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Abstract

Perimidines are versatile scaffolds and a fascinating class of N-heterocycles that 
have evolved significantly in recent years due to their immense applications in life 
sciences, medical sciences, and industrial chemistry. Their ability of molecular inter-
action with different proteins, complex formation with metals, and distinct behavior 
in various ranges of light makes them more appealing and challenging for future sci-
entists. Various novel technologies have been developed for the selective synthesis 
of perimidines and their conjugated derivatives. These methods extend to the prepa-
ration of different bioactive and industrially applicable molecules. This review aims 
to present the most recent advancements in perimidine synthesis under varied con-
ditions like MW radiation, ultrasound, and grinding using different catalysts such 
as ionic liquids, acid, metal, and nanocatalyst and also under green environments 
like catalyst and solvent-free synthesis. The applications of perimidine derivatives 
in drug discovery, polymer chemistry, photo sensors, dye industries, and catalytic 
activity in organic synthesis are discussed in this survey. This article is expected to 
be a systematic, authoritative, and critical review on the chemistry of perimidines 
that compiles most of the state-of-art innovation in this area.
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Abbreviations

CRF  Corticotropin-releasing factor
MW  Microwave
NDA  1,8-Naphthalenediamine
HPA  Heteropolyacids
MCM  Mobil composition of matter
HBOB  Bis(oxalato) boric acid
PTSA  P-toluene sulfonic acid
CMK  Nanoporous carbon
DCM  Dichloromethane
THF  Tetrahydrofuran
β-CD  β-Cyclodextrin
RT  Room temperature
DDQ  2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DMSO  Di-methyl sulphoxide
PEG  Polyethylene glycol
MWI  Microwave irradiations
KB  Kilobase of DNA/RNA
MDR  Multi-drug resistance
MCF-7  Breast cancer cell lines
Caco-2  Colon cancer cell lines
Hep-2  Laryngeal carcinoma cancer cell lines
WI-38  Fibroblast cell lines
IC50 Value  Half-maximal inhibitory concentration
SAR  Structure–activity relationship
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UACC-62  A panel of cancer cell lines
TK-10  Renal cancer cell lines
Ache  Acetylcholinesterase
LPS  Lipopolysaccharides
IL  Interleukin
TNF  Tumor necrosis factor
COX-2  Cyclooxygenases
T47D  Breast cancer cell lines
H-522  Lung cancer cell lines
Hepg2  Liver cancer cell lines
HCT-15  Colon cancer cell lines
PA-1  Ovary cancer cell lines
HL-60  Leukemia cancer cell lines
EW  Electron withdrawing group
HK  Heterocyclic ketene aminals
HOMO  Highest occupied molecular orbital
LUMO  Lowest unoccupied molecular orbital
DFT  Density functional theory
UV-V  Ultraviolet–visible

1 Introduction

Nitrogen-containing heterocycles are the key-frame work of many essential natural 
and synthetic products of our everyday lives [1–5]. A wide range of N-heterocycles 
is present in nature in living cells [6], alkaloids, hormones [7], and amino acids, 
and therefore constitutes a large fraction of medicinal and industrial chemistry. Per-
imidine and 1H-benzo [d,e] quinazolines are fascinating tricyclic moieties bearing 
unique properties, i.e., presence of both π-excessive and π-deficient arrangement. 
Perimidines and peri-naphtho-fused pyrimidine systems also serve as an interest-
ing class of saturated N-heterocycles due to the existence of a lone pair of nitrogen 
atoms that transfer their electron density to naphthalene ring from fused heterocyclic 
ring and increase the possibility of future reaction chemistry via both electrophilic 
and nucleophilic reactions (Scheme 1). Perimidine was first perceived in 1874 by de 
Aguiar [8] and an extensive study was demonstrated by Sachs in 1909 [9]. Its elec-
tronic properties are responsible for its role in various industries including medicine 
and agriculture chemistry.

Scheme 1  Perimidine molecule 
and charge distribution
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It is used as a coloring agent and dye intermediate in fibers and plastic synthe-
sis, carbene ligand generation, and corrosion inhibitors [10–12]. It also works as a 
potent drug against various diseases and behaves as antitumor, antimicrobial, anti-
fungal, antiulcer, antioxidant, anti-inflammatory agent, and corticotropin-releasing 
factor (CRF) receptor-selective antagonists [13–16] etc. (Scheme 2).

Furthermore, its derivatives behave as fluorescent chemo-sensors and stop-
pers for supramolecules, generate photochemic memory devices, intermedi-
ate in organic synthesis, and also display DNA-binding properties [17–24] 
etc. (Fig. 1). Due to its unique electronic features and immense applications in 
diverse areas, researchers are keenly interested in its environmental benign syn-
thesis. This interest has led to the design of various methodologies of perimi-
dines and their composite synthesis. To date, a large number of perimidines has 
been designed under different conditions and their applications in different fields 

Scheme 2  Some synthesized 
biological active perimidines

Fig. 1  Application of perimidines in diverse areas
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have also been examined. In light of their tremendous progress and above dis-
cussion, we believe that a timely critical discussion on a particular topic may 
increase the possibilities of  future development [25–30]. The first review arti-
cle on perimidine moiety was published in [31] and later on by Pozharskii and 
Dal’nikovskay in [32]. In the last four decades, there has been a huge upsurge 
in the synthesis and applications of perimidines and no detailed discussions 
have been done in this emerging field to date. In lieu of this, we have critically 
reviewed the state-of-art evolution on perimidines and their derivatives with 
multifarious applications. This article is not a comprehensive study, but a sys-
tematic review including several aspects of synthesis and applications of perimi-
dines from 1981 to now. The first section includes the synthesis of perimidines 
under different conditions, viz., green solvents, temperature, and catalyst etc., 
using various synthetic techniques like conventional heating, stirring, grinding, 
microwave (MW), and ultrasound radiation with their unique advantages and 
limitations. The second part includes the applications of perimidines in medici-
nal, synthetic chemistry, and other areas of life. The last portion covers the chal-
lenges and critical discussion of perimidines in terms of their structure, syn-
thesis, medical, structure–activity relationship, and other fields to discover the 
next-generation eco-friendly techniques for society and humanity. This review 
article will give new directions for greener and more sustainable synthesis of 
perimidine scaffolds in every aspect of life inclusive of agriculture, medicine, 
materials, electronics, and polymers.

2  Chemistry of Perimidines

Perimidines and the peri-naphtho-fused pyrimidine system is a new and rap-
idly growing area of pure and applied chemistry, especially from 2010 [33–36]. 
In this remarkable advancement, vast development has occurred in the field of 
structure [37–41], synthesis [42–50], spectral studies [51], bonding with differ-
ent motifs and ligands [52–57], and their complex reactivity in various fields, 
etc. [58–67]. So, most of the literature has been covered to give complete knowl-
edge about perimidine motifs.

Perimidine is a heterocycle containing two nitrogen atoms at the first and 
third positions that increase the delocalization of pi-electrons in tricycles and 
enhances the potential of different synthesis. Scheme 1 shows the structure and 
uneven charge distribution in perimidines which is responsible for its synthetic 
behavior. Perimidine shows oxidation at the 4th and 9th positions due to high 
electron density and reduction at N-alkylated positions. The heteroaromatic ring 
shows nucleophilic reactions and the naphthalene ring gives electrophilic substi-
tution reactions like acylation, halogenation, sulphonation, etc. N-Alkylated per-
imidines form quaternary salts via condensation with acylating molecules at the 
6 and 7 positions and produce perimidin-2-ones via hydroxylation. Perimidines 
form colored compounds due to their pi-electron donation to the weak acids.



 Topics in Current Chemistry (2020) 378:44

1 3

44 Page 6 of 47

3  General Synthesis of Perimidines

Perimidine nucleus contains two nitrogen atoms in 1,3 position of the six-membered 
ring fused with the naphthalene ring. From the structural outcome, the idea about the 
cyclization of di-amino group with activated carbonyl group gives a suitable match. 
Most of the reported methods involve condensation of 1,8-naphthalenediamine (NDA) 
(1) and its derivatives with carbonyl compounds (2) to produce perimidines (3) 
(Scheme 3). Various conditions are applied using acid catalyst, metal catalyst, nano-
catalyst, and catalyst-free approaches (Fig. 2).

