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Recent Advances in the Modeling of the Impact of

Non-Linear Fiber Propagation Effects on

Uncompensated Coherent Transmission Systems
P. Poggiolini and Y. Jiang

(Tutorial Review)

Abstract—The last few years have seen a wealth of new non-
linear propagation modeling results appear in the literature,
especially regarding coherent systems operating in the absence of
optical dispersion compensation. One of the most prolific lines of
research, though not the only one, has been that of improvements
and upgrades to the GN-model, which have also led to the so-
called EGN-model. In addition, many specific aspects of non-
linear propagation, including format and symbol-rate dependence
of non-linearity generation, long-correlated nonlinear phase and
polarization noise, the effect of co-propagating amplified spon-
taneous emission noise and distributed amplification, and still
others, have been focused on and several new related results
have been published.

This has been a very positive trend but, from the viewpoint of
the end-users, such as system and network designers, this large
body of new knowledge may have been found difficult to sort out.
The question of when and whether more sophisticated models are
truly needed in any given system/network scenario, for a given
set of accuracy and computational complexity constraints, then
naturally arises. This paper tries to address this practical issue
and provide indications regarding possible effective solution to
varied end-users’ requirements.

Index Terms—coherent systems, uncompensated transmission,
non-linear effects, GN-model, EGN-model

I. INTRODUCTION

THE availability of effective models to assess the im-

pact of non-linear fiber propagation on coherent optical

communications systems is a key facilitating element in the

planning, design and management of such systems and of the

networks hosting them. For a model to be ‘effective’, it has to

fulfill essentially two requirements: acceptable computational

complexity and sufficient accuracy.

In recent years various models have been proposed in

an effort to comply with these requirements. An extensive

bibliography on modeling can be found in [1], [2]. Focusing

on uncompensated transmission (UT) systems (i.e., systems

not using optical chromatic dispersion compensation), among

the many proposals the Gaussian-Noise model (or GN-model)

has enjoyed widespread adoption and utilization in many

different contexts, ranging from system analysis and design,

to network optimization and control. On the other hand,

P. Poggiolini is with Politecnico di Torino, Dipartimento di Elettronica e
Telecomunicazioni (DET), Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
Website: www.optcom.polito.it, e-mail: pierluigi.poggiolini@polito.it. Y. Jiang
is with Dalian University, College of Information Engineering, Str. Xuefu
Dajie 10, 116622, Dalian, China, e-mail jiangyanchao@dlu.edu.cn .

recently, various limitations and shortcomings of the GN-

model have been pointed out. In particular, certain peculiar

‘specific aspects’ of non-linearity generation are not resolved

by the GN-model, or are not accurately accounted for. Among

them, format-dependence of non-linearity generation, long-

correlated nonlinear phase and polarization noise, non-linearity

mitigation by Symbol Rate Optimization (SRO), the impact of

co-propagating Amplified Spontaneous Emission (ASE) noise,

the depletion of signal power, some aspects of distributed

amplification, and yet others.

To address the GN-model limitations and better account for

the effects listed above, sophisticated new models have been

proposed. As a whole, a wealth of modeling results have been

published especially over the last three years (see all references

since 2013 to date, at the end of this paper) and this strong

trend is continuing.

Such large body of new knowledge on modeling is very

important and constitutes very substantial progress. At the

same time, from the viewpoint of the end-users, like for in-

stance system and network designers, the many new modeling

solutions may appear difficult to sort out. Also, the adoption of

more powerful models typically implies loss of ease of use and

greater computational complexity. This leads to the question

of when and whether more sophisticated models are truly

needed in any given system/network scenario, for any given

set of accuracy and computational complexity constraints.

This paper tries to address these general emerging issues

in a comprehensive way, from the viewpoint of the end-

users’ practical need for an effective solution to their specific

modeling requirements.

Our general approach was to first identify very broad,

encompassing sets of reference test system configurations.

We considered five modulation formats (PM-QPSK, and PM-

QAM with 8, 16, 32 and 64 constellation points), three fiber

types (SMF, PSCF and NZDSF), three channel spacings,

and both terrestrial-type and submarine-type span-lengths1. In

these reference configurations we assessed the effectiveness of

various modeling solutions, in terms of their complexity vs.

accuracy trade-off. In the same scenarios, or suitable subsets

thereof, the impact of the many previously listed ‘specific

aspects’ of non-linear propagation, was also appraised, and

possible modeling solutions discussed.

1All acronyms and definitions appearing in the paper are defined in a
comprehensive list reported at the end, as Appendix A. The less common
are also defined where they appear for the first time.
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To the best of our knowledge, this paper represents one of

the most extensive and encompassing such studies to date,

with one important limitation: we focused chiefly on the GN

and EGN-models, and recent evolutions and variants thereof.

The reason of this choice was the GN-model widespread use,

which definitely commanded an in-depth critical re-testing of

it, carried out to a substantially wider and deeper extent than

previously done. The EGN-model is a direct upgrade to the

GN-model but, besides this circumstance, it truly represents

very significant progress over the GN-model. So it seemed

appropriate to concentrate on it, too. At the end of the paper,

we briefly discuss other modeling approaches, which have

emerged and may be advantageous or better suited, depending

on specific modeling requirements.

In detail, Sect. II is devoted to the GN model. It contains a

brief note on its origins, and a summary of its main equations

and features for its various versions, including approximate

closed-form ones. Following, an in-depth accuracy test is

performed on the reference scenarios.

In Sect. III the enhanced GN model, or EGN model, is

dealt with, following a similar pattern as for the GN-model

in Sect. II. In addition, a specific subsection is devoted to the

dependence of non-linearity generation on modulation format

and symbol rate, a context in which, differently from the GN

model, the EGN model provides highly accurate results.

In Sect. IV, the topic of long-correlated phase and polar-

ization noise is confronted with. The actual impact of this

specific aspect of NLI generation on the reference scenarios

is assessed and its possible modeling solutions are discussed.

Sect. V examines two further NLI generation specific as-

pects which are often considered ‘second-order’ ones, namely

the impact of co-propagating ASE noise and signal power

depletion.

Sect. VI looks at modeling NLI in distributed-amplification

systems, an important emerging topic given the increasing

adoption of Raman amplifiers, either in hybrid solutions with

EDFAs, or alone.

Sect. VII discusses other modeling approaches than GN

or EGN-related ones, also in relation to the the issue of

specifically singling-out phase and polarization noise, and of

short links using very-high-cardinality formats.

Comments and conclusion follow.

II. THE GN-MODEL

A comprehensive tutorial presentation on the GN-model

can be found in [1]. For the readers’ convenience, here we

summarize some background information.

Regarding bibliography, a diagram of the main GN-model-

related papers till 2013 is shown in Fig. 1, with oldest at

the top and most recent at the bottom. The denomination

GN-model was first proposed in [9], but the first instance

of a similar model can be traced back to the 1994 ECOC

paper [3], shown at the top of the diagram. Note that the

general ideas underpinning the GN-model appear to have

emerged repeatedly and likely independently over the years,

at least until 2011. Afterwards, publications are all related and

extensively reference each other.

Fig. 1. Some of the main papers proposing GN-model-like approaches, till
2014, from oldest at the top to most recent at the bottom. For a more complete
bibliography, see [1], [2].

The GN-model ‘family’ of Fig. 1 is just one of many non-

linearity model families that have appeared throughout the

history of optical communications (see [2] for an extended

bibliography, and Sect. VII of this paper). Some of those many

models are more sophisticated and intrinsically more accurate

than the GN-model. What may tentatively justify the GN-

model current widespread adoption is that perhaps it strikes a

favorable balance between accuracy, complexity and ease of

use. Whether such balance is indeed favorable, is one of the

issues that this paper tries to address in the following.

In the general classification of models, the GN-model is a

first-order regular-perturbation model, based on the Manakov

non-PMD equation, that is Eq. (12) in [15] with the right-

hand side set to zero. What is distinctive about the GN-

model, and both represents an asset and a liability, is the

assumption that each WDM channel can be treated as Gaussian

noise (spectrally shaped as the signal). The justification of

this approximation is pictorially provided by Fig. 2. A 32-

GBaud 16QAM signal (left plot) is launched into SMF and,

assuming UT (uncompensated transmission, that is the absence

of optical chromatic dispersion compensation), already after

400 km the signal constellation has been transformed into the

right plot, whose statistical distribution is found to be very

close to Gaussian.

On the other hand, as it has been pointed out in [20], the

dispersed signal is only first-order Gaussian, whereas multiple

samples of the signal do not have a jointly-Gaussian distri-

bution. The GN-model neglects this aspect and assumes that

the signal is a jointly-Gaussian process. This approximation

is an asset because it makes the model very simple. It is a

liability because it causes some error, whose extent needs to

be assessed.

As a final introductory remark, it is useful to provide

some retrospective context. It was not until 2007-2008 that it

became clear that the ‘coherent revolution’ would definitely

take place. It then soon turned out that, surprisingly, the

optimum dispersion management for coherent systems was no

optical dispersion compensation, or UT. This was new and

uncharted territory. It could have been explored using split-

step simulations but, especially back then, with limited effec-
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Fig. 2. Left: a 32-GBaud 16QAM signal at launch (a small amount of noise
was added in the simulation to make the constellation points clearly visible).
Right: the same signal after simulated propagation through 400 km of SMF,
in linearity, without any dispersion compensation. Color coding is decreasing
probability going from red to blue.

tiveness. To make sense of this new situation, a practical and

manageable non-linearity estimation tool was urgently needed.

Its accuracy should be good, but perfection was not required

and could be traded off for effectiveness. It is this urgent need

that explains why the GN-model rapidly caught on, when

it was proposed for UT coherent optical systems in [8]-[9]

supported by substantial simulative validation. Incidentally,

the main reason why its earlier versions [3]-[5] had not been

equally successful in the community is that the GN-model

simply did not work well with the dispersion-managed IM/DD

systems of the time, being UT an essential pre-requisite for

the GN model to perform satisfactorily.

A. The non-linear OSNR

Even though the so-called non-linear OSNR is not strictly

a part of the GN-model, it is the key tool through which the

GN-model is put to use. The NL-OSNR is written as:

OSNRNL =
Pch

PASE + PNLI
(1)

where Pch is the power of the channel under test (CUT). PASE

is the power of ASE noise and PNLI is the power of non-

linearity ‘noise’, which we call non-linear-interference (NLI),

both assessed at the output of a band-pass filter matched to

the CUT signal. The assumption is that BER can be estimated

by replacing the conventional OSNR, in the customary BER

formulas for each format, with the NL-OSNR of Eq. (1). Note

that this assumption is an approximation. In Sects. IV and V-A

we will come back to this issue2.

To obtain the NL-OSNR, the quantity PNLI must be esti-

mated. This in turn requires the knowledge of GNLI (f), the

power spectral density (PSD) of NLI. From it, PNLI can be

found through a formula that takes into account the actual

shape of the Rx matched filter. We will not go into the details,

which can be found in [1], Sect. IV. However, if the CUT

makes use of pulses whose Fourier transform is root-raised-

cosine, and the roll-off is small, the following approximation

2Throughout the paper, we will in fact use the modified formula Eq. (22)
rather then Eq. (1), to estimate MR. The difference between the two formulas
is discussed in Sect. V-A and it would be premature to discuss it here. It is
anyway non-negligible only at low operating OSNRs, namely less than 10 dB.
Sect. IV looks instead at possible inaccuracy in BER estimation through
Eq. (1) related to non-linear phase and polarization noise.

