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Abstract: Clostridium difficile (C. difficile) is rapidly becoming one of the most prevalent health

care–associated bacterial infections in the developed world. The emergence of new, more virulent

strains has led to greater morbidity and resistance to standard therapies. The bacterium is readily

transmitted between people where it can asymptomatically colonize the gut environment, and

clinical manifestations ranging from frequent watery diarrhea to toxic megacolon can arise depend-

ing on the age of the individual or their state of gut dysbiosis. Several inexpensive approaches are

shown to be effective against virulent C. difficile in research settings such as probiotics, fecal

microbiota transfer and immunotherapies. This review aims to highlight the current advantages and

limitations of the aforementioned approaches with an emphasis on recent studies.
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Introduction
Approximately 10–35% of all cases of antibiotic-associated diarrhea in developed

countries are caused by the gram-positive, spore-forming, toxin-producing anae-

robe, Clostridium difficile (C. difficile).1–8 Exposure to antibiotics is recognized as

the most important risk factor for C. difficile infection (CDI).9–13 In a recent study,

>45% of the CDI patients had taken antibiotics in the 90d prior the development of

symptoms, whilst in another case–control study, 48% of the patients were exposed

to antibiotics in the 4-week time period to CDI onset.14,15 Fluoroquinolones (FQs),

clindamycin (CLI) and cephalosporins (CFs) are the antibiotics commonly asso-

ciated with CDI.16,17 Resistance to these antibiotics continues to play an important

role in the emergence of new C. difficile clones.18 An investigation by Wasels et al

showed that in CDI ribotype 27 (RT 027) FQ resistance is associated with a modest

fitness cost; a trait linked to the presence of a favorable mutation (Thr82Ile) in the

gyrA gene.19 In 2014, Lee et al reported on the emergence of 3 new ribotypes (RT)

014, 017 and 018 in a Korean hospital; all the strains carried the Thr82I1e mutation.

Moreover, the same mutation was detected in isolates of some additional ribotypes

genetically related or unrelated to RT027.20,21

Increasing age >65 is another known risk factor associated with CDI, accounting

for the majority of diarrheal cases in residential facilities.22–26 In the United States

alone, near half a million cases have been reported with 29,000 fatalities attributed to

CDI.27 Patients in health care settings are particularly susceptible to infection and re-

infection with a recurrence rate of over 20% and a mortality rate of over 9% within

days of diagnosis. It is also estimated that up to 57% of the long-term care facility
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residents (LTCF) are asymptomatic carriers of C. difficile.

Although CDI often occurs as a secondary infection, it can

also occur in healthy adults with similar rates of

recurrence.28 An article detailing the various risks (1960–

2010) associated with infection can be found in a review by

Spigaglia et al.29

Once a patient exhibits symptom, the first step in treat-

ment is the discontinuation of antibiotics associated with

CD risk. For the past 40 years, first-line treatments for mild,

recurrent and severe CDI have been the drugs metronida-

zole (MET) and oral vancomycin (VAN). Unfortunately, in

27% of the cases, the drugs do not effectively treat the

infection or prevent recurrence. If metronidazole and oral

vancomycin treatments are ineffective, fidaxomicin (FDX)

can be administered. This RNA polymerase inhibitor has

been shown to reduce sporulation and toxin production in

hundreds of C. difficile strains.30–33 Although recurrence

and relapse rates for FDX are lower compared to VAN,

fidaxomicin still fails in approximately 1 out of 8 patients

treated with the antibiotics and in clinical trials.34 Moreover,

a recent report showed that vancomycin-resistant isolates

are >250 times less susceptible to fidaxomicin compared to

fidaxomicin-sensitive strains, even though these two anti-

biotics have different mechanisms of action.35 Failure of

FDX in these cases requires the development of novel cost-

effective therapies for C. difficile infections, ensuring that

new treatments do not promote reduced susceptibility to

antibiotics in current use.

One of the most cost-effective alternative therapies to

treat C. difficile is FMT. Recent reports suggest that FMT

has the potential to dominate recurrent and severe CDI

treatments36–38 and in some cases primary CDI as well.39

The impact of FMTand alternative therapies on CDI is yet to

be fully realized. In this review, we briefly visit the infection

cycle and roles of CDI genes in toxin production, and then

discuss several bio-therapeutic options under investigation,

highlighting those which have the potential to replace FDX

and VAN in the treatment of initial, recurrent and severe CDI.

In this regard, in-vivo studies and clinical trials conducted

using known bio-therapeutic options are discussed. Finally,

we close by looking at the challenges that emerging CDI

biotherapeutic treatments currently face.

Infection cycle and the roles of C.

difficile genes in toxin production
Transmission of the C. difficile occurs via the fecal-oral

route in the form of highly resistant spores. Once passed

the acidic pH of the stomach, the spores germinate in the

presence of certain bile acids within the intestine. The

active cells then progress to the colon where they out-

compete the host bacteria for residence in the hypoxic

folds and nutrient-rich crypts. As the colonies form and

localized resources decline, a quorum threshold is reached

initiating toxin production. The amount of toxin produced

determines the severity of the infection. Once outside the

localized influence of the CD film or crypt, some cells or

spores migrate to the anus and are defecated by the host.40

A summary of the CDI cycle is shown in Figure 1.