The mechanistic pathway for the synthesis of perimidines is depicted in Scheme 4. 
Initially, the carbonyl carbon (2) get activated in the presence of either catalyst or sol-
vent. This activation facilitates the reaction between the carbonyl group and amino 
group of NDA (1) and forms a Schiff base imine (i) with removal of a water molecule 
and further another activated amino group displays nucleophilic attack on imine group 
and affords cyclic intermediate (ii). Finally, 1,3-proton transfer produces corresponding 
perimidine derivatives (3).

Scheme 3  General reaction for 
perimidine synthesis

Fig. 2  Various approaches of perimidine synthesis
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4  Perimidine Synthesis Under Di�erent Conditions

4.1  Acid‑Catalyzed Synthesis

Presently, many organic transformations are carried out using acid catalysts that 
give easy accessibility for a particular synthesis. Mild reaction conditions, ver-
satility, and selective synthesis are the important features of this catalytic group 
[68, 69].

In 2010, Zendehdel et al. [70] synthesized perimidines using a series of hybrid 
heteropolyacids (HPA) by refluxing 1,8-naphthalenediamine (NDA) and aromatic 
aldehydes in ethanol for 5 h at 80  °C. The order of the catalytic efficiency is as 
follows: HPA/NaY > HPA/NaY/MCM-41 > NaY > HPA > MCM-41. According to 
this pattern, the authors evaluated that high acidic strength, more heterogeneous 
characteristics, and high dispersion of HPA increased protonic sites on the cata-
lyst surface, and as a result, HPA/NaY catalyst exhibited high yields (Scheme 5, 
Method 1). A simple, reliable, and highly efficient protocol for the synthesis of 
substituted 2,3-dihydro-1H-perimidine from NDA and ketones using bis(oxalato) 
boric acid (HBOB) in high yields (70–95%) was reported by Phadtare and 

Scheme 4  A possible mechanism for the synthesis of perimidine
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co-authors [71]. Authors also studied the optimized conditions and concluded 
that refluxing with 10 mol% HBOB in ethanol displayed excellent catalytic effi-
ciency. The use of green solvent, mild conditions, recoverable catalyst, simple 
workup, and broad substrate scope made this procedure eco-friendly (Scheme 5, 
Method 2).

Scheme 5  Acid-catalyzed perimidine synthesis in different conditions
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Koca and coworkers [72] designed two novel and efficient routes for the synthesis 
of perimidine derivatives using acid catalyst. In the first method, NDA and hetero-
cyclic ketene were refluxed with PTSA and xylene, and further reacted with  COCl2 
in MeCN for 1 h to produce substituted perimidines. In the second method, NDA 
was refluxed with 2-alkoxycarbonylmethylene substituted furan-3-ones in methanol 
and corresponding perimidines were produced in good yields (72–79%) (Scheme 5, 
Method 3). Prakash and companions [73] disclosed a simple, one-pot and high-
yielding protocol for the synthesis of perimidine derivatives using  BF3·H2O Brøn-
sted acid as an effective catalyst and solvent from the cyclocondensation of NDA 
and various ketones in ethanol at ambient temperature via eco-benign pathways 
(Scheme 5, Method 4).

Alinezhad and Zare [74] examined sulfonated nanoporous carbon (CMK-5-
SO3H) as a new, efficient catalyst for the synthesis of perimidines from NDA and 
carbonyl compounds such as aldehyde and ketone using ethanol at room tempera-
ture. For comparative study, the authors applied different solvents, viz., 1,4-dioxane, 
acetonitrile, DCM,  H2O, THF, and EtOH with variation in the amount of  catalyst. 
However, EtOH with 1 mol% catalyst was found to be the most appropriate in terms 
of yields. Simple procedure, use of aliphatic, aromatic and heterocyclic substrate, 
environmentally benign conditions, shorter reaction times, high atom economy, 
recyclability, and reusability of catalyst are the remarkable advantages of this pro-
tocol (Scheme 5, Method 5). Azeez and co-authors [75] explored a direct and effi-
cient preparation of perimidines derivatives and tested them for antibacterial activ-
ity against Gram-negative and Gram-positive bacteria S. aureus and Gram-negative 
bacteria E. coli using agar diffusion method. Cyclocondensation of NDA with dif-
ferent aldehydes in glacial acetic acid at room temperature gave appropriate perimi-
dines in moderate to excellent yields. Among all the synthesized compounds, most 
of the derivatives were not active against S. aureus, while they effectively worked 
against E. coli as compared to a reference drug, gentamycin (Scheme 5, Method 6).

Patil and Shankarling [76] developed an eco-benign, efficient pathway for perimi-
dine synthesis using Amberlyst 15 as a metal-free recyclable and reusable catalyst. 
A broad range of carbonyl compounds like aliphatic, aromatic, and alicyclic ketones 
were stirred with NDA in ethanol at 80  °C to obtain good yields. For the feasi-
bility of reaction, the authors applied variation in different parameters like catalyst, 
viz., sulfated zirconia, Indion-130, Amberlite-120, Amberlyst-15, and catalyst-free 
synthesis and solvents, viz., 1,3-dioxane, acetonitrile, DES, DCM,  H2O, EtOH, and 
solvent-free synthesis. It was found that Amberlyst 15 worked well with EtOH at 80  
°C for perimidine synthesis in high yields. This protocol was not preferred for steri-
cally hindered ketones under ambient reaction conditions (Scheme  5, Method 7). 
Bodaghifard and Ahadi [77] reported a novel, eco-friendly and simple synthesis of 
perimidines from NDA and aldehydes at 70  °C under solvent-free conditions using 
sulfamic acid as a recyclable catalyst. The authors screened the effect of varied tem-
perature (RT, 50  °C and 70  °C) and solvents  (CHCl3,  CH3CN,  H2O,  H2O/EtOH 
and toluene) on the reaction (Scheme 5, Method 8).

Patil et al. [78] investigated a simple, reliable, and one-pot synthesis of 2,3-dihy-
dro-1H-perimidines from the condensation of various ketones with NDA in the pres-
ence of phenyl boronic acid as Lewis acid catalyst in ethanol at 75  °C with excellent 
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yields. Here, shorter reaction time, mild reaction conditions, easy handling of cata-
lyst, simple workup, and high atom economy are the additional merits of this proce-
dure (Scheme 5, Method 9). Mobinikhaledi et al. [79] investigated a facile, green, 
and eco-friendly route for the synthesis of substituted perimidines in moderate to 
excellent yields from NDA and aldehydes using molecular iodine and evaluated 
them as antibacterial agents against S. aureus and E. coli via by agar disk diffusion 
method. To examine the effect of various parameters, the authors carried out this 
reaction in different solvents like EtOH, MeOH,  CH3CN, DMSO, and DMF in vari-
ation with a catalytic amount of molecular iodine at room temperature. All the syn-
thesized derivatives have bactericidal properties against both tested strains. Shorter 
reaction time, use of mild Lewis acid catalyst, green solvent, ambient conditions, 
and high biologic potency are the additional features of this synthesis (Scheme 5, 
Method 10).

Recently, an eco-friendly one-pot protocol has been reported by Shelke and 
companions [80] using a biopolymer-based chitosan hydrochloride as recyclable 
and reusable catalyst to obtain perimidine derivatives through NDA and differ-
ent ketones using water as a green solvent at 90  °C in moderate to high yields. 
This method includes several advantages as compared to previous methods such as 
easy workup, use of biodegradable catalyst, low amount of catalyst, and high green 
matrix values like high atom economy (93.52%), high eco-score (80), high reaction 
mass efficiency (96%), and low E-factor (0.041) (Scheme 5, Method 11).

Khopkar et al. [81] reported an efficient catalyst, squaric acid, for the synthesis of 
perimidines from NDA and ketone in water at 80  °C. Squaric acid is a green diba-
sic organocatalyst possessing high selectivity, water solubility, and reusability. The 
authors studied the optimization conditions using various amounts of catalyst load-
ing (2.5, 5, 7.5, 10, 15 mol%) and solvents (water, ethanol, acetonitrile, THF, DMF, 
toluene, and DCM) along with variation in temperature (RT, 50, 70,80, 100  °C). 
Use of 10 mol% of catalyst in water displayed the best results in respect of yields. 
This protocol has remarkable features like being eco-benign, sustainable, high yield-
ing, easy workup, use of green solvents and catalyst, any reusability of catalyst up to 
four runs (Scheme 5, Method 12).