Fig. 3. A possible instance of the WDM signal power spectrum GNLI(f),
which appears in the GN-model reference formula Eq. (3).

is quite accurate:

PNLI ≈

∫ Rs/2

−Rs/2

GNLI(f) df (2)

where f=0 coincides with the center frequency of the CUT.

In the following, we will always look at low-roll-off systems

(set to 0.05) and hence we will make use of Eq. (2).

From Eq. (2), it is clear that the primary quantity that the

GN-model must provide is therefore GNLI (f).

B. The GN-model equations

As discussed previously, by applying a first-order pertur-

bation approach towards resolving the Manakov (non-PMD)

equation, and using the signal-Gaussianity assumption, the

GN-model expression of GNLI (f), often called the GN-model

reference formula, or GNRF, can be found as:

GNLI(f) = 16
27

∞
∫

−∞

∞
∫

−∞

GWDM(f1) GWDM(f2) ·

· GWDM(f1 + f2 − f) |µ (f1, f2, f)|
2

df1df2

(3)

In the equation, GWDM(f) is the WDM signal spectrum,

such as shown for instance in Fig. 3. It is an always-positive

‘box-like’ function which poses no problem to possible numer-

ical integration. The factor |µ|2 is the non-degenerate-FWM

efficiency of the overall link, from input to output. As such,

it depends on the specific link layout. For a general analytical

expression of |µ|2 covering arbitrary links, see [2], Appendix

A.1.2. Here we focus on the case of all identical spans, which

we call ‘homogenous links’, with lumped amplification, under

the assumption of ‘transparency’, i.e., that each amplifier gain

exactly equals the loss of the preceding fiber span. In this case:

|µ (f1, f2, f)|
2

= γ2L2
eff

∣

∣

∣

1−e−2αLs ej4π2β2Ls(f1−f)(f2−f)

1−j2π2β2 α−1(f1−f)(f2−f)

∣

∣

∣

2

·

·
sin2(2Nsπ2(f1−f)(f2−f)β2Ls)

sin2(2π2(f1−f)(f2−f)β2Ls)
(4)

All symbol definitions, with indications of consistent units,

are reported in Appendix B.

The factor appearing within absolute value squared physi-

cally represents a single-span FWM efficiency. It is reasonably

well-behaved and it, too, does not pose major hurdles to

numerical integration. The last factor, in the form of the ratio

of two sin2 functions, accounts for the coherent interference

of NLI produced in different spans, occurring at the receiver.

It has sometimes been called the ‘array factor’ due to its

similarity with a quantity known by this name, arising in

phased-array antennas theory. Contrary to the single-span

FWM efficiency factor, the array factor is extremely hard to

integrate as it consists of very many sharp peaks (see [16],

App. B, Fig. 21). This problem was recognized early on and

approximations were sought to eliminate it.
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Fiber α, dB/km D, ps/(nm·km) γ, 1/(W·km)

PSCF 0.17 20.1 0.8

SMF 0.2 16.7 1.3

NZDSF 0.22 3.8 1.5

TABLE I
PARAMETERS OF THE THREE FIBER TYPES ADDRESSED IN THIS PAPER.

As discussed in [1], Sect. III-D, a drastic but justifiable

approximation leads to replacing the entire array factor with

the number of spans Ns. This approximation can also be

physically interpreted as assuming that the NLI produced in

different spans sums up at the Rx in power, or ‘incoherently’.

For this reason, the resulting model has been called the

‘incoherent GN-model’. For a uniform and transparent link,

with lumped amplification, the incoherent GN model equation

for GNLI (f) then becomes:

GNLI(f) = Nsγ
2L2

eff
16
27

∞
∫

−∞

∞
∫

−∞

GWDM(f1)GWDM(f2) ·

· GWDM(f1 + f2 − f)
∣

∣

∣

1−e−2αLs ej4π2β2Ls(f1−f)(f2−f)

1−j2π2β2 α−1(f1−f)(f2−f)

∣

∣

∣

2

df1df2

(5)

Clearly, with respect to the GN-model, the incoherent GN-

model makes use of this further, rather drastic, approxima-

tion. On the other hand, the gain in numerical computation

efficiency is very substantial.

C. Accuracy assessment

By ‘accuracy assessment’ we mean that we tried to ascertain

whether a given NLI model predicts with sufficient accuracy

the system results obtained by very accurate numerical inte-

gration of the Manakov (non-PMD) equation. Whether such

equation, under certain conditions, may be itself inadequate in

modeling the actual physical propagation of the signal, it is a

different matter that we consider outside of the scope of this

paper.

The testing of any non-linearity model should ideally be

as extensive and comprehensive as possible. In this paper we

tried to adhere to this principle within the obvious limitations

of computation time, given that highly-accurate full-band split-

step simulations are extremely time-consuming. To this effect

we decided to address 5 transmission formats (PM-QPSK and

PM-QAM with 8, 16, 32 and 64 points per polarization),

3 fibers (SMF, PSCF and NZDSF), three channel spacings

(33.6, 37.5 and 50 GHz), and two span lengths, one length

more representative of terrestrial systems (100 km) and one

of submarine systems (60 km). The parameters of the three

fiber types are shown3 in Table I.

Despite the stated purpose to cover as much of the optical

system ‘landscape’ as possible, some limitations had to be

imposed to avoid excessive system configuration numerosity.

Specifically, all channels in each given system configuration

3The chosen parameter for SMF are fairly standard. Regarding PSCF, there
are now commercial products that have lower non-linearity and lower loss than
indicated in Table I. However, we preferred to adopt more conservative values.
As for NZDSF, there are many different types. We could only realistically
look at one. We chose parameters that are similar to those of a Corning E-
LEAFTM. This does not imply any judgement of superiority of this fiber
vs. any other commercial NZDSF .

had the same symbol rate and the same format, in addition

to the same spacing. We call such WDM signal arrangement

‘uniform’. Also, in all system configurations the links were

homogenous and transparent. In addition, the vast majority of

our tests were conducted at 32 GBaud and with lumped am-

plification, though we did some targeted investigation of other

symbol rates and of distributed amplification (in Sect. III-B

and Sect. VI, respectively). Finally, in the 60 km span-length

case, we refrained from testing PM-QPSK, due to the exces-

sively large expected reach. Even with these restrictions, our

system overall ‘landscapes’ encompassed 81 different system

configurations, ranging from metropolitan-distance (200 km)

PM-64QAM over NZDSF, to transpacific PM-QPSK over

PSCF.

Another drastic limitation that needed to be imposed was on

the number of simulated channels. We settled for 15, which at

the time this study was performed was the maximum number

permitting the overall campaign to be carried out over the set

three-month target time-span, given the available computing

resources. Calculations were performed with the aid of GPUs.

As the key parameter for accuracy assessment of model

predictions, we decided to use the system maximum reach

(MR). MR is arguably the bottom-line fundamental system

performance indicator, in most practical situations. Therefore,

we deem this choice to be consistent with our goal, stated in

the introduction, to perform the study from the viewpoint of

the end-users’ practical need for an effective solution to their

modeling requirements.

The Rx DSP structure was chosen with non-linearity model-

testing in mind. We wanted the Rx to process the signal

without adding any perturbing effect and therefore CD com-

pensation and average polarization-frame recovery, as well as

timing recovery, were completely ideal and static. No adaptive

algorithm was used for these quantities. Note that we later

introduced NL-PN and NL-PolN mitigation algorithms (see

Sect. IV) for the specific purpose of discussing these non-

linear effects. However, neither these nor other mitigation

algorithms were used elsewhere.

MR evaluation required that a target4 BER be set. We de-

cided to impose BER=4 ·10−3, measured on the CUT, which

was the center channel of the WDM comb. BER was assessed

by direct error counting, based on a conventional minimum-

distance hard-decision strategy. The reference constellation for

decision was found as follows. The squared distance of each

received symbol was computed vs. an ideal constellation. The

sum of all squared distances, over the whole sequence of

transmitted symbols, was then minimized vs. a rigid rotation

and scaling of the ideal constellation. The best scaled and

rotated ideal constellation, i.e., the one with minimum overall

4Recently, various alternative quantities, such as mutual information (MI),
generalized mutual information (GMI) or available information rate (AIR),
have been proposed for optical system performance assessment. We have
considered using them, too. MR could be defined, for instance, as the
maximum distance still ensuring a certain target GMI (say, 3.4 bits/symbol
for a PM-QPSK system), rather than a target BER. However, in the context
and for the purpose of this paper, we deemed the traditional, widely-known
and well-understood concept of a hard-decision BER as appropriate. At the
same time, we did not see a clear specific advantage in using GMI (or the
other mentioned similar quantities), within the scope of this study.
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distance from the received signal, was then used as reference

for hard-decision. Note that the rotation estimated as described

also compensates for the static component of phase-rotation

induced by the Kerr non linearity.

The estimation of MR was performed as follows. For a given

launch power per channel, the simulation tool recorded the

number of spans at which the target BER was exceeded by the

CUT. A properly interpolated value of the reach in number of

spans was then found, obviously comprised between the last

span for which BER was below target, and that value plus

one. The simulator control algorithm operated by sweeping

the launch power per channel at 0.5 dB intervals, until a clear

maximum of reach vs. launch power was achieved. Parabolic

interpolation of the reach values vs. power was finally used to

refine the final estimate of the maximum, i.e., to find the MR.

The minimum length of each simulation was 80,000 sym-

bols, amounting to 320,000 bits for PM-QPSK, and up to

960,000 bits for PM-64QAM. Most simulations were repeated

for up to five times with different seeds. The seed governed

various random aspects of the simulation including, for each

channel, its data sequence, its launch polarization state and its

Tx laser phase-noise, whose linewidth was set to 100 kHz5.

It also governed a random time-delay uniformly distributed

between ±1 symbol, different for each channel. At least one

simulation per system configuration was run where polariza-

tion launch was perfectly aligned among channels, no delay

was applied (the symbol transitions where time-aligned at

launch) and no phase-noise was present. We call this the non-

randomized instance.

The different instances of the simulations were used to

check whether a different realization of the previously listed

random quantities altered significantly the MR measurement.

We found no instance in which the resulting MRs differed by

more than ±1.5% vs. the average of the set, including the non-

randomized instance. This means that launch delay, state of

polarization and Tx phase noise6 are largely inconsequential as

to NLI generation, at least in part due to the action of uncom-

pensated dispersion and to the fact that PM systems scramble

the signal polarization effectively. As the only exception to this

general result, we found a marginal sensitivity to polarization

launch for PM-QPSK. Its effect could be seen only when

NL-PN mitigation was applied without simultaneous NL-PolN

mitigation (see Sect. IV). Such mild dependence is possibly

due to the PM-QPSK format scrambling polarization only over

two of the three axes of the Stokes space. On the other hand,

5The linewidth of the Rx LO was set to zero to avoid any penalty from the
conversion of LO phase-noise into amplitude noise due to DSP electronic CD
compensation at the Rx [52]. This effect occurs independently of non-linearity
and would be present even in a perfectly linear link. Since our paper focuses
on the modeling of non-linearity, we consider this effect outside of the scope
of our study.

6At the Rx we performed completely ideal Tx phase-noise compensation.
This means that we did not use any phase-tracking algorithm or CPE. Rather,
we simply multiplied the received optical field times exp(−jφ(t)), where
φ(t) was the phase-noise process generated at the Tx. We did this because we
were not interested in studying the effectiveness of any actual CPE algorithm
in compensating for laser phase-noise, but rather in the effect of phase-noise
on NLI generation. It turned out that Tx phase noise, at the tested linewidth
of 100 kHz, did not detectably alter NLI. Note that NLI has a non-linear
phase-noise component, but such non-linear phase-noise component bears no
relation with Tx phase-noise. It is dealt with specifically in Sect. IV.