Most C. difficile (CD) clinical isolates produce two

high molecular weight-related toxins, namely TcdA (308

kDa) and TcdB (270 kDa). TcdA and TcdB expression can

fluctuate depending on the bacteria’s exposure to various

physical (temperature) and chemical (iron and carbon

availability) stressors and the types of strains used in

trials.41 The proteins are part of the large clostridial toxin

(LCT) family which includes C. perfringens cytotoxins, C.

sordelli hemorrhagic toxins (TcsL) and (TcsH) as well as

C. α-novyi toxin. CD toxin expression is dependent on the

regulation of tcdA and tcdB genes located on the patho-

genicity locus PaLoc. The PaLoc locus also contains 3

accessory genes tcdC (negatively regulates tcdA and

tcdB) tcdE (encodes a putative holing necessary for toxin

release) and tcdR (RNA polymerase sigma factor). The

roles of tcdC and tcdE remain controversial as toxin pro-

duction barely differs between tcdC mutant and wild type

strains, whilst reports suggest tcdE holio protein may play

a role in toxin release.42 Furthermore, several studies show

tcdC expression levels do not diminish during the station-

ary phase of growth, suggesting that tcdC may adopt a

modulatory role rather than a repressive one. In addition to

tcdA and B, some strains (RT027 type III, RT251) also

express a third toxin, binary toxin (CDTa and CDTb).

CDT is structurally related to iota toxin and C2 toxins of

C. perfingens and C. botulinum and is thought to upregu-

late TcdA and TcdB production.43–45

The roles of these three toxins in C. difficile disease

remain controversial. Over the years, several studies using

hamster models and isogenic C. difficile strains have

shown that both TcdA and TcdB mutants are capable of

causing fulminant disease and death. Recent studies using

hamster and mouse models exposed to wild-type, double

toxin knockout and isogenic single strains induced innate

and pro-inflammatory immune responses. Strains expres-

sing only TcdB resulted in significant weight loss and

severe systemic disease in both models, implying the
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severe aspects of the disease might be attributable to TcdB

rather than TcdA.46 Interestingly, the majority of these

strains produce a modified form of TcdB (B) toxin that

shares enzyme-GTPase substrate site homology with C.

sordelli hemorrhagic toxins, allowing it to carry out glu-

cosylation events in the absence of TcdA.47 Furthermore,

the observation that A−B+ strains are virulent in infected

individuals indicates that B toxin is sufficient for pathol-

ogy in humans.

However, the role of the CDT toxin in disease patho-

genesis remains unclear. Several studies have shown that

CDT production in addition to TcdA and B is associated

with an elevated risk of recurrence, disease severity and

mortality.48 Moreover, reports of blood, inflammation and

fluid retention in infected hamster and rabbit models indi-

cate that CDT could be enterotoxic.49 It has also been

demonstrated that TcdA/CDT-producing strains are more

virulent in hamsters than isogenic TcdA+TcdB−CDT−

strains. Additional studies in mice also showed the host

eosinophilic response is suppressed in the presence of

CDT.50 Recent work by Kaplan et al demonstrated AB

toxin production in hypervirulent and non-hypervirulent

strains is under the control of a novel thiolactone quorum-

signaling peptide which is independent of tcdC-mediated

Health care

Animals

Environment

Ileum

Liver

O
e

s
o

p
h

a
g

u
s

Caecum
Dissemination

Primary bile acids in excess

Duodenum/ileum

Spores dominate

Cells

Oesophagus & stomach

Vegetative

Spore Vegetative cells

destroyed in the stomach

Spore germination

outgrowth

Colonization, toxin production,

loss of membrane integrity,

Inflammation,

nutrient limitation

Sporulation

Colon

Figure 1 Infection cycle of toxigenic Clostridium difficile in the human gastrointestinal track. As C. difficile is an obligate anaerobic bacterium, transmission occurs primarily via

spores. Three sources of infection (health care, animal and community residences) are indicated. Spores and some vegetative cells (most of which are eliminated in the hosts

stomach) are ingested. Once past the stomach a range of metabolic factors (primary to secondary bile acid ratio, short chain fatty acids) encourages spore germination in the

duodenum. After germination, the cells disseminate to the anaerobic folds of the ileum and cecum, forming colonies (assuming dysbiosis). Once in the colon, some cells

enter sporulation, others produce toxins. As toxin levels increase, the epithelial barrier is challenged, this in turn initiates the inflammatory response and upregulates the

production of anti-toxin antibodies in the host.
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regulation.51 Furthermore, Lyras et al demonstrated that

CdtR may act as a global regulator of virulence in epidemic

027 strains and not others, suggesting that each epidemic

strain has its own regulatory mechanism.52 These initial

experiments highlight the potential roles of CDT and

quorum-signaling peptides in pathogenic virulence and

toxin production. A schematic depicting the organization

of the toxin genes can be found in Figure 2. For the rest of

the review, TcdA and TcdB will be used interchangeably

with toxin A and toxin B.