The acid-catalyzed synthesis of perimidines in diverse conditions with differ-
ent substituents is illustrated in Scheme 5 and their comparative study is given in 
Table 1.

4.2  Metal‑Catalyzed Synthesis

A variety of heteroatom containing catalyst is an efficient, fast, and versatile tool in 
organic synthesis due to its special properties to develop multiple substituted com-
plicated molecules. Metal catalysts are abundant, easy to prepare, and inexpensive. 
Organometallic reagents play a significant role in catalysis [82, 83].

In 2007, Zhang et  al. [84] investigated a feasible approach for the synthesis 
of perimidine using ruthenium(III) chloride as a catalyst via cyclocondensa-
tion and Schiff base generation involving NDA and various ketones with etha-
nol at 40  °C in excellent yields. The authors also evaluated the generality of 
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reaction and scope of substrate using a range of aromatic, heterocyclic, and 
aliphatic ketones (Scheme  6, Method 1).  BiCl3 is an economic, less-toxic, and 
eco-benign reagent that works as a metal catalyst. A simple, reliable synthesis 
of perimidine derivatives from NDA and ketones in the presence of  BiCl3 cata-
lyst and ethanol at ambient temperature was reported by Zhang and companions 
[85]. Here, the scope of substrate was explored using aliphatic, aromatic, and 
alicyclic ketones. The authors also examined the effect of various bismuth salts 
(Bi(NO3)3·5H2O,  BiCl3,  BiBr3) and other catalysts (HCl) using different solvents 

Scheme 6  Metal-catalyzed perimidine synthesis under different conditions
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 (CH2Cl2,  C2H5OH,  CH3CN, THF,  Et2O,  PhCH3, DMF) on the yield of the reac-
tion (Scheme 6, Method 2).

A series of substituted perimidine derivatives has been synthesized by Zhang 
[86] from NDA with different ketones using ytterbium(III) triflate catalyst in etha-
nol at room temperature in moderate to high yields. The authors also studied vari-
ous influencing factors like amount of catalyst loading, use of different solvents, etc. 
This method has advantages like use of water stable and cheap Lewis acid catalyst, 
ambient conditions, wide substrate scope, easy reaction workup, and excellent yields 
(Scheme 6, Method 3). Mobinikhaledi and Steel [87] suggested a facile, novel, and 
eco-friendly route for perimidine synthesis from NDA, corresponding aldehydes, 
and Cu(NO3)2·6H2O as a catalyst in EtOH at RT to afford high yields in short reac-
tion time (Scheme 6, Method 4).

2,3-Dihydro-1H-perimidines were synthesized by the cyclo-condensation of 
NDA and different carbonyl compounds in the presence of  InCl3 in water at ambient 
temperature by Yasaei et al. [88]. Here,  InCl3 is a mild, inexpensive, easily available, 
non-toxic, and efficient catalyst, which produced perimidine derivatives in water as 
a “greener media” with high atom economy (Scheme 6, Method 5). Belmonte and 
co-authors [89] developed a mild, efficient, and tunable route for the synthesis of 
2-aryl-substituted 2,3-dihydro-1H-perimidines involving NDA with various substi-
tuted salicylaldehydes in the presence of Zn(OAc)2·2H2O catalyst. The authors also 
demonstrated the synthesis of multiperimidines, which was supported by calixarenes 
from tetra-formyl-calix [4] arene. Easy synthesis, high yields, simple workup, appli-
cability, and variety in substitution patterns are the notable merits of this process 
(Scheme 6, Method 6).

Behbahani and co-authors [90] presented a simple and efficient  FePO4-promoted 
cyclocondensation of aromatic aldehydes and NDA with ethanol at room tempera-
ture to produce 2-substituted perimidines in good yields. Here,  FePO4 worked as a 
versatile, low-cost, green, non-toxic, easily available, and reusable catalyst in eco-
benign conditions. On optimization of the reaction conditions, the authors found 
that 10  mol% of  FePO4 in ethanol at ambient temperature gave excellent results 
(Scheme 6, Method 7).

A Cu(OAc)2-catalyzed novel aerobic oxidative dehydrogenation coupling and 
tricyclization of NDA with 2-(phenylethynyl)-benzaldehyde to obtain heptacyclic 
quinolizino[3,4,5,6-kla]perimidines in moderate yields was presented by Feng et al. 
[91]. In this domino protocol, four new bonds and three new rings were formed 
via functional-group compatible approaches. The author applied different oxi-
dants (PhI(OAc)2,  K2S2O8,  Ag2O, DDQ, air,  O2), base  (K2CO3,  Cs2CO3,  Na2CO3, 
 NaHCO3,  Cs2CO3), and solvents (DMSO, 1,4-dioxane, THF, toluene) for the feasi-
bility of reaction. It was found that 20 mol% Cu(OAc)2 with base  (Cs2CO3), solvent 
(1,4-dioxane), and oxidant  (O2) at 100 °C displayed excellent outcomes (Scheme 7).

Schwob and colleagues [92] described a novel cobalt-catalyzed reductive cycliza-
tion of dinitroarene with aldehydes for the synthesis of 1H-perimidines with high 
efficiency, chemoselectivity, and high functional group tolerance. Here, dinitroarene 
and aliphatic and benzylic aldehydes reacted in the presence of earth copious metal 
catalyst cobalt and charcoal complex at 6.0 MPa hydrogen pressure, 130 °C temper-
ature in toluene for 20 h to produce 1-H-perimidines in excellent yields. The catalyst 
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cobalt–charcoal complex was generated via simple pyrolysis and has several merits 
like easy availability, facile synthesis, high catalytic activity, reusability, and stabil-
ity over several cycles (Scheme 8).

Metal-catalyzed synthesis of perimidines in diverse conditions with different sub-
stituents is illustrated in Schemes 6, 7, and 8 and their comparative study is given in 
Table 2.

4.3  Nanocatalyst‑Assisted Synthesis

Nanocatalysts have a high surface-to-volume ratio and active sites that display high 
activity and selectivity in various heterocyclic synthesis. Nanocatalysts are easily 
prepared, recyclable, and show clean reaction, excellent yields in short reaction 
time, simple separation, and reduce the use of toxic solvents and reagents [93, 94].

Scheme 7  Perimidine synthesis from oxidative coupling and dehydrogenations

Scheme 8  Co-catalyzed hydrogenative synthesis of perimidines
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A simple, greener, and high-yielding protocol for the preparation of perimidine 
derivatives from condensation of NDA and aldehydes using nano-silica sulfuric 
acid catalyst in EtOH at RT was developed by Mobinikhaledi et  al. [95]. Here, 
simple workup, less reaction time, and recyclability of catalyst and its reusability 
up to the fifth run without considerable loss in activity are attractive features of 
this synthesis (Scheme 9, Method 1). Kalhor et  al. [96] explored the condensa-
tion of NDA with aromatic aldehydes by making use of nano-CuY zeolite system 

Scheme 9  Nano-particle-catalyzed perimidine synthesis in different conditions
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using ethanol at RT for the synthesis of perimidine derivatives in good yields 
and also examined the reusability of nano-CuY zeolite catalyst up to four cycles 
(Scheme 9, Method 2).

A new Lewis acid catalyst nano-γ-Al2O3/SbCl5 was synthesized and applied 
for the synthesis of perimidine derivatives by Bamonir et  al. [97]. This reaction 
proceeded at room temperature in solvent-free conditions using NDA and sub-
stituted aromatic aldehydes via grinding to obtain high yields. For comparative 
study, the authors also applied different catalysts, namely zeolite,  Fe3O4/SiO2/
(CH2)3N + Me3Br3,  FePO4, and nano-γ-Al2O3/SbCl5 in multiple amounts using etha-
nol and solvent-free conditions at 80 °C and room temperature. Highly efficient cat-
alyst, simple work-up, clean reaction profile, and high yields in ambient conditions 
are the remarkable advantages of this method (Scheme 9, Method 3). Mirjalili et al. 
[98] synthesized a novel, green, nanocellulose-assisted magnetic nanocatalyst for 
the synthesis of 2,3-dihydro-1H-perimidine from NDA and aromatic aldehydes in 
solvent-free conditions at ambient temperature.  Fe3O4@NCs/BF0.2 possesses char-
acteristics such as inexpensiveness, bio-based synthesis, simple separation, recycla-
bility that makes it eco-friendly, and that it is a green nanocatalyst. The authors also 
applied different conditions such as room temperature, microwave irradiation, mixer 
mill, ultrasound using diverse solvents (EtOH, MeOH, acetone,  CH2Cl2,  H2O, PEG 
400 and  H2O: EtOH) to optimize the reaction feasibility. This protocol has some 
additional characteristics like easy synthesis, use of nanocatalyst, being solvent-
free, shorter reaction time, no need for further purification, and also excellent yield 
(Scheme 9, Method 4).

