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Breast cancer (BC) is the most common malignancy in women. It is classified into a few 
major molecular subtypes according to hormone and growth factor receptor expres-
sion. Over the past few years, substantial advances have been made in the discovery 
of new drugs for treating BC. Improved understanding of the biologic heterogeneity 
of BC has allowed the development of more effective and individualized approach to 
treatment. In this review, we provide an update about the current treatment strategy 
and discuss the various emerging novel therapies for the major molecular subtypes 
of BC. A brief account of the clinical development of inhibitors of poly(ADP-ribose) 
polymerase, cyclin-dependent kinases 4 and 6, phosphatidylinositol 3-kinase/protein 
kinase B/mammalian target of rapamycin pathway, histone deacetylation, multi-targeting 
tyrosine kinases, and immune checkpoints for personalized treatment of BC is included. 
However, no targeted drug has been approved for the most aggressive subtype— 
triple negative breast cancer (TNBC). Thus, we discuss the heterogeneity of TNBC and 
how molecular subtyping of TNBC may help drug discovery for this deadly disease. 
The emergence of drug resistance also poses threat to the successful development of 
targeted therapy in various molecular subtypes of BC. New clinical trials should incorpo-
rate advanced methods to identify changes induced by drug treatment, which may be 
associated with the upregulation of compensatory signaling pathways in drug resistant 
cancer cells.

Keywords: breast cancer, cyclin-dependent kinases 4 and 6 inhibitors, hormone receptor, human epidermal 
growth factor receptor 2, poly(ADP-ribose) polymerase inhibitor, programmed cell death protein 1, trastuzumab, 
triple negative breast cancer

inTRODUCTiOn

Breast cancer (BC) is the most commonly diagnosed and the second leading cause of cancer-related 
deaths among women worldwide (1). One of the major challenges for its treatment is its heterogene-
ous nature, which determines the therapeutic options (2). By evaluating a few biomarkers, including 
the presence of hormone receptors (HRs), excess levels of human epidermal growth factor receptor 
2 (HER2) protein, and/or extra copies of the HER2 gene (3, 4), BC is classified into four major 

Abbreviations: ADC, antibody-drug conjugate; Akt, protein kinase B; AR, androgen receptor; BC, breast cancer; CDK4/6, 
cyclin-dependent kinases 4 and 6; EGFR, epidermal growth factor receptor; ER, estrogen receptor; FOXM1, Forkhead box 
protein M1; HDAC, histone deacetylase; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; mTOR, 
mammalian target of rapamycin; PARP, poly(ADP-ribose) polymerase; PD-1, programmed cell death 1 receptor; PD-L1, 
ligand of programmed cell death 1 receptor; PI3K, phosphatidylinositol 3-kinase; PIK3CA, PI3K catalytic subunit p110α; 
PR, progesterone receptor; Rb, retinoblastoma protein; TNBC, triple negative breast cancer; VEGF, vascular endothelial 
growth factor.
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molecular subtypes: (i) luminal A (HR+/HER2−); (ii) HER2+; 
(iii) luminal B (HR+/HER2+); and (iv) triple negative (TNBC; 
HR−/HER2−; also overlap with the basal-like subtype). Each of 
these subtypes has different risk factors for incidence, therapeutic 
response, disease progression, and preferential organ sites of 
metastases.

Luminal BC is positive for HR [estrogen receptor (ER) and 
progesterone receptor (PR)]. It is subdivided into two subgroups 
(A and B). Luminal A subgroup (HR+/HER2−) is usually slow-
growing and less aggressive than other subtypes. They are more 
responsive to hormonal interventions (5). Luminal B subgroup 
(HR+/HER2+) is further defined by its high expression of Ki67 
(a proliferation marker) or HER2. Luminal B usually has a poorer 
prognosis than luminal A (5). HER2+ BC has overexpression or 
amplification of the HER2/ERBB2 oncogene and may be treated 
with anti-HER2 therapies. Basal-like BC lacks HR and HER2, 
so they are also known as triple negative breast cancer (TNBC). 
Most BC patients (84%) have HR+ diseases, which includes 71% 
from HR+/HER− (luminal A) and 12% from HR+/HER2+  
(luminal B). Only 5% of BC patients are HER2+ but HR−. TNBC 
makes up the remaining 12% of the total patient population (6).