Probiotics
Research has shown that probiotics can confer a wide range of

health benefits especially those directly related to the human

gut.53 For example, probiotics can improve your immune

system,54 regulate gut microbiota as well as prevent gastro-

intestinal infections in animals and humans.55 For many years,

various species of probiotics have been studied as preventative

therapies for CDI, with the most common being within the

Bifidobacterium and Lactobacillus genus. Recently, a decade-

long study examining the efficacy of a three-strain probiotic

mixture involving 45,000 patients was reported.56 The probio-

tic mixture BioK+® (containing Lactobacillus acidophilus

CL1285, Lactobacillus rhamnosus CLR2 and Lactobacillus

casei LBC80R) was administered 2–12 hrs after antibiotic

treatment and continued for at least 30 days or until treatments

were discontinued. In the patients who received the mixture,

the CDI rate decreased from 18.0 cases per 10,000 patient days

to an average of 2.3 cases per 10,000 patient days. In addition

to Bifidobacterium and Lactobacillus, the yeast

Saccharomyces has been utilized as preventive treatment for

CDI. Of note is the medicinal yeast Saccharomyces boulardii

CNCM I-745 which has been approved for the treatment and

prevention of diarrhea of various causes.57 Saccharomyces

boulardii CNCM I-745 secretes a 54-kDa protease, which is

capable of inactivating C. difficile toxins A and B resulting in

its efficacy being evaluated in several clinical trials. In 2000,

Surawicz et al conducted a randomized, double-blind, pla-

cebo-controlled study utilizing S. boulardii for the treatment

of recurrent CDI (n=168).58 Patients were given either vanco-

mycin 500mg daily, vancomycin 2 g daily, or metronidazole 1

g daily for 10 days. On day 7 of the antibiotic course, S.

boulardii 500 mg or placebo were administered and continued

for a total of 28 days. Results of the study showed that those

treated with S. boulardii in addition to vancomycin 2 g daily

had a 16.7% recurrence rate versus a 50% recurrence rate in

individuals treated with vancomycin 2 g daily and placebo.

Unfortunately, a follow-up trial found that S. boulardiiwas not

effective at preventing AAD in elderly patients.59 Additional

smaller trials using mixtures of Lactobacillus rhamnosus GG

A

cdu1

cd2601 cd2602 cdtR cdtA cdtB trpS

cdu2 tcdR tcdB tcdA

tcdCtcdR
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B

Figure 2 Schematic representation of the toxin genes and regulatory proteins. (A) Pathogenicity locus (PaLoc) region containing the following genes: tcdR, tcdB, tcdE, tcdC

and tcdA. The arrows indicate the direction of transcription. TcdC negatively regulates AB toxin expression. Other regulators Sigma D (SigD), the nutritional repressor

CodY (known as GTP-sensing transcriptional pleiotropic repressor CodY), catabolite control protein A (CcpA), Stage 0 sporulation protein A (Spo0A) and quorum sensing

(QS)) that affect toxin gene transcription (boxed) mostly act via expression of the tcdR gene. (B) Schematic of the binary toxin locus (CdtLoc) and flanking regions with

regulatory interactions. CtdR positively regulates the transcription of cdtA and cdtB. CtdR also regulates the production of AB toxins in various 027 strains but not in

ribotypes 078 and 012.
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and Lactobacillus plantarum did not demonstrate efficacy of

probiotic treatment over the placebo for the prevention of

AAD. Similarly, a multicenter, randomized, double-blind, pla-

cebo-controlled trial found no benefit to probiotic (mixture of

two Lactobacillus and two Bifidobacterium strains) adminis-

tration in the prevention of CDI in more than 2,941 elderly

patients >65 years. Several meta-analyses combining data

from studies of different probiotic strains in different patient

populations produced results that were largely inconclusive.60

Despite the potential benefit to the host microbiota, long-term

safety concerns remain. Among those concerns is the transfer

of antibiotic-resistant genes between gutmicroflora and oppor-

tunistic pathogens via mobile genetic elements. Another con-

cern is the resistant profiles of commercial and medicinal

probiotics are unavailable.61 Clinical guidelines suggest that

for the prevention of AAD, probiotics may be considered

based on the evaluation of individual cases. At present, the

recommended strain for CDI is S. boulardii CNCM I-745

although the quality of evidence is low.62

Immunotherapies
Given the prevalence of CD within the general populous,

the ease with which it is transmitted and the propensity for

infection recurrence, a long-term treatment strategy that

invigorates the host’s immune response maybe considered

the most prudent or cost-effective approach. There are

many reviews that document the host’s immune response

to Clostridium difficile infection,63–66 but perhaps the most

insightful work is by Solomon67 in which the adaptive

response to AB toxins, surface-layer proteins (SLPs,

Cwp66 and Cwp84) and flagella proteins (FliC and FliD)

were addressed. It was found that patients who can gen-

erate an enhanced anamnestic systemic immune response

to these toxins and proteins are more likely to remain

asymptomatic. In addition, symptomatic patients who can

mount a rapid immune response early on are less likely to

have recurrent CDI. There is now considerable evidence to

show that host immune and inflammatory responses con-

tribute in large part to patient outcomes. In the next part of

this review, we examine the different types of immu-

notherapies that can be applied in the treatment and pre-

vention of rCDI and severe CDI.