Amrollahi and Vahidnia [99] demonstrated the synthesis of novel catalyst 
 Fe3O4@ β-CD-ZrO and studied their catalytic efficiency for the preparation of per-
imidine derivatives from NDA and aromatic aldehydes. This organic–inorganic 
hybrid magnetic catalyst showed high potency due to its special properties like being 
inexpensive, heterogeneous, having a high surface area and high thermal and chemi-
cal stability, being removable from a magnet, and reusability up to four runs with-
out any considerable loss in activity. To determine optimal conditions, the authors 
employed diverse catalysts β -CDCu,  Fe3O4@ β-CD-Cu, β-CD/Fe3O4 and β-CD-
ZrO using different amounts in various media like MeCN, AcOEt,  H2O, n-hexane, 
EtOH, and  H2O/EtOH. However,  Fe3O4@ β-CD-ZrO (0.04gm) in EtOH at ambient 
temperature has been proven as the best conditions with respect to yields (Scheme 9, 
Method 5).

A new magnetic nanocatalyst  Fe3O4/SO3H@zeolite-Y has been synthesized 
and used for the preparation of 2-aryl perimidine derivatives by Kalhor and 
Zarnegar [100]. In this study, the optimization of reaction was carried out using 
diverse amounts of catalyst in different solvents  (H2O, EtOH, MeOH,  CH2CN, 
 CH2Cl2, and EtOH/H2O) at room temperature. This method included some inter-
esting features like eco-friendliness, simple procedure, high yields with purity, 
atom economy, and recyclable catalyst (Scheme  9, Method 6). Kalhor et  al. 
[101] investigated a green nano-catalyzed synthesis of 2,3-dihydroperimidines 
in excellent yields from NDA and various aldehydes in EtOH with stirring at 
room temperature using nickel‐decorated SBA‐15 nanocomposite (Ni/TCH@
SBA-15). This methodology is highly convenient due to several advantages like 
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clean reaction process, mild conditions, simple work-up, no need of further puri-
fication, high yield and purity in minutes, easy recoverability, and a reusable 
heterogeneous catalyst (Scheme 9, Method 7).

Further, an efficient  Fe3O4@zeolite-SO3H-catalyzed eco-friendly approach 
for perimidine synthesis was introduced by Kalhor and colleagues [102] from 
NDA and different aldehydes in solvent-free conditions at 80 °C. This solid 
acid-based nanohybrid showed high catalytic activity with easy magnetic sepa-
ration and reusability up to six times. Solvent-free conditions, less reaction time, 
excellent yields, purification without use of column chromatography, and eco-
friendliness are the additional benefits of this protocol (Scheme  9, Method 8). 
Alinezhad et al. [103] demonstrated a simple, efficient, and solvent-free synthe-
sis of 2,3-dihydro-1H-perimidines from NDA and aldehydes using  SiO2 nano-
particles via grind-stone technique at room temperature. In order to study opti-
mization of reaction feasibility, the authors applied multiple solvents like  H2O, 
 CH3CN, EtOH,  CH2Cl2, and THF in variation with a catalytic amount and tem-
perature. However, the excellent conditions in reference of yields were obtained 
at ambient temperature in solvent-free conditions using 2 mol% of catalyst. This 
method has mild reaction conditions, high applicability, simple work-up, good 
yields, and reusability up to four consecutive cycles (Scheme 9, Method 9).

Nano-particle-catalyzed synthesis of perimidines in diverse conditions with 
different substituents is illustrated in Scheme  9 and their comparative study is 
given in Table 3.

4.4  Molecular Sieve‑Catalyzed Synthesis

The special characteristics of molecular sieves like high specific surface area, 
adjustable pore size, pore shape, high pore volume with good thermal, mechani-
cal, and chemical stability, etc., increase their efficiency in catalytic processes 
[104].

The synthesis of perimidine derivatives in excellent yields from NDA and benza-
ldehyde in DMF solvent catalyzed by molecular sieve 3 Å was examined by Heravi 
and colleagues [105]. Simple procedure, high yields, and use of cheap, easily avail-
able, and eco-benign catalyst are additional points of this synthesis (Scheme  10, 
Method 1). Zeolites have open structure with millions of tiny capillaries and denoted 
as shape-selective catalysts, which have advantages like eco-friendliness, economic 
efficiency, high activity, thermal stability, less by-product and waste generation, that 
you can combine several catalytic process, easily recoverability, and reusability. 
Mobinikhaledi et al. [106] explored the NaY zeolite-catalyzed arylperimidines syn-
thesis from cyclocondensation of 1,8-diaminonaphthalene (NDA) and aldehydes in 
good yields. Eco-benign and mild conditions, simple work-up, and having a recycla-
ble catalyst are attractive features of this process (Scheme 10, Method 2).

Various techniques of perimidine synthesis in diverse conditions with dif-
ferent substituents are illustrated in Scheme  10 and their comparative study is 
given in Table 4.
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4.5  Microwave‑Assisted Synthesis

Microwave-assisted synthesis follows “volumetric core heating” phenomenon where 
the substance absorbs the MW radiations and converts them into heat. MWI reduce 
reaction time and increase reaction yief Derivatives of Perimidinelds with high atom 
economy [107].

In 2005, Mobinikhaledi and coworkers [108] developed a new micro-
wave-assisted (MWI) route of benzotriazole-substituted perimidine synthesis 
from NDA and carboxylic acid in HCl using the grind-stone technique. These 

Scheme 10  Perimidine synthesis using different techniques
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perimidines were further refluxed with sodium amide in dry toluene to obtain 
benzotriazole-perimidine conjugates (Scheme 11). Tokimizu and coworkers [109] 
disclosed a novel, efficient, and two-step four-component synthesis of fused per-
imidine derivatives via palladium-catalyzed C–H arylation in good yields. In this 
process, initially, copper supported annulation of NDA and 2-alkynylbenzalde-
hydes produced perimidines, which further underwent palladium-catalyzed C–H 
arylation and gave a novel series of fused perimidines. The authors also studied 
the effect of varied solvents like DMF, dioxane in different conditions such as 
heating, reflux, MW irradiation with variation in temperature (Scheme 11).

Zhu et al. [110] reported an efficient, facile, and appropriate synthesis of (Z)-
N-(2-argio-1-(1H-perimidin-2-yl)vinyl)benzamide from NDA and (Z)-4-aryl-
methylene-2-phenyloxazol-5(4 H)-one in glacial acetic acid (HOAc) at 120 °C 
under microwave irradiation in high yields. The authors also examined the effect 
of various solvents such as DMF, EtOH,  H2O, HOAc, and ethylene glycol on the 

Scheme 11  MW-assisted perimidine synthesis in different conditions
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yield of reaction. Inexpensive starting material, simple procedure, and less reac-
tion time are the merits of this protocol (Scheme 11).

4.6  Catalyst‑Free Synthesis

Currently, organic synthesis is focused on the design of green and eco-benign pro-
cesses avoiding the use of toxic catalysts and other reagents. Catalyst-based syn-
theses have some drawbacks such as expense, toxicity, and difficult separation and 
purification, which can be reduced by developing mild catalyst-free synthesis [111].