CURRenT TReATMenT ReGiMenS AnD 
nOveL THeRAPieS FOR DiFFeRenT 
SUBTYPeS OF BC

Luminal BC (HR+ BC)
Current Treatment Regimens
Luminal BC, which is also hormone receptor positive (HR+), 
represents the vast majority (60–80%) of BC cases in developed 
countries (6) and this patient population is increasing in pre-
menopausal women (7, 8).

For HR+ BC, endocrine therapy is the mainstay for treatment, 
which works by blocking the effects of hormone or lowering the 
hormone level. Currently available drugs include (i) tamoxifen, 
a prodrug that blocks estrogen uptake by the ER; (ii) aromatase 
inhibitors (letrozole, anastrozole, and exemestane), which sup-
press the conversion of androgens to estrogens, thus resulting in 
estrogen depletion; (iii) luteinizing hormone-releasing hormone 
analogs (goserelin and leuprolide), which suppress the produc-
tion of hormone from the ovary; and (iv) fulvestrant (a selective 
ER degrader), which is suitable for BC patients refractory to 
previous hormonal therapy. Sequential administration of endo-
crine treatments are recommended until there is a need for rapid 
response or evidence of clinical resistance, when chemotherapy 
will be indicated (9).

Since endocrine drugs work by different mechanisms, they 
are generally used in combination for better anticancer efficacy. 
However, conflicting results have been reported (10–12). It is 
generally believed that patients with endocrine therapy-naïve 
advanced BC and those with highly endocrine-sensitive tumors 
may benefit the most from combination endocrine therapy (13).

Novel Therapies
Metastatic HR+ BC may develop resistance to standard hormonal 
therapies, which was mediated by genomic alterations in the ER 

and/or upregulation of other signaling pathways. Therefore, the 
development of new agents has aimed at reversing resistance to 
hormonal therapies (Table 1).

Cyclin-Dependent Kinases 4 and 6 (CDK4/6) Inhibitors
Among the emerging therapies, CDK4/6 inhibitors (palbociclib, 
ribociclib, and abemaciclib) have attracted the most attention. 
CDK4/6 regulate cell cycle progression by their reversible interac-
tion with cyclin D1. Approximately 29 and 14% of patients with 
HR+/HER2− BC were found to have amplification of cyclin 
D1 and CDK4, respectively. Importantly, even when hormonal 
resistance developed, the tumors still depend on CDK4/6-cyclin 
D1 for proliferation (14). Therefore, more pronounced G1-S cell 
cycle arrest was observed in HR+/HER2− BC after treatment 
with combination of hormonal therapy and CDK4/6 inhibitor 
(15). CDK4/6 inhibitors work by blocking the phosphorylation 
of retinoblastoma protein, thereby downregulating E2F-response 
genes to mediate G1-S arrest. They also dephosphorylate the 
transcription factor Forkhead box protein M1 to inhibit cell 
proliferation (15).

Palbociclib and ribociclib have received FDA approval for 
combination with aromatase inhibitor as first-line treatment of 
HR+/HER2− advanced BC. They were shown to significantly 
improve median PFS by 10 months (16) and PFS rate by 20% 
after 18  months (17), respectively, compared to letrozole 
alone. On the other hand, abemaciclib is still under phase III 
investigation (NCT02246621). As second-line treatment in 
combination with fulvestrant in HR+/HER2− advanced BC, 
palbociclib and abemaciclib were demonstrated to significantly 
prolong median PFS by 5  months (18) and 7  months (19), 
respectively, compared to fulvestrant alone. Ribociclib is in 
phase III investigation (NCT02422615). Although all three 
CDK4/6 inhibitors worked through similar mechanism, abe-
maciclib exhibited a higher monotherapy response rate and 
induced less neutropenia, which may be related to its superior 
CDK4 inhibition (20).

Inhibitors Targeting Phosphatidylinositol 3-Kinase (PI3K)/
Protein Kinase B (Akt)/Mammalian Target of Rapamycin 
(mTOR) Pathway
Aberrant activation of the PI3K–Akt–mTOR signaling pathway is 
known to contribute to hormonal resistance (21). This pathway is 
activated in over 70% BC, with the PI3K catalytic subunit p110α 
(PIK3CA) being one of the most frequently mutated and/or 
amplified genes (22). Combination therapies targeting both HR 
and PI3K/Akt/mTOR pathways have been evaluated to reverse 
hormone resistance (21).

