MODEL OF CEREBRAL AMYLOID
ANGIOPATHY

Most AD patients exhibit parenchymal and vascular Aβ

deposition in the brains, and both pathologies seem to
be driven by impaired Aβ clearance within the interstitial
fluid and perivascular drainage pathways (Greenberg et al.,
2020). Iliff et al. (2012) injected fluorescent tracers into Tie2-
GFP:NG2-DsRed double reporter mice, which express GFP
in all cerebral blood vessels and DsRed in perivascular cells,
and successfully observed glymphatic pathway; subarachnoid
CSF influx into the brain parenchyma and bulk ISF solute
clearance from the parenchyma within the perivascular spaces.
Importantly, in AD model mice, glymphatic CSF influx is
reduced and the clearance of Aβ is severely impaired (Peng
et al., 2016). Impaired glymphatic pathway may contribute
to the deposition of Aβ in the blood vessels of the brain,
cerebral amyloid angiopathy (CAA). Although CAA is
profoundly observed in most AD patients (Brenowitz et al.,
2015), limited model mice, such as those with Dutch/Iowa
mutation, exhibit apparent CAA, thus making it difficult
to determine how CAA contributes to the pathogenesis of
sporadic AD. Notably, human vascular endothelial cells
express significant level of APP770 and human plasma
contains ∼100 ng/ml of sAPP770 (Kitazume et al., 2010).
Since peripheral blood cells other than platelet do not express
APP, and platelets release sAPP770 upon their activation
(Miura et al., 2020), it is considered that plasma sAPP770 is
mostly derived from endothelial APP770. Because in rodents
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TABLE 3 | Characteristics of the App knock-in mouse lines.

Stain Gene mutations Genetic
background

Aβ plaques
(first
appearance)

Tangles Neuronal
loss

Cognitive
impairment

Strengths Weaknesses

App Psen1

Single App
knock-in

ApphuAβ Humanized Aβ – C57BL/6J – NR NR NR A control for
other models

–

AppNL Humanized Aβ

KM670/671NL
– C57BL/6J – – – – A control for

other models
No amyloid
pathology No
cognitive deficits
Increased CTF-β

AppNL−F Humanized Aβ

KM670/671NL
I716F

– C57BL/6J 6 months – – 18 months Deposition of wild
type human Aβ

Long time required
for amyloid
pathology and
cognitive deficits
Increased CTF-β

AppNL−G−F Humanized Aβ

KM670/671NL
E693G I716F

– C57BL/6J 2 months – – 6 months Early appearance
of amyloid
pathology

The Arctic mutation
inside the Aβ

sequence
Increased CTF-β

AppG−F Humanized Aβ

E693G I716F
– C57BL/6J 4 months NR NR NR Absence of the

Swedish
mutation No
increase of CTF-β

The Arctic mutation
inside the Aβ

sequence

App and Psen1
double mutant

AppNL−F

Psen1P117L
Humanized Aβ

KM670/671NL
I716F

P117L C57BL/6J 3 months NR NR NR Early appearance
of amyloid
pathology
Deposition of wild
type human Aβ

Mutations in both
App and Psen1
genes

The Swedish mutations; KM670/671NL.
The Iberian/Beyreuther mutation; I716F.
The Arctic mutation; E693G.
NR denotes data not reported.

plasma sAPP is a markedly lower (∼100 pg/ml) than that
of humans (Kitazume et al., 2012), it’s possible that low
level of endothelial APP expression in mice could be one
of the reasons that App knock-in mice exhibit mild CAA
pathology. To overcome this, a mouse line that specifically
expresses human APP770 in endothelial cells has just been
generated (unpublished). In brief, floxed hAPP770NL mice
under the CMV early enhancer/chicken β-actin promoter were
first generated. These mice were then crossed with Tie2-Cre
mice, in which the Tie2 promoter directs the expression of
Cre recombinase in the endothelial cells to obtain double
transgenic (Tg) mice.