Fig. 4. Dashed lines: prediction of the system maximum reach based on
the incoherent GN-model, Eq. (5), vs. each system configuration raw spectral
efficiency, across the overall test ‘landscapes’, for span length 100 km (top)
and 60 km (bottom). Markers: simulation results at 33.6, 37.5 and 50 GHz
channel spacing.

the actual impact on MR was minimal (±2%), so we took the

average value of the different runs and refrained from further

addressing this aspect.

All simulations were run with ASE noise entirely added

at the Rx, with the exception of the simulations of Sect. V.

This was done because the NLI models we considered did not

include in-line ASE and we wanted to check their accuracy

in this precise condition. We then introduced in-line ASE in

Sect. V and separately discussed what discrepancy this did

induce on MR predictions.

D. Incoherent GN-model test results

The results of our test campaign for the incoherent GN-

model of Eq. (5) are shown in Fig. 4, for all the 45 and 36

systems configurations of the ‘landscape’ with 100 km spans

(top figure) and 60 km spans (bottom figure), respectively. The

dashed lines are the model predictions, whereas the markers

represent simulation results. Notice in the upper right corner

a reference ‘error bar’, or ‘whisker’, which amounts to ±5%
(or 10% total) relative deviation, anywhere over the figure.

The striking feature of these plots is the good model

accuracy above the 500 km MR gridline. Even below 500 km,

the error exceeds 10% only in Fig. 4 (top) over NZDSF, with
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PM-64QAM, at MR values of about 2 spans (200 km). Such

short-reach regime was never intended to be handled by the

GN-model, whose key premise is that the signal must have

been in a thoroughly dispersed state for most of its flight

along the fiber. Interestingly, the size of the errors appears

to depend essentially on reach, rather than format, fiber or

even span length. Above 500 km of MR, the model appears

to be quite reliable, independently of all other system aspects.

Below 500 km, the error grows gradually, which may make

the model still usable, depending on accuracy requirements.

It should be noted that the tests of Fig. 4 do not address

symbol rates lower than 32 GBaud, or dispersion lower than

3.8 ps/(nm·km). We will show in Sect. III that lower symbol

rates may increase the error substantially. A safe threshold

can be considered 25 GBaud. As for dispersion, we have

not addressed in this study lower values than 3.8 ps/(nm·km),

i.e., the NZDSF fiber of Table I. It should be conservatively

assumed that near zero-dispersion regimes cannot be dealt

with by the GN-model and should not be closely approached.

E. Closed-form incoherent GN-model test results

Though relatively simple, Eq. (5) still requires a double

numerical integration. However, with the assumption of a

uniform WDM signal, Eq. (5) can be integrated analytically

with some further minor approximations, to yield the following

closed-form expression for the overall PNLI ([16], App. G):

PNLI = Ns
16

27

γ2L2
effP 3

ch

π |β2|αR2
asinh

(

π2

2α
|β2|R

2
[

N2
ch

]

Rs
∆f

)

(6)

This remarkably simple closed-form formula reduces model

complexity to virtually zero. It also provides a clearly readable

dependence of NLI on the key system parameters. On the other

hand, after so many stages of cascaded approximations, it is

conceivable that its accuracy may have degraded, so that it

needs to be carefully assessed.

Fig. 5 is analogous to Fig. 4, with lines now representing

the MR estimate based on Eq. (6). Differences with Fig. 4 are

minimal in the 100 km span picture. In the 60 km span picture,

there is a small increase of error for the PSCF case. This has

no relation with the basic features of the GN-model. It is due

to one specific further approximation which is necessary to

obtain a closed-form solution of Eq. (5) (see [16], App. F).

Such approximation is valid provided that span loss is not

too small, with a threshold of about 10 dB. In the case of

60 km PSCF spans, loss is 10.2 dB and this is the cause of the

difference with respect to the numerical integration results of

Fig. 4 (bottom). Overall, the MR error is still quite contained

throughout the plot, including PSCF. Given its simplicity, the

effectiveness of Eq. (6) in modeling non-linearity for the broad

variety of systems of the test landscapes, spanning almost two

orders of magnitude in MR, as well as spectral efficiencies

from 2.5 to 11.5 bit/(s·Hz), is in our opinion quite remarkable.

As mentioned, Eq. (6) assumes uniform, transparent and

homogenous systems. These three assumptions can all be

removed while still obtaining an incoherent GN-model fully

closed-form formula (Eq. (41) in [1], Sect. VI-D), based on

the same type of approximations as those leading to Eq. (6).

Fig. 5. Thick dashed-dotted lines: prediction of the system maximum reach
based on the closed-form formula for the incoherent GN-model, Eq. (6),
vs. each system configuration raw spectral efficiency, across the overall test
‘landscapes’, for span length 100 km (top) and 60 km (bottom). Markers:
simulation results at 33.6, 37.5 and 50 GHz channel spacing.

Such general-purpose formula provides a fast-performance

assessment tool which can be very useful in a number of

practical applications. It is currently being used in the real-

time physical-layer-aware control-plane of the commercial

WDM networks of a major equipment vendor. We could

not realistically test here such formula, because meaningful

testing would require generating hundreds of non-uniform

and non-homogenous system test configurations. Extensive

experimental testing has however been done by the equipment

vendor prior to commercial deployment, partially reported on

in [17], [18]

It should nonetheless be remembered that these closed-form

formulas inherit all the limitations intrinsic to the incoherent

GN-model, listed at the end of Sect. II-D. In addition, as

mentioned, span loss must be greater than 10 dB. Also, they do

not account for the further effects discussed in Sects. IV-VI,

which may be significant in certain system configurations.

F. Comments on the incoherent GN-model

The performance of the incoherent GN model appears

remarkably good, despite the many approximations that it

involves. It has been argued that its accuracy is partly due to

a fortuitous error cancellation circumstance. Indeed, an error
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cancellation does occur (see [1] Sect. V-D), but it can also

be argued that this is not enough by itself to account for

the incoherent GN-model overall good predictive performance.

Recently, results obtained in the context of the more accurate

EGN-model have provided some further justification for it.

Specifically, in [23] it was analytically shown that the NLI

power from inter-channel effects, which tend to dominate

over single-channel effects as the number of channels grow,

asymptotically accumulates linearly in the number of spans.

This growth law is the same as that of incoherent accumu-

lation. Hence, the incoherent GN-model mimics the correct

asymptotic accumulation law of inter-channel NLI, and this

contributes substantially to its generally good MR prediction

performance.

G. Limitations of the GN-model

As explained in Sect. II-B, the incoherent GN-model is

obtained from Eq. (5) by replacing the ‘array factor’ with

simply Ns. It would then stand to reason that by rolling back

such approximation, i.e., by re-instating the array factor, more

accurate results would be found than those delivered by the

incoherent GN-model.

However, this is not the case. As it can be seen by com-

paring Fig. 4 with Fig. 6, the GN-model performs somewhat

worse than the incoherent GN-model. In particular, a fairly

uniform underestimation of MR can be seen, across all system

configurations7.

This counterintuitive behavior of the GN-model vs. the

incoherent GN-model was observed as early as 2011. It was

then soon realized that, in order to investigate it, a better

‘probe’ than MR was needed. The reason why MR, while

being the key system performance indicator, is not well suited

for fundamental modeling studies, is twofold. First, MR is

rather insensitive to NLI estimation errors. In particular, the

relation between a relative deviation in PNLI estimation (in

dB) and the resulting relative deviation in MR estimation (in

dB) is approximately given by (see [1], Sect. IV-A):

∆MRdB ≈ −
1

3
∆PNLI,dB (7)

This means that an error of 1 dB in the estimation of PNLI

leads to only 1/3 dB error in MR estimation, or just 8%.

This dampening of errors is good from a practical end-user

viewpoint, because it allows simple approximate models to

still deliver fairly good MR estimates. On the other hand,

it shows that MR is not a ‘sensitive enough’ probe for

fundamental modeling studies.

Besides this aspect, and perhaps more importantly, MR

of course provides model accuracy information at maximum

reach. It does not furnish any information as to the accuracy of

PNLI estimation along the link, which could instead provide

clues as to the inner workings and potential problems of a

model. A better probe for NLI modeling studies is the quantity

PNLI(ns) itself, that is the amount of NLI power present after

7It can be shown (see Sect. III) that the GN-model provides an upper bound

to NLI power for all PM-QAM systems (including PM-QPSK). In this sense
it is a ‘conservative’ model, as it cannot overestimate reach. On the other
hand, the results in Fig. 6 are clearly not entirely satisfactory.

Fig. 6. Dashed lines: prediction of the system maximum reach based on
the (coherent) GN-model, Eqs. (3)-(4), vs. each system configuration raw
spectral efficiency, across the overall test ‘landscapes’, for span length 100 km.
Markers: simulation results at 33.6, 37.5 and 50 GHz channel spacing.

each span. The earliest study using this quantity was [19],

where the normalization:

P̃NLI = PNLI

/

P 3
ch (8)

was used to make the quantity launch-power independent8.

The results are shown in Fig. 7. While there is substantial

convergence of the simulated result (red solid curve) towards

the GN-model curve (dashed line), a residual gap is present

even at 50 spans into the link. The incoherent GN-model

(dash-dotted line) has a better convergence, despite being a

more approximate model, for the reasons discussed earlier in

Sect. II-F.

Overall, Fig. 7 shows that the GN-model, either coherent

or incoherent, has fundamental limitations. Also, besides the

problems evidenced in Fig. 7, further limitations affect it. In

particular, the GN-model loses accuracy at low symbol rates,

as we shall see in Sect. III-B. It does not allow to assess some

finer effects of format-dependence on NLI (see next section).

8Both the GN and EGN models, as well as many other models, agree
that the amount of NLI power on the CUT grows as the launch power per
channel, cube. Hence, dividing the NLI power by P 3

ch
provides a power-

independent estimate of the system non-linearity. This has been verified by
computer simulations, and is accurate at least as long as the signal itself does
not get depleted by conversion into NLI. See Sect. V for a discussion on
signal depletion.
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Fig. 7. Accumulated NLI power vs. the number of spans traveled into the

link. The quantity P̃NLI is normalized vs. launch power as shown in Eq. 8.

Fig. 8. The main EGN-model-related papers, from oldest at the top to most
recent at the bottom.

It does not handle well NL-PN mitigation (see Sect. IV-A). A

more sophisticated model would clearly be desirable for high-

accuracy investigations and perhaps to support research into

non-conventional systems.

III. THE EGN-MODEL

Most of the listed limitations of the GN-model originate

from the signal Gaussianity assumption. Removing such as-

sumption then appears to be a necessary step to take. This was

first proposed in [20]. Put it simply, the signal Gaussianity

assumption implies that only the 2nd moment of the launched

signal be taken into account in the model calculations. Remov-

ing the Gaussianity assumption requires taking into account

the 4th moment of the signal, for XPM and FWM, and both

the 4th and 6th signal moments for SPM.

In [20] such extension was performed for the XPM contri-

bution to NLI. In [21] it was done for the FWM and SPM

contributions. These two papers contain the complete initial

derivation of the so-called enhanced GN-model, or EGN-

model. Several EGN-model follow-up and related publications

have since appeared. A diagram of the main EGN-model-

related papers is shown in Fig. 8.