PI3K Inhibitors. The combination of PI3K inhibitors with 
aromatase inhibitor has been used as second-line treatment for 
HR+/HER− advanced BC. While buparlisib (a pan-class I PI3K 
inhibitor) has been shown to significantly improve PFS, espe-
cially in those who also have PIK3CA mutation, buparlisib (23), 
pictillisib (24), pilaralisib (25), and voxtalisib (also an mTOR 
inhibitor) (25) did not give rise to significant clinical benefit due 
to high toxicities. The more selective and less toxic α-specific 
PI3K inhibitors (alpeisib and taselisib), currently in phase III 
trials (NCT02437318 and NCT02340221), were found to exhibit 
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TABLe 1 | Novel drugs for treating different molecular subtypes of breast cancer (BC).

Drug  
(alternative names)

Mode of action Targeted population Monotherapy or combination therapy Latest stage of 
clinical development

i. For treating HR+ BC

Palbociclib (Ibrance®) Oral small-molecule inhibitor of cyclin-
dependent kinase CDK4 and CDK6

Advanced stage, HER2− Combination therapy with letrozole Approved by US FDA 
(February 2015)

Advanced stage, pretreated, 
HER2−

Combination therapy with fulvestrant Phase III

Ribociclib (Kisqali®) Oral small-molecule inhibitor of CDK4 
and CDK6

Advanced stage, HER2− Combination therapy with letrozole Approved by US FDA 
(March 2017)

Advanced stage, pretreated, 
HER2−

Combination therapy with fulvestrant Phase III (ongoing)

Abemaciclib (LY2835219) Oral small-molecule inhibitor of CDK4 
and CDK6

Advanced stage, HER2− Combination therapy with letrozole Phase III (ongoing)

Advanced stage, pretreated, 
HER2−

Combination therapy with fulvestrant Phase III

Buparlisb (BKM120) Oral small-molecule inhibitor of pan-
class I phosphatidylinositol 3-kinase 
(PI3K)

Advanced stage, pretreated, 
HER2−

Combination therapy with fulvestrant Phase III

Early stage, HER2− Combination therapy with letrozole Phase II (ongoing)

Pictilisib (GDC-0941) Oral small-molecule inhibitor of pan-
class I PI3K

Advanced stage, pretreated, 
HER2−

Combination therapy with fulvestrant Phase II (will not be 
further pursued)

Early stage, HER2− Combination therapy with anaestrozole Phase II

Pilaralisib (SAR245408) Oral small-molecule inhibitor of pan-
class I PI3K

Advanced stage, pretreated, 
HER2−

Combination therapy with letrozole Phase I/II (will not be 
further pursued)

Voxtalisib (SAR245409) Oral small-molecule inhibitor of pan-
class I PI3K and mammalian target of 
rapamycin (mTOR)

Advanced stage, pretreated, 
HER2−

Combination therapy with letrozole Phase I/II (will not be 
further pursued)

Alpeisib (BYL719) Oral small-molecule inhibitor of 
α-specific class I PI3K

Advanced stage, pretreated, 
HER2−

Combination therapy with fulvestrant Phase III (ongoing)

Early stage, HER2− Combination therapy with letrozole Phase II (ongoing)

Taselisib (GDC-0032) Oral small-molecule inhibitor of 
α-specific class I PI3K

Advanced stage, pretreated, 
HER2−

Combination therapy with fulvestrant Phase II (ongoing)

Everolimus (Afintor®) Oral small-molecule inhibitor of mTOR Advanced stage, pretreated Combination therapy with exemestane Approved by US FDA 
(July 2012)

Temsirolimus (Torisel®) Oral small-molecule inhibitor of mTOR Advanced stage Combination therapy with letrozole Phase III

Advanced stage, pretreated Monotherapy Phase II (will not be 
further pursued)

Entinostat Histone deacetylase (HDAC) inhibitor Advanced stage, pretreated Combination therapy with exemestane Phase III (ongoing)

Vorinostat HDAC inhibitor Advanced stage, pretreated Combination therapy with tamoxifen Phase II

ii. For treating HeR2+ BC

Buparlisb (BKM120) Oral small-molecule inhibitor of pan-
class I PI3K

Advanced stage, pretreated Combination therapy with lapatinib Phase Ib

Advanced stage, pretreated Combination therapy with trastuzumab 
and paclitaxel

Phase II

Pilaralisib (SAR245408) Oral small-molecule inhibitor of pan-
class I PI3K

Advanced stage, pretreated Combination therapy with trastuzumab/
trastuzumab and paclitaxel