App knock-in mouse models were previously produced by
Li et al. (2014) who used multiple pathogenic mutations. These
mice carry the Swedish (K670N/M671L), Dutch (E693Q), and
London (V717I) mutations with the humanized Aβ sequence.
The Dutch mutation results in an intensive CAA pathology in
humans, thereby causing brain hemorrhage and early mortality
(Levy et al., 1990; Van Broeckhoven et al., 1990). This mutation
is therefore not specifically responsible for causing FAD. These
mice did not develop prominent Aβ deposits over their lifespan,
but when they were crossbred with Psen1M146V knock-in mice, an
age-dependent deposition of Aβ was seen in the resultant double

knock-in mice. The deposition of Aβ was detected not only in
the parenchyma of the cerebral cortex but also in the cerebral
vasculature, similar to that seen in CAA in humans. Double
knock-in mice that did not have the Dutch mutation exhibited
virtually no vascular pathology. In this way, if the authors had
used the Beyreuther/Iberian or Austrian mutation instead of the
London mutation in the mouse App gene then they probably
would not have had to introduce the Psen1 knock-in mice.
Knock-in mice harboring the Dutch mutation can still serve as
relevant models for CAA; however they may not be appropriate
for examining the effect of immunotherapy on CAA because the
Dutch mutation is present in the middle of the Aβ sequence.

NEPRILYSIN-SENSITIVE
AMYLOIDOGENIC Aβ AS A PROBABLE
CAUSE FOR SPORADIC ALZHEIMER’S
DISEASE

NEP and insulin-degrading enzyme (IDE) are considered the
two major catabolic enzymes that degrade Aβ (Qiu et al., 1998;
Iwata et al., 2000, 2001; Farris et al., 2003; Leissring et al., 2003).
NEP is capable of degrading both soluble and insoluble Aβ
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FIGURE 6 | Outlined protocols for extraction and quantification of Aβ from tissues. See text for detailed explanation.
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FIGURE 7 | Reactivity of different antibodies to Arctic Aβ in AppNL−G−F mice. (A) Epitope map of anti-Aβ antibodies. (B,C) Quantification of Arctic Aβ species using
BNT77 as a capture antibody. BNT77 binds to the mid-portion of Aβ [see epitope map (A)]. A sandwich ELISA kit (Wako, Japan) was used to quantify Aβx-40 (C)
and Aβx-42 (D), respectively. (D,E) Quantification of Arctic Aβ species using BAN50 as a capture antibody. BAN50 binds to the N-terminal region of Aβ [see epitope
map (A)]. A sandwich ELISA kit (Wako, Japan) was used to quantify Aβx-40 (D) and Aβx-42 (E), respectively. BNT77 and BAN50 captured Arctic Aβ more weakly
than wild-type Aβ. (F) Immunohistochemistry using various anti-Aβ antibodies. Brain sections derived from AppNL−F mice (24 months old) were immunostained
using antibodies with different epitopes after antigen retrieval as indicated (upper panels); those of AppNL−G−F mice (9 months old) were similarly immunostained
(lower panels). Scale bars represent 500 µm.

(Iwata et al., 2000, 2001; Huang et al., 2006), but it is not clearly
shown whether endogenous IDE could degrade insoluble Aβ in
the mouse brains (Farris et al., 2003), rather IDE appears to be
involved in metabolism of AICD. Unfortunately, their roles in Aβ

metabolism in vivo have never been compared in an impartial and
side-by-side manner. Once double mutants crossbred single App
knock-in mice with NEP (Mme) KO mice and with IDE (Ide) KO
mice were analyzed in detail for their biochemical properties and
Aβ pathology properties, it would be clear their distinct roles in
APP metabolism and the AD pathogenesis.

Further to the above, a deficiency of NEP had no significant
impact on the levels of various neuropeptides (Sasaguri et al.,
2018) as well as enkephalins (Saria et al., 1997) that are well
known to be in vitro substrates for NEP (Turner et al., 1996,
2000, 2001; Turner and Nalivaeva, 2006) in the cerebral cortex
and hippocampal formation of mice, presumably because NEP
is mainly expressed in secretory vesicles and on the presynaptic
membranes of excitatory neurons (Iwata et al., 2002, 2004,
2013), while most if not all neuropeptides are secreted from