In 2003, Aly and El-Shaieb [112] demonstrated the unique reaction of NDA 
with some p-acceptors to obtain perimidine heterocycles. The reaction of NDA 
with tetracyanoquinodimethane (TCNQ), 2-dicyanomethyleneinNADe-1,3-dione 
(CNIND), and 2-(2,4,7-trinitro-9H-fluoren-9-ylidene)propane-dicarbonitrile (DTF) 
afforded 2-[4-(1H,3H-perimidin-2-ylidene)cyclohexa-2,5-dienylidene]malononi-
trile, 2-(1H,3H-perimidin-2-ylidene)-indan-1,3-dione, 2,9-spiro-[2,4,7-trinitro-
fluorene]-1H,3H-perimidin-2-ylidene, respectively, in moderate yields (Scheme 12). 
Maloshitskaya et  al. [113] synthesized substituted perimidine derivatives and also 
studied their multicomponent chain–ring–chain tautomerism in different solutions 
like DMSO,  CF3COOH via equilibrium constants (log K), and Hammett–Brown 
parameters. In this method, 4-methyl and 4,4,6-trimethylhexahydropyrimidines were 
prepared from NDA and aromatic aldehydes at room temperature in good yields.

Akita et al. [114] introduced an innovative cyclocondensation of NDA with nin-
hydrin and isatin to produce perimidine derivatives. When NDA was stirred with 
ninhydrin in acetonitrile at ambient temperature for 24 h, single-product spiro-N,N-

acetal was isolated, while on refluxing and stirring NDA, isatin and p-toluenesul-
fonic acid in acetic acid for 4 h, a mixture of perimidine derivatives were obtained in 
45%, 9%, and 6% yields. The structure of all compounds was enucleated from X-ray 
crystal structural study (Scheme 12).

Scheme 12  Catalyst-free 
perimidine synthesis in different 
conditions
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Harry et  al. [115] recently developed a new and facile eco-friendly mechano-
chemical synthesis of perimidines from NDA and carbonyl compounds in excellent 
yields applying catalyst and solvent-free conditions via grinding techniques. This 
protocol has several advantages like synthesis of library of perimidines (25 deriva-
tives), ambient conditions, mild protocol, simple work-up, gram-scale synthesis, 
high atom economy, etc. (Scheme 10, Method 3).

4.7  On Water Synthesis

Water is a natural green solvent in various transformations due to its high abun-
dance, non-flammability, non-toxicity, easy handling, and purification. In this pro-
cess, reactants form a heterogeneous mixture, come closer, and increase the rate of 
reaction. “On water” chemistry is a challenging area of organic synthesis due to the 
hydrophobic nature of most of the organic components but it is the fastest-growing 
greenest protocol for sustainable synthesis [116].

Harry et  al. [117] developed a novel, eco-friendly and catalyst-free “on water” 
synthesis of 2,3-dihydro-1H-perimidines in moderate to high yields from NDA 
and various aromatic, aliphatic, and heterocyclic aldehydes at room temperature 
in 30  min. The authors also studied the effect of various conditions like catalyst 
 (NiCl2·6H2O, without catalyst), solvents (t-BuOH, EtOH, and  H2O) and tempera-
ture (80 °C °C, RT) on the reaction and found that, without a catalyst, “on water” 
synthesis at ambient temperature gave the best results. The yield of the reaction was 
not much affected by the substitution of aldehydes but was altered from steric hin-
drance. However, ketones did not produce corresponding products from this proto-
col (Scheme 10, Method 4).

4.8  Ultrasound‑Assisted Synthesis

In organic synthesis, ultrasound irradiation works via cavitation phenomenon. In a 
reaction mixture, a large number of cavitation bubbles produce that work as micro-
reactors and breaking of cavitation generates high temperature and pressure that can 
display new bonding in reactants and form new compounds. Ultrasound-assisted 
synthesis is a powerful and eco-friendly technique in various areas of synthetic 
chemistry due to its significant properties, viz., simple operation, avoidance of the 
use of toxic solvents and catalysts, clean reaction profile, high efficiency in terms of 
reaction time, product selectivity, yields, waste reduction, and energy conservation 
[118].

Krishna and Thriveni [119] reported a proficient and improved catalyst, N-bro-
mosuccinamide (NBS), for the condensation of NDA and aromatic aldehydes using 
green solvent and water to form corresponding perimidines in good yields under 
both ultrasound irradiation and conventional heating. From a comparative study in 
both synthetic methods, the authors evaluated that under ultrasonication, reaction 
proceeded more conveniently as compared to traditional methods in terms of reac-
tion time, yields, and by-product generation. Further, all compounds were screened 
for antimicrobial activity against bacterial strain S. aureus, E. coli, P. aeruginosa, 
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and fungal strain C. albicans, A. flavus, A. fumigatus against reference drugs ampi-
cillin and flucanazole, respectively. Among all the synthesized derivatives, bromo- 
and chloro-substituted perimidines showed better activity against standard drug as 
compared to other compounds (Scheme 10, Method 5).

4.9  Ionic Liquid‑Assisted Synthesis

Ionic liquids, commonly used as green solvents, consist of organic cations like pyri-
dinium, phosphonium, and ammonium and organic and inorganic anions, viz., alkyl-
sulfonate, trifluoroacetate, halides etc. They have special characteristics such as pre-
sent in liquid state at room temperature, non-flammable, low vapor pressure, low 
toxicity, high thermal and chemical stability, high heat capacity, high conductivity, 
and recyclability, which make them applicable in green synthesis [120].

A simple, reliable, and efficient ionic liquid [BTBA]Cl-FeCl3-assisted perimidine 
synthesis from the reaction of NDA and aldehydes at ambient conditions in excel-
lent yields was investigated by Bahrami and Saleh [121]. High functional group tol-
erance, solvent-free, low cost, shortest reaction time (1–3.5 min) and mild reaction 
conditions are the attractive features of this synthesis (Scheme 10, Method 6).

5  Applications in Various Fields

5.1  Biologic Applications

In 1966, Wasulko and coworkers [122] designed and developed a series of dihydro-
perimidines and screened them as antineoplastic agents. NDA and carbonyl com-
pounds were refluxed in ethanol for 1–2 h to obtain respective dihydroperimidines. 
All the compounds were evaluated for antineoplastic properties against L1210 lym-
phoid leukemia, Sarcoma 180, and Lewis lung carcinoma. Some of the synthesized 
compounds worked as potent antineoplastic agents, viz., compound 4a against Sar-
coma180 and Lewis lung carcinoma, 4b against Sarcoma 180, and 4c against Lewis 
lung carcinoma and tissue culture (KB) (Scheme 13).

In 1987, Herbert and coworkers [123] synthesized a range of diverse perimidines 
5 and studied their DNA-binding and cytotoxic properties and anti-tumor activity. 
According to physiochemical properties, they revealed that fused tricyclic perimi-
dines was the minimal structure condition for the intercalative binding with DNA 
and affected by the variation in side chain of chromophore. These compounds 
showed log K (DNA association constants) value 5.8–6.5, ICm (cytotoxic potency) 
500–1500 nM as compared to linear anti-tumor compounds.

Brafial et al. [124] described the synthesis, cytotoxic activity, and structure–activ-
ity relationship (SAR) of 2-substituted perimidines. Perimidines were synthesized 
from the reaction of NDA with different compounds like p-toluenesulphonate and 
cyanamide and substituted amines. The pharmacological study demonstrated that 
compound 6 showed cytotoxicity due to the presence of basic nitrogen bearing 
two methyl groups (Scheme 13). In 1999, Luthin and co-authors [125] developed a 
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library of oxo-7H-benzo[E]perimidine-4-carboxylic acid derivatives and evaluated 
them as first non-peptide antagonist for corticotropin release factor  CRF1 and  CRF2β 
receptors.  CRF1 and  CRF2β are the physiological mediators of the stress response 
and are produced from pituitary glands. Among all the synthesized compounds, 
compound 7 revealed the most promising action to antagonize CRF through in vivo 
studies (Scheme 13).

A range of cytotoxic benzoperimidine compounds 8 was developed and their 
activity against multidrug resistance was described by Dzieduszycka and cowork-
ers [126] (Scheme  13). For perimidine synthesis, the authors used substituted 
9,10-anthracenedione and their analogs as starting materials. The authors studied 
membrane affinity of the synthesized compounds for the validation of their cytotoxic 
characteristics and in  vitro activity against different leukemia cell lines. All com-
pounds showed high resistance indexes against tumor cells. P-gp-dependent efflux 
pumps (MDR) and structural features played a significant role in cytotoxicity.