Phase I/II

MK-2206 Oral small-molecule inhibitor of protein 
kinase B

Advanced stage, pretreated Combination therapy with trastuzumab Phase I

Everolimus (Afintor®) Oral small-molecule inhibitor of mTOR Advanced stage, pretreated Combination therapy with trastuzumab 
and vinorelbine

Phase III

Ridaforolimus (MK-8669) Oral small-molecule inhibitor of mTOR Advanced stage, pretreated Combination therapy with trastuzumab Phase IIb

Sirolimus Oral small-molecule inhibitor of mTOR Advanced stage, pretreated Combination therapy with trastuzumab Phase II

Neratinib (HKI-272) Irreversible binder of HER1, HER2, 
and HER4

Early stage, pretreated Monotherapy Phase III

(Continued)

3

Tong et al. Advances in BC Chemotherapy

Frontiers in Oncology | www.frontiersin.org June 2018 | Volume 8 | Article 227

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


Drug  
(alternative names)

Mode of action Targeted population Monotherapy or combination therapy Latest stage of 
clinical development

Patritumab (AMG 888, 
U3-1287)

Anti-HER3 monoclonal antibody Advanced stage Combination therapy with trastuzumab 
and paclitaxel

Phase Ib

Margetuximab (MGAH22) Anti-HER2 monoclonal antibody Advanced stage Monotherapy Phase I

Lonafarnib (SCH66336) Farnesyl transferase inhibitor Advanced stage Combination therapy with trastuzumab 
and paclitaxel

Phase I

Nelipepimut-S (E75) Therapeutic peptide vaccine Early stage Combination therapy with trastuzumab Phase II (ongoing)

Recombinant HER2 
protein (dHER2)

Therapeutic peptide vaccine Early stage Monotherapy Phase I

Advanced stage Monotherapy Phase I/II

Advanced stage, pretreated Combination therapy with lapatinib Phase I

iii. For treating triple negative breast cancer

Olaparib (Lynparza®) Oral PARP inhibitor Advanced stage, HER2−, 
gBRCA+

Monotherapy Phase III

Talazoparib (BMN 673) Oral PARP inhibitor Advanced stage, HER2−, 
gBRCA+

Monotherapy Phase III (ongoing)

Veliparib (ABT-888) Oral PARP inhibitor Advanced stage, HER2−, 
gBRCA+

Combination therapy with carboplatin and 
paclitaxel

Phase III (ongoing)

Niraparib (Zejula®) Oral PARP inhibitor Advanced stage, HER2−, 
gBRCA+

Monotherapy Phase III (ongoing)

Combination therapy with pembrolizumab Phase I/II (ongoing)

Rucaparib (Rubraca®) Oral PARP inhibitor Advanced stage, HER2−, 
gBRCA+

Monotherapy Phase II (ongoing)

Combination therapy with cisplatin Phase II (ongoing)

Glembatumumab vedotin Antibody-drug conjugate Advanced stage, pretreated, 
gpNMB+

Monotherapy Phase II (ongoing)

Bicalutamide (Casodex®) Androgen-receptor inhibitor Advanced stage, AR+, HR− Monotherapy Phase II

Pembrolizumab 
(Keytruda®)

Anti-PD-1 monoclonal antibody Advanced stage Monotherapy Phase II (ongoing)

TABLe 1 | Continued
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promising efficacy, particularly in BC patients who had PIK3CA 
mutation (26, 27).

As neoadjuvant treatment in combination with letrozole or 
anastrozole for HR+/HER2− early BC, both pictillisib (28) and 
taselisib (29) were found to enhance antitumor effects irrespec-
tive of PIK3CA status. Buparlisb and alpelisib are under phase II 
investigation (NCT01923168).

mTOR Inhibitors. Everolimus has received US FDA approval for 
HR+ advanced BC in combination with exemestane after treat-
ment failure with letrozole or anastrozole (30). However, tem-
sirolimus failed to show any clinical benefits either as first-line 
treatment in combination with letrozole (31) or as second-line 
therapy as a single agent (32) in advanced HR+ BC.

