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Abstract. The quadratic assignment problem (QAP) is notoriously difficult for exact solution methods. In the
past few years a number of long-open QAPs, including those posed by Steinberg (1961), Nugent et al. (1968)
and Krarup (1972) were solved to optimality for the first time. The solution of these problems has utilized
both new algorithms and novel computing structures. We describe these developments, as well as recent work
which is likely to result in the solution of even more difficult instances.
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1. Introduction

The quadratic assignment problem (QAP) is a well known problem in location theory.
The most general form of the problem, introduced by Lawler [43], is

QAP : min
∑

i,j,k,l

dijklxij xkl

s.t. X ∈ �,

where � denotes the set of n×n permutation matrices. In practice many QAPs have the
more restricted “Koopmans-Beckmann” form, corresponding to dijkl = aikbjl , i �= k,
j �= l. In a facility location application xij = 1 corresponds to facility i being placed
in location j , aik is the flow between facilities i and k, and bjl is the distance between
locations j and l. In addition to location theory, QAP has applications in areas as diverse
as ergonometric design [16] and data classification [35]. Several recent surveys [12, 18,
54] give extensive references on applications and solution methods for QAP.

It is well known that QAP is NP-hard, since for example common graph problems
such as TSP can be posed as QAPs.Although some “easy” cases are known [13], QAPs in
general have proven to be extraordinarily difficult to solve to optimality. Several famous
instances, including the problems of size n = 36 posed by Steinberg in 1961 [63], and
problems of size n = 30 posed by Nugent et al. in 1968 [51] and Krarup in 1972 [34,
42], have only very recently been solved to optimality for the first time. The purpose of
this paper is to describe the advancements in algorithms and computational platforms
that have made the solution of these large instances possible.
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In the next section we briefly describe heuristic search methods for QAP, and in
section 3 we describe a variety of lower-bounding techniques for QAP. Lower bounds
are useful for providing worst-case measures for the quality of solutions obtained by
heuristic search, and are an essential ingredient in the construction of Branch and Bound
(B&B) methods for solving problems to optimality. In recent years a variety of new
bounds have been derived, some of which have obtained the best known root bounds for
difficult problems and/or been successfully incorporated into state-of-the-art B&B algo-
rithms. In section 4 we describe B&B algorithms for solving QAPs to optimality. Most
recent solutions of large problems have utilized advanced bounding techniques, but the
ste36a/b/c problems from [63] were (rather surprisingly) solved using the well-known
Gilmore-Lawler bound. (All problem names are taken from QAPLIB [15].) In addition
to the use of new bounds, recent B&B implementations have employed strong branching,
described in section 4.1, to substantially reduce the amount of enumeration required.
The solutions of several large QAPs were accomplished using massively distributed
computation, facilitated by recently-developed “metacomputing” systems. Some details
concerning these metacomputing (also known as “grid computing”) implementations are
considered in section 4.2. In section 4.3 we describe symmetry that is present in many
QAPs. The symmetry inherent in grid-based problems is well known, but some other
benchmark problems have high degrees of symmetry that could be exploited to reduce
redundant enumeration. Consideration of such problem-specific structure is likely to be
important in attempts to solve some currently-unsolved large instances.

Notation. For a square matrix A, tr(A) denotes the trace of A, diag(A) is the vector con-
sisting of the diagonal components of A, and vec(A) is the vector obtained by “stacking”
the columns of A in the natural order. The Kronecker product of matrices A and B is
denoted A⊗B, and A•B = tr(ABT ). For symmetric matrices A and B, A � B denotes
that A−B is positive semidefinite, and λ(A) ∈ �n denotes the vector of eigenvalues of
A. The set of permutation matrices is denoted �, and O denotes the set of orthogonal
matrices; O = {X | XXT = XT X = I }.

A vector of arbitrary dimension with all components equal to one is denoted e. For
vectors u and v, 〈u, v〉− denotes the “minimal product”

〈u, v〉− := min
π

n∑

i=1

uivπ(i),

where π(·) is a permutation of 1, 2, . . . , n. It is easy to show that 〈u, v〉− is obtained by
putting the components of one of the vectors in nondecreasing order, and the components
of the other in nonincreasing order, before taking the inner product.

