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Abstract Glioblastoma is the most common and most

aggressive primary brain tumor. Despite maximum treat-

ment, patients only have a median survival time of

15 months, because of the tumor’s resistance to current

therapeutic approaches. Thus far, methylation of the

O6-methylguanine-DNA methyltransferase (MGMT) pro-

moter has been the only confirmed molecular predictive

factor in glioblastoma. Novel ‘‘genome-wide’’ techniques

have identified additional important molecular alterations as

mutations in isocitrate dehydrogenase 1 (IDH1) and its

prognostic importance. This review summarizes findings and

techniques of genetic, epigenetic, transcriptional, and pro-

teomic studies of glioblastoma. It provides the clinician with

an up-to-date overview of current identified molecular altera-

tions that should ultimately lead to new therapeutic targets

and more individualized treatment approaches in glioblastoma.

Keywords Glioblastoma � Molecular � (Epi)genetic �
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Introduction

Glioblastoma, or astrocytoma WHO grade IV, is the most

fatal primary brain cancer found in humans. Most glio-

blastomas manifest rapidly de novo, without recognizable

precursor lesions. These primary glioblastomas present in

elderly patients with a brief clinical history and are char-

acterized by rapid progression and short survival time.

A small group of young patients has a history of epilepsy

caused by low-grade gliomas which, within years, progress

to secondary glioblastoma. A secondary glioblastoma

occurs in *5% of glioblastoma patients, and can only be

diagnosed with clinical (neuroimaging) or histological

evidence of its evolution from a less malignant glioma [1].

The standard treatment for newly diagnosed glioblas-

toma patients is gross total removal, if possible, followed

by the combination of the alkylating cytostatic drug tem-

ozolomide (TMZ) and RT [2, 3]. Median overall survival is

15 months only [3], although for a rare group of long-term

survivors (2–5%) survival time exceeds 3 years [4, 5].

Differences between patients and their performance status

lead to variation in survival, which can be calculated for

individual patients by means of nomograms [6]. A better

prognosis is associated with younger age, better perfor-

mance status, and more extensive surgical resection

followed by TMZ and RT [6]. In contrast with many other

malignancies, however, there have only been small

improvements in the glioblastoma patient’s prognosis over

recent decades. Nevertheless, understanding of the molec-

ular alterations in signaling pathways and the consequent

pathology in glioblastoma has greatly increased in recent

years and is beginning to match that of other types of

cancer.

This review provides an overview of the molecular

alterations in glioblastoma (Fig. 1) [7–9]. They are
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grouped according to the different mechanisms that

underlie transformation to the neoplastic phenotype, start-

ing from (epi)genetic, via transcriptional, to proteomic

studies of glioblastoma. The important molecular altera-

tions, which have been identified by novel ‘‘genome-wide’’

techniques, are discussed in relation to gliomagenesis and

glioma progression and in relation to clinical subgroups

and prognosis. Finally, we discuss the application of these

new insights in the light of future prospects for experi-

mental and clinical practice in neuro-oncology.

Genomic and genetic variants

Genomic instability

Genomic instability is one of the enabling characteristics of

cancer [10]. It can be broadly differentiated into chromo-

some instability (CIN) and microsatellite instability (MIN

or MSI). Cytogenetic studies of glioblastoma have shown

that most tumors are near-diploid, and that numerical and

structural chromosomal abnormalities are common [11].

MSI is rarely observed for non-inherited newly diagnosed

glioblastomas, because of inactivation of mismatch repair

(MMR) genes [12]. However, in recurrent glioblastomas

after TMZ treatment, inactivating mutations have been

observed in MSH6, one of the MMR genes. MSH6 muta-

tions have not been associated with detectable MSI as

manifested by changes in the length of microsatellite

sequences, but with a hypermutator phenotype [7, 9, 13].

As genetic alterations and genomic instability are closely

linked with each other, it is an interesting finding that in

glioblastoma, tumors from short-term survivors have more

genetic alterations than long-term survivors’ tumors [5].

Chromosomal alterations

Techniques

Evolving techniques have identified increasingly more

detailed chromosomal alterations.