Histone Deacetylase (HDAC) Inhibitors. Hormonal resistance is 
also caused by histone deacetylation-mediated loss of ER expres-
sion in ER+ patients (33). This may be reversed by HDAC inhib-
itors, which upregulated expression of ERα and aromatase and 
inhibited growth factor signaling pathways (34). As second-line 
treatment for HR+ advanced BC [phase III (NCT02115282)], 
both entinostat and vorinostat exhibited superior anticancer 
activity in combination with exemestane (35) and tamoxifen (36) 
respectively, compared to exemestane/tamoxifen alone.

Steroid Sulfatase Inhibitors. Steroid sulfatase is a key enzyme 
regulating the conversion of inactive sulfate-conjugated ste-
roids to active and estrogenic non-conjugated forms (37). The 
expression level and enzyme activity of steroid sulfatase were 
found to be remarkably increased in ERα-positive BC (38). Thus, 
inhibition of steroid sulfatase represents a logical approach for 
reducing estrogenic steroids that may stimulate BC growth. A 
recent phase II trial showed that combination of irosustat (first- 
generation steroid sulfatase inhibitor) and aromatase inhibitor 
was well-tolerated and resulted in clinical benefit (39). Another 
novel dual-acting steroid sulfatase inhibitor (SR16157), which 
directly inhibits steroid sulfatase and releases a selective ERα 
modulator, has been evaluated in hormone-dependent BC (40).

HeR2+ BC
Current Treatment Regimens
For HER2+ BC, several molecular targeted agents have been 
approved to be used alone or in combination with standard 
chemotherapy. They include (i) trastuzumab (anti-HER2 mono-
clonal antibody); (ii) pertuzumab (anti-HER2 monoclonal anti-
body with a different binding site on HER2 than trastuzumab); 
(iii) ado-trastuzumab emtansine, an antibody-cytotoxic agent 
conjugate consisting of trastuzmab linked with a small-molecule 
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microtubule inhibitor (emtansine); and (iv) lapatinib, a dual 
tyrosine kinase inhibitor (TKI) that interrupts both HER2 and 
epidermal growth factor receptor (EGFR) pathways. BC patients 
are tested for HER2 gene amplification or protein overexpres-
sion to determine whether they would benefit from anti-HER2 
therapy.

In early-stage HER2-positive BC, neoadjuvant treatment with 
a combination of chemotherapy and anti-HER2 targeted therapy 
is currently the standard regimen (41). This is followed by surgery, 
radiotherapy, and another 12-month HER2-targeted therapy. 
Endocrine adjuvant therapy may also be added depending on 
specific cancer biology. With the introduction of HER2-targeted 
therapies over the past 15 years, the median overall survival (OS) 
of patients with HER2+ advanced BC has increased substantially 
from approximately 20 months to currently about 5 years (42, 43).

Novel Therapies
The emergence of primary and acquired resistance to trastuzumab 
is severely limiting its clinical utility in HER2+ BC. Elucidation of 
the resistance mechanisms and discovery of targeted agents and 
immunotherapies have resulted in improved treatment outcomes 
(Table 1).

PI3K/Akt/mTOR Inhibitors
Combinations of PI3K/Akt/mTOR inhibitors with trastuzumab 
have been studied to overcome trastuzumab resistance mediated 
by aberrant activation of the pathway. Pan-class I PI3K inhibitors 
(buparlisib and pilaralisib), when combined with lapatinib (44), 
trastuzumab (45), or trastuzumab and paclitaxel (46), were found 
to demonstrate promising efficacy and safety in patients with 
pretreated HER2+ advanced BC. Akt inhibitor (MK-2206) was 
found to exhibit favorable antitumor activities when combined 
with trastuzumab (47) or trastuzumab and paclitaxel (48) in 
pretreated patients with HER2+ advanced BC. As for the mTOR 
inhibitor, the combination of everolimus (an mTOR inhibitor) 
with trastuzumab and vinorelbine did not significantly improve 
clinical outcome in pretreated HER+ BC patients (49). However, 
the combination was found to produce better anticancer activity 
than trastuzumab alone in HER+ patients who are also HR− (49). 
On the other hand, the combination of two newer mTOR inhibi-
tors, ridaforolimus (50) and sirolimus (51), with trastuzumab 
have also shown promising activity in refractory HER2+ BC.

