Arch. Pharm. Res. (2021) 44:588-604
https://doi.org/10.1007/s12272-021-01337-3

Archives of
Online ISSN 1976-3786  AQGh Pharmacal )
. Research Check for
Print ISSN 0253-6269

Vewrae Springer.comi22 12 updates

REVIEW

Recent advances in the pathology of prodromal non-motor
symptoms olfactory deficit and depression in Parkinson’s disease:
clues to early diagnosis and effective treatment

Yeojin Bang' - Juhee Lim? - Hyun Jin Choi’

Received: 10 March 2021 / Accepted: 1 June 2021 / Published online: 19 June 2021

© The Author(s) 2021

Abstract Parkinson’s disease (PD) is a progressive neu-
rodegenerative disease characterized by movement dysfunc-
tion due to selective degeneration of dopaminergic neurons
in the substantia nigra pars compacta. Non-motor symptoms
of PD (e.g., sensory dysfunction, sleep disturbance, consti-
pation, neuropsychiatric symptoms) precede motor symp-
toms, appear at all stages, and impact the quality of life,
but they frequently go unrecognized and remain untreated.
Even when identified, traditional dopamine replacement
therapies have little effect. We discuss here the pathology
of two PD-associated non-motor symptoms: olfactory dys-
function and depression. Olfactory dysfunction is one of
the earliest non-motor symptoms in PD and predates the
onset of motor symptoms. It is accompanied by early depo-
sition of Lewy pathology and neurotransmitter alterations.
Because of the correlation between olfactory dysfunction
and an increased risk of progression to PD, olfactory testing
can potentially be a specific diagnostic marker of PD in the
prodromal stage. Depression is a prevalent PD-associated
symptom and is often associated with reduced quality of
life. Although the pathophysiology of depression in PD is
unclear, studies suggest a causal relationship with abnormal
neurotransmission and abnormal adult neurogenesis. Here,
we summarize recent progress in the pathology of the non-
motor symptoms of PD, aiming to provide better guidance
for its effective management.
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Introduction

Parkinson’s disease (PD) is a progressive neurological disor-
der characterized by motor dysfunction that affects 10 mil-
lion people globally, and this number is expected to double
by 2030 (Dorsey et al. 2007). Many non-motor PD symp-
toms, including loss of smell, sleep disorders, depression,
and constipation, can precede motor symptoms by several
years. Dopamine replacement strategies are widely used
for symptomatic therapy for PD as they improve key motor
symptoms including bradykinesia, rigidity, and tremor.
However, non-motor symptoms usually do not respond to
motor deficits-targeting dopamine replacement therapy
(Ray Chaudhuri et al. 2018; Deuel and Seeberger 2020).
Leaving non-motor symptoms untreated can lead to a poor
disease prognosis and a negative effect on the quality of
life of patients with PD (Sauerbier et al. 2016). Although
dopaminergic pathology is the cardinal feature in the brains
of patients with PD, a more diffuse pathology might be
associated with non-motor symptoms as well; the choliner-
gic glutamatergic, noradrenergic, and serotonergic systems
(Brandao et al. 2020). Therefore, understanding the pathol-
ogy of PD’s non-motor symptoms and ensuring an early and
accurate diagnosis and an appropriate therapeutic approach
in the PD prodromal stage remains a major and challenging
goal for PD treatment. Using neuropathological PD findings
as gold standard, the accuracy for a PD clinical diagnosis
was only 26% in untreated or not clearly medication-respon-
sive subjects, and 53% in early PD patients (<5 year’s dura-
tion) responsive to medication (Adler et al. 2014).
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The olfactory deficit shows high prevalence in
patients with PD, early and easy diagnosis, and persis-
tence throughout the disease course. Olfactory dysfunc-
tion has a prevalence > 90% in patients with PD and is
a potential preclinical biomarker and a cardinal prodro-
mal symptom that may precede neuropathology (Bohnen
et al. 2008b; Shill et al. 2021). Although a correlation
between olfactory dysfunction and neurodegenerative dis-
orders has been increasingly recognized (Bahuleyan and
Singh 2012), the underlying mechanism is not completely
understood.