For convenience we often use the name of an optimization problem, such as QAP,
to also refer to its optimal value.

2. Heuristics

The extreme difficulty of QAP has made it an ideal problem for the development of
heuristic search methods. Simulated annealing [17, 20], tabu search [61, 64], genetic
algorithms [2, 21, 66], GRASP [44], ant systems [25] and other specialized methods
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have all been applied to QAP. Recent implementations often give optimal or near-opti-
mal solutions on most QAPLIB problems [21], although some problems (such as the
larger “sko” instances [61]) are still challenging. The performance of different heuristics
also tends to vary with certain problem characteristics [65].

It has recently been shown that the “typical” QAP behavior of being relatively easy
for heuristic search and very difficult for exact methods does not universally hold. The
authors of [22] construct new classes of test problems, up to size n = 75, which prove
to be relatively difficult for state-of-the-art heuristics [21, 25], but solvable to optimality
using the Dual-LP-based B&B algorithm of [33].

3. Lower bounds for QAP

In this section we consider a number of different procedures for obtaining a lower bound
on the optimal value of QAP. When a search heuristic is applied to QAP, such a bound
provides a “worst-case” gap to optimality for the best solution found. Lower bounds
are also essential in the construction of B&B algorithms for solving QAP to optimality,
considered in the next section.

3.1. Gilmore-Lawler bound

The best-known lower bound for the QAP is the Gilmore-Lawler bound (GLB) [26, 43].
For i, j = 1, . . . , n, let fij denote the solution value in the linear assignment problem

min
∑

k,l

dijklxkl

s.t. X ∈ �, xij = 1.

It is then clear that GLB := LAP(F ) ≤ QAP, where LAP(F ) denotes the linear assign-
ment problem with cost matrix F . For a general Lawler QAP the computation of GLB
requires the solution of n2 + 1 LAPs. However, for a problem in Koopmans-Beckmann
form the LAP associated with each fij is trivial to solve, and as a result F can be obtained
in a total of only O(n3) operations.

Until recently virtually all successful B&B algorithms for QAP were based on the
GLB or closely related bounds; see for example [11, 14, 19, 49, 50, 55]. On the bench-
mark problems of Nugent et al. [51], GLB-based algorithms were effective for problems
up to about size n = 24, but the growth rate of the B&B tree made the solution of larger
instances such as nug30 appear to be impossible.

3.2. Eigenvalue bounds

A Koopmans-Beckmann QAP can be written in the matrix form

min
X∈�

tr(AXB + C)XT . (1)
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When A and B are symmetric, a bound for the quadratic term can be based on the fact
that X ∈ � ⇒ X ∈ O. In particular [24]

min
X∈O

tr(AXBXT ) = 〈λ(A), λ(B)〉−,

and therefore
〈λ(A), λ(B)〉− + LAP(C) (2)

is a valid lower bound for (1). The simple eigenvalue bound (2) is too weak to be com-
putationally useful, but several schemes for improving the bound have been considered
[24, 28, 58]. One well-known variant is the projected eigenvalue bound (PB) of [28]. The
construction of PB is based on enforcing the row and column sum constraints on X, in
addition to orthogonality. Let V be an n×(n−1) matrix whose columns are an orthonor-
mal basis for the nullspace of eT , Â = V T AV , B̂ = V T BV and D = C+(2/n)AeeT B.
Then

PB := 〈λ(Â), λ(B̂)〉− + LAP(D) − 1

n2 (eT Ae)(eT Be).

For many problems PB provides a good quality bound at modest computational cost.

3.3. Quadratic programming bounds

Another methodology for obtaining a lower bound on QAP is to somehow convexify the
quadratic objective. A scheme of this type for Koopmans-Beckmann problems, based on
modifying the diagonal elements of A and B, is well known [54]. Some computational
results for this bound are given in [7, Section 6.1]. A different approach, based on the
derivation of the projected eigenvalue bound PB, was introduced in [5]. The result is a
bound

QPB : min vec(X)T Q vec(X) + C • X + 〈λ(Â), λ(B̂)〉−
s.t. Xe = XT e = e

X ≥ 0,

where Q is a matrix of the form Q = (B ⊗ A) − (I ⊗ S) − (T ⊗ I ). The matrices S

and T are of the form S = V ŜV T , T = V T̂ V T , where Ŝ and T̂ are optimal solutions
of the semidefinite programming problem

SDD(Â, B̂) : max tr Ŝ + tr T̂

s.t. (I ⊗ Ŝ) + (T̂ ⊗ I ) � (B̂ ⊗ Â).