inhibitory neurons. This argues against the concern that NEP
up-regulation for the treatment of preclinical AD would reduce
the levels of these neuropeptides. These findings also indicate
that NEP relatively selectively degrades Aβ in the brain. Whereas
familial AD (FAD) is unambiguously caused by an increased
anabolism of Aβ, and of Aβ42 and Aβ43 in particular (Selkoe and
Hardy, 2016), the anabolism of Aβ appears unaffected prior to
its deposition in the brain that subsequently leads to the onset
of sporadic AD (SAD). These observations suggest that NEP-
sensitive amyloidogenic Aβ likely plays a primary pathogenic role
in the etiology of SAD. Our findings are consistent with the aging-
dependent decline of NEP expression in the human brain and
with recent genome-wide association studies (GWAS) indicating
that variants of the gene encoding NEP (MME) are associated
with the risk of SAD development (Bellenguez et al., 2020). Taken
together, our results imply that the aging-associated decrease in
NEP expression is a primary cause of SAD and could thus be a
target for the treatment of preclinical AD once other factors such
as apolipoprotein E genotypes have also been considered.
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REGULATION OF Aβ METABOLISM VIA
SOMATOSTATIN RECEPTOR SUBTYPES
THROUGH MODULATION OF NEP
ACTIVITY

Since NEP is a major Aβ-degrading enzyme and it is
downregulated upon aging, its decreased levels in the brain will
most likely lead to increased Aβ levels (Yasojima et al., 2001;
Carpentier et al., 2002; Iwata et al., 2002; Maruyama et al.,
2005; Hellström-Lindahl et al., 2008). NEP is regulated by the
neuropeptide somatostatin (Saito et al., 2005). Somatostatin,
which binds to somatostatin receptors, is also decreased upon
aging and in AD possibly due to loss of somatostatin-positive
interneurons (Davies et al., 1980; Beal et al., 1985; Bergström
et al., 1991; Hayashi et al., 1997; van de Nes et al., 2002; Lu et al.,
2004; Gahete et al., 2010). Somatostatin, which was first identified
to regulate secretion of growth hormone from pituitary, has
been traditionally abbreviated as SRIF (somatotropin release-
inhibiting factor) (Møller et al., 2003), so we will keep to
this nomenclature in this review. SST1, SST2, SST3, SST4, and
SST5 are used to express somatostatin receptor subtypes 1–5.
Interestingly, mutations in SRIF are linked to AD (Vepsäläinen
et al., 2007). By using a combination of in vitro and in vivo
approaches to identify the subtype specificity of the five SSTs
expressed in the brain and considered to be involved in the
regulation of NEP. We would like to emphasize that it is necessary
to use a co-culture system of primary neurons from the cortex,
hippocampus, and striatum for in vitro experiments (Kakiya et al.,
2012; Nilsson et al., 2020; Watamura et al., 2021a).

Using a battery of Sst double knockout (dKO) mice, we found
that NEP is regulated by SST1 and SST4 in a redundant manner.
Sst1 and Sst4 dKO mice exhibit a specific decrease of presynaptic
NEP in the Lacunosum molecular layer. Moreover, a genetic
deficiency of Sst1 and Sst4 in the App knock-in mice aggravated
the Aβ pathology in the hippocampus. As a first proof of concept
towards an Aβ-lowering strategy involving NEP, a treatment with
an agonist selective for SST1 and SST4 could ameliorates the Aβ

pathology and improves cognitive outcomes in the App knock-
in AD mouse model as schematized in Figure 8 (Nilsson et al.,
2020). These results indicate that a combination of SST1 and SST4
homodimers or the SST1 and SST4 heterodimer may become a
target for pharmaceutical intervention to treat preclinical AD.
Of note, the expression of SRIF in human brain declines with
aging and in AD (Davies et al., 1980; Lu et al., 2004) and may
causally contribute to AD pathogenesis via reduction of NEP
activity/expression.