Traditional vaccines
Over the years, many antibody-based approaches, namely,

intravenous (IV) immunoglobulin therapy and polyclonal

antibody preparations68–70 have shown efficacy in treating

CDI in animals. Commercially pooled polyclonal human

intravenous immunoglobulin G (IVIG) is a standard ther-

apeutic preparation made from a plasma pool sourced from

10,000 to 50,000 healthy donors.71 In 1995, Torres et al

found that a C. difficile culture filtrate inactivated with

formalin was effective in protecting hamsters from CD-

induced diarrhea and death.72 Since then, other groups

have reported the advantages of using toxoid vaccines to

treat CDI and rCDI. Of note is the Sanofi Pasteur (SP)

Institute vaccine which has been fast tracked by the food

and drug administration (FDA). During phase I trials, the

dual toxin (A&B) vaccine induced a complete seroconver-

sion for toxin A at all doses in adults, and at the highest

vaccine dose in the elderly. Toxin B seroconversion was

lower, both in adults and elderly groups reaching 75%.

The antibody response appeared persistent only for toxin

A in adult groups, whereas the toxin B response declined 6

months after vaccination,73 suggesting the need for a

booster dose. The vaccine also passed phase two trials in

which the immunogenicity in adults for primary preven-

tion (NCT01230957) and infected adults for prevention of

recurrent disease (NCT00772343) was tested. Phase three

trials (NCT01887912) launched by Sanofi in 2013

involved 15,000 people; 10,000 received the vaccine and

5,000 a placebo was terminated in late 2017 when it was

determined that the probability of reaching its primary

endpoint was low.74 However, phase three trials of a

similar competing vaccine created by Pfizer are still cur-

rently underway (NCT03090191).

The immunogenicity of vaccines based on polysacchar-

ide (PS) glycans found on the surface of C. difficile cells,

namely PSI, PSII, PSIII and lipoteichoic acid-based gly-

coconjugates has been extensively reported in the

literature75,76 and shall not be covered herein. For those

readers whose research focus is the development of vac-

cines against cell-surface components (sortase anchor pro-

teins and cell wall proteins), the recent review by Fagan et

al is recommended.77

Recombinant vaccines (RV)
The large-scale production of highly toxic antigens can be

a challenging and costly process. Vaccines based on non-

toxic fragments of genetically engineered versions of the

toxins alleviate some of these concerns including issues of

safety.78,79 Karczewski et al investigated the potential of a

recombinant vaccine composed of 2 separate fragments of

toxin B against C. difficile.80 A combination of toxin B

fragments and toxin Awere administered to Golden Syrian

hamsters. The recombinant vaccine protected animals
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against a lethal dose of C. difficile spores, with an efficacy

equivalent to traditional toxoid vaccines. Other groups

have also demonstrated recombinant toxin A and toxin B

fragments protect hamsters against C. difficile. The study

by Spencer et al noted the glucosyltransferase domain of

toxin B induced a greater immune response compared to

the binding domain of the whole toxin.81 A similar vaccine

preferentially expressing the glucosyltransferase domain

of toxin B and the C-terminal receptor binding domain

(RBD) of toxin A was reported by Leuzzi et al. The

antibodies generated against the glucosyltransferase

domain provided more protection in a mouse infection

model when used in conjunction with toxin A antibodies.82

While limited protection was observed with some combi-

nations, co-administration of a cell-binding domain frag-

ment of toxin A (toxin A-B1) and the glucosyltransferase

moiety of toxin B (toxin B-GT) induced systemic IgGs

which neutralized both toxins and protected vaccinated

animals from death following challenge with two strains

of C. difficile. Further characterization revealed that

despite high concentrations of toxin in the gut lumens of

vaccinated animals during the acute phase of the disease

resulting in minimal toxicological damage.

The size and domain complexity of native recombinant

toxins A and B make it a challenge to use them as vaccine

candidates. A simple solution is to generate a smaller chi-

meric vaccine that retains the major neutralizing epitopes

from both toxins. In 2012, Wang et al used a non-patho-

genic Bacillus megaterium expression system to generate

glucosyltransferase-deficient holotoxins.83 The atoxic holo-

toxins induced potent antitoxin neutralizing antibodies

showing little cross-immunogenicity or protection between

toxin A and toxin B. The researchers subsequently gener-

ated a glucosyltransferase-deficient toxin chimera, cTxAB.

Parenteral immunization of mice or hamsters with cTxAB

induced rapid and potent neutralizing antibodies against

both toxins. Complete and long-lasting disease protection

was conferred by cTxAB vaccinations against both labora-

tory and hypervirulent C. difficile strains.

In 2015, Sun’s group generated a chimeric protein

designated mTcd138, comprising the glucosyltransferase

and cysteine proteinase domains of toxin B and the recep-

tor-binding domain of toxin A.84 Parental immunizations

of mice and hamsters with mTcd138 induced protective

antibodies to both toxins and provided protection against

infection with the hypervirulent C. difficile strain UK6.