Arya and Dandia [127] developed an efficient route for the regioselective synthe-
sis of spiro perimidines using isatin and NDA with morillonite KSF under MWI in 

Scheme 13  Some synthesized biologically active perimidine scaffold
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excellent yields in 5–7 min and evaluated antitumor activity against human malig-
nant cell lines: cervical (HeLa), breast (MCF-7), colon (CaCo-2), laryngeal carci-
noma (Hep-2), and normal human fibroblast cell lines (WI-38). All the tested mol-
ecules displayed good antitumor activity (IC50 value 9 × 10–5 to 5 × 10–4 mm) and 
compound 9 was found highly potent (Scheme 13).

A wide range of substituted and fused perimidines was prepared from hydrozo-
noyl chloride and ketene aminals by Farghaly and co-authors [128] and their anti-
tumor activity was studied against liver (HEPG-2) and breast (MCF-7) cancer cell 
lines. Furthermore, 8,10-disubstituted-[1,2,4]triazolo[4,3- a]perimidines were also 
synthesized from perimidine-2-thione. All of the studied compounds showed prom-
ising antitumor activity, while compound 10 (Scheme  13) exhibited high potency 
with IC50 value 0.59 (HEPG-2), 0.49(MCF-7) against both cancer cell lines as com-
pared to the reference drug doxorubicin. The SAR study revealed that pyrazolyl and 
triazole ring fused with perimidine ring seemed more active for tumor treatment as 
compared to pyrrole ring-fused perimidine ring. Azam et al. [129] developed two 
Pd(II) complexes of 2-(2-thienyl)2,3-dihydro-1H-perimidine ligand from the reac-
tion of NDA and 2-thiophenecarboxaldehyde and screened them for antimicrobial 
activity against six bacterial strains E. coli, S. aureus, P. aeruginosa, Citrobacter sp., 
Bacillus subtilis, and S. acidaminiphila. Both complexes 11a[L] and 11b [PdLX2] 

(Scheme 13) were found highly potent as compared to their respective ligands and 
also displayed good DNA binding affinity with calf thymus DNA.

Furthermore, Farghaly and coworkers [130] developed a novel series of 
pyrrolo[1,2-a]perimidines and evaluated their activity against three tumor cell lines, 
UACC-62, MCF-7, and TK-10 and their antioxidant behavior too. These bioactive 
compounds were prepared from the reaction of NDA with 4-hydroxycoumarin and 
hydrazonoyl chlorides in  Et3N and dioxane in good to high yields. Among all the 
synthesized compounds, compound 12c (Scheme 13) exhibited high growth inhibi-
tion activity against MCF-7 and TK-10 cell lines with TGI values 21.87, 25.28 µM/
ml, respectively. Some of the derivatives were found less effective against tumor 
cell lines and showed low to moderate results for antioxidant study as compared to 
Trolox.

A novel range of perimidine analogs were synthesized from the reaction of NDA 
and substituted iminoester hydrochloride in moderate yields via microwave irradia-
tions by Mentee et al. [131] The synthesized compounds were screened for lipase 
inhibition activity against orlistat, an anti-obesity drug. Compound 13 behaved as a 
good antilipase agent with 98.6 and 63.9% inhibition at 9.375 μg/ml concentration 
(Scheme 14). Alam et al. [132] synthesized 2-(thiophen-2-yl)-2,3-dihydro-1H-per-
imidines (11a) by the reaction of 2-NDA and thiophenecarboxaldehyde in metha-
nol under reflux conditions. The synthesized compounds showed profound activity 
against acetylcholinesterase (AChe) and exhibited AChe inhibition property with 
 IC50 value of 0.34 µM. The reason behind promising activity might be the lowering 
of HOMO–LUMO energy gap and extra non-bonding interaction to the amino acids 
(Scheme 14).

Zhang et  al. [133] synthesized novel triazole-containing perimidine deriva-
tives and studied their efficiency as anti-inflammatory agents in an LPS-stimulated 
inflammation model with the MTT assay. These bioactive compounds were prepared 
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from starting material NDA, carbamide and hydrazine hydrate and further refluxed 
them with formic acid and alkyl halide. Among all the synthesized compounds, 
compounds 14a and 14b reduced the level of interleukin (IL)-6 in RAW264.7 cells 
and pro-inflammatory cytokines—tumor necrosis factor (TNF)-α. The in vivo study 
results revealed the high potency of compounds 14a and 14b with 42.94 and 49.26% 
inhibition, respectively, at 50 mg/kg dose as compared to ibuprofen. Western blot-
ting outcomes also demonstrated the efficiency of 14b via inhibition of both MAPK 
(mitogen-activated protein kinase and p38) phosphorylation and NF-κB (LPS-
induced nuclear factor-κB) activation. These results were also confirmed by the 
docking study with COX-2 binding site as compound 14b also showed COX-2 activ-
ity inhibition (Scheme 14).

Abu-Melha and coworkers [134] synthesized perimidine derivatives and dis-
cussed their mechanism, tautomeric forms, and pharmacological applications. 
The reaction of NDA took place with ethyl aroylpyrovate in ethanol up to 5  h 
to obtain 75–68% yields of substituted perimidines. Authors also demonstrated 
the mechanism and different tautomeric forms of derivatives from computational 

Scheme 14  Some synthesized biologically active perimidine scaffolds
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study. These derivatives were screened for two fungi (A. niger and G. candidum), 
four Gram-positive bacteria (S. aureus, S. epidermidis, B. subtilis, S. pyogenes) 
and four Gram-negative bacteria (P. aeruginosa, E. coli, K. pneumoniae, S. typh-

imurium) against reference drugs, amphotericin B, ampicillin, and gentamicin, 
respectively. Among all the tested compounds, 15a, 15b, and 16 revealed high 
antimicrobial activity against standard drugs (Scheme  14). Kumar et  al. [135] 
designed tetracyclic and pentacyclic perimidines from NDA and dicarbonyl com-
pounds using microwave techniques and further evaluated their ability to suppress 
the growth of cancer cell lines. The in vitro antiproliferative activity was studied 
against five human cancer cell lines (breast T47D, lung NCl H-522, liver HepG2, 
colon HCT-15, ovary PA-1) using the MTT assay at 10 μM concentration. All the 
synthesized compounds displayed low anticancer activity against reference drugs.

Eldeab and colleagues [136] synthesized a variety of perimidine conjugates 
and evaluated their cytotoxicity against liver carcinoma (HepG2) and human 
breast (MCF-7) cancer cell lines. 2-(1H-perimidin-2-(3H)-ylidene) derivatives 
were synthesized by the reaction of naphthalene-1,8-diamine and β-keto esters 
with potassium carbonate under microwave irradiation (MWI). They were fur-
ther reacted with suitable hydrazonoyl chloride to form 4-(1H-perimidin-2-yl)-
1H-pyrazole-3-carboxamides and pyrrolo[1,2-a]-perimidin-10-ones using a 
catalytic amount of piperidine under microwave irradiation. When perimidine 
thione was used, perimidine conjugate, 8H- [1, 2, 4] triazolo[4,3-a]perimidine 
was obtained. All the synthesized compounds showed good anticancer activity 
with  IC50 value of 0.59 to > 50  μg/ml (HepG2) and 0.49 to > 50  μg/ml (MCF). 
Compounds 17c, 18a, and 18g exhibited maximum cytotoxic action against both 
tested cell lines in comparison with the reference drug doxorubicin (Scheme 14).