Karyograms [11], fluorescent in situ hybridization

(FISH) analyses [14], and comparative genomic hybrid-

ization (CGH) [15, 16] have preceded whole-genome

single nucleotide polymorphism (SNP)-based arrays. Whereas

karyograms are able to reveal only gross chromosomal

changes, SNP-based arrays have the ability to detect copy

number alterations (CNAs), varying from complete

Fig. 1 Simplified

representation and integration of

three commonly altered

pathways involved in

glioblastoma. Upper panel, the

growth factor receptor/PI3K/

AKT pathway. The lower
panels depict the RB pathway

(left) and the P53 pathway

(right). Proteins that potentially

act as tumor suppressors are

indicated in green whereas

oncoproteins are indicated in

red. The growth factors binding

to the receptors have been

depicted in yellow
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chromosomal changes to small intragenic deletions. In

addition, it is possible to distinguish signals from individ-

ual alleles and therefore reveal copy-number-neutral

(CNN) loss of heterozygosity (LOH). Here, a chromosome

segment is lost, whereas the corresponding homologous

region is duplicated, resulting in a neutral copy number.

For example, 17p, which contains TP53, is a significant

region of CNN LOH in glioblastoma [7, 8].

Among chromosomal alterations, amplifications and

deletions can be distinguished. Of these, the most common

in glioblastoma will be discussed here. Reports of inci-

dental translocations are rare in glioblastoma [17]; conse-

quently, translocations may not be important in the

development of glioblastoma and will not be discussed

further.

Amplifications

Amplification of the epidermal growth factor receptor

(EGFR) gene is a characteristic finding in primary glio-

blastoma (Table 1) [5, 8, 16, 18]. Focal (restricted to a few

Mb) and broader (from several Mbs to whole chromo-

somes) CNAs that include the EGFR gene may have dif-

ferent molecular consequences [16]. Focal amplification of

EGFR correlates with EGFR overexpression or mutations

and deletions in the EGFR gene, and subsequent activation

of the PI3K/AKT pathway [16, 19]. Upregulated PI3K/

AKT signaling has been associated with a poor prognosis

[20, 21]. Amplification of the complete chromosome 7,

containing EGFR, MET [7], and its ligand HGF, has been

found to correlate with activation of the MET axis [16].

Furthermore, EGFR amplification is reported to appear as

double minutes (small fragments of extrachromosomal

DNA), and extra copies of EGFR have also been found

inserted into different loci on chromosome 7 [22].

Remarkably, gain of chromosome 7 and amplification of

EGFR have been found more frequently in short-term

survivors [4, 5], however EGFR alterations are not of

prognostic importance in glioblastoma [4, 18, 23].

Amplification of 12q13-15, where the oncogenes CDK4

and MDM2 are located, results in the disruption of both the

RB and P53 pathways [7, 8, 16, 24]. The genes encoding

the receptor tyrosine kinases KIT, KDR, and PDGFRA,

adjacently located on chromosome 4q12, are frequently

found to be (co)amplified [25]. Other amplified regions

containing oncogenes, for example AKT3 [7, 26] and

CCND2 [7, 16], are listed in Table 1.

Deletions

LOH of chromosome 10q is the most common genomic

alteration found in both primary and secondary glioblas-

tomas [18, 24] (Table 1) and is associated with poor

survival [5, 18]. Different regions are frequently lost at

chromosome 10, including the regions containing PTEN,

MGMT [1, 18], and ANXA7, an EGFR inhibitor [27].

Another frequently deleted inhibitor of EGFR signaling is

NFKBIA, which is located on chromosome 14; this deletion

is associated with poor survival [28]. Furthermore, loss of

chromosome 9p, which contains a variety of tumor-sup-

pressor genes, including CDKN2A, CDKN2B, and PTPRD,

is frequently seen [8, 18, 29], especially in short-term

survivors [4, 5]. CDKN2A and CDKN2B encode three

important cell cycle proteins, p14ARF and p16INK4A, and

p15INK4B [5, 8, 15, 16, 18], which are involved in the RB

and P53 pathways. Deletion of CDKN2A and CDKN2B is

often accompanied by deletion of CDKN2C on chromo-

some 1p32, which encodes another cell cycle protein

p18INK4C [15]. LOH of chromosome 1p is found in both

primary and secondary glioblastomas [30]. Longstanding

speculation about the potentially located tumor suppressor

gene at 1p has recently been advanced by identification

of the suggested candidate genes CIC and FUPB1 [31].

Co-deletion of 1p and 19q is frequently seen in oligoden-

drogliomas and is, in those, associated with prolonged

survival [4] and translocations [32]. Although this

co-deletion has been observed in glioblastomas, no similar

association has been identified. Isolated LOH 19q, how-

ever, is frequently observed in secondary glioblastoma

[5, 30] and may be a marker of longer survival [5].