It can be shown [6] that SDD(Â, B̂) = 〈λ(Â), λ(B̂)〉−, and as shown in [5, Section 4]
optimal Ŝ, T̂ can easily be obtained from the spectral decompositions of Â and B̂. The
objective in QPB is convex on the nullspace of the equality constraints, so QPB is a
convex quadratic program.

By construction QPB ≥ PB. On typical benchmark problems the improvement over
PB is modest [5], but QPB has several significant advantages for implementation within
B&B. For example, the value of QPB is associated with a doubly-stochastic matrix X.
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This X, and dual information provided from the solution of QPB, are very valuable in
devising branching strategies. The value of QPB also appears to rise much faster than
PB as branching occurs.

Evaluating QPB requires the approximate solution of a convex quadratic program
in the n2 variables X. There are a variety of approaches to such a problem, but most
would be too expensive for implementation within B&B. In [9] the Frank-Wolfe (FW)
algorithm is used to approximately evaluate QPB. Although the asymptotic properties
of the FW algorithm are poor, this scheme has potential for solution of QPB because
the work on each iteration of the FW algorithm is dominated by the solution of a single,
small LAP.

3.4. LP and dual–LP bounds

A large class of bounds for the QAP are related to linear programming (LP) relaxations
of the problem. Defining new variables yijkl = xij xkl , and dropping the integrality
conditions, results in an LP relaxation [1, 59]

LPQAP : min
∑

i,j,k,l

yijkldijkl

s.t.
∑

j

xij = 1, i = 1, . . . , n,

∑

i

xij = 1, j = 1, . . . , n,

∑

l

yijkl = xij i, j, k = 1, . . . , n,

∑

k

yijkl = xij i, j, l = 1, . . . , n,

yijkl = yklij i, j, k, l = 1, . . . , n, (3)

xij ≥ 0, yijkl ≥ 0, i, j, k, l = 1, . . . , n.

The symmetry constraints (3) imply that LPQAP can be formulated using variables
yijkl, i ≤ k. Additional variables can be eliminated using the facts that for any X feasi-
ble in QAP, yijij = xij for all i and j , yijil = 0 for all i and j �= l, and yijkj = 0 for
all i �= k and j . Taken together, these observations allow for a reformulation of LPQAP
as an LP problem with n2 + n2(n − 1)2/2 variables. Further analysis [53, Section
7.1] can be used to reduce the number of equality constraints required in LPQAP to
2n(n − 1)2 − (n − 1)(n − 2), n ≥ 3. For problems with symmetric data (dijkl = dilkj )
the number of variables and equality constraints can be approximately halved [36, 53].

For QAPs of size n ≥ 25 the solution of LPQAP can be computationally quite
challenging. The solution of LPQAP using an interior-point method was investigated in
[59]. This approach produces excellent bounds for many problems, but appears to be
prohibitively costly for implementation in a B&B algorithm.

It is known [1] that if the symmetry conditions (3) are dropped then the solution
value in LPQAP is exactly GLB. It can also be shown [40] that many bounding schemes
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for QAP can be viewed as Lagrangian procedures that attempt to approximately solve
the dual of LPQAP. Computationally the most successful of these is a method motivated
by the Hungarian algorithm for LAP, due to P. Hahn and co-workers [30, 31, 33].

3.5. Polyhedral bounds

Polyhedral bounds for QAP are based on considering the convex hull of integer solu-
tions to the problem LPQAP. There has recently been considerable progress in the
development of such methods. Preliminary results characterizing the affine hull of solu-
tions, and simple facets, were obtained in [36, 37, 53]. A nontrivial class of facets (the
“box-inequalities”) is described in [37]. Computational results in [37] show consider-
able improvement over the bound from LPQAP on many QAPLIB problems up to size
n = 20. The results are particulary good on the “esc16” problems [23], for which the
optimal solution is obtained in all but one case. Further refinements [38, 39] lead to
the solution (without branching) of three of the esc32 instances, and the highest known
bounds for the remaining esc32 problems.