Depression is a nonspecific symptom, but the most
common psychiatric symptom in PD, occurring in over
one-third of cases. Depression may be present throughout
all PD stages. For instance, at disease onset, up to 40%
of patients with PD experience depression, whereas in
the advanced stage, up to 70% of patients will have pre-
sented with depressive symptoms (Aarsland et al. 2009).
Additional research has shown that the average onset of
depressive symptom was 17.6 years earlier than the aver-
age age at PD diagnosis (Seritan et al. 2019). If PD onset
could be recognized early, disease progression could be
slowed by initiating appropriate neuroprotective treatment
at the most effective stage. Depression could be one of the
effective clinical markers of prodromal PD (Hustad and
Aasly 2020), but the pathophysiology of depression in
PD remains poorly understood. In the present review, we
summarize the current progress in two pathological fea-
tures of PD—olfactory deficits and depression—to provide
crucial insights into the requirements of early diagnosis
and clearer recommendations for PD treatment.

Diagnosis

Olfactory dysfunction

Hyposmia is one of the characteristic non-motor signs of
early PD, which may occur early, before the onset of motor
disorders (Fig. 1). Clinical and experimental evidence sug-
gest pathological changes in the olfactory bulb (OB), such
as formation of pathological protein aggregates and changes
in neurotransmitter signaling, at relatively early stages of
PD, suggesting that olfaction may be vulnerable from early
stages of PD progression (Table 1) (Rey et al. 2018). Olfac-
tory dysfunction is correlated with disease progression and
cognitive decline in PD (Domellof et al. 2017; Cecchini
et al. 2019). Furthermore, the effective levodopa dose is
higher in patients with PD with hyposmia than in patients
with normosmia (He et al. 2020). Therefore, detection of
olfactory impairment could be useful for accurate PD diag-
nosis in the prodromal stage and for predicting disease pro-
gression risk.

Olfactory ability and olfactory atrophy in PD

Patients with PD are often unaware of their olfactory defi-
cit before testing. Less than 25% of patients with olfactory
disturbance seem to realize their problem prior to diagnosis
(Schmidt et al. 2020). Some patients with PD misestimate
their own olfactory function as better than their actual odor
identification ability (Leonhardt et al. 2019). Olfactory dis-
turbance negatively affects the quality of life, by impact-
ing the enjoyment of food, mood, and social interaction
(Frasnelli and Hummel 2005; Vassilaki et al. 2017). Olfac-
tory function is typically measured in a clinical setting by
odor discrimination, odor identification, and odor detection
threshold tasks (Fullard et al. 2017). The most frequently
used and well-characterized method for olfaction assessment

Braak stagging 1~2 3~4 5~6
Progression of PD

Prodromal-Early stage
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Fig. 1 Timeline of Parkinson’s disease
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is odor identification by the University of Pennsylvania
Smell identification Test (UPSIT), which includes 40 micro-
encapsulated odorous substances presented in a “scratch ‘n’
sniff” booklet (Doty et al. 1984). Other olfactory perfor-
mance clinical tests, such as odor detection threshold tests
(e.g., Smell Threshold Test or Connecticut Chemosensory
Clinical Research Center Test), can be used in combina-
tion with the UPSIT (Fullard et al. 2017). The UPSIT
scores of PD were strongly correlated with various motor
and non-motor symptoms, such as anxiety, depression and
sleep disturbances, as well as with the degree of nigrostriatal
dopaminergic cell loss, indicating that olfactory assessment
using UPSIT could be a potential diagnostic tool for predict-
ing disease progression. (Roos et al. 2019). In a few cases,
olfactory deficits have also been reported in patients with
familial PD (Liu et al. 2020b). Monogenic PD patients with
mutations in the genes leucine-rich repeat kinase 2 (LRRK?2)
(Khan et al. 2005; Healy et al. 2008), PTEN-induced puta-
tive kinase 1 (PINK1) (Ferraris et al. 2009), vacuolar pro-
tein sorting 35 (VPS35) (Struhal et al. 2014), glucocerebro-
sidase (GBA) (Alcalay et al. 2012) showed similar changes
in UPSIT scores to those with idiopathic PD, but patients
with Parkin (Khan et al. 2004; Malek et al. 2016) mutations
showed normal olfactory function.