SRIF-EVOKED Aβ CATABOLISM IN THE
BRAIN: MECHANISTIC INVOLVEMENT
OF THE α-ENDOSULFINE-KATP
CHANNEL PATHWAY

Although SRIF is known to regulate Aβ catabolism by enhancing
NEP-catalyzed proteolytic degradation, the mechanism by
which SRIF actually regulates NEP activity is yet to be fully

FIGURE 8 | Somatostatin receptor subtypes 1 and 4 (SST1/4) regulate the
Aβ-degrading enzyme NEP. The neuropeptide somatostatin (SRIF) was
identified as a regulator of NEP activity through in vitro screening. Subsequent
analysis of the effect of genetic deletion of somatostatin receptor (SST)
subtypes in mice revealed that SST1 and SST4 regulate NEP in a redundant
manner. This was further confirmed by concurrently deleting SST1 and SST4

in App KI mice, which aggravated the Aβ pathology. SST1/4 can be either a
combination of SST1 and SST4 homodimers or an SST1/SST4 heterodimer.

elucidated. Proteomic analyses enabled α-endosulfine (ENSA),
an endogenous ligand of the ATP-sensitive potassium (KATP)
channel, to be identified as a negative regulator of NEP
downstream of SRIF signaling (Watamura et al., 2021a). The
expression of ENSA is significantly increased in AD mouse
models and in patients with AD. In addition, NEP directly
contributes to the degradation of ENSA, suggesting a substrate-
dependent feedback loop regulating NEP activity.

It was also discovered the specific KATP channel subtype
[sulfonylurea receptor subunit 1 (SUR1) and inwardly rectifying
K+ channel 6.2 (Kir6.2)] that modulates NEP activity, resulting
in altered Aβ levels in the brain. Pharmacological intervention
targeting this particular KATP channel by diazoxide attenuated
Aβ deposition, with impaired memory function rescued via
the NEP activation in our AD mouse model. These findings
provide a mechanism explaining the molecular link between
KATP channels and NEP activation. They also provide new
insights into how ENSA and the KATP channel could profile
as a new therapeutic target for lowering Aβ and thus provide
an alternative strategy to prevent AD. Figure 9 summarizes the
NEP activation mechanism that involves SRIF receptor subtypes,
ENSA and KATP channel involvement.

HUMANIZATION OF THE ENTIRE
MURINE Mapt GENE TO GENERATE
hMAPT KNOCK-IN MICE

To date, most if not all, mouse models of tauopathy have been
unable to recapitulate the tau pathology without overexpressing
mutant human tau protein. As a novel in vivo platform for
studying human tauopathy, human MAPT knock-in mice have
been developed in which the entire Mapt gene including all exons
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FIGURE 9 | Role of ENSA in the regulation of NEP activity. Schematic
illustration of the mechanism describing NEP activity in the brain. ENSA, a
downstream protein of SST-SST1/4 signaling, plays a role as a ligand of the
KATP channel composed of sulfonylurea receptor subunit 1 (SUR1) and
inwardly rectifying K+ channel 6.2 (Kir6.2), resulting in the activation of NEP.
SST1/4 can be either a combination of SST1 and SST4 homodimers or an
SST1/SST4 heterodimer.

and introns are humanized (Hashimoto et al., 2019). In each
strain, the MAPT and Mapt genes encoded human and murine
tau proteins, respectively. This was done by crossing MAPT
knock-in mice with single App knock-in mice in order to study
the role of the Aβ-tau axis in the etiology of AD. The double
knock-in mice exhibited a more pronounced tau phosphorylation
status than single MAPT knock-in mice but lacked evidence of
tau pathology and neurodegeneration (in a manner similar to that
of single App knock-in mice) even after waiting until the mice
were 24 months old.

In both the absence and presence of Aβ amyloidosis, the
tau humanization has been found to significantly accelerate the
propagation of AD brain-derived pathological tau (Figure 10;
Saito et al., 2019). Tau accumulation was intensified in the latter
case and closely associated with dystrophic neurites, consistently
showing that Aβ amyloidosis affects tau pathology. These results
indicated that pathological human tau interacted better with
human tau than with murine tau, and suggest the presence of
a species-defined preference between the pathogenic proteins.
The MAPT knock-in mice also facilitate the investigation
of behavioral properties and of human tau characteristics
in living animal models. In addition, mutant MAPT knock-
in mice carrying various pathogenic mutations have been
generated (Table 2). These mice exhibit aging-dependent tau
aggregation and cognitive impairment in a manner accelerated
by Aβ pathology and are being provided to the research
community upon request.