Somatic mutations

Techniques

In addition to amplifications and deletions, genes impli-

cated in glioblastoma can be affected by somatic muta-

tions. Mutation analysis has identified mutations activating

oncogenes and others inactivating tumor-suppressor genes

in glioblastoma [7, 9, 33]. The recommended method used

to be direct or Sanger sequencing after amplification of the

suspected locus by means of polymerase chain reaction

(PCR). Nowadays, improved sequencing techniques are

being developed and rapidly applied to facilitate genome-

wide mutation analysis [34].

Mutations frequently found in glioblastoma

Mutations in ‘‘common’’ cancer genes, for example TP53

and PTEN, are very frequent in glioblastomas, but are not

of prognostic importance (Table 2) [4, 7, 9, 18, 23, 33].

Furthermore, glioblastoma-specific mutations are seen; the

EGFRvIII mutant lacks 267 amino acids in the extracellular

part, resulting in a constitutively activated receptor that no

longer requires its ligand EGF to signal downstream [35].

EGFR point mutations have also been identified in

J Neurooncol (2012) 108:11–27 13
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glioblastoma, in the extracellular domain, whereas they are

predominantly found in the kinase domain in other tumor

types, for example lung cancer [36]. Two extensive

mutational studies have provided an overview of the most

common mutations affecting glioblastoma (Table 2) [7, 9].

Although mutations in ‘‘common’’ cancer genes, for

example BRAF and the RAS genes, have rarely been

observed in gliomas (\5%) [37], inactivating mutations

and deletions have been identified in their inhibitory tumor

suppressor gene NF1 [7]. Mutations in PIK3CA and

PIK3R1, coding, respectively, for the PI3K catalytic sub-

unit p110a and regulatory subunit P85a, have been

described [7, 9].

The incidence of mutation in glioblastoma is lower than

in other solid tumors [38], with the exception of the

hypermutator phenotype [13], which, as described above, is

found in recurrent glioblastomas after treatment with

alkylating agents. This may be caused by MGMT methyl-

ation or mutational inactivation of DNA-repair enzymes,

for example MSH6 [7, 9, 13].

IDH1 mutations

An interesting gene found to contain mutations in glio-

blastoma is IDH1, which encodes isocitrate dehydrogenase

1 and is involved in energy metabolism [9]. IDH1 muta-

tions have been predominantly identified in secondary

glioblastomas and low-grade gliomas, with mutations in

more than 70% of cases [9, 39–43]; they are found only

sporadically in primary glioblastomas [9, 41–44]. Because

patients with IDH1 mutated primary glioblastomas are

generally younger and have longer median survival and

wild-type EGFR, which are characteristics of secondary

glioblastomas, it is hypothesized that these are in fact

secondary glioblastomas for which no histological

evidence of evolution from a less malignant glioma is

found. Therefore, IDH1 could be used to differentiate

primary from secondary glioblastomas [41]. In different

glioblastoma studies IDH1 mutations have been found to

be an independent positive prognostic marker [9, 40, 44,

45]. IDH1 mutations have been shown to inactivate the

enzyme with subsequent HIF-1a induction [42, 44, 46]. In

addition, the mutations result in gain of function to catalyze

a-ketoglutarate (a-KG) to 2-hydroxyglutarate (2-HG) [47].

Furthermore, 2-HG inhibits histone demethylases and TET

5-methylcytosine hydroxylases. These a-KG dependent

dioxygenases are thought to be involved in epigenetic

control. This suggests that mutations in IDH1 change the

expression of a potentially large number of genes [48].

Given that mutations in IDH1 are an early event in gli-

omagenesis (Fig. 2) [49], this may implicate widespread

alteration of epigenetic control as the key mechanism in

gliomagenesis in IDH1 mutated tumors. Furthermore,

it might explain the extensive and fundamental differences

between mutated and wildtype IDH1 glioblastoma.

Polymorphisms

Family members of glioma patients are more susceptible to

glioma and other cancer types [50], suggesting a genetic

origin. The most common type of genetic variation is

formed by single nucleotide polymorphisms (SNPs).

A SNP is a single base-pair alteration at a specific locus.

They can be identified by PCR for single loci or use of

Table 2 Genes frequently found to be mutated in glioblastoma

Gene symbol Gene name Function of encoded protein Point mutation (%) Refs.