3.6. Second-order RLT bounds

The bound for QAP based on LPQAP, described above, can be viewed as an applica-
tion of the “Reformulation-Linearization Technique” (RLT) of [60]. In fact a hierarchy
of RLT bounds is possible, beginning with the first-order bound from LPQAP. A sec-
ond-order RLT bound can be computed from an LP problem with variables zijklpq ,
corresponding to products of the form xij xklxpq . The possibility of using these bounds
was first suggested in [57]. More extensive computations performed in [56] obtained the
optimal solutions for QAPs of size up to n = 12 without branching. The major difficulty
with these RLT-2 bounds is that the size of the LP that must be solved grows extremely
rapidly with n.

In [32] the dual-LP approach of Hahn et al. [30, 31, 33] is extended to apply to the
LP arising from the second-order RLT. Computational results suggest that this dual-LP
approach is much more efficient than direct solution of the level-2 LP, although storage
requirements are still a non-trivial issue for larger problems.

3.7. Semidefinite programming bounds

In recent years there has been considerable interest in obtaining semidefinite program-
ming (SDP) bounds for discrete optimization problems. SDP bounds for QAP were first
described in [45] and [68]. For an n2 × n2 matrix Y , let Y[ij ] denote the n × n matrix
which is the ij “block” of Y , i, j = 1, . . . , n. In other words,

Y =



Y[11] . . . Y[1n]

...
. . .

...

Y[n1] . . . Y[nn]



 .
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Define [68] the linear operators from �n2×n2
to �n×n:

bdiag(Y ) =
n∑

i=1

Y[ii]

(odiag(Y ))ij = tr Y[ij ], i, j = 1, . . . , n.

Finally let F be the 2n × n2 matrix

F =
(

eT ⊗ I

I ⊗ eT

)
.

The matrix F arises naturally in the representation of the assignment constraints of QAP
when the matrix X is written as a vector vec(X); Xe = XT e = e is equivalent to
F vec(X) = e. For a homogeneous (C = 0) Koopmans-Beckmann QAP, the basic SDP
bound of [68] is

SDPB1 : min (B ⊗ A) • Y

s.t. bdiag(Y ) = I

odiag(Y ) = I

F • Y = 2n

Y − diag(Y ) diag(Y )T � 0.

In SDPB1 the matrix Y is a relaxation of the rank-one matrix vec(X) vec(X)T . The
constraints involving odiag(Y ) and bdiag(Y ) are generalizations of the orthogonality
conditions XXT = XXT = I , and the constraint on F • Y generalizes the constraints
Xe = XT e = e. It is shown in [4] that SDPB1 and PB are closely related, and SDPB1
≥ PB always holds in the computational results of [68]. Results in [5] show that it is
generally the case that SDPB1 ≥ QPB, although QPB > SDPB1 is possible.

Evaluation of SDPB1 is complicated by the fact that all feasible solutions are singular,
so standard SDP algorithms cannot be applied without first obtaining a lower-dimen-
sional representation of the problem [68]. SDPB1 can be strengthened by imposing
non-negativity constraints on the components of Y , as well as constraints that certain
components of Y must be zero. (The latter are identical to the constraints that certain
variables yijkl of LPQAP should be zero, as described in Section 3.4, although in the case
of SDP bounds the components of Y cannot be simply “removed.”) Imposing both types
of constraints can result in very good bounds, but the resulting mixed SDP/LP problem
is computationally difficult to solve. Recent work [62] has considered the application
of bundle methods to handle the large number of constraints that appear in such strong
SDP relaxations for QAP. This methodology obtains the strongest known root bounds for
some benchmark problems, including nug30. Whether the cost of obtaining these bounds
is low enough to permit their use within a B&B algorithm is still an open question.