The EGN model formulas are much more complex than

those of the GN-model. To the best of our knowledge, the

most complete and encompassing version of such formulas is

currently reported in [2]. A somewhat less general version can

be found in [21]. We will refrain from providing them here in

full, but we highlight one specific feature of theirs.

As was the case for the GN-model, the primary goal of

the EGN-model is that of providing an expression for the NLI

PSD, GNLI(f). According to the EGN-model, it can be written

as:

GEGN
NLI (f) = GGN

NLI (f) − Gcorr
NLI (f) (9)

where GGN
NLI (f) is the result of the GN-model calculation

and Gcorr
NLI (f) is a ‘correction’ term. The latter is intentionally

presented with a minus sign, to stress the fact that the EGN-

model correction typically decreases NLI. In fact, it always

decreases NLI if PM-QAM signals are assumed9. Interestingly,

if the signal constellation is Gaussian, then Gcorr
NLI (f) = 0, that

is, GEGN
NLI (f) = GGN

NLI (f).
In the next section we are going to extensively assess the

merit of the EGN-model as far as accuracy is concerned. A

discussion of its accuracy vs. complexity balance is dealt with

later.

A. EGN-model test results

The testing methodology was the same as used for the GN-

model, over the same ‘landscapes’ of system configurations.

The results are shown in Fig. 9. It is immediately seen that an

excellent correspondence between EGN-model predictions and

simulation results is found throughout the entire landscapes.

The agreement is truly remarkable, given that the calculations

involved in obtaining the two MR estimates, the simulative

and the EGN one, are completely different in formulas and

algorithms, and involve several trillions of FLOPS each. Yet,

their final output agrees to within less than 3%, from 200 km

to nearly 16,000.

A very good performance is now also obtained in repro-

ducing the much more sensitive P̃NLI indicator. Fig. 10 is

analogous to Fig. 7, with the addition of the EGN estimation

(green dashed curve) and the removal of the incoherent GN-

model curve for clarity. From 2 to 50 spans the coincidence

between the simulated and EGN-estimated P̃NLI is almost

flawless10. Many more similar detailed comparisons between

simulation and EGN estimates of P̃NLI can be found in [23],

all indicating excellent agreement.

B. Low symbol rates

We mentioned earlier that one of the weaknesses of the

GN-model is its poor performance at low symbol rates. The

circumstance can be intuitively explained based on the fact

that the GN-model requires a thoroughly dispersed signal

9It is possible to conceive signal constellations for which Gcorr

NLI
(f) actually

increases NLI vs. the GN-model contribution alone. This occurs when the so-
called ‘excess kurtosis’ [28] of the constellation is greater than zero. However,
to the best of our knowledge, no constellation in practical use has this feature.

10The slight divergence at span 1 can tentatively be explained as follows.

The EGN model provides a value of P̃NLI which is the average over all

sampling instants, i.e., a stationarized estimate of P̃NLI. Dispersion does
induce NLI first-order stationarization rather quickly, but not after just one
span. So the simulative estimate (which is performed at one sample per
symbol) may still be affected by non-stationary features. We propose this
explanation as tentative, leaving its confirmation for future investigation.
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Fig. 9. Solid lines: prediction of the system maximum reach based on the
EGN-model, vs. each system configuration raw spectral efficiency, across the
overall test ‘landscapes’, for span length 100 km (top) and 60 km (bottom).
Markers: simulation results at 33.6, 37.5 and 50 GHz channel spacing.

to work properly11, which is a necessary (though not suf-

ficient) condition for the signal Gaussianity approximation

to work well-enough. The EGN-model does away with the

signal Gaussianity approximation and it could therefore be

conjectured to perform well even at low symbol rates, over

little dispersed signals.

Before testing such conjecture, we would like to point

out that accuracy at low symbol rates may seem essentially

an academic topic of no practical importance since, if any-

thing, symbol rates are steadily going up in all segments of

optical communications. In particular, following recent press

releases and announcements by all major vendors, the current

32 GBaud industry standard appears to be destined to be soon

superseded by new systems operating at up to 64 GBaud, or

even higher.

However, somewhat unexpectedly, higher symbol rates ap-

pear to carry some intrinsic non-linearity penalty vs. lower

rates. Such penalty may be substantial in certain scenarios.

This has led to the proposal of generating new higher-symbol-

11Reducing the symbol rate quickly sterilizes the effect of dispersion
and invalidates this fundamental premise. As an example, the symbols of a
2.5 GBaud signal are so little dispersed that they can still be received at about
1000 km of SMF without any optical or electrical dispersion compensation,
whereas at the same distance the symbols of a 32 GBaud signal have spread
out over more than 100 symbol times.

Fig. 10. Accumulated NLI power vs. the number of spans traveled into the

link. The quantity P̃NLI is normalized vs. launch power as shown in Eq. 8.

rate systems as a collection of DAC-generated electrical sub-

carriers each operating at the symbol-rate which is optimum

from the viewpoint of NLI mitigation. This concept has

been dubbed ‘SRO’, for ‘symbol rate optimization’. For a

comprehensive introduction and bibliography on SRO see [29].

Note that in this paper we are not interested in SRO.

Rather, we want to probe the overall envelope of validity of

certain non-linearity models. On the other hand, we deemed

it important to point out that being able to accurately model

NLI at low symbol rates is not just of academic interest, but

there seems to be a possibly significant practical side to it.

To carry out the study, the per-channel symbol rate Rs was

varied while all other key system features were kept fixed.

Specifically, we imposed:

1) the total optical bandwidth B
WDM

2) the relative channel spacing δf = ∆f
Rs

The above two fixed parameters determine the system spectral

efficiency and the total (raw) bit rate, which are, respectively:

S =
bs

δf
(10)

Rb,tot = BWDM · S (11)

where bs is the number of bits per symbol. We assumed:

B
WDM

= 504 GHz, ρ = 0.05, δf =1.05 and PM-QPSK trans-

mission (bs = 4). The resulting spectral efficiency and total

raw bit rates were S = 3.81 b/(s·Hz) and Rb,tot = 1.92 Tb/s.

As mentioned, Rs is a free parameter, with the obvious

constraint that it had to split the WDM bandwidth into a

number of channels, given by:

Nch =
BWDM

(1 + ρ) Rs
(12)

which had to be an integer. Note that if the value

Rs = 32 GBaud is chosen, then Eq (12) yields exactly Nch=15

channels and, in that case, the system set-up coincides with

the one used in the ‘landscapes’, such as Fig. 9, to obtain the

data points for PM-QPSK at 33.6 GHz channel spacing.

At the link output we measured the NLI power PNLI falling

on the center channel of the WDM comb (the CUT). However,

simply comparing PNLI across systems that use different sym-

bol rates does not immediately provide information regarding
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Fig. 11. Normalized average NLI noise power spectral density

G̃NLI over the center channel, vs. the number of channels in a fixed
total WDM bandwidth of 504 GHz. PM-QPSK modulation, quasi-
Nyquist: roll-off 0.05, spacing 1.05 times the symbol rate. NLI is
measured at 50 spans of SMF (top) or 30 spans of NZDSF (bottom).
Lines: calculations using the models indicated in figure. Markers:
simulations.

their relative MR performance. We therefore derived from

PNLI a suitably normalized quantity which we called G̃NLI:

G̃NLI =
PNLI

Rs G3
ch

(13)

where Gch is the launched signal PSD measured at the raised-

cosine spectrum flat-top of anyone of the launched channels,

assuming as usual a uniform WDM signal. G̃NLI can be

viewed as the average value of GNLI(f) impinging on the

CUT, normalized versus the cube of Gch.

The key feature of G̃NLI is the following: the same value

of G̃NLI among systems using different symbol rates means

that they can potentially achieve the same maximum reach.

This makes G̃NLI very convenient for performance comparison

across different symbol rates. Fig. 11 plots the simulation

results for G̃NLI as markers, for SMF, measured at 50 spans

(top), and for NZDSF, measured at 30 spans (bottom), vs.

the number of channels in which the fixed BWDM optical

bandwidth is split up. The results clearly show that G̃NLI is

not constant and actually has a minimum at about 2.4 GBaud

and 6.4 GBaud, respectively. For an approximate analytical

formula of the optimum symbol rate, see [29].

Regarding the GN-models (coherent and incoherent), they

both fail to capture the decrease of G̃NLI as the symbol rate

goes down. Over SMF (Fig. 11 (top)), the incoherent GN-

model (dashed line) does run quite close to the simulations in

the 32-to-96 GBaud range. However, it is almost 2 dB above

the G̃NLI level at the optimum symbol rate. The GN-model

is even further away. The EGN-model instead follows the

simulations quite closely throughout the tested interval, with

both fibers. It predicts very accurately the optimum symbol

rate and the related G̃NLI value.

We have added a further curve, that of the EGN model with-

out the FWM contribution, because FWM is often neglected

in modeling papers, on the basis that it is negligible at high

symbol rates. The plots show that indeed neglecting FWM

returns accurate-enough results at high symbol rates, but that

such approximation cannot be trusted at low symbol rates. In

particular, neglecting FWM does not produce any minimum

of G̃NLI, since the no-FWM curve steadily wanes while going

to lower and lower symbol rates.

More plots similar to Fig. 11, as well as actual MR simula-

tive tests verifying the NLI mitigation obtained by optimizing

the symbol rate, can be found in [29]. In conclusion, the EGN-

model appears to be quite reliable at any symbol rate, even

very low ones for which the signal is essentially undispersed.

It can therefore be used to study multi-subcarrier system and

in particular it can be used for SRO assessment.

As a final comment on this topic, it is interesting to see in

Fig. 11 that the GN-model accuracy improves again towards

ultra-low symbol rates (less than 1 GBaud), typical of OFDM

systems. The reason is that OFDM signals tend to intrinsically

take on a jointly-Gaussian overall distribution, as they are split

into a very large number of independent subcarriers.

C. EGN-model closed-form approximations

The excellent accuracy of the EGN model, verified in the

previous sections, is obtained at the cost of a much greater an-

alytical and computational complexity than the GN-model12. It

would therefore be important that some simplified and ideally

closed-form approximations be available, which still retained

the key features of the EGN model. This would be particularly

helpful for instance for complex network optimization studies,

where many model evaluations are needed to achieve even a

single result.

In [23] a first step towards this goal was taken, by iden-

tifying a closed-form approximation to the correction term

Gcorr
NLI (f) in Eq. (9), valid asymptotically in the number of

spans traversed. That approximation however did not address

SPM and was limited to uniform WDM signals. In [2], SPM

12The EGN model contains the GN-model term and a ‘correction term’
(see Eq. (9)). The correction term actually consists of 8 distinct terms, 1 for
SPM, 1 for XPM and 6 for FWM. Each of these terms consists of one or more
quadruple integrals. While it can be shown that each of these many quadruple
integrals can always be rearranged so that its complexity is that of a double
integral, the overall correction term Gcorr

NLI
(f) is undoubtedly challenging to

evaluate, and by far the leading source of the computational complexity of
the EGN-model.
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format Φ
PM-BPSK 1

PM-QPSK 1

PM-8QAM 2/3

PM-16QAM 17/25

PM-32QAM 69/100

PM-64QAM 13/21

PM-∞-QAM 3/5

PM-Gaussian 0

TABLE II
VALUES OF THE Φ PARAMETER.

was factored in and a more general form capable of handling

arbitrary WDM combs was provided:

Gcorr
NLI(f) ≈ G−→

corr
NLI =

40

81

γ2PmNsL̄
2
eff

Rmπβ2L̄s
·

·







Nch
∑

n=1
n 6=m

Φn
P 2

n

Rn |fn − fm|
+ Φm

2P 2
m

R2
m






(14)

The arrow underneath G−→
corr
NLI

is a reminder of the asymptotic

behavior of the approximation. The symbols Pn, Rn and fn

are the launch power, symbol rate and center frequency of the

n-th channel. The m-th channel is the CUT. The constant Φn

depends on the modulation format of the channel. Its values

for some of the main transmission formats are shown in Table

II.