Many hypervirulent strains also secrete a binary toxin,

namely, CDT. CDT is composed of 2 active components,

CDTa and CDTb. Vaccines generated against hyperviru-

lent strains sometimes include attenuated forms of the

binary toxin.85 Recently, a novel tetravalent vaccine was

generated via a high yield insect-baculovirus system. The

immunogenicity of bivalent and tetravalent vaccines was

compared in immunized (21days prior spore challenge)

hamsters. Investigations revealed that bivalent and tetra-

valent vaccines induced similar neutralizing antibody titers

to toxin A in prototypic strains VPI10463, BI17 and 8864.

Only hamsters receiving the tetravalent and binary vac-

cines alone had elevating neutralizing titers to the binary

toxin.86

Monoclonal antibodies
There are many types of antibody-based approaches that

have shown efficacy in treating CDI such as intravenous

immunoglobulin therapy and polyclonal antibody

preparations.87 The toxin pair A/B are the primary targets

for therapeutic antibodies against CDI while minor viru-

lence factors such as CDT, surface layer proteins (SLPs)

and flagella are sometimes targeted depending on the viru-

lence of the strain under investigation. Initial studies using a

mouse rCDI model indicated that the treatment of mice with

antitoxin antibodies significantly protects against the mor-

bidity and mortality associated with CDI induced by both

historical (VPI 10463, in the case of the toxin challenge

models) and hypervirulent strains of C. difficile.88,89

As 85–95% of the clinical isolates test positive for

toxin A & B (A+B+), it makes sense to target both toxins.

Consequently, a number of antitoxin A/B combinations are

already in the initial stages of development.90 In a recent

study, more than 20 monoclonal antibodies (mAbs) with

neutralizing potential against toxin A and more than 50

with neutralizing potential against toxin B were

evaluated.91 Of those 20 mAbs screened, CA 997 was

the best at neutralizing toxin A strongly binding the

toxin approximately 12 times. A combination of CA1125

and CA1151 mAbs demonstrated a binding valency of 3

for toxin B. Using an established experimental model,

individually housed hamsters were then separately dosed

on 4 consecutive days with 50 mg/kg of anti-toxin A and

50/kg of anti-toxin B before being orally challenged with

C. difficile spores/vegetative cells. A tri-antibody mixture

(UCB mAb) offered very high levels of protection (82%)

with 9/11 of the hamsters surviving for 28 days. It worth

noting that CDA1 exhibited negligible neutralizing activity

against toxin A, a finding confirmed in a study by

Marozsan et al.92
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The intended clinical use of mAb mixtures is for the

prevention of recurrent diseases when administered

in conjunction with standard-of-care antibiotics.

Monoclonal antibody (mAb) and single-domain antibody

(sdAb)-based therapies currently dominate the immu-

notherapeutic pipeline with bezlotoxumab leading the

way. Bezlotoxumab (known as 124–1152, MK-3415,

CDB1 and MDX-1388) recognizes the C-terminal recep-

tor binding domain of toxin B exhibiting a binding

valency of 3. Actoxumab (previously named 3D8, MK-

3415, CDA1, MDX-066) is one of the first fully human

mAbs to potently neutralize toxin A93. In a landmark

study involving 2,655 adults receiving oral standard-of-

care antibiotics for primary or recurrent C. difficile infec-

tion showed the sustained cure rates (initially clinically

cured without recurrence of infection within 12 weeks)

with 64% bezlotoxumab alone, 58% with actoxumab-

bezlotoxumab and 54% for the placebo group,

respectively,.93 The abundances of the Clostridium XIVa

clade and Holdemania bacteria in the placebo group prior

to treatment were not reported. Akkermansia is another

bacterium that is frequently associated with CDI and

rCDI as it is thought to contribute to infection by facil-

itating the access of luminal antigens to the intestinal

immune system my mucin degradation.94 Interestingly,

a recent CDI study which analyzed the bacterial diversity

of the guts of mice under different treatments including

MK-3415, vancomycin and vancomycin combined with

MK-3415 showed Akkermansia levels to be quite resili-

ent, persisting in high amounts in both vancomycin

groups. The authors suggested higher proportions of

Lactobacillus and Blautia as well as changes in mucosal

composition might attenuate the inflammatory role of

Akkermansia.95

To date, PA-50 and PA-41 are two of the most potent

mAbs currently under investigation. PA-50 is a humanized

anti-toxin A mAb, that targets toxin A RBD at multiple sites

and has been shown to neutralize toxin A from a broad range

of C. difficile ribotypes.96 The mAb is significantly more

potent than actoxumab in-vitro, possibly due to its multi-

valent interactions with toxin A. PA-41 is a humanized anti-

toxin B mAb and is significantly more potent compared to

bezlotoxumab. In addition, PA-41 is capable of inhibiting

toxins from the same range of C. difficile ribotypes stated

previously. In a hamster model for CDI, 95% of the animals

treated with a combination of humanized PA-50 and PA-41

showed long-term survival relative to 0% survival of animals

treated with standard antibiotic or comparator mAbs.97

Probiotic expression vehicles and

single domain antibodies (sdAbs)
The ability to produce antibodies or antibody fragments in