Masaret and Farghaly [137] synthesized a series of 8,10-disubstituted-triazolo-
perimidines by the reaction of different enaminones with substituted perimidines 
and explored their antimicrobial activity against two types of fungi (A. fumigates, 

C. albicans), Gram-positive (S. pneumoniae, B. subtilis) and Gram-negative (P. 

aeruginosa, E. coli.) bacteria using agar diffusion method. Among all the synthe-
sized compounds, compound 19c was found to be the most potent against fungi, 
A. fumigates (90%) and C. albicans (82%). Compounds 19a, 19d, and 20b were 
found most active against S. pneumoniae and others showed mild activity against 
ampicillin. Compounds 19c and 20a showed high potency against P. aeruginosa 
and E. coli (Scheme  14). A library of novel perimidine o-quinone conjugates 
was developed and examined for cytotoxicity against the four human cancer cell 
lines HL-60, Huh7, Hct116, and Hela by Zhou et al. [138]. All of the compounds 
showed profound anti-proliferative activity and SARs study explained that the 
position of o-quinone in ring A or ring B and presence of EWG (electron-with-
drawing group) at the C-2 position played an important role in controlling the 
cytotoxicity of the cell lines. Among the synthesized compounds, compound 21 
showed the highest toxicity against HL-60/MX2 (0.47 μM) and Huh7 cell lines 
and good Topo IIα catalytic inhibitory activity  (IC50 = 7.54  μM). These results 
were also confirmed from cell apoptosis assay and cell-cycle assay that made 
them an important target for cancer chemotherapy (Scheme 14).
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5.2  Synthesis of Derivatives of Perimidine

In 1994, Molina and coworkers [139] prepared substituted quinazolino[3,4-a]per-
imidine derivatives 22 from substituted perimidines and iminophosphoranes with 
isocyanate,  CO2,  CS2, and  CH3COCl via aza-Witting reaction [Scheme 15].

Panchasara and Pande [140] synthesized 3-chloro-1-(4-perimidine 
methylcarbonylamino)-4-phenyl-azetidin-2-ones from perimidine-1-acetic 
acid hydrazide with corresponding carbonyl compounds and azomethine. They 
showed antimicrobial properties against Gram-positive (S. aureus and B. subtilis) 
and Gram-negative (S. typhi, K. promioe, and E. coli) bacteria and plant path-
ogenic microbes (Nigrospora sp., B. thiobromine, aspergillus, albicans, and F. 

oxysporium). Derivatives 23a–c showed high antibacterial properties against ref-
erence drug tetracycline (Scheme 15).

A simple and efficient method for the synthesis of isoindolo[2,1-a]perimidin-
12-one 24 was developed by the reaction of heterocyclic ketene aminals (HKA) 
(cyclic 1,1-enediamines) and dialkylacetylenedicarboxylates (DAAD) in the pres-
ence of EtOAc and DMAP in reflux conditions by Ungoren and coworkers [141]. 
In this approach, benzene and pyrrole rings were simultaneously formed with 
isoindole nucleus in a single operation that made them promising in organic syn-
thesis (Scheme 15).

Chen et al. [142] synthesized four p- and o-nitro substituted 2-methyl-2-phe-
nyl-2,3-dihydro-1H-perimidine derivatives by the reaction of nitro-substituted 
acetophenones and NDA and explored their photochemical properties. Among 
the synthesized derivatives, compound 25a was found sensitive to visible light. 
When it was exposed to visible light in either argon atmosphere or aerobic condi-
tions, it got converted to 2H-indazole 26a and perimidinone 26b by pyrimidine 
oxidation and pyrimidine ring-opening/deoxygenation, respectively (Scheme 16).

Wu et  al. [143] investigated a potent pathway for the synthesis of perimidi-
nones 27 in moderate to good yields via aerobic oxidation of 2,3-dihydro-1H-pe-
rimidines using Ru(bpy)3

2+, a visible light photoredox catalyst and acetonitrile 
as a solvent. This photo-oxidation was sensitive to substituents on amine groups 

Scheme 15  Some complex molecules derived from perimidine
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and aerobic oxidation. The Ru(bpy)3
2+catalyst was easily recovered and reused in 

further synthesis (Scheme 17).
Farghaly and colleagues [144] reported a new technique to synthesize a range 

of site- and regioselective perimidine derivatives 28, 29 from perimidine, ketene 
aminal, and hydrazonoyl chlorides by refluxing under dioxane solvent and  Et3N 
catalyst. The afforded products were site- and regioselective, according to applied 
hydrazonyl chlorides, i.e., N-aryl 2-oxo-2-phenylaminoethane-hydrazonoyl chlo-
rides produced pyrazolyl perimidines while (N-arylhydrazono)-chloroacetates 
afforded pyrrolo[1,2-a]perimidines. All of the synthesized compounds underwent 
antimicrobial screening and exhibited moderate activity against E. coli and S. 

aureus and were found inactive against A. flavus and C. albicans (Scheme 18).
Furthermore, Farghaly et al. [145] stated a practical and convenient route for 

the synthesis of a library of 2-(5-substituted-pyridazine-3,6-dion-4-yl)perimi-
dine derivatives 30 from the condensation of (1H-perimidin-2-yl) acetic acid 
hydrazide with ethyl N-arylhydrazonochloroacetate in the presence of triethyl-
amine and dioxane solvent. The entire range of derivatives exhibited promising 
antimicrobial activities against both fungal and bacterial strains. The presence of 

Scheme 17  Synthesis of visible 
light-sensitive perimidine

Scheme  18  Site- and regioselective reaction of hydrazonoyl chlorides with perimidine ketene aminal 
derivative
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pyridazine moiety and ester and phenylazo group at the 4th position increased 
their activity (Scheme 19).

Shawali and colleagues [146] introduced a unique method for the selective 
synthesis of 2-(pyrazoliden-4-yl) perimidines 31a and pyrrolo[1,2-a] perimidines 
31b from the reaction of ethyl 2(3H)-permidinylideneacetate with C-aryl-N-ar-
ylmethanehydrazonoyl and C-ethoxycarbonyl-N-arylmethanehydrazonoyl chlo-
rides, respectively, in the presence of dioxane solvent and triethylamine catalyst 
under reflux conditions (Scheme 20).

Substituted pyrrolo [1,2-a]perimidin-10-ones 32 were prepared from perimi-
dine analogs and maleic anhydride and their structural and energetic properties 
were studied by Koca and coworkers [147]. From the NMR structural studies, 
their two tautomeric forms 32(a, b), enamine and imine, were found and ab ini-
tio HF, HOMO, and LUMO energies and DFT (B3LYP) theory findings revealed 
that the enamine form was more stable than the imine form due to H-bonding and 
resonance (Scheme 21).

A novel range of benzoperimidones were developed from perimidines under 
Ullman conditions and further N-alkylated with different reagents by Baranov 
et al. [148] to obtain high yields and purity.

Filatova and coauthors [149] developed a novel and efficient route for the prep-
aration of an extensive range of multisubstituted alkynyl derivatives of perimi-
dones from mono-halogenated perimidones and corresponding acetylenes using 
a combination of catalyst  Pd2dba3/PPh3/CuI/K2CO3/DMF in 66 to 77% yields. 
Authors also explained the properties of synthesized compounds and their com-
parative pericyclization properties with 1,8-dialkynylnaphthalenes derivatives. 

Scheme 19  Synthesis of 2-(5-substituted-pyridazine-3,6-dion-4-yl)perimidine derivatives
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“Tightening effect” controlled the orientation of perialkynyl groups and moved 
them away from each other.

Huang and coworkers [150] developed an innovative and chemoselective synthe-
sis from perimidines to produce 13-aminoisoquinolino[2,1-a]perimidine-12-carbox-
ylate derivatives 33 by α-arylation of cynoacetate catalyzed by combination of CuI, 
L-proline, and  NaHCO3 in the presence of DMF at 60 °C (Scheme 22).

5.3  Miscellaneous Applications

Photophysical and electroluminescent properties of perimidine derivatives have 
been studied by researchers in various solvents, viz., cyclohexane, acetonitrile, 
dioxane, EtOH, DMSO, etc., by determining their quantum yields, Stokes shift, 
and radiative constant. Different techniques and studies like absorption and fluo-
rescence spectral studies and excited state intramolecular proton transfer (ESIPT) 
mechanism were used to determine these characteristics. Perimidines mole-
cules have strong photoactivity, which was affected by wavelength, substitution 

Scheme 20  Chemoselective reactions of hydrazonoyl halides with ethyl 2(3H)-peridinylideneacetate

Scheme 21  Two tautomeric 
forms of pyrrolo[1,2-a]
perimidin-10-ones
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patterns, H-bonding, solvents, and dipole–dipole interaction. In 1997, Carlos de 
Valle [151] displayed the photophysical properties of perimidine and found that 
all selected molecules exhibited high photostability against UV light. Further, 
a novel class of perimidine-squarylium dyes 34 was designed, synthesized, and 
their photostability was also studied by Kim et al. [152]. All dyes showed absorp-
tion at the near-infrared region (800 nm) and PPP-MO calculation revealed that 
the bathochromic properties were controled by the EDG of the heteroaromatic 
ring. The aggregation behavior of dyes in DMSO-H2O solution was studied and 
it was found that aggregation was influenced by the terminal groups of these dyes 
(Scheme 23).