3.8. Comparison of bounds

When comparing bounds for QAP the most important issues are the strength of a bound
and the computational expense required to compute it. Some methodologies (LP, SDP,
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Fig. 1. Gaps for bounds on grid-based QAPs

RLT-2) give excellent root bounds but may be too expensive to implement in B&B
algorithms. Parametric strengthenings, such as those described in [41, 58], can provide
substantial improvements of root bounds but also seem ill-suited for implementation
within B&B.

The behavior of some bounds appears to vary considerably with certain problem
characteristics. This is particulary true of eigenvalue bounds, which have been noted to
often behave poorly on sparse problems. Figure 1 [10] compares the root gap for GLB
and QPB on a number of grid-based QAPLIB problems, plotted against the coefficient
of variation (CV, equal to the standard deviation divided by the mean) of the flow matrix
components. Recall that QPB is closely related to the projected eigenvalue bound PB,
and note that the CV naturally increases with sparsity of the flow matrix. The problems
considered, in order of increasing CV, are had20, nug30, tho30, kra30b, scr20 and ste36a.
For dense problems with a low CV, such as had20, nug30 and tho30, the gap for QPB is
substantially less than for GLB. However, for the very sparse problem ste36a the value
of QPB is negative, and the relative gap exceeds 200%. Poor behavior of SDPB1, which
is also related to PB, has been noted on some sparse problems [68]. In the literature on
heuristics for QAP, CV (often termed “flow dominance”) is commonly used to classify
problems and/or control algorithms; see for example [65].

In Table 1 we compare a number of different bounds on the kra30a, nug30 and ste36a
instances. The bounds are listed in approximate order of computational expense – n.a.
denotes that a bound is not available. TDB is the “triangle decomposition bound” [41],
a parametric strengthening of PB that applies to grid-based problems, and SDPB3 is a
strong SDP bound computed using a bundle method [62]. The Dual-LP bounds, taken
from [40], are based on a methodology very similar to that used in [30]. Underlined
values correspond to the bounds used in algorithms that first solved these instances to
optimality, as described in the next section. In addition to the differences in PB and QPB
versus GLB noted above, the general trends that GLB < Dual-LP, and PB < QPB <
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Table 1. Bounds for kra30a, nug30 and ste36a QAPs

kra30a nug30 ste36a
Bound Value Gap Value Gap Value Gap
GLB 68360 23.1% 4539 25.9% 7124 25.2%
PB 63717 28.3% 5266 14.0% −11700 222.8%

QPB 68572 22.9% 5365 12.4% −10294 208.1%
TDB n.a. n.a. 5772 5.7% 6997 26.5%

Dual-LP 75566 15.0% 4785 21.9% 7860 17.5%
SDPB1 69736 21.6% 5413 11.6% n.a. n.a.
SDPB3 77647 12.7% 5803 5.2% n.a. n.a.

OPT 88900 0.0% 6124 0.0% 9526 0.0%

SDPB1 < SDPB3, are evident. The SDPB3 bounds for kra30a and nug30 are the best
known bounds for these problems obtained without branching.

4. Exact solution algorithms

Exact algorithms for QAP are typically of the B&B, or “implicit enumeration” type.
The major characteristic distinguishing methods from one another is the choice of lower
bound used. To date, complete B&B algorithms have been implemented using the GLB,
QPB, and dual-LP bounds described in Section 3.

In recent years a number of long-open large QAPs have been solved to optimality for
the first time. In Table 2 we summarize these results. In the table, “CPU days” reports
the total amount of unnormalized CPU time expended on the solution of a problem.
The “ste36” problems arose from a backboard wiring application in 1961 [63]. Nug30,
perhaps the best-known problem in the QAP literature, is the largest of the problems
posed by Nugent et al. [51] in 1968. The “kra” problems come from a hospital planning
application in 1972 [42]; see [34] for an interesting discussion of the history of these
problems. The kra32 problem is based on kra30a, but adds two “dummy” facilites to
allow for the use of the full 4 by 4 by 2 grid of locations which forms the basis for the
distances in kra30a1. The tai25a problem has randomly generated flows and distances
[64]; the related tai30a problem is now the smallest unsolved problem in QAPLIB with
symmetric data. The tho30 problem, which is more recent [67], may be the most difficult
QAP solved to date. All of the problems listed in Table 2 except tai25a have distance
matrices that are based on two-dimensional or three-dimensional rectangular grids.