a self-limiting manner at the site of infection would be

most advantageous in the treatment of CDI. A potential

way to accomplish this is to use a probiotic sdAbs expres-

sion vehicle.98,99 Of recent note is the work by Andersen

et al in which four VHHs (heavy domain only) were

expressed on the surface of Lactobacilli.100 Two strains

of the probiotic delayed the death of hamsters challenged

with AB toxin B and C. difficile spores, with 50% of the

hamsters receiving the probiotic surviving until the end of

the experiment. More recently, Shkoporov et al expressed

two VHHs in Bifidobacterium longum demonstrating toxin

A neutralization in vitro.101 The group administered the

probiotic bacteria to mice and confirmed the in-vivo

expression (secretion) of both single domain antibodies

in the guts of mice. In a study by Unger et al,102 recombi-

nant VHHs were generated against the subunit and the

binding component. Three out of five CDTa and two

from four CDTb specific antibodies were found to neutra-

lize the cytotoxicity of CDTa and CDTb. Surprisingly

three of the nanobodies selected for binding to CDTa

also indirectly neutralized the binding component

(CDTb) by restricting the translocation of CDTa into the

cytosol. In other investigations, hamsters immunized with

Bacillus subtilis spores expressing a carboxy-terminal seg-

ment of toxin A remained resistant to colonization when

challenged with C. difficile strain. Anti-toxin A mucosal

antibodies obtained following immunization with recom-

binant B. subtilis spores were able to reduce the adhesion

of C. difficile to mucus-producing intestinal cells.103 More

recently, Sulea et al utilized the affinity maturation plat-

form “Assisted Design of Antibody and Protein

Therapeutics (ADAPT)” to develop a set of mutant

sdAbs (camelid sdAb A26.8, a VHH) that bind to toxin

A. The designer mutants showed enhanced affinity to toxin

A, with the A26.8 double-mutantT56R,T103R neutralizes

TcdA cytotoxicity with an IC50 of 12 nM.104 While cer-

tainly a consideration for severe CDI, immune-based treat-

ment and prevention of C. difficile infection91,105–112 that

have been widely studied (Table 1).

Fecal microbiota therapy
The best therapeutic option for recurrent CDI is FMT. The

therapy involves the transfer of suspended (saline or

water) fecal matter from a healthy donor to a recipient
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via colonoscopic or nasoduodenal tube and rectal enema.-
113 Fecal matter is a complex mixture of bacteria, fungi,