Inhibitors Targeting HER-Family Receptors
Growth factor ligands of HER-family receptors [HER1 (EGFR), 
HER3, or HER4] are known to inhibit the anticancer effect of 
trastuzumab (52). Moreover, overexpression of HER2/HER3 
heterodimers, which are more active than other heterodimers 
or homodimers formed by HER family (53), have been reported 
to cause trastuzumab resistance. Therefore, a broader inhibition 
of HER-family receptors may elicit greater anticancer effect than 
trastuzumab alone.

Multi-Targeting TKIs. Neratinib, an irreversible TKI of HER1/
HER2/HER4, has been reported to significantly improve the 
2-year invasive disease-free survival after trastuzumab-based 
adjuvant therapy in HER2+ BC (54).

Monoclonal Antibodies. Patritumab (anti-HER3 monoclo-
nal antibody) showed promising antitumor activity in preclin-
ical study through inhibiting the formation of HER2/HER3 
heterodimers. It was found to exhibit favorable efficacy and 
acceptable tolerability in patients with HER2+ advanced BC 
(55). Margetuximab (targeting HER2) was well-tolerated and 
it demonstrated promising single-agent activity in a first-in-
man phase I trial in HER2+ advanced BC (56). Further clini-
cal trials are ongoing to investigate its usefulness as a single 
agent (NCT02492711) or in combination with pembrolizumab 
(NCT02689284) (56).

Antibody-Drug Conjugate (ADC). Trastuzumab emtansine is 
an ADC that incorporates the HER2-targeting activity of tras-
tuzumab with the cytotoxicity of a microtubule-inhibitory drug 
(57). It is approved for second-line treatment in trastuzumab/
lapatinib-relapsed/refractory HER2+ BC (58, 59).

Farnesyl Transferase Inhibitors (FTI). Lonafarnib, as a specific 
FTI, inhibits Ras function by farnesylation. Although RAS muta-
tions are not common (<2%) in BC, Ras protein and its down-
stream effectors are often activated due to overexpression of 
upstream signaling molecules (e.g., HER2) (60). Recently, a phase I  
trial showed that the addition of lonafarnib to trastuzumab and 
paclitaxel therapy exhibited superior antitumor activities in 
HER2+ advanced BC (61).

Immunotherapy. Nelipepimut-S is a short peptide (HER2/neu 
369–377, KIFGSLAFL) from the extracellular domain of HER2 
(62). It was investigated as a vaccine to prevent clinical recurrence 
in high-risk BC patients (63). The combination use of nelipepimut- 
S and trastuzumab in HER2+ early BC is now studied in a phase 
IIb trial (NCT02297698). Another protein vaccine, recombinant 
HER2 protein (dHER2) was also found to exhibit immunoge-
nicity to induce T-cell-mediated cytotoxicity in HER2+ early 
BC patients as an adjuvant treatment (64), in HER2+ advanced 
BC patients (65) as a single agent and in HER2+ advanced BC 
patients refractory to trastuzumab+ lapatinib (66).

Triple negative Breast Cancer
Current Treatment Regimens
Triple negative breast cancer is more aggressive and difficult 
to treat than HR+ and HER2+ BC. For TNBC, standard 
chemotherapy remains the mainstay of treatment. Interestingly, 
TNBC is the BC subtype with the most complete response to 
chemotherapy (22%). However, their recurrence and metastasis 
rates are higher than those carrying non-TNBC tumors (67). 
The median OS for patients with metastatic TNBC is about 
9–12  months with conventional cytotoxic agents. The lack of 
ER, PR, and HER2 expression precludes the use of targeted 
therapies in advanced TNBC, and the only approved systemic 
treatment option is chemotherapy [usually taxanes, anthracy-
cline, and platinum drugs (68)] with or without bevacizumab [a 
recombinant humanized monoclonal antibody against vascular 
endothelial growth factor (VEGF)]. Given the suboptimal treat-
ment outcome with chemotherapy, new targeted therapies for 
TNBC are badly needed.
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FiGURe 1 | Novel drugs under investigation for triple negative breast cancer (TNBC). PARP inhibitors are effective in BRCA-mutated breast cancer (BC). When 
BRCA function is absent and PARP is inhibited, cancer cells are unable to repair DNA damage by homologous recombination or base-excision repair and cell death 
results. The antibody-drug conjugate, glembatumumab vedotin, may be effective in gpNMB-overexpressing BC by releasing the cytotoxic drug into gpNMB-
expressing tumor cells, resulting in a targeted-cell killing effect. Tyrosine kinase inhibitors against EGFR, VEGFR, and SRC have been investigated for the treatment 
of TNBC because these signaling receptors mediating cancer cell growth are overexpressed or dysregulated in TNBC. The monoclonal antibody, pembrolizumab, 
may be effective regardless of PD-L1 expression by inducing an immune response to kill cancer cells. Abbreviations: PARP, poly(ADP-ribose) polymerase; gpNMB, 
glycoprotein NMB; AR, androgen receptor; DHT, dihydrotestosterone; PD-1, programmed cell death 1 receptor; PD-L1, ligand of programmed cell death 1 receptor; 
EGFR, epidermal growth factor receptor.
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Novel Therapies
Among all BC subtypes, TNBC has the fewest therapeutic options 
due to the lack of well-defined molecular target(s). Identification 
of new therapeutic targets and development of effective targeted 
agents is urgently needed. Table 1 and Figure 1 summarize the 
promising agents currently in clinical development for TNBC.