The pathological relationship between olfactory deficit
and decreased OB volume in PD is controversial. When ana-
lyzed using the MRI and the Japanese T&T olfactometer
threshold test, the olfactory performance positively corre-
lated with OB volumes in both patients with PD and controls
(Wang et al. 2011). In patients with early stage PD, olfac-
tory performance is positively correlated with OB volume,
but not with the olfactory sulcus depth (Wang et al. 2011).
Table 1 summarized other reports on the correlation between
olfaction and OB volume in patients with PD. In idiopathic
PD cases, the OB volume on 3-T magnetic resonance imag-
ing (MRI) did not differ from that of healthy age-matched
controls (Paschen et al. 2015). Although the UPSIT scores
were significantly lower in stage 1 and 2 patients than in
controls, no statistically significant difference was observed
in OB volumes between PD and control groups (Hakyemez
et al. 2013). Further, olfactory biopsy results of patients
with PD showed no significant changes in the olfactory epi-
thelium between patients with PD and controls (Witt et al.
2009), suggesting that olfactory deficits in PD could be due
to abnormal olfactory brain transmission rather than struc-
tural damage to the olfactory system.

Lewy pathology in the olfactory system in PD

Lewy pathology in the OB was detected in 95% of patients
with PD and in 7% of elderly controls without parkinsonism
diagnoses (Beach et al. 2009). In the brain of PD patients,
immunoreactive Lewy bodies and Lewy neurites, which

affect the olfactory system, are detected in the OB and dor-
sal glossopharyngeus—vagus complex even at very early
stages (Gustavsson et al. 2020). These deposits spread to
the brainstem including medulla and pontine tegmentum
(Hawkes et al. 2010), and reach the substantia nigra in
Braak stage 3, whereupon the typical motor symptoms of
PD begin (Fearnley and Lees 1991). This aberrant deposit
accumulation shows varying degrees of severity among neu-
rodegenerative diseases. In postmortem tests in the olfac-
tory region, tau-related pathology has been found in patients
with Alzheimer’s disease, PD, Lewy bodies dementia, and
frontotemporal dementia. However, tau-related pathology is
not detected in patients with progressive supranuclear palsy
or corticobasal degeneration with less olfaction loss (Doty
2017). A study on a-synucleinopathy in the olfactory system
detected higher immunoreactivity against a-synuclein in the
different divisions of the olfactory system in patients with
PD (Braak stages 3-5) than age-matched controls. Although
motor dysfunction in PD is primarily associated with the
pathology in dopaminergic neurons in the nigrostriatal
pathway, a-synucleinopathy along the olfactory pathway
was rarely detected in dopaminergic cells, but rather in glu-
tamate-, calcium-binding protein- and substance P-positive
cells (Ubeda-Bafion et al. 2010).

Changes in neurotransmitter signaling in PD-associated
olfactory dysfunction

It has been demonstrated that alteration of neurotransmitters
is associated with hyposmia in PD. Marked decreases in the
numbers and activity of cholinergic neurons in the mitral
cell layer and increases in dopaminergic neuron numbers
and TH protein levels in the glomerular layer were reported
in a-synuclein A53T transgenic mice compared to wild-type
littermates (Zhang et al. 2015a). A significant increase in
dopamine levels is also shown in the OB of 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP)-induced monkey PD
model (Pifl et al. 2017) without changes in other monoam-
ine neurotransmitters. However, a decrease in norepineph-
rine level was detected in the OB in Parkin null mice (Von
Coelln et al. 2004). In Pink1 null mice, damage to the sero-
tonergic innervation in the olfactory glomerular layer was
reported, along with an impaired fine-tuning of the smell
identification function (Ferraris et al. 2009). In this section,
we focus on dopamine and acetylcholine signals, the most
reported neurotransmitters related to olfactory abnormali-
ties in PD.