viruses, human cells, metabolites and more.114

Recommendations state that if there are three or more

recurrences of CDI following pulsed vancomycin therapy,

FMT should be considered the next therapeutic option.115

In a landmark randomized, open-label, clinical trial (RCT),

van Nood and colleagues compared vancomycin alone and

vancomycin bowel lavage to vancomycin and bowel

lavage with FMT.116 Overall a 94% cure rate was reported

for the FMT group while the vancomycin-bowel lavage

and vancomycin groups reported cure rates of 23% and

31%, respectively. Further FMT clinical trials have

reported similar cure rates.117,118 Recently, Bang et al

showed FMT to be a highly effective therapy for refractory

and recurrent Clostridium difficile. FMT was performed in

nine patients with refractory/recurrent CDI. Bowel move-

ment was normalized within one week after FMT.119 In a

randomized double-blind clinical trial, where subjects

were treated for rCDI by heterologous FMT (h-FMT) or

autologous FMT (a-FMT) as a “placebo”, revealed that,

while h-FMT resulted in higher cure rates than a-FMT

(90% versus 63%; P=0.019), autologous FMT was, in

some cases, successful.120

Several clinical trials have demonstrated the equality of

fresh and frozen donor material to cure recurrent C. diffi-

cile infection (rCDI)121 More recently, Anand et al showed

that the age of the sample donor does not affect the overall

microbial diversity of the sample and the clinical efficacy

of FMT in rCDI patients.122 All patients receiving FMT

from their respective donors had resolution of rCDI symp-

toms and had a negative C. difficile toxin test 4–12 weeks

after FMT. FMT has also been used to treat individuals

infected with hypervirulent strains of C. difficile. In the

case of a recent CDI outbreak in France, the treating

physician adopted a new treatment algorithm by applying

FMT in combination with antimicrobial therapy during the

first infection episode, mortality of the patients dropped

from 64% to 19% with early FMT treatment.123 Tanaka et

al also demonstrated that FMT is an effective treatment of

new-onset CDI as well.124

Increases in microbial alpha diversity are often reported

in FMT recipients with improvements in Bacteroidetes,

Clostridium clusters IV and XIVa numbers and a decrease

in members of the Enterobacteriaceae family.125 Higher

diversity of gut microbiota has been observed in lean indi-

viduals when compared to obese individuals, yet diversity is

a complex parameter as some recent microbiota studies

have shown higher diversity in disease states, such as

colon cancer, coeliac disease and Alzheimer’s disease.126

Thus, rather than counting the number of bacterial species, a

comprehensive analysis (Source Tracker software program

and Bayesian algorithm) of enriched and depleted microbial

taxa must be performed and diversity alterations defined for

each disease.127 This point was eloquently demonstrated in

a recent paper by Staley et al in which a partial engraftment

was shown to be sufficient if functionally critical taxa were

still present in the subjects following antibiotic therapy.128

Notably subjects cured by a-FMT typically had greater

abundances of the Clostridium XIVa clade and

Holdemania bacteria prior to treatment, and the relative

abundances of these groups increased significantly after

FMT compared to heterologous FMT and pre-FMT sam-

ples. Provided Clostridium XIVa and IV can be identified in

the feces prior aFMT it may be possible to further accelerate

the reconstitution of the host flora by supplementing the

slurry with phytochemicals (aryl hydrocarbon receptor

ligands) thereby boosting colonization resistance.129

Moreover, given aFMTs ability to rapidly improve the

post-antibiotic reconstitution of the indigenous fecal micro-

biome and gut transcriptome in individuals,130,131 it may be

prudent to offer the therapy as adjuvant to MET and VAN

treatments, as both of these antibiotics are associated with

the emergence of potentially pathogenic fungal operational

taxonomic units, with predicted bacterial functions enriched

for xenobiotic metabolism that could perpetuate the dysbio-

sis driving CDI (see Figure 3).

CDI is also a common comorbidity of irritable bowel

disease (IBD). A recent study by Khortus et al compared

the use of FMT in patients with CDI and IBD to those

without IBD and found a lower efficacy in clearing the

infection in those with IBD after one FMT (74.4% vs

92.1%).132,133 Anderson et al reviewed several case stu-

dies in which FMT was used in the treatment of rCDI and

refractory CDI infection in IBD.134 A resolution of CDI

was found in 11 of the 12 patients and improved response

to IBD medication in 6 of 7 patients. In addition, there

have been many published case studies showing the posi-

tive effects of FMT in IBD of particular note is the work

by Moayyedi et al in which the efficacy of FMT in active

ulcerative colitis was investigated, remission of IBD was

achieved in 24% of the patients.135 A summary of recent

FMT trials is shown in Table 2.

The greatest impediment to the broad dissemination of

FMT for the treatment of rCDI and primary cases as well

is the uncertainty surrounding its regulation. Regulation of
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Figure 3 Cladogram plots were generated in Galaxy to visualize significantly enriched fungal taxa identified in Clostridium difficile infection (CDI) and non-CDI samples

considering each treatment cohort separately (A, untreated; B, fidaxomicin; C, metronidazole; D, vancomycin).131

Table 2 Characteristics of some recent studies concerning fecal microbiota transplantation in C. difficile treatment

Patients (n) Study type Mode of delivery Success rate (%) Ref no. Infection type

16 Randomized Nasoduodenal tube 81%, 1st infusion 116 Recurrent

1 Case Colonoscopy 100 117 Severe

46 Randomized Colonoscopy 90.2(h), 62.5 (a) 120 Recurrent

16 Case Series Nasogastric route 80 115 CD027 relapse

9 Case Series Colonoscopy 100 119 Recurrent

272 Case Colonoscopy 92, 75 & IBD 132 Recurrent

28 Prospective Colonoscopy 100 122 Recurrent

24 Randomized Colonoscopy 90.2(h), 43 (a) 128 Recurrent

Abbreviations: (h), heterologous fecal microbiota transplantation; (a), autologous fecal microbiota transplantation; IBD, inflammatory bowel disease; CD027, Clostridium

difficile ribotype 027.
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FMT is complicated by the multifarious nature of fecal

samples. Ideally, an FMT replacement modality would be

safer to use, easy to apply and less expensive than current

treatments.

Emerging biotherapies

Phages
Phage therapy entails the isolation and inoculation of phages

that target and eliminate specific bacteria.136 To date, phage

treatments have been successfully developed for Escherichia

coli,137 Pseudomonas, Proteus,138,139 Staphylococcus and

Streptococcus infections.140 The lack of phage treatments for

CDI reflects the technical difficulties (culturing) of working

with sporulating anaerobes. The first reported isolation of C.

difficile phages was in 1983, since then several phages (mainly

temperate) have been described in the literature.141All known

C. difficile phage genomes are double-stranded DNA and

belong to the Caudovirales (the order of the tailed phages).

CD phages are characterized by their size and morphological

type which includes the small myovirus (SMV) ΦMMP02,

medium myovirus (MMs) φCD119 and phiCDHM1, long-

tailed myoviruses (LTMs) φCD27 and ΦMMP04 and two

morphologically distinct siphoviruses (SVs) φCD6356 and

φCD38-2.142 In 2016, two novel myoviruses CDKM15 and

CDKM9 were isolated and selected for detailed sequence

analysis on the basis of their broad host range.143 CDKM15

infected 20/80 strains from 9/20CD ribotypes, whilst CDKM9

infected 25/80 strains from 12/20 ribotypes. Both phages

infected the clinically relevant ribotypes R027 and R001.

Genome sequencing analysis of these phages identified new

signals for horizontal gene transfer (HGT). The mechanism of

DNA packaging for each myovirus could not be classified.