THE ROLE OF CAPON IN TAU
PATHOLOGY-MEDIATED TOXICITY

Pathological tau causes synaptic dysfunction and loss of synapses.
One of promising molecules that mediates tau pathology-induced
neurotoxicity is N-methyl-D-aspartate receptor (NMDAR). For
example, tau accumulation disturbs synaptic plasticity through
JAK2/STAT1-mediated suppression of NMDAR (Li et al., 2019).
Phosphorylation of tau at Tyr18, which is mediated by the
tyrosine kinase Fyn, enhances NMDAR-dependent excitotoxicity
(Guo et al., 2020). Several reports indicated that glutamate-
induced excitotoxicity was prevented by downmodulation of tau

FIGURE 10 | Propagation of AD-tau in mouse brains. Propagation of tau in
each mouse line was observed 3 months after AD-tau injection. Brain sections
were immunostained with AT8 (red). Humanization of the host animal tau
affects the transmission of the pathogenic agents. AppNL−G−F /MAPT dKI
mice exhibited greater pathological propagation than AppNL−G−F KI mice.

(Roberson et al., 2007) (Ittner et al., 2010). We also previously
identified a NMDAR-related molecule as a tau binding protein
which is involved in tau pathology- induced neurodegeneration.

To elucidate key molecules underlying tau accumulation-
induced neurodegeneration, a comprehensive screening of tau-
interacting proteins (tau interactome) was constructed. Tau-
binding proteins were isolated by immunoprecipitation-LC-
MS/MS (IP-MS) using a Flag-tag antibody and wild-type tau
Tg (wtau-Tg) mice, which is expressing human tau tagged with
a flag epitope (Kimura et al., 2007). Considering that tau is a
microtubule-binding protein, we validated the methods used to
generate the tau interactome by identifying the tubulin beta-4A
chain as one of the tau-binding proteins.

Of the many proteins identified in the tau interactome, we
focused on carboxy-terminal PDZ ligand of neuronal nitric
oxide synthase (CAPON) (Hashimoto et al., 2019), which is
an adaptor protein of neuronal nitric oxide synthase (nNOS).
CAPON acts as an enzyme for the production of nitric
oxide (NO) and is involved in NMDAR-mediated excitotoxicity
(Jaffrey et al., 1998). It is thought to recruit substrates to
nNOS and facilitate their NO-mediated modification through
protein-protein interactions (Jaffrey et al., 1998). The presence
of CAPON polymorphisms associated with schizophrenia and
other psychiatric disorders has been reported in several studies
(Brzustowicz, 2008; Freudenberg et al., 2015). Moreover, CAPON
was shown to positively regulate spine density (Richier et al.,
2010) and to regulate neuronal cell death downstream of the
NMDAR (Li et al., 2013). These findings suggest that CAPON
contributes to neurotransmission and neuronal excitotoxicity.
In addition, one report showed that CAPON is upregulated
in CA1 pyramidal cells in the AD brain (Hashimoto et al.,
2012), implying that CAPON may play an important role in the
pathogenesis of AD. The mechanism(s) underlying these effects
nevertheless remain(s) unknown.

To further elucidate the effects of CAPON on AD pathology,
we introduced CAPON cDNA into the brains of AppNL−G−F
and AppNL−G−F X MAPT (hTau) double-KI mice using a
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FIGURE 11 | Functions of CAPON in neurodegeneration. (A) Brain sections
from WT, P301S-Tau-Tg or nos1ap-/-/P301S-Tau-Tg mice stained by the
conventional method using hematoxylin and eosin (H&E). A CAPON (Nos1ap)
deficiency restores AD-related pathological phenotypes in P301S-Tau-Tg
mice. (B) Scheme of CAPON action. Aβ pathology elevates the level and
localization of CAPON in hippocampal pyramidal cells. CAPON-induced
neuronal cell death is closely associated with the pathological tau protein,
although there appears to be a tau-independent mechanism in play as well.

newly developed adeno-associated virus (AAV)-mediated
approach. We analyzed the effects of human tau protein as it
is known that the hTau-KI mouse expresses an endogenous
level of WT human tau. These experiments revealed that
CAPON expression facilitates hippocampal atrophy in
conjunction with neuronal cell death, and that a deficiency
of CAPON in the P301S-Tau-Tg tauopathy mouse model
suppressed tau pathology and neurodegeneration (Figure 11).
From our results, an intervention in the interaction between
CAPON-tau or CAPON-nNOS could be a new approach for the
treatment of AD.