Dopaminergic signaling
The OB glomerular layer contains up to 10% dopamin-

ergic interneurons (Fig. 2), which participate in olfac-
tory processes such as perception, discrimination, and

@ Springer
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Fig. 2 Schematic of the olfactory bulb (OB) showing the major cell types and the synaptic interaction. Note that dopamine modulates the mem-
brane potential of the bulbar mitral cells through D2 dopamine receptors, which restrict the entry of the perceived olfactory input. The presynap-
tic D2 receptor functions in processing odor information and adapting the bulbar network to external stimuli

olfaction-guided social interactions (Tillerson et al. 2006;
Marin et al. 2017). Dopamine modulates olfactory trans-
mission in the olfactory glomerular layer (Liu et al. 2020a)
and has inhibitory regulation through D2 dopamine recep-
tors in processing synaptic inputs from olfactory sensory
neurons to mitral cells in the OB (Duchamp-Viret et al.
1997; Hsia et al. 1999; Berkowicz and Trombley 2000).
In vitro studies show that activation of presynaptic D2
receptor inhibits excitatory glutamatergic transmission
between mitral/tufted cells and interneurons, an effect
mainly mediated by inhibition of calcium channels (Davila
et al. 2003; Gutieérrez-Mecinas et al. 2005). The numbers
and firing rates of dopaminergic periglomerular neurons
in the OB are higher in patients with PD than age-matched
controls; tyrosine hydroxylase (TH) immunoreactivity in
the OB is twice as high in patients with PD than in controls
(Huisman et al. 2004). Further, the olfactory impairment
in PD is not responsive to dopamine replacement therapy
(Huisman et al. 2004; Haehner et al. 2011). Therefore,
the PD-associated dopamine alteration in the OB seems
to have a pathological mechanism different from that of
the PD-associated dopaminergic neurodegeneration in the

@ Springer

nigrostriatal pathway; it may be a compensatory mecha-
nism triggered by early degeneration of other neurotrans-
mitter systems (Mundifiano et al. 2011).

For differential diagnosis of PD, dopamine transporter
(DAT) imaging is useful. Substantial evidence shows the
close correlation between abnormal DAT binding and
olfactory deficits in early PD (Bohnen et al. 2007; Ber-
endse et al. 2011). The level of DAT uptake is signifi-
cantly reduced in the bilateral caudate and left anterior
and posterior putamen in patients with PD with hyposmia
compared to patients with normosmia (Oh et al. 2018).
DAT positron emission tomography (PET) shows a differ-
ence in correlation coefficients between olfactory testing
score and DAT binding potential depending on the brain
region; with a higher correlation for the hippocampus than
the amygdala, ventral and dorsal striatum (Bohnen et al.
2008a). These findings suggest that dopaminergic impair-
ment in regions other than the OB could be responsible for
the olfactory dysfunction observed in patients with PD.
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Cholinergic signaling