Notice that G−→
corr
NLI does not depend on frequency. It is

assumed to be (approximately) constant over the band [fm −
Rs/2, fm + Rs/2], where fm is the CUT center frequency,

and zero outside of such band. Also, the formula assumes a

homogenous and transparent link with lumped amplification.

However, if the spans are not the same length, the average

span length L̄s and the average span effective length L̄eff

can be used. This further approximation works well for links

having all individual span lengths within ±15% of the average.

If the WDM signal is uniform, and the CUT is the center

channel, then the formula can be simplified (without further

approximations) as:

G−→
corr
NLI =

80

81
Φ

γ2L̄2
effP 3

chNs

R2∆fπβ2L̄s

[

HN([Nch − 1] /2) +
∆f

R

]

(15)

where HN stands for harmonic number series, defined as:

HN(N) =
∑N

n=1 (1/n).

We tested the simple formula above in the usual landscape

of system configurations. We approximated Eq. (9) as:

GEGN
NLI (f) ≈ GGN

NLI (f) − G−→
corr
NLI (16)

to assess the NLI PSD for the CUT and otherwise proceeded as

before. The MR results are shown in Fig. 12. Remarkably, the

accuracy is excellent throughout the plots and no substantial

difference can be appreciated with Fig. 9. The single exception

is a very small error in the case of PM-64QAM over NZDSF

in Fig. 12 (top). The reason is that, as stated, Eq. (14) is

asymptotically accurate in the number of spans. At a MR of

only 2 spans, convergence is not fully achieved.

Fig. 12. Dashed-dotted lines: prediction of the system maximum reach based
on the asymptotic EGN-model of Eqs. (15)-(16), vs. each system configuration
raw spectral efficiency, across the overall test ‘landscapes’, for span length
100 km (top) and 60 km (bottom). Markers: simulation results at 33.6, 37.5
and 50 GHz channel spacing.

To gain insight into the typical behavior of the asymptotic

approximation vs. the number of spans, we focus on the case

of PM-QPSK over SMF, with 33.6 GHz spacing, SMF, 100 km

span-length, which corresponds to one of the landscape con-

figuration. We plot for this system P̃NLI(ns), in Fig. 13. The

asymptotic approximation is poor for the first few spans, but

it then rather quickly joins up with the simulated and EGN-

model generated curves. Note that in plots like Fig. 13, drawn

for higher-order formats, the spread among curves actually

reduces, even at low span numbers.

The results of Fig. 12 show the potential of the asymptotic

approximation to Gcorr
NLI (f). One important caveat must how-

ever be mentioned. Eq. (9) has two terms on its right hand

side which may actually be comparable in absolute value,

but are opposite in sign. When subtracting two quantities, the

relative error on the result can exceed the relative error on

either operand. In particular, we found that if the GN-model

contribution GGN
NLI (f) and the EGN correction Gcorr

NLI (f) are

independently approximated, then large deviations from the

correct result can be incurred. Our strong recommendation is

that, when using the asymptotic closed-form approximations of

Gcorr
NLI (f), the GN-model term GGN

NLI (f) be not approximated,

or otherwise a very accurate well-validated approximation be
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Fig. 13. Accumulated NLI power vs. the number of spans traveled into the

link. The quantity P̃NLI is normalized vs. launch power as shown in Eq. 8.

used. Note in particular that it is inappropriate to replace

GGN
NLI (f) with the incoherent GN-model approximation dis-

cussed in Sect. II-B. We leave the interesting topic of a

reliable overall closed-form approximation of Eq. (9) for future

investigation. Throughout this section, when approximating

Eq. (9) with Eq. (16), we have always evaluated accurately

the GN-model contribution GGN
NLI (f).

As shown in Fig. 12, Eqs. (15)-(16) are extremely effective

at 32 GBaud. The question then arises whether they retain their

effectiveness at lower symbol rates. Fig. 14 represents the same

quantity G̃NLI shown in Fig. 11, vs. the number of channels

into which a given optical bandwidth BWDM is cut up. In the

top plot, BWDM=504 GHz and 32 GBaud corresponds to 15

channels. In the bottom plot, BWDM=2.52 THz and 32 GBaud

corresponds to 75 channels. The top plot shows that the

asymptotic approximation Eqs. (15)-(16) matches the EGN-

model quite well down to about 5 GBaud (100 Channels).

The bottom plot shows a somewhat less accurate match, but

still much better than either the GN-model, or the EGN-model

neglecting FWM. As a whole, the error is rather contained

down to the optimum symbol rate, which is about 2.4 GBaud

in both plots. Note however that the asymptotic approximation

curve does not show a minimum and therefore, to perform

optimization studies, the full EGN-model must be used.

In conclusion, the closed-form correction-term asymptotic

approximation Eqs. (14)-(15) greatly reduces the EGN-model

complexity and is very reliable at 32 GBaud or higher. For

lower symbol rates, it loses accuracy very gradually. However,

it cannot be used for detailed NLI-vs.-symbol-rate optimiza-

tion studies.

IV. NON-LINEAR PHASE AND POLARIZATION NOISE

Recent investigation has shown that NLI in UT systems

consists of contributions that are qualitatively different [20],

[22], [24], [26], [30]-[36]. Specifically, NLI can be roughly

subdivided into:

• short-correlated quasi-circular noise

• long-correlated non-linear phase-noise (NL-PN)

• long-correlated non-linear polarization-noise (NL-PolN)

Fig. 14. Normalized average NLI noise power spectral density G̃NLI

over the center channel, vs. the number of channels Nch, for a fixed
total WDM bandwidth of 504 GHz (top) and 2.52 THz (bottom). PM-
QPSK modulation, quasi-Nyquist: roll-off 0.05, spacing 1.05 times
the symbol rate. NLI is measured at 50 spans of SMF. Lines: calcu-
lations using the models indicated in figure. The label ‘asym. app.’
is the asymptotic EGN-model approximation of Eqs. (15)-(16).

The first paper, to the best of our knowledge, pointing

out the long-correlated nature of NL-PN in UT systems,

and estimating the time-length of such correlation, was [30].

Lately, experimental confirmations of the theoretical findings

on NL-PN have been published, too [34], [35].

The important aspect about the said diversity among non-

linear noise types is that significant portions of NL-PN and

NL-PolN can ideally be removed by the Rx DSP, because of

their long correlation, so that their system impact is substan-

tially mitigated13. On the other hand, the EGN-model in its

present form does not discriminate among NLI types. As a

result, the EGN-model may end up overestimating the impact

of NLI on a given system because it cannot account for the

mitigation of NL-PN and NL-PolN.

In this section we investigate this topic, again from a

very practical end-user stand-point. Our goal is to estimate

the amount of inaccuracy possibly stemming from assessing

MR based on the EGN-model, in the presence of NL-PN

13Note that some amount of long-correlated NL-PN mitigation takes place
in virtually all coherent systems, even unintededly, because all receivers must
have some type of CPE circuitry for carrier recovery and laser phase noise
suppression.
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Fig. 15. Received constellations of the landscape configurations using SMF
with span length 100 km and channel spacing 37.5 GHz, each at the respective
maximum reach. ASE noise is not present, NLI only is shown.

and NL-PolN mitigation. We will show that in our reference

‘landscape’ configurations this error is modest. At any rate, we

propose an effective correction that appears to mostly remove

such inaccuracy and also provide some intuitive insight on the

effect.

A. Non-linear phase-noise

To get some visual appreciation of the presence and typical

strength of NL-PN, we show in Fig. 15 the constellations

of the ‘landscape’ systems operating over SMF, with span

length 100 km and channel spacing 37.5 GHz. ASE noise is

not present, to allow appreciating the NLI disturbance alone.

Tx laser phase noise is also turned off. The constellations

are shown at their respective maximum reach, with optimum

launch power. Some amount of NL-PN is clearly present and

it is therefore important to assess the impact of its possible

mitigation on the accuracy of the EGN-model MR prediction.

In particular, it would be very useful to upper-bound such

impact. This requires creating a situation of maximum dis-

agreement between the EGN-model-predicted PNLI and the

actual residual PNLI after NL-PN mitigation. Ideally, this

could be obtained by removing all of the long-correlated NL-

PN. To try to approach this situation as much as possible,

we used a CPE algorithm called ‘PN-receiver’, which was

proposed in [36]. It is an ‘idealized’ algorithm because it

assumes perfect knowledge of past sent symbols. To verify

its effectiveness, we tested it on a case-study, selected among

the ‘landscape’ configurations. Note that we applied the PN-

receiver separately and independently on the two signal polar-

izations. This will have important implications in Sect. IV-B,

to which we refer the reader for the details.

We chose PM-16QAM over PSCF with 60 km spans and

37.5 GHz channel spacing. The choice of 60 km rather

than 100 km was made because a greater amount of NL-

PN is produced as the span-length is shortened [22], [24]. In

Fig. 16 (a) we show the received constellation at MR (about

5500 km). Again, substantial NL-PN appears to be present.

To gather insight into its correlation features, we used the

same procedure employed in [32] for QPSK, adapted here to

Fig. 16. Constellations of PM-16QAM over PSCF with 60 km spans and
37.5 GHz channel spacing, 15 channels, at maximum reach (about 5500 km).
ASE noise and Tx laser phase-noise turned off. Non-linear phase-noise
mitigation through the PN-receiver turned off (a) and on (b).

Fig. 17. Visual depiction of the constellation processing performed on
16QAM to analyze non-linear phase noise. (a) is the constellation generated
by the received noisy symbols yn. Each of the noisy constellation dots in (a)
is rotated along the circle it lies on, till all dots merge onto three (b). The
three dots are further merged onto one by translation and scaling, (c) and (d).
The resulting single dot is analyzed along its tangent ϕ̂ and radial ρ̂ axes.

16QAM. The procedure is pictorially explained in Fig. 17 (see

also caption). Formally, if xk and yk are complex numbers

representing the k-th ideal transmitted symbol and the k-th

noisy received symbol, respectively, then the single dot of

Fig. 17 (d) is the result of the accumulation of the rotated and

scaled noisy symbols qn, which are found as qn = yn/xn.

Note that whatever long-correlated NL-PN is present on the

received constellation Fig. 16 (a), it lies tangent to the circles

shown in Fig. 17 (a). After the overall processing of Fig. 17,

such phase-noise turns out to be aligned with the ϕ̂ direction in

Fig. 17 (d). Mathematically, the overall non-linear noise (not

just long-correlated NL-PN) affecting the k-th symbol along

the ϕ̂ direction, that we call nϕ̂, can be isolated by simply

taking the imaginary part of qn, that is: nϕ̂ = imag{qn}. To

find out whether it contains a long-correlated component, its

autocovariance needs to be computed. For the study-case of

Fig. 16 (a), the result is depicted in Fig. 18 (top).