Poly(ADP-ribose) Polymerase (PARP) Inhibitors
The most important advancement toward understanding the 
complex heterogeneity of TNBC is probably the discovery of a 
subgroup of sporadic TNBC that shares the homologous repair 
deficiency characteristic with BRCA1/2-mutated BC. Drug 
combination regimens are thus proposed by incorporating PARP 
inhibtors or the DNA-targeting platinum drug (carboplatin)  
(69, 70) to standard chemotherapy (71, 72).

The PARP enzyme repairs DNA single-strand breaks whereas 
the BRCA1/BRCA2 genes encode tumor-suppressor proteins 
that repair DNA double-strand breaks through homologous 
recombination. PARP inhibitors have showed promising clinical 
activities in patients bearing germline BRCA1/BRCA2 mutation 
(gBRCA+), presumably by synthetic lethality from unresolved 
DNA damage and by replication arrest caused by physical 
obstruction of DNA replication forks (73).

Olaparib has proceeded the furthest in clinical development. 
In a phase III trial, it improved median PFS by 2.8 months and 
lowered the risk of disease progression/death by 42% compared to 
standard chemotherapy (71). Talazoparib, currently in phase III  
trial (NCT01945775), has the greatest preclinical potency due to 
its strong binding to DNA by trapping PARP–DNA complexes 
(74). It demonstrated encouraging antitumor activities as a 
single agent in advanced gBRCA+ BC (75). Veliparib combined 
with carboplatin and paclitaxel, though failed to prolong PFS 
in gBRCA+ BC (76), is being investigated in phase III trial 
(NCT02163694) in advanced gBRCA+ BC (77). Niraparib  
(phase III, NCT01905592) and rucaparib (phase II, NCT02505048) 
are being investigated in gBRCA+ advanced BC patients as mon-
otherapy and also in combination with chemotherapy (niraparib: 
phase I/II, NCT02657889; rucaparib: phase II, NCT01074970).

The use of PARP inhibitors or carboplatin in TNBC is usually 
determined by three DNA-based homologous recombination 
deficiency scores, which are highly correlated with genetic defects 
in BRCA1/2 (78). However, none of these agents is effective in 
treating all TNBC because TNBC can be further divided into at 
least six subclasses [basal-like (BL1 and BL2), an immunomodu-
latory, a mesenchymal, a mesenchymal stem-like, and a luminal 
androgen receptor subtype], each of which has its own molecular 
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features and unique drug sensitivity (79–81). The identification 
and characterization of clinically relevant molecular biomarkers 
of drug responsiveness is needed to further refine this treatment 
strategy.

Anti-Angiogenic Agents
The intra-tumoral expression of VEGF, a key angiogenic factor, 
is known to be remarkably higher in TNBC than in non-TNBC 
BC (82). Bevacizumab (anti-VEGF monoclonal antibody) sup-
presses tumor neovasculature growth and inhibits metastasis. 
In metastatic TNBC (phase III), the addition of bevacizumab to 
first-line chemotherapy (docetaxel) has been shown to increase 
response rate (placebo plus docetaxel: 46% versus bevacizumab 
plus docetaxel: 64%) and median PFS (placebo plus docetaxel: 
8.1  months versus bevacizumab plus docetaxel: 10.0  months) 
(HR, 0.67; P  <  0.001) (83, 84). Importantly, combination of 
bevacizumab with docetaxel did not affect significantly the over-
all safety profile of the regimen.