In 2007, Davis and coauthors [153] synthesized novel spirodimers of perimi-
dine 35 (Scheme 23) and evaluated the photochromism properties and the photo-
switching between open-ring and closed-ring isomers. Here, the authors applied 
two modes of switching—photo thermal (365 nm) and pure visible (500–700 nm), 
and the results exhibited that the ring-open form of perimidine was depicting the 
fluorescent effect. Here, the effect of substitution of aliphatic and aromatic group 
was also evaluated. These results proved helpful in different areas like sensors, 
optical switches, and other fluorescence-switching devices.

Varsha et  al. [154] designed and synthesized two novel perimidine deriva-
tives, 36a, 36b (Scheme 23), and evaluated their crystal structure and fluorescent 
and antimicrobial properties. These two novel compounds were prepared from 
NDA and 4-hydroxy-3-methoxy benzaldehyde using methanol in good yields and 
their photo physical properties were also evaluated in different solvents through 
UV–Vis absorption study. The antibacterial screening results demonstrated that 
both compounds were highly potent towards Staphylococcus aureus.

Mahapatra et al. [155] synthesized a novel perimidine-boron complex 37 and 
evaluated them for selective detection of fluoride ion from fluorometric and col-
orimetric method. Another new anion receptor combined with 1-methyl-1 H-per-
imidine 38 was synthesized by Pandian et al. [156]. This perimidine receptor was 
complexed with  Cl−,  Br−,  NO2

−, and  I− anions through hydrogen bonding. The 
strength of hydrogen bonding varied with variation in anion, i.e., sensitivity of 
dyes increased parallel with the basicity of anion (Scheme 23).

Scheme  22  Copper-catalyzed chemoselective synthesis of 13-aminoisoauinolino [2,1-a]perimidine-
12-carboxylate
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Roy and coauthors [157] synthesized a perimidine-based chemo-sensor 39 
(Scheme  23) and evaluated it as an antioxidant and studied its binding properties 
with calf-thymus DNA. This chemo-sensor selectively detected aqueous  Cu2+ ion 
from naked eyes due to strong binding interaction. This 1,3-bis(2,3-dihydro-1H-pe-
rimidin-2-yl)benzene showed high free-radical scavenging ability and also estab-
lished good binding with calf-thymus DNA helix.

He and coworkers [158] designed two perimidine derivatives and explored them 
as corrosion inhibitors in an acidic medium. The amino group-substituted perimi-
dines showed higher inhibition due to the presence of a large π-bonded system, 
which controled interaction energy between the iron surface and molecules. These 
results were scrutinized from various computational and electrochemical data.

Lam and coworkers [159] developed a new perimidine-based catalyst 40 
(Scheme  23) for selective formylation and methylation of primary and secondary 
amines. These N-heterocyclic carbenes stabilized metal complexes during the catal-
ysis process. Here, rhodium-derived perimidinylidene complex [RhCl{C(NCH2P

Scheme 23  Multifarious applicable synthesized perimidine molecules
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R2)2C10H6}] catalyzed amines under mild conditions in the presence of  CO2. The 
authors also studied the effect of temperature, solvent, and amount of hydrosilane 
added in the procedure to control the reaction process.

Chakraborty and coworkers [160] designed and synthesized a novel and multi-
functional pyrimidine-pyrene-based heterocycle as colorimetric sensor, antioxidant, 
and exhibited ligand–protein interaction. Dihydroperimidine [2-(pyren-1-yl)-2,3-di-
hydro-1H-perimidine] 41 (Scheme  23) manifested aggregation-induced emis-
sion and worked as a good luminogen in the dilute solution of acetonitrile–water. 
It worked as a turn-off-fluorescence response and a selective sensor for  Cu+2ion in 
aqueous phase up to 37.5 nM, which was easily detectable with naked eyes. Fur-
ther, it showed 5.9 times more radical scavenging ability as compared to L-ascorbic 
acid and also displayed interaction with bovine serum albumin protein in Tris –HCl 
buffer solution.

6  Discussion and future perspective

From  detailed study, it was concluded that numerous new and emerging approaches 
have been established in the field of perimidine synthesis and applications. The tool-
box looks prosperous and versatile but still many challenges are present that need 
solicitous attention of scientists. Most of the synthetic methods used NDA and car-
bonyl compounds as starting materials with variation in the environmental condi-
tions. We need to explore other synthetic routes using different starting materials to 
develop versatility in this field. Despite their wide utility, most of the methods have 
some limitations like special instrumentation, use of hazardous regents and solvents, 
non-recyclable catalyst, low yields, tedious workup, and waste generation, etc. At 
the present time, the most important concern is eco-benign and green synthesis 
using different catalysts like nanoparticles, ionic liquids under MWI, ultrasonica-
tion, ball-milling avoiding high temperature, and harsh solvents. Researchers should 
focus on pathways that are novel, safe, economically cheaper, have high atom econ-
omy, high selectivity, reduce waste generation, have a simple workup process, avert 
chromatographic separation, and follow green matrices. Moreover, scientists should 
focus on water-based reactions due to their mild environment, simple work-up pro-
cedure, and reducing waste generation in addition to lowering the impact of toxic 
and hazardous solvents. Several researchers are working in this direction to develop 
diversity-oriented perimidine nucleus through solvent-free, catalyst-free, and on-
water synthesis to reduce negative impact on the environment and human beings.

Since perimidines are vital and progressively growing multidisciplinary research 
arena and bear unique characteristics and properties. Therefore, researchers should 
work on detailed insights of their structural skeleton to increase their applicability in 
physical, material science, and nanotechnology. Though a plethora of work has been 
done on the biologic activity of perimidine composites, designing a new perimi-
dine framework for novel drug candidates is, however, an uphill process. We should 
develop more structurally modified clinical drugs to overcome their weakness and 
introduce new groups and fragments to invent multi-target drugs. An important 
strategy is to plan further structure–activity relationships (SAR) to determine their 
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special interaction with particular amino acids and proteins and also follow compu-
tational in silico screening like docking studies that may display detailed informa-
tion about which part of the molecule is most effective against particular disease. 
In our opinion and need of the era, the most critical issue is the development of 
sustainable synthesis from laboratory stage to industrial level and in-depth study of 
their mechanism, physiochemical properties, interaction with various ranges of light 
waves, and bonding ability with diverse molecules via opening the door of green 
chemistry, which shall lead to fundamental innovation in multifarious areas of per-
imidine. Furthermore, this article gives an up-to-date overview for further studies 
in chemistry of perimidines and shall attract and encourage  scientists for new and 
efficient discoveries.

7  Conclusions

After a sluggish start half a century ago, perimidines have displayed an upsurge 
within the past two decades and have developed as an independent zone in hetero-
cyclic chemistry. This research area experienced more vivid renaissance and more 
exciting research work done as it has integrated different fields via several advan-
tages that is the demand of present conditions of our society. The unique features 
of perimidines, especially electronic behavior, allow for various opportunities in 
pharmaceutical, industrial, and synthetic areas. As per literature study, this will be 
the only review that critically discusses synthesis and applications of perimidines 
after 1981. This review is envisioned to highlight the contribution of perimidines 
in synthetic, medicinal, and other fields, which make them a versatile motif in 
organic chemistry. In this article, we have systematically reviewed the various syn-
thetic approaches of perimidines using different environmental conditions such as 
acid-catalyzed, nano-catalyzed, and MW-assisted synthesis, etc., and compiled the 
applications of perimidine derivatives in life sciences, pharmaceutical sciences, and 
chemical industries. The significant advantages and limitations of synthetic meth-
ods of perimidines have also been discussed in order to emphasize future research 
trends with less hazardous reaction conditions, enhanced green parameters, high 
yields with high selectivity, and avoiding use of hazardous precursors etc. Keeping 
the aforementioned in mind, this article shall play an important role for  researchers 
in developing novel, eco-friendly, and efficient synthetic routes for the synthesis of 
bioactive and industrially applicable perimidines.
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