The plot shows in striking clarity that two very distinct
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Fig. 18. Autocovariance of the tangent noise component of the single
aggregated constellation point from Fig. 17 (d). The amplitude of the curves is
normalized vs. the maximum for nϕ̂. Top: without the PN-receiver. Bottom:
with and without the PN-receiver. Measurement taken on simulations at
maximum reach (5500 km).

kinds of noise coexist within nϕ̂. One is delta-autocorrelated

and represents almost 80% of the variance of nϕ̂. The other

kind represents slightly over 20% of the variance and produces

the wide pedestal that is visible in the autocovariance. Such

pedestal takes about 400 symbols to decay by 50% vs. its

value near the origin, showing indeed a very long correlation

on the symbol-time scale.

We then used the PN-receiver on the signal of Fig. 16 (a),

obtaining a new set of received symbols which we call ỹn.

To such symbols we applied the same processing of Fig. 17

and then calculated again the autocovariance of the tangent

noise nϕ̂. The result is the blue solid line in Fig. 18 (bottom).

The long-correlated pedestal has completely disappeared. The

delta-correlated component is instead unchanged and its height

is identical to that of the curve without PN-receiver. Note

that the small undershoot near the delta is an artifact of the

PN-receiver. Its impact is anyway negligible. Note also that,

although difficult to appreciate on the scale of the figure, the

numerical delta is indeed only one-symbol-time wide.

From the above case-study, it appears that the PN-receiver

does indeed remove all the long-correlated component of the

tangent noise, at least in this study case. To complete the

analysis, it is however necessary to also look at the radial noise

component in Fig. 17 (d), nρ̂. Its autocovariance is shown in

Fig. 19. Its remarkable feature is that the radial non-linear

Fig. 19. Comparison of the autocovariance of the radial and tangent noise
component of the single aggregated constellation point from Fig. 17 (d). The
amplitude of the curves is normalized vs. the maximum for nϕ̂. Measurement
taken at maximum reach (5500 km).

noise has no long-correlated component (the PN-receiver is

not applied here and it would not affect nρ̂ anyway). Note

also the important aspect that the delta-correlated component

of nρ̂ has the same height as the delta-correlated component

of nϕ̂. This means that after removing long-correlated NL-PN,

the noise is essentially ‘circularized’. Not shown for brevity,

nϕ̂ and nρ̂ have completely zero cross-correlation, both with

and without the PN-receiver. This allows to conclude that, at

least to within a good approximation, the PN-receiver removes

all long-correlated NL-PN, leaving circular, delta-correlated

noise on the constellations points. This now fully justifies the

appearance of the simulated constellation of Fig. 16 (b).

Further interesting evidence is provided by looking at the

variance of nϕ̂ and nρ̂, which we call σ2
ϕ̂ and σ2

ρ̂, respectively.

If σ2
ϕ̂ > σ2

ρ̂, then the ‘phase-noise-like’ elliptic look of

the dots in Fig. 16 (a) or in Fig. 17 is found. Instead, if

σ2
ϕ̂ = σ2

ρ̂, a circular ‘dot’ would be seen, as in Fig. 16 (b).

In Fig. 20 we plot the ratio in dB of σ2
ϕ̂ to σ2

ρ̂, which we

call ‘non-circularity index’. The curve without the PN-receiver

shows large amounts of non-circularity throughout the link,

albeit gradually declining vs. distance. With the PN-receiver

the curve shows virtually perfect circularity from 1000 km

onward, and already at 240 km (4 spans) the index has fallen

below 0.5 dB.

We can now look at the EGN-model MR predictions over

the test ‘landscapes’, as compared to simulations run with

the PN-receiver. The results are shown in Fig. 21. The plots

indicate that the PN-receiver improves performance across the

board, as it should be expected, with two notable exceptions.

First, PM-QPSK remains essentially unchanged. The reason

is that PM-QPSK generates very little phase-noise [20] and

hence, even though the little phase-noise that is there is

removed, the impact of such removal is minimal. Secondly, the

effect of the PN-receiver appears somewhat weaker at very low

values of MR. There, it appears that NL-PN cannot entirely be

removed. The reason is that for the PN-receiver to remove it,

sufficiently long correlation must have developed. However, as

pointed out in [30], correlation depends, among other things,

on accumulated dispersion. In shorter-haul systems the signal
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Fig. 20. Non-linear noise ‘non-circularity index’, defined as the ratio of
the variances of non-linear noise in the tangent and radial directions to the
processed constellation point shown in Fig. 17 (d). Circles: with the PN-
receiver. Stars: without.

does not experience enough of it.

For instance, PM-64QAM over NZDSF, 100-km spans and

37.5 or 33.6 GHz spacing, shows less improvement than other

systems. In that case we found that the autocovariance of NL-

PN decays by 50% in only 3 symbols, as opposed to the 400

symbols of the case-study analyzed in Fig. 18 (a). Whether a

more sophisticated algorithm than the PN-receiver could better

remove NL-PN there too, is beyond the scope of this paper and

remains, to the best of our knowledge, an open question. From

our data, it appears that a threshold of accumulated dispersion,

for NL-PN to be long-correlated enough to be essentially

completely removed by the PN-receiver, is about 3000 ps/nm.

However, we expect that this number may vary based on

operating OSNR and perhaps other system parameters.

Overall, not counting PM-QPSK, in Fig. 21 the average

EGN-model MR prediction error is -5.5% in the 100 km-

spans landscape and -7.6% in the 60 km-spans landscape.

These errors appear relatively contained. They may or may

not be problematic depending on the type of application. At

any rate, we propose a phenomenological correction that adds

no complexity to the EGN-model and works very well in

removing the MR underestimation error shown in Fig. 21.

Note that there are specific modeling approaches that allow to

accurately single-out long-correlated NL-PN (see Sect. VII) at

the cost of added complexity.

The correction consists of calculating NLI with the EGN-

model as if the transmitted signal was PM-QPSK, whatever

the actual PM-QAM format is. The rationale behind this

correction hinges on a recently-made observation: once long-

correlated NL-PN has been removed, all QAM formats tend

to produce the same amount of NLI as PM-QPSK14.

The results are shown in Fig. 22. The mean of the absolute

errors drops to only 1.8% and 1.1%, in the 100 km and

60 km span-length landscapes, respectively. In fact, the match

14The observation and analysis of this interesting phenomenon has been
reported in a specifically devoted paper [37], which also includes an exper-
imental confirmation. The paper has been accepted for oral presentation at
ECOC 2016. We refer the readers to that paper for further details.

Fig. 21. Solid lines: prediction of the system maximum reach based on the
EGN-model, vs. each system configuration raw spectral efficiency, across the
overall test ‘landscapes’, for span length 100 km (top) and 60 km (bottom).
Circles: simulation results with the PN-receiver (i.e., with non-linear phase
noise mitigation) at 33.6, 37.5 and 50 GHz channel spacing.

with simulations is essentially perfect all over the plots,

with the only exception of the shortest-reach systems over

NZDSF, where some modest error is visible. The reason of

the slight mismatch is likely due to the already discussed short

correlation of NL-PN in those systems (a few symbol times),

so short that even the idealized PN-receiver cannot completely

remove NL-PN. It may be conjectured that if complete NL-PN

removal could be performed, then the slight mismatch would

disappear. However, we leave this topic for possible future

investigation.

In summary, long-correlated NL-PN is present in UT sys-

tems, and the EGN model actually accounts for its variance

quite accurately. However, part or all of this kind of non-

linear noise is removed in practical systems by the Rx CPE

stage. This may cause the EGN-model-based MR prediction

to somewhat overestimate the overall NLI variance, and hence

underestimate the actual MR. The amount of underestimation

is however rather contained. Assuming an idealized CPE such

as the PN-receiver, the MR underestimation is about 5% to

8% over the test landscapes. In addition, the easy phenomeno-

logical correction of assuming PM-QPSK in the EGN-model

calculations for all formats appears to yield very accurate MR

predictions, provided that NL-PN is long-correlated enough for
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Fig. 22. Dash-dotted lines: prediction of the system maximum reach, based
on the EGN-model calculated as if PM-QPSK was transmitted in all cases,
vs. each system configuration raw spectral efficiency, across the overall test
‘landscapes’, for span length 100 km (top) and 60 km (bottom). Circles:
simulation results with the PN-receiver (i.e., with non-linear phase noise
mitigation) at 33.6, 37.5 and 50 GHz channel spacing.

the Rx CPE to effectively remove it. This required about 3000

ps/nm of accumulated dispersion to occur in our landscape

system configurations, when using the idealized PN-Rx.

B. Non-linear polarization-noise

As mentioned, NL-PN is not the only long-correlated type

of NLI which is present in WDM systems. Another type of

NLI that has a long-correlated component is NL-PolN.

While NL-PN mitigation is commonplace (even unintededly

because, as mentioned, all Rx’s must have some type of CPE),

to the best of our knowledge NL-PolN mitigation is not widely

adopted. However, especially following the publication of [24],

awareness of the potential removal of such NLI component has

been spreading.

NL-PolN is a well-known component of Kerr-generated

non-linear effects. A powerful mathematical description, in

terms of the precession of each channel’s Stokes vector about

the resultant Stokes vector of all WDM channels together, was

proposed in [38]. Such description directly implies that NL-

PolN can be written as a time-varying stochastic Jones matrix

of birefringence:

UPolN =

[

ejΦ cos Γ −e−jΨ sin Γ
ejΨ sin Γ e−jΦ cos Γ

]

(17)

where the phases Φ, Ψ and Γ are random processes. These

random processes have a long-correlated component which

can be potentially mitigated. Under the reasonable assumption

that, even at maximum reach, the angle Γ is small, we can

approximate Eq. (17) and write:
[

sx̂,Rx

sŷ,Rx

]

= UPolN ·

[

sx̂

sŷ

]

≈

[

sx̂ · ejΦ − sŷ · Γ · e−jΨ

sŷ · e−jΦ + sx̂ · Γ · ejΨ

]

(18)

where [sx̂ sŷ]
T

is the Jones vector of the transmitted signal

and [sx̂,Rx sŷ,Rx]
T

is the Jones vector of the received signal.

Apart from Γ being small, Eq. (18) makes various other

simplifying assumptions. One is that all conventional (linear)

birefringence has been compensated for, so that UPolN is

only due to non-linear effects. Secondly, we do not explicitly

indicate any other non-linear disturbance, or ASE noise either,

for the sake of singling out NL-PolN. Finally, without any

loss of generality, we assume that in the absence of any

disturbance, the two independent signal constellations are

mapped exactly onto the x̂ and ŷ polarization.

If we concentrate on the x̂ constellation alone, from Eq. (18)

we can write:

sx̂,Rx ≈ sx̂ · ejΦ − sŷ · Γ · e−jΨ (19)

which shows that the received x̂ constellation is corrupted by

two distinct effects: one is a phase rotation, by an angle Φ,

the other is crosstalk from the ŷ constellation, whose strength

is proportional to (−Γ) and is phase-rotated by (−Ψ).
So, based on Eq. (19), part of NL-PolN actually shows up

as NL-PN, through Φ. The obvious question is then: how does

Φ relate to the NL-PN dealt with in detail in Sect. IV-A? The

answer is that NL-PN has a ‘scalar’ phase component, that

we call Θ, and a NL-PolN-related component Φ. While Θ
rotates both the x̂ and ŷ constellations in the same direction,

Φ rotates them in opposite directions (see the sign inversion

on Φ in Eq. (18)). In other words, the total NL-PN for the x̂
constellation is (Θ + Φ) whereas the total NL-PN for the ŷ
constellation is (Θ−Φ). In Sect. IV-A, as mentioned there, two

PN-receivers were actually used, one per constellation, which

operated independently. This way, the respective total NL-PN

was mitigated on each constellation, including the NL-PolN-

related phase-noise component Φ. Note that if a single PN-

receiver were used on the NL-PN that is in common between

the two constellations, then only the scalar Θ component

would be mitigated.