EGFR Epidermal growth factor receptor Regulator of cell signaling, involved

in cell proliferation and survival

14–15 [7, 9, 36]

ERBB2 V-erb-b2 erythroblastic leukemia viral

oncogene homolog 2

Regulator of cell signaling, involved

in cell proliferation and survival

0–7 [7, 9]

IDH1 Isocitrate dehydrogenase 1 (NADP?) NADPH production 12–20 [9, 39–42, 44]

NF1 Neurofibromin 1 Regulator of cell signaling, involved

in cell proliferation and survival

15–17 [7, 9]

PIK3CA Phosphoinositide-3-kinase, catalytic,

alpha polypeptide

Regulator of cell signaling, involved

in cell proliferation and survival

7–10 [7, 9]

PIK3R1 Phosphoinositide-3-kinase, regulatory

subunit 1 (alpha)

Regulator of cell signaling, involved

in cell proliferation and survival

7–8 [7, 9]

PTEN Phosphatase and tensin homolog Regulator of cell signaling, involved

in cell proliferation and survival

24–37 [7, 9, 18]

PTPRD Protein tyrosine phosphatase,

receptor type, D

Regulator of cell signaling, involved

in cell proliferation and survival

0–6 [9]

RB1 Retinoblastoma 1 Regulator of cell cycle 8–13 [7, 9]

TP53 Tumor protein p53 Apoptosis 31–38 [7, 9, 18]
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SNP-based arrays for whole genome alterations. SNPs have

been linked to susceptibility to glioblastomas. In particular,

allergies and asthma’s inverse association with

glioblastoma have been observed in different studies and

have been linked with polymorphisms in HLA and inter-

leukins. This may suggest that immune factors play a role

Fig. 2 Genetic pathways

toward primary and secondary

glioblastoma

16 J Neurooncol (2012) 108:11–27

123



in gliomagenesis [51]. SNP309 in MDM2 has been asso-

ciated with an increased risk of various types of cancer, but

has not been associated as a risk or prognostic factor in

respect of glioblastoma in large studies [52]. SNPs in

CDKN2B, TERT, and RTEL1 have been described in

independent studies as susceptibility loci for high-grade

glioma [53, 54]. In a follow-up study, SNPs in DNA

double-strand break repair enzymes, for example RTEL1,

have been found to correlate with glioblastoma survival

[55]. Various other SNPs have been correlated with glio-

blastoma survival and age of onset [55], however, these

studies’ findings have not yet been confirmed.

Gene expression profiling

Techniques and results

Overexpression or underexpression of genes in glioblas-

toma compared with that in a normal brain or in low-grade

gliomas may be an indication of genes that are involved in

gliomagenesis (Table 3). Most of the 20,000–25,000 genes

encoded by the human genome are known [56], and these

have been applied to chips used for micro-arrays. Differ-

ences in expression of ‘‘unknown’’ genes can be studied by

serial analysis of gene expression (SAGE), by use of small

expression tags [57]. Large-scale expression studies are

usually validated by reverse transcription (RT)-PCR for

individual genes.

A high level of expression of insulin-like growth factor

binding proteins, for example IGFBP-2/3 [58], angioge-

nesic factors, for example vascular endothelial growth

factor A (VEGFA) [59], and mesenchymal markers, for

example YKL-40/CHI3L1, are frequently seen in glio-

blastoma (Table 3) and have been associated with poor

prognosis [60–62]. In contrast, NOTCH signaling genes,

for example DLL3, are indicative of better survival [63].

Furthermore, WEE1, a kinase that regulates the G2

checkpoint in glioblastoma cells, is commonly overex-

pressed in glioblastoma and higher expression has been

shown to correlate with worse patient survival [64].

Gene expression profiling studies outperform histology

for grading and prognosis

Low-grade astrocytomas have rather specific and consistent

expression profiles, whereas for primary glioblastomas

there is much larger variation between tumors. Further-

more, secondary glioblastomas have distinct expression

profiles and features of the other two types [65]. Expression

profiling of different types and grades of glioma has been

found to outperform histopathologic grading for prognosis

[20, 66–68]. To improve classification of patients with

glioblastoma, a gene dosage expression incorporated model

based on seven genes (POLD2, CYCS, MYC, AKR1C3,

YME1L1, ANXA7, and PDCD4) has been generated. This

model can be used to categorize patients in risk groups with

different prognosis; a high-risk group in which C5 of 7

genes are altered, a moderate-risk (3–4 genes), or a

low-risk group (B2 genes). In this study, MGMT methyl-

ation and IDH1 mutational status were not incorporated

[69]. A newer predictive model based on expression of four

genes (CHAF1B, PDLIM4, EDNRB, and HJURP) has been

generated, and is independent of MGMT methylation and

Table 3 Genes frequently found to be overexpressed in glioblastoma compared with either normal brain tissue or low-grade gliomas

Gene symbol Gene name Function of encoded protein Refs.