It is interesting to note the variety of bounds used to solve the problems listed in
Table 2, in particular the use of GLB to solve the ste36a/b/c problems. In the 1990s a
great deal of computational effort was focused on the solution of the nug problems, from
[51]. The fact that solution of the largest instances (nug27/28/30) using GLB is imprac-
tical, if not impossible, spurred the development of the alternative bounding techniques
described in Section 3. Given the difficulty of nug30, most researchers probably viewed
the ste36a/b/c problems as being hopelessly beyond the reach of exact algorithms. How-
ever, as described above, the ste36 problems are structurally very different from nug30.

1 The optimal values for kra30a and kra32 are 88900 and 88700, respectively. Due to a clerical error the
optimal value of kra32 was incorrectly reported in [3], but the optimal permutation given there is correct.
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Table 2. Recently-solved large QAPs

Problem Reference Bound Platform CPU days
kra30a [33] Dual-LP Serial 99
kra30b/32 [3] QPB Distributed 1527/5536
nug27/28/30 [3] QPB Distributed 113/722/3999
ste36a [10] GLB Serial 18
ste36b/c [52] GLB Distributed 60/200
tai25a [29] Dual-LP Serial 394
tho30 [3] QPB Distributed 8997

As shown in Table 1 the root gaps on nug30 and ste36a using GLB are similar. However
the gaps using GLB decrease much faster as branching occurs on ste36a than on nug30,
so that in the end the solution of ste36a using GLB is relatively practical.

In addition to the “first solution” results reported in Table 2, the problems kra30b,
nug27 and nug28 were subsequently solved using Dual-LP methods [33] based on RLT-1
and RLT-2 relaxations of QAP in less time than required for the QPB-based algorithm
of [3], after adjusting for differences in machine speed.

4.1. Strong branching

Branch and bound algorithms for QAP typically use “polytomic” branching, where at
any node children are created by either (row branching) assigning a chosen facility to
each available location, or (column branching) fixing a location and assigning to it all
available facilities. In early B&B implementations the facility or location on which to
branch was typically chosen arbitrarily. The use of dual information associated with
GLB as the basis for branching decisions was first suggested in [50]. This methodology
is very effective on small problems, but as n increases the quality of information near the
root deteriorates. However, the first few branching decisions can have a very large effect
on the eventual evolution of the B&B tree. The idea of strong branching is to compute
(partially or fully) bounds for prospective children, and use this additional information
to make a final branching decision. It is now recognized that strong branching can be
very effective in reducing the computation for difficult discrete optimization problems
[46], but until recently the methodology had not been applied to QAP. All of the results
described in Table 2, with the exception of [52], used strong branching techniques to
reduce the size of the B&B tree. In the solution of nug30, based on QPB, over 40%
of total worker CPU time was spent executing strong branching strategies on selected
nodes in levels 0–7 of the tree.

Table 3 illustrates the effect of strong branching in the solution of the ste36a prob-
lem, using a GLB-based algorithm [10]. The results without strong branching use the
technique introduced in [50] throughout. The second set of results, from the final solu-
tion run, use a strong branching strategy applied to selected nodes on levels 0-6. In the
table “Gap” is the average gap between the optimal value and the lower bounds of the
nodes at each level, “Fthm” is the fraction of nodes fathomed at each level, and “Elim”
is the fraction of potential children of unfathomed nodes eliminated. The effect of strong
branching is very clear. Compared to the solution run, the algorithm without strong
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Table 3. Effect of strong branching applied to ste36a

Without strong branching With strong branching
Level Nodes Gap Fthm Elim Nodes Gap Fthm Elim

0 1 2402.0 0.000 0.000 1 2402.0 0.000 0.000
1 10 2280.5 0.000 0.000 10 1953.7 0.000 0.054
2 318 1770.3 0.003 0.069 301 1218.4 0.000 0.421
3 9,941 1239.8 0.080 0.549 5,869 697.1 0.070 0.787
4 136,112 727.7 0.209 0.580 38,263 542.5 0.320 0.441
5 1,445,612 594.7 0.336 0.535 465,182 354.3 0.404 0.569
6 13,832,243 438.4 0.445 0.629 3,703,103 260.8 0.579 0.752
7 85,562,934 322.4 0.546 0.613 11,627,541 183.0 0.641 0.806
8 436,142,577 266.5 23,549,921 132.2 0.730 0.821

branching has over 18 times as many nodes on level 8, and the average gap for these
nodes is doubled. (The algorithm without strong branching was only run down to level
8 due to the excessive growth in the tree.) The time expended on strong branching in the
solution run was a negligible fraction (< 4%) of the total CPU time.