If we assume that two independent PN-receivers are used,

so that both long-correlated Θ and Φ phase-noise contributions

are removed, then what remains of NL-PolN is crosstalk from

the other polarization, and Eq. (18) can be simplified as:
[

sx̂,Rx

sŷ,Rx

]

≈

[

sx̂ + ρx̂ · sŷ

sŷ + ρŷ · sx̂

]

(20)

where for simplicity we have omitted to indicate any short-

correlated residual of Φ.
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In the formula, ρx̂ and ρŷ are two complex random pro-

cesses which may have in general a long-correlated component

too, which therefore could be mitigated as well. Similar to

the case of NL-PN, the EGN-model correctly estimates the

variance of the polarization crosstalk stemming from ρx̂ and

ρŷ . However, if such crosstalk is mitigated, then the EGN-

model-based estimate of MR may turn out to be pessimistic.

As in Sect. IV-A, we are interested in maximizing such dis-

crepancy, i.e., we would like to remove as much polarization

crosstalk as possible, to approximately upper bound the error

of the EGN-model-based MR estimate in the presence of

mitigation. Therefore, we used an idealized mitigator, that we

called PolN-Rx, in analogy with the PN-Rx. Similar to the

PN-Rx, the idealization consists of assuming full knowledge

of the transmitted sequences, sx̂ and sŷ, for the purpose of

estimating ρx̂ and ρŷ . Specifically, we computed:

[

ρ̃x̂

ρ̃ŷ

]

=

[

(sx̂,Rx − sx̂)/sŷ

(sŷ,Rx − sŷ)/sx̂

]

(21)

The resulting ρ̃x̂ and ρ̃ŷ were filtered through a finite-

length integrator, whose integration time was optimized for

each simulation, to obtain estimates of the long-correlated

components of ρx̂ and ρŷ. We then used such estimates to

subtract polarization crosstalk from the signal before final

decision and error counting. Note that ρ̃x̂ and ρ̃ŷ contain

various disturbances, such as short-correlated NLI, that were

omitted above for notational simplicity. Such disturbances

should ideally be averaged out by the PolN-Rx.

To show the further gain obtained through the PolN-Rx,

when the PN-Rx is also present, we use as model prediction

baselines those of Fig. 22, which provide an almost flawless

estimate of MR in the presence of the PN-Rx alone. The

simulation were then run with the PN-Rx applied first, in-

dependently on each polarization, followed by the PolN-Rx.

The results are shown in Fig. 23. The mean MR gain between

the simulations of Fig. 22, which only have the PN-Rx, to

the simulations of Fig. 23, is 2.2% and 3.5%, for the 100 km

and 60 km spans landscapes, respectively. Now some gain

is obtained also for PM-QPSK, which had gained essentially

nothing from the PN-Rx. Overall, however, it appears that

polarization crosstalk is a relatively modest effect, at least in

the considered system configurations.

In summary, assuming that long-correlated polarization-

related non-linear phase-noise has been removed at the CPE

stage (the Φ component discussed above), then the mitigation

of non-linear polarization crosstalk seems to provide only

minor MR gains15. From a practical end users’ viewpoint, it

appears that the EGN-model calculated as if the transmitted

format was PM-QPSK still provides a rather good MR esti-

mate across the landscape system configurations, even when

both the PN-Rx and the PolN-Rx are turned on (Fig. 23).

15As a note of caution, this field is currently very active and it may be
that more advanced PolN-Rx or even combined PN-PolN-Rx (such as [53])
emerge in the near future, whose effectiveness may be better than that of
those used here. So we recommend the readers to monitor the literature for
possible developments.

Fig. 23. Dash-dotted lines: prediction of the system maximum reach based
on the EGN-model calculated as if PM-QPSK was transmitted in all cases,
vs. each system configuration raw spectral efficiency, across the overall test
‘landscapes’, for span length 100 km (top) and 60 km (bottom). Diamonds:
simulation results with both the PN-Rx and the PolN-Rx (i.e., with non-linear
phase-noise and non-linear polarization crosstalk mitigation) at 33.6, 37.5 and
50 GHz channel spacing.

V. CO-PROPAGATING ASE NOISE AND SIGNAL DEPLETION

As mentioned earlier, we decided to carry out most of the

investigation reported in this paper with ASE noise injected all

at the receiver. This was done on purpose, to allow focusing

on NLI produced by the signal only. However, in the practical

perspective that we declaredly took in this study, the impact

on modeling effectiveness of co-propagating ASE noise must

be assessed.

Recently, various papers have looked at the modeling im-

plications of co-propagating ASE noise, among which [39]

and [27]. Both papers claim that co-propagating ASE starts

becoming a factor when the target OSNR at the Rx goes

below approximately 9-10 dB. This would make its impact on

NLI generation modest for PM-8QAM and perhaps negligible

for all higher-order formats. However, PM-QPSK, PS-QPSK

(i.e., polarization-switched QPSK), PM-BPSK, as well as other

more exotic formats that can operate at lower OSNRs, could

actually be substantially impacted.

On the other hand, the industry trend seems to be that lower-

OSNR systems than PM-QPSK occupy a very limited niche.

This is because, in new plants, PM-QPSK already allows to

cover essentially all conceivable planetary distances, even at
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Fig. 24. Red solid lines: prediction of the system maximum reach based
on the EGN-model, vs. each system configuration raw spectral efficiency,
over SMF with 100 km span length. Red circles: simulation results at
37.5 GHz channel spacing, without co-propagating ASE. Magenta stars: same
simulations, with co-propagating ASE.

full C or C+L band utilization and quasi-Nyquist spacing. We

therefore did not feel it necessary to extend our test landscapes

to lower-OSNR systems than PM-QPSK.

In Fig. 24 we show the effect of turning on and off co-

propagating ASE, on a subset of the landscape SMF test

cases. Clearly, there is no visible impact on PM-64QAM, PM-

32QAM or PM-16QAM. Starting with PM-8QAM, some very

minor effect is present. With PM-QPSK, the MR decrease

nears 4%, at a target OSNR of about 8.5 dB. These data points

agree with the results in [39], [27], confirming that above

10 dB of target OSNR the effect can essentially be neglected.

Depending on accuracy requirements and target OSNR, it

may have to be considered for PM-QPSK, although for many

applications this will probably not be necessary. Hence we

consider this a relatively minor modeling problem.

In case a correction was absolutely required, a very ac-

curate but complex model, which extends the EGN model

to co-propagating ASE, is provided in [27]. Otherwise, [39]

proposed an approximate formula (Eq. (7) there), which ap-

pears to work well in standard PM-QPSK systems. Despite

being simpler, such formula still requires evaluating the EGN-

model at each span in the link, which sets its complexity

at a very high level. More drastic semi-phenomenological

approximations are likely to be possible, which are left for

future investigation.

A. Signal depletion

Signal power depletion occurs because NLI is created at the

expense of the signal. In fact, if a transparent link is assumed,

then whatever optical power is converted to NLI by the Kerr

effect, it must come from the signal itself.

The large majority of NLI models is based on perturbation

approaches that neglect signal depletion. Both the GN and

EGN models neglect it, too. Therefore, when signal depletion

is substantial, then a discrepancy may develop between model-

based MR predictions and actual system performance.

Similar to what happens with co-propagating ASE, the

impact of this phenomenon chiefly depends on the system

required target OSNR at the Rx. If the target OSNR is large,

then forcedly little NLI can be present at the Rx. This in turn

means that signal depletion must be modest. For low target

OSNRs, however, signal depletion may be non-negligible.

To get a feeling of what the actual extent of power depletion

could be, let us consider a system with a target OSNR of

10 dB. We first remark that at maximum-reach the ASE noise

power is approximately twice the NLI power (see [40] Sect. 3,

or [16] Sect XII-a). Therefore, the signal-to-NLI-noise ratio

would be 14.8 dB or, equivalently, NLI would be about 3.4%

of the signal power. Assuming a uniform WDM signal, this

would result in a signal depletion of approximately the same

extent, i.e., 3.4%. At this level, the impact of signal depletion

on performance would be marginal. However, upward of this

level, it would start having a discernible effect. Therefore,

10 dB target OSNR appears to be a practical threshold for

signal depletion needing to be relevant. Note that PM-QPSK

routinely operates below 10 dB. Also, powerful FECs or more

sensitive formats can actually bring the target OSNR much

lower. Therefore, at least for these systems, signal depletion

should be accounted for in MR predictions.

Fortunately, there is an easy way to account for signal

depletion which, although approximate, appears to work well,

at least for uniform WDM signals. It consists of intuitively

modifying Eq. (1) as follows:

OSNRNL =
Pch − PNLI

PASE + PNLI
(22)

as proposed for instance in [5] (the factor ‘c’ there) and

recently in [39].

In Fig. 25 we provide some visual appreciation of the

difference in MR prediction obtained using either Eq. (1) (solid

lines) or Eq. (22) (dashed lines), in the same exact system

conditions of Fig. 9 (top). Note that, as already mentioned in

footnote 2, we actually used Eq. (22) for all analytical MR

predictions calculated in this paper, including Fig. 9, instead

of Eq. (1). As pointed out when commenting Fig. 9, the

predictions of Eq. (22) very accurately agree with simulations,

for all system configurations. Eq. (1) instead overestimates

MR. Quantitatively, the difference amounts to about 4.4%

overestimation for PM-QPSK, whose target OSNR is 8.5 dB,

whereas it is only 1.8% for PM-8QAM whose target OSNR is

12.5 dB. It gets below 1% for PM-16QAM and is negligible

for the other formats whose target OSNR is even higher. These

results appear to confirm the practical threshold of 10 dB target

OSNR, for signal depletion to start impacting MR predictions

in a non-negligible way.

In summary, Eq. (22) appears to be a simple and effec-

tive correction for signal depletion, at least in the uniform

WDM signal configurations tested here. If a very diverse and

irregularly spaced WDM comb was used, however, Eq. (22)

might lose accuracy. Also, here we tested it down to 8.5 dB

OSNR. In [39] some data points are available down to 5 dB,

still confirming its effectiveness. If operating at even lower

OSNRs, Eq. (22) should be re-tested, to make sure that its

validity extends there, too.



118

Fig. 25. Lines: prediction of the system maximum reach based on the EGN-
model, vs. each system configuration raw spectral efficiency, across the overall
test ‘landscape’, for span length 100 km. Solid lines: OSNRNL computed as
in Eq. (1). Dashed lines: OSNRNL computed as in Eq. (22). Star markers:
simulation results at 33.6, 37.5 and 50 GHz channel spacing.

VI. NLI MODELING AND DISTRIBUTED AMPLIFICATION

The use of Raman amplification to enhance system per-

formance has been gaining increasingly wider adoption. The

currently most popular choice consists of using hybrid Ra-

man/EDFA amplification (HRE). In particular, for various

reasons, Raman is mostly used with counter-propagating

pumping. Typically, Raman supplies between 40% and 75%

of the needed gain. In this section we concentrate first on this

more common solution, and then propose a few comments

on other distributed-amplification solutions (co-propagating

pumping and all-Raman).