CD44 CD44 molecule Cell-cell interactions, cell adhesion and

migration

[20, 62]

DLL3 Delta-like 3 Notch signaling [20, 62]

EGFR Epidermal growth factor receptor Regulator of cell signaling, involved

in cell proliferation and survival

[62]

FABP7 Fatty acid binding protein 7 Fatty acid uptake, transport, and

metabolism

[62]

IGFBP2 Insulin-like growth factor binding protein 2 Regulation of cell growth [58–60, 62]

IGFBP3 Insulin-like growth factor binding protein 3 Regulation of cell growth [58]

MMP9 Matrix metallopeptidase 9 Extracellular matrix [62]

SPARC Secreted protein, acidic, cysteine-rich

(osteonectin)

Extracellular matrix [62]

TNC Tenascin C Cell adhesion [60, 62]

VEGFA Vascular endothelial growth factor A Angiogenesis, vasculogenesis, and

endothelial cell growth

[20, 59, 60, 62]

CHI3L1 Chitinase 3-like 1(YKL-40) Extracellular matrix [20, 60, 62]

VIM Vimentin Cytoskeletal element [20]
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IDH1 mutational status. Here, high expression of EDNRB

correlates with longer survival whereas the other genes are

correlated with higher risk of death. On the basis of the

expression of these 4 genes, low-risk and high-risk groups

were formed. Interestingly, survival was similar for

patients in the low-risk group with wildtype IDH1 and

patients in the high-risk group with mutated IDH1 [70].

Expression classification and prognosis according

to TCGA studies

Studies by The Cancer Genome Atlas (TCGA) have

incorporated genomic alterations within expression analy-

ses. Distinct molecular subclasses in high-grade glioma

have been identified, delineating a pattern of disease pro-

gression that resembles stages in neurogenesis, and have

been used to classify glioblastomas into proneural, neural,

classic, and mesenchymal subtypes [20, 63, 71]. Proneural

glioblastomas are characterized by IDH1 mutations, and

TP53 and PDGFRA alterations, and correlate with a better

prognosis and younger age. Classic glioblastomas are dif-

ferentiated on the basis of high-level amplification of

EGFR, monosomy of chromosome 10, and deletion of

CDKN2A. Neural glioblastomas are typified by expression

of neuron markers, and resemble normal brain most. Mes-

enchymal glioblastomas are known for NF1 deletion or

mutation and expression of YKL-40/CHI3L1 and MET [20,

71]. Different subtypes of glioblastoma have been shown to

behave differently in response to treatment; Classic and

mesenchymal subtypes have a survival advantage after

TMZ and RT, whereas the proneural subtype of glioblas-

tomas, with relative good prognostic, does not [71]. Strat-

ified clinical trials in which patient inclusion is based on the

genetic alterations that have been identified in their tumor

samples are necessary to further increase our understanding

of the clinical possibilities of these subgroups.

Epigenetics

Epigenetic silencing mechanisms

Epigenetic silencing of tumor suppressor genes is a com-

mon phenomenon of genomic instability in cancer [10].

Epigenetics are inherited characteristics of gene expres-

sion, not related to nucleotide sequences. Examples are

promoter hypermethylation, histone deacetylation, histone

methylation, other histone modifications which can alter

chromatin structure (in)directly, and RNA-silencing

mechanisms such as RNA interference and microRNA

(miRNA or miR) regulation of gene expression [72]. In

contrast with the global DNA hypomethylation found in

glioblastoma and other tumors [73], tumor suppressor

genes are commonly found to be hypermethylated and,

hence, silenced [72]. DNA methylation, histone deacety-

lation, and miRs are best studied in glioblastoma and are

discussed next.

Methylation and histone deacetylation

In glioblastoma, similar to other cancers, global DNA hy-

pomethylation is often seen with hypermethylation of CpG

islands in promoter regions. Tumor-suppressor genes fre-

quently found to be silenced by hypermethylation in glio-

blastoma include CDKN2A, CDKN2B, RB1, PTEN, and

TP53. (reviewed elsewhere [74, 75]). Differences in various

genes’ promoter methylation have been found between

primary and secondary glioblastomas (Table 4) [76–78],

long and short-term glioblastoma survivors [75, 79], primary

and recurrent tumors, and time to tumor progression [80].