4.2. Distributed computation

The solution of many of the problems listed in Table 2 involved distributed computation.
In the past, landmark results on large QAPs have often utilized parallel processing hard-
ware [11, 19, 49]. The capability of such supercomputers has continued to increase, but
expense and lack of availability limits their usefullness for applications like QAP. Dis-
tributed computation, an alternative paradigm for high-throughput computing, utilizes
multiple machines interfaced with some form of communication network. The latter
could be as small as a local area network (LAN) connecting a few machines physi-
cally located near one another, or as large as the Internet. The terms metacomputing and
grid computing refer to very-large-scale distributed computation, where machines are
geographically dispersed and beyond the control of any one party.

In distributed computation the availability of CPUs is typically dynamic, and a “mas-
ter” process utilizes “worker” (or “slave”) resources as they become available. Fault
tolerance is of critical importance since worker processes are inherently unreliable, and
can abort before completing their assigned tasks. Fault tolerance for the master process
is also essential during long runs.

The solution of the ste36b/c problems by M. Nyström [52] was based on a distributed
computing network consisting of 22 Pentium Pro processors. Nyström’s work was all-
but-unknown until the solution of ste36a was announced in [10]. The problems solved
in [3] utilized the MW (for “Master-Worker”) metacomputing system developed as part
of the metaNEOS project at Argonne National Lab [27]. MW uses the Condor system
[47] to manage a potentially very large number of worker machines. The solution of
nug30 utilized an average of about 650 CPUs over a one week period, providing the
equivalent of almost 7 years of computation on a single HP9000 C3000 workstation.
The computations to solve the tho30 problem were even more extensive.

With further development of metacomputing systems like MW, it should become
easier to use highly distributed computation to solve large QAPs. It is worth noting,
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however, that inherent characteristics of a metacomputing environment may be more
compatible with some solution techniques than with others. For QAP, methods based
on relatively inexpensive bounds such as GLB and QPB are easily adapted to grid com-
puting. On the other hand the use of very expensive bounds (LP, SDP, RLT-2) would
raise some serious issues. For example, the resources in a large grid computing environ-
ment are typically very heterogenous, so requiring high performance (fast CPU speed
and/or large memory) could rule out many available processors. In addition, if worker
tasks become very large then checkpointing and migration of tasks becomes important
to avoid the potential loss of computation when workers become unavailable. The use
of some bounds could also substantially increase the amount of information that must
be transmitted to workers, and/or stored on the master processor. The repeated trans-
fer of large amounts of data is undesirable in a metacomputing environment because
the communication speed between the master and worker machines can be very slow.
For example, the child problems created when using some dual-LP bounds [30, 31, 33]
inherit a transformed version of the problem data from the parent node. This O(n4)

information would need to be transferred when a worker is sent a node in the B&B
tree to explore, and the worker would have to return the information associated with
any unfathomed nodes that it sends back to the master process. The management of the
master queue in such an implementation could also become nontrivial.

4.3. Symmetry

Many QAPs have distance matrices that are based on rectangular grids. It is well known
that the symmetry in such problems can be exploited in the branching process to avoid
the creation of redundant children. The algorithms used to solve the problems in Table
2 all use such logic, at least at the root of the B&B tree.

Besides the obvious symmetry present in grid-based problems, some other bench-
mark QAPs have high degrees of symmetry that do not appear to have been previously
elucidated. For example, the esc problems [23] of size n = 2k have distance matrices
that arise from Hamming distances between k-bit binary words. In the data for these
problems, location j = 1, . . . , n is associated with the k-bit representation of the inte-
ger j − 1. Using this association, it is clear that distances are preserved by arbitrary
complementing and/or permutations of bits. It follows that any assignment is a member
of an equivalence class having k!2k members, all with the same objective value.