HRE is very beneficial as it decreases the equivalent noise

figure of the span. Values around 0 dB are possible, for HREs

whose EDFA segment has a NF on the order of 4.5 to 5 dB.

On the other hand, as the signal power starts to grow back in

the last section of the span due to Raman amplification, then

some amount of NLI is produced in that section too, which

otherwise would contribute no NLI.

Various papers, among which [41], [42], have been pub-

lished on the topic of finding the best balance of Raman-

to-EDFA gain in various system configurations to maximize

performance, taking into account NLI as well. In this paper,

however, we focus instead on modeling issues, that is, whether

the use of HREs needs special NLI modeling solutions or not.

Fig. 26 shows the normalized power-profile in a span of

100 km of SMF, with total fiber loss 20 dB, with and

without Raman amplification, assuming a Raman amplifier

gain of 14 dB. Despite the fact that 70% of the span loss is

compensated for by the Raman amplifier, the figure strongly

suggests that the non-linearity produced at the end of the span

may be relatively modest, since NLI depends on signal power

cube. Note that there are subtleties, since the strong NLI of the

first kilometers of the span then exits the fiber attenuated by

almost 6 dB, whereas the weaker NLI of the Raman-amplified

last kilometers does not actually undergo any attenuation. At

any rate, we tested exactly the configuration of Fig. 26, and the

MR results are shown in Fig. 27 for a subset of the landscape

Fig. 26. Normalized signal power-profile in a SMF span of 100 km, with
total fiber loss 20 dB, with and without Raman amplification, assuming a
Raman amplifier gain of 14 dB.

Fig. 27. Red solid lines: prediction of the system maximum reach based on
the EGN-model, vs. each system configuration raw spectral efficiency, over
SMF with 100 km span length. Red circles: simulation results at 37.5 GHz
channel spacing, with 20 dB lumped gain. Magenta stars: same simulations,
with with 14 dB Raman gain (counter-propagating pump) and 6 dB lumped
gain. The equivalent noise figure (5 dB) was kept the same in the two cases.

systems over SMF.

Since we were specifically interested in gauging the impact

of HRE on non-linearity generation, in the simulations we

artificially kept the equivalent span NF at the EDFA value

(5 dB), both in the case of EDFA-only amplification (red

circles) and in the case of HRE (magenta stars). This means

that if no extra NLI was produced by the HRE, the same MR

would be observed. The clear indication of the figure is that

some extra NLI is indeed produced, but the impact is modest,

resulting in an average MR decrease of of 3.0%. Notably, all

formats appear to be impacted rather uniformly, with minor

differences probably attributable to Monte-Carlo uncertainties.

Not shown, we plotted a similar graph where the simulations

were all run with the PN-Rx turned on. In that case, the

average MR loss was less, about 1.5%, which seems to suggest

that the excess NLI due to HRE has a larger long-correlated

NL-PN content. The fact that distributed-amplification has a

greater NL-PN content is in fact in agreement with the results

of several papers, among which [24], [33].

In our opinion, these results strongly suggest the MR

estimation error incurred by simply neglecting the effect of



119

HRE is small and acceptable in those system configurations

similar to the ones examined here, which appear to be the

typically deployed ones. As a practical criterion for neglecting

the excess NLI due to HRE, we suggest that the signal must

be at least 6 dB lower at the output of a fiber span than at

its input or, equivalently, that the Raman section of the HRE

leaves at least 6 dB of uncompensated span loss.

However, this criterion is certainly not met in the case of

all-Raman amplified systems, where the power at the output of

the fiber span can actually be greater than at its input, as some

extra gain must be provided to handle the loss of the repeater

components (splices, pump couplers, gain-flattening filters,

etc.). Assuming lumped amplification in NLI prediction, for an

all-Raman system, would lead to substantial error. Similarly,

in systems using co-propagating Raman pumping, the power

profile is completely different from the usual decreasing ex-

ponential. Assuming the latter for the former would, here too,

cause substantial NLI prediction errors.

For these scenarios, both the GN-model and the EGN-model

provide the mathematical tools to handle the situation. In par-

ticular, in both models the power-profile induced by distributed

amplification affects only the factor |µ|2 which, as commented

in Sect. II-B, is the non-degenerate-FWM efficiency of the

overall link, from input to output. For the special case of

backward-pumped Raman amplification, under the assumption

of an undepleted pump, an analytical closed-form of | µ |2

is available ([16], Eq. (10)). Otherwise, |µ|2 must be found

starting from its most general expression, which is reported

as Eq. (A8) in Chap. 7 of [2]. Incidentally, the mentioned

HRE optimization papers [41], [42] actually resorted to such

|µ|2 expressions accounting for the Raman-gain profile. This

of course adds more complexity to the calculations in the GN

and especially in the EGN-model. However, at present, to the

best of our knowledge, no satisfactory simpler approaches are

available.

VII. OTHER NLI MODELS

As mentioned in Sect. I, many non-linear propagation

modeling approaches have been proposed over the years. The

most popular models belong to the class of the so-called

regular perturbation (RP) models [45] and in particular their

first-order version. Higher-order versions are possible but to

the purpose of obtaining system-impact models, first-order

versions have typically been used, with few exceptions, such

as [43].

Perturbation models based on truncated Volterra Series

(VS) have been proposed too, such as [44]. Interestingly,

in [45] it was shown that RP models and the VS models

are equivalent, so we call them RP-VS models. Other first-

order perturbation models, which can be re-conduced or bear

substantial similarities to the RP-VS models, were proposed in

[46], [47], [48]. As mentioned earlier, the GN end EGN models

are first-order RP-VS models, as well. Further perturbation

models have also been proposed, such as the logarithmic

perturbation (LP) model [49], a combination of the RP and

LP model [50], the frequency-resolved LP (FRLP) model [30],

[31], the enhanced RP model [12], and still others. We refer

the reader to [2] for extended referencing and some broader

classification based on the approximations taken.

Many of the above models are similar or nearly equivalent,

with some notable exceptions. For instance, LP-models appear

to be especially well-suited to study NL-PN. Another example

is a time-domain RP model derived from [48] and [20], which

allows to single-out and assess the amount of long-correlated

NL-PN and NL-PolN, according to [51]. In particular, [51]

carries out an interesting study of short-haul systems (100-

200 km) with very large constellations, employing a com-

bination of a model equivalent to the EGN-model, and the

time-domain model mentioned above to correct for possible

long-correlated NL-PN and NL-PolN mitigation.

This paper could not possibly test all these different model-

ing solutions, besides the GN and EGN models. We however

advise the reader of the existence of these many other models

and it is our auspice that other researcher may carry out

selected comparisons of model effectiveness, whose results

would certainly benefit the community.

VIII. COMMENTS AND CONCLUSION

In this paper we have considered recent advances in the

modeling of uncompensated coherent optical systems, focus-

ing on the GN and EGN classes of models. Within these two

classes, we have looked at several versions, using different

approximations, including semi- or fully-closed-form variants.

From our investigation, it is apparent that there is no ‘perfect’

or ‘all-encompassing’ solution to NLI modeling in modern un-

compensated coherent systems, at least within the considered

GN and EGN model classes.

There is however a wide gamut of different answers to

specific modeling needs. What is clear is that there are trade-

offs, as it could be expected, between accuracy, ease of

use and computational complexity. Nonetheless, our results

show that several effective solutions are currently available,

which represent favorable compromises among the mentioned

features.

Which one to pick really depends on the needs of the user.

The incoherent GN-model is hard to beat for real-time physical

layer awareness and preliminary performance assessments. On

the other hand, if very accurate research-oriented investiga-

tions need to be carried out, then the full EGN-model, possibly

supplemented by other models that allow to precisely assess

long-correlated non-linear phase and polarization-noise, such

as it was done in [51], must be used.

Several sweet-spot compromises are available in between,

whose merits we have tried to highlight. The EGN-model

calculated assuming PM-QPSK transmission for all formats,

is an effective way of approximately accounting for long-

correlated NL-PN mitigation. If computed with the aid of the

asymptotic closed-form Eq. (14), it can be a high-accuracy

and limited-complexity solution for a wide variety of practical

scenarios.

Operation at very low OSNRs, where co-propagating ASE

becomes a factor, or with all-Raman amplification, remain

tough challenges to date, with modeling solutions only par-

tially satisfactory, due to their complexity.
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Research is still ongoing. Judging form the great progress

made in just the last few years, it is likely that more effective

models will emerge in the near future.
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APPENDIX A

LIST OF ACRONYMS

AGN additive Gaussian noise

AWGN additive white Gaussian noise

ASE amplified spontaneous-emission noise

BER bit error-rate

BP backward propagation

CD chromatic dispersion

CPE carrier-phase estimation

CUT channel under test

DAC digital to analog converter

DM dispersion-managed

DSP digital signal processing

EDFA erbium-doped fiber amplifier

EGN-model enhanced Gaussian-noise model

FEC forward error-correcting code

FLOP floating point operation

FWM four-wave mixing

GN-model Gaussian-noise model

GNRF GN-model reference formula

GPU graphics processing unit

IM/DD intensity-modulation direct-detection

LOGO local-optimization, global optimization

ME Manakov equation

MR maximum reach

NL non-linear

NLI non-linear interference

NL-PN non-linear phase-noise

NL-PolN non-linear polarization-noise

NZDSF non-zero dispersion-shifted fiber

OFDM orthogonal frequency-division multiplexing

OSNR optical signal-to-noise ratio

PM polarization-multiplexed

PMD polarization-mode dispersion

PSCF pure-silica-core fiber

PSD power spectral density

QAM quadrature amplitude modulation

QPSK quadrature phase-shift keying

Rx receiver

SCI self-channel interference

SE spectral efficiency

SMF standard single-mode fiber

SPM self phase modulation

SRO symbol-rate optimization

Tx transmitter

UT uncompensated transmission, meaning that

no optical chromatic dispersion compensation is

present in the link

VS Volterra series

WDM wavelength-division multiplexing

XPM cross phase modulation

APPENDIX B

LIST OF SYMBOLS AND DEFINITIONS

• z: the longitudinal spatial coordinate, along the link (km).

• α: fiber field loss coefficient (km−1), such that the signal

power is attenuated as exp(−2αz).
• β2: dispersion coefficient in (ps2·km−1)

• γ: no-birefringence fiber Kerr non-linearity coeffi-

cient (W−1· km−1). The denomination ‘no-birefringence’

means that the 8/9 coefficient which dampens the

strength of the Kerr non-linearity, stemming from the

birefringence-induced polarization wandering along the

fiber (see [38]), is not incorporated into γ but rather is

included in the coefficients appearing in the GNLI(f)
analytical expressions. Put it differently, in this paper

γ = k0n2/Aeff , where k0 is the light wavenumber, n2 is

the non-linear index and Aeff is the fiber effective area.

• Ls: span length (km).

• Leff : span effective length (km), defined as

[1 − exp(−2αLs)] /(2α).
• Ns: total number of spans in a link

• ∆f : channel spacing, in the case of a uniform WDM

signal (THz)

• GWDM(f): PSD of the overall WDM transmitted signal

(W/THz)

• GNLI(f): PSD of the non-linear interference noise

(W/THz)

• Pch: the launch power per channel (W)

• Rs: symbol rate (TBaud)

• homogeneous link: a transmission link where all spans are

identical (same fiber type, span length and amplification

set-up).

• transparent link: a transmission link where amplification

exactly compensates for fiber loss, span by span.

• uniform WDM signal: all channels of the WDM comb

have the same symbol rate, the same format, the same

spacing and the same launch power.
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