The OB receives several neuromodulatory signals, includ-
ing central cholinergic transmission. Cholinergic signals
from the basal forebrain regulate neuronal activity within
the OB, thus modulating olfactory function (D’souza and
Vijayaraghavan 2014), further contributing to olfactory per-
ceptual learning, odor discrimination, and odor detection
(Mandairon et al. 2006; Chaudhury et al. 2009). Evidences
have shown that dysregulated cholinergic neurotransmis-
sion is associated with olfactory loss in PD (Perez-Lloret
and Barrantes 2016). Although the underlying mechanisms
by which acetylcholine modulates neuronal excitability in
OB and olfactory responses are not well understood, a sub-
stantial correlation exists between UPSIT scores and ace-
tylcholinesterase activity in patients with PD. A cholinergic
deficit occurs in the limbic archicortex of PD patients with-
out dementia and is associated with olfactory dysfunction
(Bohnen et al. 2010). This relationship is stronger than that
with dopaminergic denervation in the nigrostriatal pathway.
Moreover, several animal studies have demonstrated that
cholinergic system disruption could cause impaired odor dis-
crimination. Blocking nicotinic receptors in the OB of can-
nulated rats showed decreased spontaneous discrimination
of chemically related odorants (Mandairon et al. 2006), and
also cholinergic OB innervation was reduced in MPTP-mon-
keys compared to control animals. Further, MPTP decreased
dopaminergic innervation and cholinergic neurons in the
horizontal limb of the diagonal band of Broca, the nucleus
where cholinergic centrifugal projections to the OB originate
(Mundinano et al. 2013). OB glomeruli contain high con-
centrations of nicotinic acetylcholine receptors and receive
strong cholinergic innervation from the basal forebrain (Ma
and Luo 2012). Retrospective studies highlight nicotine’s
potential to improve olfactory function in PD patients (Quik
and Monte 2001; Quik et al. 2008; Nicholatos et al. 2018):
among PD patients, smokers scored higher on the UPSIT
than non-smokers (Lucassen et al. 2014). The ameliorative
effect of nicotine on olfactory dysfunction is also shown in
the MPTP-induced PD mouse model. Nicotine attenuated
the deficit in odor discrimination and detection, the loss of
choline acetyltransferase expression in the OB, and the loss
of cholinergic neurons and dopaminergic input in the hori-
zontal limb of the diagonal band in MPTP-treated mouse
brains (Yang et al. 2019).

Decreased olfactory neurogenesis in PD-associated
hyposmia

Adult neurogenesis occurs primarily in the subventricular
zone (SVZ) of the lateral ventricles and the sub granular
zone of the hippocampus (Lois and Alvarez-Buylla 1993;
Palmer et al. 1997). Newborn neuronal precursors generated

in the adult SVZ migrate toward the OB via the rostral
migratory stream (RMS), and differentiate into GABAergic
and dopaminergic granule and periglomerular interneurons.
In the olfactory epithelium, the number of basal stem cells
decreases with age, associated with a deterioration of olfac-
tion (Rebholz et al. 2020). Disruption of adult neurogenesis
in the SVZ may contribute to diverse pathological states
such as decreased neuronal plasticity, olfactory deficits, and/
or cognitive dysfunction in the PD brain (Marchetti et al.
2020). BrdU-positive newborn neurons in the OB were
reduced in the adult mouse brain overexpressing wild-type
or mutant a-synuclein (Winner et al. 2004; Winner et al.
2008). Delayed neural stem cell migration through the SVZ/
RMS/OB system and reduced neural stem cell survival is
observed in the OB of human—a-synuclein transgenic mice
(Winner et al. 2004; Tani et al. 2010). Mice overexpress-
ing the PD-related mutant protein G2019S LRRK?2 also
display a significant decrease in the neurogenesis of dopa-
minergic (TH, BrdU, and NeuN positive) neurons, as well
as a reduced survival of newborn neurons in the OB (Win-
ner et al. 2011). In contrast, the number of BrdU-positive
cells in the OB granule cell layer decreased in the brains of
6-hydroxydopamine-lesioned adult rats, but dopaminergic
neurogenesis increased in the glomerular layer after lesion-
ing (Winner et al. 2006).

Clinical significance of olfactory dysfunction:
biomarker for early PD

Because of its early appearance, high prevalence and easy
and inexpensive assessment, olfactory dysfunction in PD
could be a good early biomarker for PD. In addition, the
measurement of olfactory deficits has great potential for
augmenting diagnostic accuracy and distinguishing idi-
opathic PD from other diseases such as essential tremor,
parkinsonism-associated tauopathies, atypical parkinsonian
syndromes, and drug-induced parkinsonism at early stages
of the disease (Ponsen et al. 2004; Baba et al. 2011; Doty
2012; Elhassanien et al. 2021).