In addition to this high degree of distance symmetry, many of the esc problems have
groups of equivalent facilities that can be interchanged without changing the value of
the objective. Each group of size m contributes an additional factor of m! to the number
of assignments equivalent to any given assignment. An obvious example of equivalent
facilities is a group with no flows whatsoever, corresponding to blocks of zero rows
and columns in the flow matrix. Many of the esc problems have such blocks, a prop-
erty that was exploited in the polyhedral method described in [38]. However there are
other instances, for example esc16b/h, that have high degrees of flow symmetry not
corresponding to zero rows and columns.

In Table 4 we illustrate the effect of flow and distance symmetry on the esc16 prob-
lems solved in [55]. The combinatorial branching rule used to solve these problems



Recent advances in the solution of quadratic assignment problems 39

Table 4. Degree of symmetry in esc16 problems

Optimal Flow Distance Distinct
Problem Solutions Factor Factor Solutions

esc16a 13,271,040 2,880 384 12
esc16c 2,064,384 24 384 224
esc16e 30,965,760 20,160 384 4
esc16g 46,448,640 40,320 384 3
esc16i 710,277,120 5,040 384 367

Table 5. Solution of esc16a using flow and distance symmetries

Level Nodes Fthm Elim Secs
0 1 0.0000 0.0000 0.01
1 1 0.0000 0.0000 0.04
2 4 0.0000 0.1818 0.67
3 18 0.0000 0.7203 3.64
4 31 0.1613 0.7892 4.42
5 39 0.0256 0.5123 0.13
6 119 0.5210 0.4522 0.35
7 195 0.6667 0.4468 0.41
8 213 0.6197 0.5356 0.44
9 215 0.6605 0.3871 0.39

10 247 0.7166 0.6378 0.21
11 117 0.7778 0.6804 0.11
12 31 0.8710 0.7857 0.01
13 3 0.00

Total 1,234 10.85

generated all optimal permutations. The number of such permutations found is listed
under “Optimal Solutions.” “Flow Factor” and “Distance Factor” are the factors for the
number of equivalent assignments that can be generated from any given assignment
using the flow and distance symmetries described above. For all of the esc16 problems
the distance factor is 4!24 = 384. “Distinct Solutions” is the number of optimal solutions
divided by the flow and distance factors, representing the number of optimal solutions
that cannot be obtained from one another using using the flow and distance symmetries.
It is notable that in all cases the number of optimal solutions found in [55] is divisible
by the flow and distance factors, as should be the case.

It is obvious that the high degreee of symmetry in the esc problems could be exploited
within a B&B algorithm to avoid the creation of redundant children. In Table 5 we illus-
trate the solution of esc16a using a prototype algorithm [8] that considers both the flow
and distance symmetries present in these problems. The solution run shown is based
on QPB, but the consideration of symmetry applies to any bounding methodology. The
algorithm considers both row branching using distance symmetry and column branch-
ing using flow symmetry, with priority given to the former. The “Fthm” and “Elim”
statistics are as described for Table 3, and “Secs” is total CPU seconds expended at each
level of the tree, running on an 800 MHz Pentium III. It is worth noting that the first
solution of esc16a, reported in 1997 [19], required substantially more nodes (4,187,636)
when attempting to use problem symmetry than when symmetry was ignored (594,177).
Careful consideration of the structure present in the larger esc instances is likely to be
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important in attempts to solve these problems to optimality. (The esc32a/b/c/d/h QAPs
are now, after tai30a, the smallest unsolved QAPLIB problems with symmetric data.) A
general methodology for exploiting high degrees of symmetry in discrete optimization
problems, including the distance symmetry present in the esc problems, is described in
[48].

5. Conclusion

The QAP remains very challenging, but advances in algorithms and computing platforms
have facilitated the exact solution of long-open instances that were until quite recently
thought to be beyond reach. The use of more complex bounds, strong branching, and dis-
tributed processing implementation have all played essential roles in the recent solutions
of large problems. Further advances in these areas, as well as consideration of problem-
specific structure, will likely lead to the solution of even more difficult instances in the
near future.
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