MGMT methylation

Particularly important in glioblastoma is the methylation

status of MGMT, which is a predictive factor for therapy

response and hence survival of glioblastoma patients trea-

ted with TMZ and RT [2, 23, 81]. MGMT methylation has

been observed in 40–57% of glioblastomas; however,

specific subgroups have a higher frequency. MGMT

methylation has been found to be more frequent in sec-

ondary glioblastomas [82], in females [83], and in long-

term survivors (LTS) [4], whereas it is rare (5%) in

recurrent glioblastomas [84]. Conflicting results have been

reported regarding the methylation status of MGMT as a

positive prognostic marker [74, 75, 83]. TMZ and other

alkylating agents modify the O6-position in guanines

thereby forming critical DNA lesions that progress to lethal

DNA cross-links which prohibit cell replication. The DNA

repair enzyme MGMT is able to remove alkyl groups, thus

introducing resistance to TMZ treatment. However, when

the promoter of MGMT is methylated, MGMT is not tran-

scribed and therefore cannot repair DNA damage caused

by TMZ, making TMZ more efficient. The best means of

assessment of the MGMT methylation status has been

debated; the most widely recommended method is meth-

ylation-specific PCR (MSP) [85]. Recently, the methyla-

tion status of the FNDC3B, TBX3, DGKI, and FSD1

promoters was identified to be important in patients with

MGMT-methylated tumors who did not respond to TMZ

and RT treatment [79]. MGMT methylation is also asso-

ciated with pseudo-progression after concomitant radio-

chemotherapy for newly diagnosed glioblastoma patients

[86]. Furthermore, the pattern of recurrence, including time

to recurrence and location of the recurrent tumor, seems to

be correlated with the MGMT methylation status of the

primary tumor [87].
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Hypermethylation phenotype

A subset of glioblastoma tumors has been found to contain

a hypermethylation phenotype at a large number of CpG

islands; this has been named the glioma-CpG island

methylator phenotype (G-CIMP) by the TCGA. These

G-CIMP tumors cluster into the aforementioned proneural

subgroup, are strongly associated with IDH1 mutations,

and generally affect younger patients with improved

prognosis [88]. Furthermore, inhibition of histone

demethylases and TET 5-methylcytosine hydroxylases by

mutated IDH1 potentially implies the methylation of an

even greater number of genes in this subgroup [48].

MicroRNAs

miRs are short non-coding RNAs, consisting of approxi-

mately 22 nucleotides, which regulate gene expression.

miRs usually inhibit target genes’ expression, either by

inhibiting translation or by triggering the cleavage of the

target mRNA. Over 700 miRs have been described in

humans [89]. By use of the same methods previously

described for gene expression, differences in miR expres-

sion have been examined. Compared with normal brain

tissue a variety of differentially expressed miRs have been

found (Table 5) [90–101].

OncomiRs, tumor suppressor miRs, and therapeutic

implications

Frequently up-regulated miRs are called oncomiRs. Of

these, miR-26a is found to target PTEN in glioblastomas

[102]. Furthermore, miR-26 cooperates with oncogenes

CDK4 and CENTG1, forming an oncomiR/oncogene

cluster, targeting the RB, PI3K/AKT, and JNK pathways

and increasing aggressiveness in glioblastoma [95]. miR-

221 and miR-222 are thought to target cell cyclin-depen-

dent kinase inhibitors p27 and p57 by targeting the pro-

apoptotic PUMA [103]. In contrast with these oncomiRs,

frequently down-regulated miRs in glioblastoma are con-

sidered tumor-suppressor miRs. Of these, miR-7 indepen-

dently inhibits both the EGFR and AKT pathways [98].

miR-34a suppresses glioblastoma growth by targeting

c-Met and Notch [99]. miR-124 and miR-137 target CDK6,

which is important in the G1/S-phase transition [97]. miR-

128 targets BMI1, which has been shown to promote stem

cell renewal [94]. Downregulation of miR-181 is found in

responders to temozolomide [100]. The delivery of un-

derexpressed tumor-suppressor miRs may be an appealing

approach for therapy. In contrast, overexpressed oncogenic

miRNas may be targeted by antagomirs, because overex-

pression of the oncomiRs miR-26a, miR-196, and miR-451

has been correlated with poorer survival [93]. A recent

review has provided an up-to-date overview on miRs and

their inhibitors for glioblastoma treatment and readers

should refer to this for more information [104].