Depression

Depression is the most prevalent non-motor psychiatric
symptom in people with PD. More than 40% of individuals
with PD have symptoms of depression (Todorova et al.
2014). It has been reported that monogenic PD patients
with mutations in the a-synuclein, LRRK2, VPS35, Par-
kin, PINK1, DJ-1 and GBA genes exhibit psychiatric
disturbances such as depression and anxiety (Liu et al.
2020b). In particular, PD patients carrying parkin, PINK1
and GBA mutations have more severe depression com-
pared with idiopathic PD (Ephraty et al. 2007; Thaler
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et al. 2018; Zhou et al. 2020). Currently, there are no
guidelines or recommendations for selective treatment of
depression associated with PD, so patients with PD are not
receiving the optimal treatment for depression (Weintraub
et al. 2003). Here, we would like to summarize the current
knowledge of depression pathophysiology in PD (Table 2)
to provide appropriate therapeutic strategies.

Neurotransmitter alterations in depression associated
with PD

Changes in neurotransmitter systems appear before dopamin-
ergic neurodegeneration and influence the development of
non-motor symptoms. PET showed lower DAT availability
in striatal and limbic structures is related to depression in PD
(Remy et al. 2005; Rektorova et al. 2008). In addition, the
severity of depression in patients with PD and dysfunctional
mesocorticolimbic dopaminergic transmission are correlated
(Wei et al. 2018). Further, the dopamine level in cerebro-
spinal fluid was significantly lower in depression with PD
patients than in non-depressed patients with PD (Lian et al.
2018). In addition, in depressed patients with PD, pathologi-
cal processes in the serotonergic neuronal system, such as
changes in the serotonin transporter (SERT), appeared prior
to lesions in dopaminergic midbrain neurons (Pagano et al.
2017). Higher SERT levels resulted in worsening depressive
symptoms, and increased SERT binding in raphe nuclei and
limbic structures were found in PD patients with depression
compared to those without depressive symptoms (Boileau
et al. 2008; Politis et al. 2010). Reduced concentrations
of plasma serotonin (5-hydroxytryptamine, 5-HT) and its
metabolite 5-hydroxyindoleacetic acid (5-HIAA) also cor-
related with the severity of depression in PD (Tong et al.
2015). In addition, depressed patients with PD presented
reductions in acetylcholine receptor binding in the cortex
(Meyer et al. 2009).

Depressive behavior and abnormal neurotransmission are
shown in PD animal models: both in neurotoxin-based mod-
els that induce dopaminergic neurodegeneration, and genetic
models associated with mutations in PD-related genes (Blesa
et al. 2012). Lesions of the nigrostriatal pathway induced
by 6-hydroxydopamine (6-OHDA) cause depression-like
behavioral changes similar to the premotor symptoms of PD.
In this model, the striatal contents of dopamine, dopamine
metabolite dihydroxyphenylacetic acid (DOPAC), 5-HT, and
5-HIAA, were all decreased (Silva et al. 2016). Another
neurotoxin, MPTP, also increases depression-like behav-
ior and decreases TH expression (Zhang et al. 2016; Yan
et al. 2020). Further, upregulation of monoamine oxidase
A (MAO-A) and a decrease in noradrenaline and 5-HT in
hippocampus were shown in the brain of a-synuclein A53T
transgenic mice (Li et al. 2020a). In the LRRK2-G2019S
PD mice model, anxiety/depression-like behavior was
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observed before the onset of motor dysfunction, accompa-
nied by upregulation of the serotonin 5-HT , receptor (Lim
et al. 2018b). The monoamine oxidase-B (MAO-B) inhibi-
tor selegiline significantly ameliorated depressive behav-
ior (immobility time in the forced swim test) and restored
reduced striatal 5-HT, cortical norepinephrine, and plasma
corticosterone in CD157 knockout mice (Kasai et al. 2017).
These findings suggest that impaired monoaminergic neuro-
transmission contributes to depression in PD, but the current
findings do not explain all pathologies in depressed patients
with PD.