GENERATION OF NON-HUMAN
PRIMATE MODELS OF FAMILIAL
ALZHEIMER’S DISEASE

Common marmosets (marmosets, Callithrix jacchus) are small
non-human primates that belong to the New World Primates
(Figure 12; Mansfield, 2003). They have been increasingly
utilized in neuroscience because of advantages that were
observed over other research primates (Okano, 2021; Park
and Sasaki, 2021). Marmosets possess physiological functions,
brain structures and complex cognitive/social behaviors similar
to those of humans; they communicate mainly via visual
and auditory measures. In association with AD research, the
amino acid sequence of Aβ in marmosets is identical to
that of humans, with aged wild-type marmosets starting to
accumulate Aβ from 7 years of age or even earlier (Geula
et al., 2002; Rodriguez-Callejas et al., 2016). In addition,

FIGURE 12 | Photograph of common marmosets (Callithrix jacchus). The
photo shows members of captive common marmoset family. Their small body
size, fecundity, and high cognitive functions are a suitable model for
neuroscience. The photograph of marmosets was taken by WK at CIEA.

adolescent marmosets exhibit tau hyperphosphorylation, but
not neurofibrillary tangle formation, in the brain that increases
with aging (Rodriguez-Callejas et al., 2016). Their life spans
in captivity are as long as 10–15 years, making them suitable
for age-related research (Tardif et al., 2011). Their immune
systems and metabolic functions resemble those of humans (t
Hart and Massacesi, 2009; Tardif et al., 2011) and thus may
affect the pathogenic processes related to AD (Ennerfelt and
Lukens, 2020; Kellar and Craft, 2020; Rosario et al., 2020).
Because sleep disorder is an early clinical symptom of AD (Pyun
et al., 2019), it is noteworthy that marmosets share with humans
the sleep phases composed of rapid eye movement (REM) and
non-REM cycles (Crofts et al., 2001). Among various non-human
primate species, the marmoset seems most applicable to genetic
manipulation, i.e., generation of designed mutants, for which
their high reproductive efficacy is advantageous (Sasaki et al.,
2009; Sato et al., 2016; Park and Sasaki, 2021). Furthermore,
fecundity characteristics of marmosets, such as a short period
of sexual maturity, multiple births, and short gestation interval,
are suitable for producing genetically modified disease models
(Tardif et al., 2003).

Majority of FAD-causing mutations reside in the PSEN1 gene
(Scearce-Levie et al., 2020). Typically, deletion mutations in
exon 9 (Crook et al., 1998; Prihar et al., 1999; Smith et al.,
2001; Dumanchin et al., 2006; Le Guennec et al., 2017) or
point mutations at the 3′ splice site (acceptor site) of exon 9
in the PSEN1 gene cause dominantly inherited FAD. The point
mutations instigate exon 9 elimination and S290C modification
in the corresponding mRNA at the junction sites of exons 8
and 10 via the conversion of alternative splicing (Hutton et al.,
1996; Kwok et al., 1997; Steiner et al., 1999; Brooks et al., 2003;
Blauwendraat et al., 2016). Thus, generation of a marmoset model
of AD is set out in which exon 9 of the PSEN1 gene product is
deleted using gene-editing technologies to produce AD marmoset
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models. Since TALEN exhibited high genome-editing efficacy,
generates few off-target effects, and produces little mosaicism, the
TALEN would be a suitable tool for producing exon 9 deletion in
the PSEN1 gene (Sato et al., 2016; Zhang et al., 2019). Although it
is a non-peer review data, the exon 9 deletion in the PSEN1 gene
that is an AD causing mutation has been successfully introduced
into non-human primates by TALEN (Sato et al., 2020).
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