Proteomics

Proteomic studies involve research on the final structure,

function, and activity of proteins. Therefore, post-transla-

tional modifications on the transcript are included in the

results. Thus far, only a limited number of proteomic

studies have been performed on glioblastomas and there

are still conceptual and technical limitations to overcome

[105]. In general, samples are run on 2D gels, which show

protein patterns on the basis of size and charge. Proteins

identified in tumor samples but not in normal tissue sam-

ples are subsequently analyzed by mass spectrometry with

matrix-assisted laser desorption/ionization (MALDI) [106].

Thus far, glioma subtypes have been distinguished on the

basis of different protein patterns as primary and secondary

glioblastomas [107, 108]. Furthermore, on the basis of

proteome analysis, survival has been predicted in respect of

glioma subtypes [107]. Additionally, proteins’ phosphory-

lation status is a tool with which to identify activated

proteins. Consequently, activated receptor tyrosine kinases

[109, 110] and the downstream signaling pathways of

EGFRvIII have been identified in glioblastomas [111].

Other molecular aspects of glioblastomas

Molecular differences between primary and secondary

glioblastomas

Primary and secondary glioblastoma subtypes are histopa-

thologically indistinguishable, but differences can be dem-

onstrated by molecular markers at the epigenetic [77],

genetic [1, 18, 24], expression [65], and proteomic [108]

levels (Fig. 2; Table 4). Primary glioblastomas have a

greater prevalence of EGFR alterations, MDM2 duplica-

tions, PTEN mutations, and homozygous deletions of

CDKN2A [1, 18]. MET amplification [24], overexpression of

PDGFRA, and mutations in IDH1 and TP53 are more pre-

valent in secondary glioblastomas [1, 9, 18, 33, 39, 41, 43].

The sequential order of molecular alterations

Molecular alterations causing glioblastoma are thought to

occur in a sequential order, implicating different stages of

gliomagenesis (Fig. 2). For example, IDH1-inactivating

mutations seem to be an early event in gliomagenesis [43].

In contrast, PTEN mutations and LOH 10q are thought to

be important in glioma progression, but not initiation [18].
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Potential therapeutic targets and future perspectives

Taking into consideration all the molecular alterations

found in glioblastomas, it is clear that the picture of the

changes in gliomablastoma becomes more complex as the

techniques that enable us to investigate molecular mecha-

nisms develop. The good news is, however, that many of the

alterations identified in glioblastoma cluster in three path-

ways, the P53 (64–87%), RB (68–78%), and the PI3K/AKT

(50%), downstream of the receptor tyrosine kinases (altered

88% in total; Fig. 1). Most alterations occur in a mutually

exclusive fashion: alterations within one tumor affect only a

single gene in a pathway, suggesting that different genes in

a pathway are functionally equivalent [7–9, 71].

Quality of models

Functional validation of the identified molecular changes is

essential before they can be assessed as targets for therapy.

Taking this into account, it becomes clear that good models

are needed for high-throughput testing of rationally

designed combinations of drugs with specific targets.

Several experiments have shown that established glio-

blastoma cell lines resemble those of the original glio-

blastomas very poorly when compared at the level of DNA

alterations or gene expression profiles [71]. Tumor neuro-

spheres cultured in stem cell medium, organotypic spheroid

cultures, or low-passage monolayer cultures, resemble the

original tumors better and may be better models for study

of glioblastomas in vitro [112, 113].

Therapeutic options, multimodal therapy, and delivery

options

For optimum application of the insights presented in this

paper, stratified clinical trials are necessary to investigate

the best treatment options for each common (group of)

genetic alteration(s) in glioblastomas. Ultimately, this

could lead to more individualized therapies. Rational drug

design and rationally designed clinical trials to test these

drugs are needed, because an almost infinite number of

compounds is currently available, and these can be tested

in limitless numbers of combinations. With genomics

approaches, discoveries of common features of different

types of tumor may lead to new therapeutic targets and

drugs for other tumor types also. The discovery of over-

expression of VEGFA and its correlation with poor prog-

nosis in glioblastomas [59] led to trials with the

angiogenesis inhibitor bevacizumab. It is currently being

used to treat recurrent glioblastoma and phase III trials are

being conducted [114, 115].

Rather than single-agent therapy, with which good

responses have been obtained in the treatment of other types

of cancer but which probably will not suffice in the treat-

ment of glioblastoma, combination treatment is necessary.