Altered neuroplasticity and neurogenesis in the PD
brain

In addition to theories focusing on neurotransmitters, theo-
ries of neuroplasticity and neurogenesis have been advanced
to overcome the limitations of the monoamine hypothesis.
These are the leading alternate hypotheses: meta-analyses of
MRI studies have shown reductions in hippocampal volume
in depressed patients relative to healthy subjects (Videbech
and Ravnkilde 2004). To explain why hippocampal volume
decreased in depressed patients, we summarize the neuro-
plasticity hypothesis by focusing on morphological changes
such as shortened dendrites and decreased spine number
and density, and the neurogenesis hypothesis by focusing
on decreased hippocampal neurogenesis.

Some monoaminergic antidepressants improve synaptic
plasticity at several levels, such as alteration of brain-derived
neurotrophic factor (BDNF) expression and regulation of
synapse formation (Bjorkholm et al. 2016). BDNF is a well-
known growth factor that acts as an essential antidepressant.
BDNF binds with high affinity to the tropomycin receptor
kinase B (TrkB) receptor; BDNF-TrkB signaling can regu-
late neurotransmission and enhance synaptic efficacy as well
as neuronal differentiation, maintenance, survival and regen-
eration (Cohen-Cory et al. 2010; Park and Poo 2013). A
microarray study showed decreased BDNF and TrkB expres-
sion in postmortem brains of depressed patients (Guilloux
et al. 2012). Moreover, BDNF serum levels were decreased
in patients with PD (Jiang et al. 2019). Consistent with these
findings, some studies have shown that the therapeutic effect
of PD is associated with BDNF enhancement. An increase
in BDNF levels was accompanied by a favorable response
to dopamine D receptor agonists, significantly improv-
ing behavioral performance and attenuating dopaminergic
neuronal loss in an animal model of PD (Li et al. 2010).
Moreover, MAO-B inhibitors, (-) deprenyl and rasagiline,
increased neurotrophic factor levels in the cerebrospinal
fluid of patients with PD (Naoi and Maruyama 2009). A
negative association was found between BDNF plasma
levels and severity of anxiety and depression (HAM-A and
HAM-D scores) (Costa et al. 2019; Yang et al. 2020).
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Table 2 (continued)

&

Yan et al. (2020)

References
Depressive behavior (1 immobility time in TST) in

Pathological changes

MPTP (30 mg/kg, ip, once a day for 5 days)

Group

Subjects

Springer

MPTP administrated mice
| TH-positive cells in SN in MPTP administrated

mice
1 a-SYN (Ser 129) in SN in MPTP administrated

mice

This table summarizes pathological characteristics changes in PD patients and animal models. For details and references, see main text

5-HT, 5-hydroxytryptamine, serotonin; 6-OHDA, 6-hydroxydopamine; BDNF, brain derived neurotrophic factor; CSF, cerebrospinal fluid; DA, dopamine; DAT, dopamine transporter; DG, den-

tate gyrus; DOPAC, 3,4-Dihydroxyphenylacetic acid; FST, forced swimming test; GDNF, glial cell-derived neurotrophic factor; HIAA, 5-Hydroxyindoleacetic acid; LRRK?2, leucine-rich repeat

kinase 2; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NA, noradrenaline; NAT, noradrenaline transporter; NGF, nerve growth factor; NT-3, neurotrophin-3; PD, Parkinson’s disease;

SERT, serotonin transporter; SN, substantia nigra; SPF, sucrose preference test; TH, tyrosine hydroxylase; TST. Tail suspension test

Various evidence demonstrates that PD-related motor
and non-motor symptoms are linked to white-matter abnor-
malities. A whole-brain diffusion tensor imaging study
showed impaired frontal and limbic white matter integrity
in depressed patients with PD compared to healthy controls/
and non-depressed patients with PD. Depressed patients
with PD also showed microstructural damage in the left
hippocampal part of the cingulum (Li et al. 2020b). In addi-
tion, depressed PD patients have abnormal baseline brain
activity on MRI compared with non-depressed PD, and the
amplitude of low-frequency fluctuations was significantly
decreased, which was positively correlated with Hamilton
Depression Rating Scale scores (Wen et al. 2013).