EGFR Inhibitors
Epidermal growth factor receptor is overexpressed in TNBC. 
Numerous phase II studies have recently evaluated the efficacy 
of cetuximab (anti-EGFR monoclonal antibody) in combination 
with cisplatin in metastatic TNBC (85, 86). While only modest 
objective response rate (ORR) was observed (ORR  =  20% for 
cisplatin plus cetuximab versus 10% for cisplatin alone), cispl-
atin plus cetuximab resulted in longer median PFS (3.7 versus 
1.5 months) and median OS (12.9 versus 9.4 months) compared 
with cisplatin alone. Current effort is being made to identify a sub-
population of TNBC patients that may be more likely to respond 
to EGFR inhibitors (87). Favorable response may be correlated 
with lower expression of alpha-crystallin B chain, higher expres-
sion of PTEN, and lack of KRAS expression in the tumors (87).

SRC Inhibitors
SRC is a non-receptor signaling kinase downstream of several 
growth factor receptors (EGFR, IGF-1R, PDGFR, and HGFR), 
which is/are deregulated in TNBC. Dasatinib (inhibitor of multi-
ple tyrosine kinases including SRC), when tested as a single agent 
for TNBC in a prospective, open label, phase II trial (CA180059), 
has shown disappointing result (88). Objective response rate 
(ORR) was only 4.7%. Median PFS was 8.3 weeks. Higher dose 
(100 mg BID) was associated with treatment interruption, dose 
reduction, and serious adverse events (88). However, in cell line 
studies, when dasatinib was combined with cetuximab (anti-
EGFR monoclonal antibody) and cisplatin, synergistic anticancer 
activity in a panel of TNBC cell lines was observed (89). The 
three-drug combination produced more pronounced induction 
of apoptosis and inhibition of EGFR and MAPK phosphoryla-
tion than either single or two-drug combination (89). Moreover, 
cancer cell migration and invasion was also significantly inhibited 

by dasatinib alone treatment or dasatinib-containing combina-
tion treatment in TNBC cell lines (89). Therefore, clinical studies 
may be warranted to investigate the use of dasatinib-containing 
combinations in TNBC patients whose tumors co-overexpressed 
both EGFR and c-Src.

Monoclonal Antibodies
Glembatumumab vedotin is a monoclonal antibody-cytotoxic 
drug conjugate designed to target glycoprotein NMB-
overexpressing (gpNMB+) TNBC (90). gpNMB is a transmem-
brane protein associated with tumor invasion and metastasis and 
it is overexpressed in 40% of TNBC (91). On gpNMB+ advanced 
TNBC patients (phase II trial), a significantly improved PFS and 
OS by glembatumumab vedotin was observed compared to the 
treatment of physician’s choice (92).

Immunotherapies
Pembrolizumab is a human monoclonal IgG4-ĸ antibody against 
the programmed cell death 1 receptor (PD-1). It demonstrated 
clinical efficacy and safety in patients with advanced TNBC. 
PD-1 prevents autoimmunity by suppressing T  cells and thus 
preventing the immune system from killing cancer cells. While 
patients with PD-L1 (a ligand of PD-1)-positive advanced TNBC 
were selected for investigation in a phase Ib study (93), the 
antitumor activity of pembrolizumab appeared to be independ-
ent of PD-L1 expression according to another ongoing phase II 
study (94). Importantly, pembrolizumab also showed durable 
antitumor activity in patients with heavily pretreated metastatic 
TNBC (94).

COnCLUSiOn

With the advancements in the chemotherapy for BC, the mortal-
ity rate from BC is decreasing in the last decade. Targeting ER has 
proved one of the most powerful treatment modalities against 
HR+ BC (95). Moreover, the success of the biological drugs such 
as anti-HER2 monoclonal antibody (96) also highlighted the fea-
sibility and significance of the molecular targeting approach in BC 
therapy. However, metastasizing TNBC remains a deadly disease 
with limited treatment options. In recent years, the molecular 
mechanisms driving the heterogeneous treatment response in 
BC are better elucidated. This has fueled the development of 
novel targeted agents, including inhibitors of PARP, CDK4/6, 
PI3K/AKT/mTOR, multiple kinases, or immune checkpoint, for 
the treatment of specific molecular subtypes of BC. Treatment 
options should be tailored to individual patient accordingly.
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