The clinical response of recurrent glioblastomas to EGFR

Table 5 Frequently identified microRNA expression alterations in glioblastoma

miRNA Alteration of expression Function of encoded protein Targets Refs.

miR-7 Decreased Increases apoptosis, decreases invasion EGFR [92, 97, 98]

miR-15 Increased Regulator of cell-cycle progression CCNE1 [93]

miR-21 Increased Oncomir, antiapoptosis RECK, PDCD4, PTEN [92, 93, 97]

miR-26 Increased Induces tumor growth, part of oncomir/oncogene

cluster with CDK4 and CENTG1

PTEN and PI3K/Akt pathway [102]

miR-34 Decreased Inhibitor of proliferation, survival, migration, and

invasion

TP53, c-Met, NOTCH1/2 [99]

miR-124 Decreased Inhibitor of proliferation, cell differentiation CDK6, PTBP, SCP1 [97]

miR-125 Increased Inductor of proliferation and inhibitor of apoptosis ERBB2, ERBB3, TP53 [92]

miR-128 Decreased Inhibitor of proliferation BMI1, E2F3a, EGFR [92–94]

miR-137 Decreased Inhibitor of proliferation, cell differentiation CDK6 [97]

miR-155 Increased Regulator of immune response in cells SMAD2 [97]

miR-181 Decreased Reduced colony formation and migration TCL1 [92, 100]

miR-196 Increased Inductor of proliferation, cell differentiation HOXB8, HMGA2, ANXA1 [93]

miR-210 Increased Regulator of proliferation FGFRL-1 [97]

miR-221 Increased Cell proliferation p27Kip1, p57Kip2 [90, 92]

miR-222 Increased Cell proliferation p27Kip1, p57Kip2 [90]

miR-296 Increased Inductor of neovascularization HGS [91]

miR-326 Decreased Reduces cell viability and invasion NOTCH1/2 [101]

miR-451 Increased Inhibitor of migration, inductor of proliferation CAB39 [96]
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inhibitors was found, in one study, to be associated with

co-expression of EGFRvIII and PTEN [19] or pAkt [116],

but not in combination with TMZ and RT for newly diag-

nosed glioblastomas [117] or in glioblastomas treated with

erlotinib and TMZ [118]. PTEN-deficient glioblastoma

patients could, for example, be treated with a cocktail of

drugs consisting of an EGFR inhibitor and rapamycin [19],

however the results are not yet impressive [119]. The

response to TMZ and RT of patients for whom MGMT

methylation is not observed may be improved by addition of

MGMT-depleting agents, which are currently under inves-

tigation [120]. In this respect, the choice of anti-epileptic

drug may become important as levetiracetam has been

shown to inhibit MGMT expression in a preliminary study

[121]. In addition, MGMT-mediated TMZ resistance may

be overcome by more frequent temozolomide doses in dose-

dense schedules [122]. Thus far, the results are disap-

pointing, and a putative disadvantage of combination

treatment is the potential increase in side effects [123]. This

may, in part, be solved by application of new drug-delivery

techniques. In this field, advances have been made with the

application of biodegradable wafers, convection-enhanced

delivery, and strategically-designed liposomes which cir-

cumvent the blood–brain barrier [124, 125]. Recent reviews

have provided up-to date overviews on therapy, and we

refer the reader to those for more details on ongoing and

future therapeutic trials [126].

Synopsis

To summarize, our understanding of the molecular mech-

anisms underlying subgroups of glioblastoma patients has

increased. Moreover, many of the alterations in the afore-

mentioned pathways have been elucidated, and molecular

typing of glioblastomas on the basis of gene expression has

been used to predict prognosis. Furthermore, for the first

time it has been shown that the effects of treatment are

distinctly different for different molecular types of glio-

blastoma classified on this basis [71]. In contrast with

many other forms of cancer, however, subsequent appli-

cation of these results to treatment is lagging behind.

Nevertheless, assessment of the molecular profiles of

responding versus non-responding patients can be used to

determine predictive factors and biomarkers, and may lead

to identification of new therapeutic targets. Validation of

such new therapeutic approaches will be followed by

stratified clinical trials based on such molecular subgroups.

Finally, current insights will ultimately lead to more indi-

vidualized therapy for glioblastoma patients. Combination

of current knowledge of molecular alterations in glioblas-

toma with the availability of many drugs with specific

targets makes investigation of new treatments more

promising than ever before.
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