Studies have shown that non-motor symptoms of PD are
not directly associated with neurodegenerative processes
in the substantia nigra pars compacta (Marxreiter et al.
2013). Hippocampal atrophy and disrupted neurogenesis
have been observed in genetic animal models and in human
postmortem studies of PD (Lim et al. 2018a). In addition,
impaired adult neurogenesis in the dentate gyrus of the hip-
pocampus can possibly trigger depression (Jacobs et al.
2000; Lee et al. 2013). Treatment with the antidepressant
fluoxetine increases the number of BrdU positive cells in
the adult rat hippocampus (Malberg et al. 2000). In fact,
medications and other treatments used for depression often
enhance adult neurogenesis, and clinical trials using neu-
rogenic compounds to treat major depressive disorder are
underway (ClinicalTrials.gov Identifier: NCT01520649,
NCT02695472).

Current status and limitations of treatments
for depression in PD

Because the pathophysiology of depression in patients with
PD is complex and differs from patients with major depres-
sion, the treatment strategy for general mood disorders
may not be effective in controlling depressive symptom in
patients with PD (Seppi et al. 2019). Clinically, although the
majority of PD patients with depression are receiving symp-
tomatic treatment to control their depressive symptoms,
up to 50% of them remain depressed even with treatment
(Weintraub et al. 2003). We have no clear guidelines or
recommendations on medication for depression in patients
with PD. Serotonin reuptake inhibitors and tricyclic anti-
depressants (TCA) are traditionally the most administered
psychiatric medications in PD and somewhat effective in
treating depression in PD (Liu et al. 2013). However, their
efficacy in PD is still controversial, and other side effects
are being raised. In patients with PD and rodent models
of PD, fluoxetine has been used as an adjuvant therapy to
reduce depressive symptoms and neurodegeneration (Bog-
gio et al. 2005; Zhang et al. 2015b). However, “extrapy-
ramidal” symptoms are associated with fluoxetine treatment;
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fluoxetine was found to exacerbate tremor and dopamine
depletion in a rodent pharmacological model of PD (Podur-
giel etal. 2015). Amitriptyline, a commonly used TCA, can
interfere with the autophagy-mediated removal of protein
aggregates, which could increase the risk of neurodegen-
erative diseases or exacerbate existing neurodegeneration
(Kwon et al. 2020). A recent study showing that serotonin
5-HT, , receptor upregulation is accompanied with anxiety/
depression-like behavior in PD indicates that the 5-HT, 5
receptor could be an attractive therapeutic target for PD-
associated depression (Lim et al. 2018b). For a better man-
agement of depression in PD, further research is needed to
evaluate the efficacy and safety of symptomatic treatments
and to identify pharmacologic targets based on the specific
pathogenesis of PD-associated depression.

Conclusion

In PD, non-motor symptoms can occur years or decades
before motor symptom onset and can increase caregiver
burden and significantly reduce the patient’s quality of life.
Non-motor symptoms in the early/preclinical stages of PD
are potentially useful biomarkers for predicting the onset of
motor symptoms and diagnosing PD. Moreover, these bio-
markers can also identify patients at risk of developing PD
or its complications and ultimately lead to neuroprotective
and disease control therapy. Although the loss of nigrostri-
atal dopaminergic neurons is a major neurological deficit in
PD, there is accumulating evidence regarding the existence
of pathologies for non-motor symptoms beyond the nigros-
triatal dopaminergic system. Accordingly, dopaminergic
therapy does not affect the olfactory deficit often found in
the early stage of PD, and commonly used antidepressants
may not be effective in treating depression in PD. As such,
the therapeutic management of the non-motor symptoms of
PD remains challenging. This review summarizes recent
advances in the understanding of the pathology and signifi-
cance of olfactory dysfunction and depression in PD and
therefore provides clues for identifying novel therapeutic
targets for controlling PD-associated non-motor symptoms.
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