Three C. difficile hosts, namely CD105HE1 (Ribotype 076,

equine isolate), CD105LC1 (ribotype 027, human isolate) and

CD105HS (ribotype 012, environmental isolate) were recently

used by Clokie et al to propagate seven phages (6 phiCDHM1-

6 and phiCDHS1) producing phase titers ranging from 109 to

1010 PFU/mL.144,145 With the exception of phiCDHS1 the

remaining phases were manufactured on a common host

(CD105LC1), ensuring any lytic activity was attributable to

the specific phage and not due to differences conferred by the

host bacterial strain. Using a hamster model, the oral delivery

of optimized phage combinations resulted in reduced C. diffi-

cile colonization at 36-hr post-infection.

The evolution of bacterial resistance to phages is of

genuine concern as recent work suggests CD phages can

mediate the horizontal transfer of genetic material via

transduction (antibiotic resistant and toxin genes). In a

study by Goh et al, the φC2 phage was shown to transduce

the antibiotic marker ermB carried on a 13 kbp

transposon.146 Moreover, genome sequencing has revealed

the presence of defense mechanisms including a clustered

regularly interspaced short palindromic repeat (CRISPR)/

CAS system147,148 and active type I and type II restriction

modification system.

Although hamster CDI models demonstrate various clin-

ical symptoms consistent with those seen in humans, the

animals rapidly succumb to the disease. This has resulted in

many groups employing artificial gut models, which have

revealed many facets of enteric pathogens.149–151 In 2010

and 2013, Meader et al studied C. difficile phage-host

interactions using two ex-situ model systems. The first

involved studying their dynamics in a batch model and the

second in a multi-vessel model (artificial gut model).152,153

Remedial and prophylactic treatments were tested using

φCD27, both models exhibited significant reductions in

the levels of TcdA and B compared with the controls. The

colon model illustrated the potential of phage therapy in

treating CDI as well as other factors that could impact

treatment.153 Studies by Govind et al showed the single

phage φCD119 could lysogenize under the conditions in

the mammalian gut and suppress toxin production.154 On

the other-hand, Sekulovoic et al and Goh et al demonstrated

toxin levels are most likely influenced by strain-phage

specific interplay and that considerable variation in the

physiological response to phage infection does occur.155,156

More recently, Nale et al utilized Galleria mellonella

larvae as an alternative model to study the therapeutic

potential of a 4-phage cocktail on CD ribotypes 014/

020.157 It was found that multiple phage doses signifi-

cantly improved the larval remedial regimen with 60%

of the larvae surviving until the end of the experiment.

The phages were most effective when vancomycin was

given prophylactically before bacterial infection result-

ing in as little as 10 colony forming units (CFU) per

larva being recovered. The study demonstrated that

multi-phage therapy remains one of the most effective

ways of clearing C. difficile and preventing the appear-

ance of resistant/lysogenic clones.

Isolating new CD phages from the terminal part of the

gut that exhibits minimal or no temperate activity on the

target strain remains challenging.158,159 However, the mouth

is a great source of bacteriophages and susceptible bacteria

such as E. faecalis which is known to play a role in

prolonging dysbiosis. Therefore, it may be suggested that
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future phage treatments target such species as well as CD,

potentially reducing the risk of recurrence and relapse.160 A

summary of the challenges CD phage therapy currently face

can be found in recent review by Fortier.161

Endolysins
Many bacteriophages isolated from the host environment are

not efficient in the rapid eradication of pathogenic hosts, as is

the case with φCD27.162Oneway to overcome this problem is

to clone and express the recombinant version of the endolysin

from its phage. Endolysins are produced by many double-

stranded DNA bacteriophages to affect the release of new

virions from an infected cell by degrading the bacterial cell

wall. They have been used to target many well-known infec-

tious bacteria including Streptococcus,163 Staphylococcus,164

Listeria,165 Bacillus166 and Clostridium.167Unlike CDI,168,169

most infections involve multiple strains requiring the use of

broad-spectrum antibiotics. Lysins possess the potential to

satisfy this role without the risk of bacterial resistance.

Moreover, they have been shown to provide better protection

against pathogenic organisms such as C. difficile or E. faecalis

compared to their respective phages.170,171 Investigations

using φCD27 found that a truncated version of the N-terminus

was able lyse all 32 strains of C. difficile tested, as well as less

closely related species B. subtilis, Listeria innoculaand B.

amyloliquefaciens.172 How the wider activity of the truncated

endolysin impacted the broader bacterial community within

the GI tract was not reported. In the future, endolysins will

undoubtedly play a strategic role in the treatment of systemic

(sepsis) and antibiotic resistant infections.

Small molecule inhibitors
The mammalian gut contains hundreds of small molecules

whose function is yet to be discovered. Finding molecules

that selectively inhibit different stages of the C. difficile life

cycle, while sparing the indigenous gut microbiota is impor-

tant for the development of alternatives to standard antibio-

tic treatments. 2-aminoimidazole (2-AI) molecules have

been shown to overcome the protective mechanisms of

multi-drug resistant pathogens such as Staphylococcus aur-

eus and Pseudomonas aeruginosa. Recent work by the

group of Theriot et al in which the inhibitory effects of

eleven 2-AI molecules on the life cycle of seven strains

of C. difficile and an eight-member commensal library of

bacteria associated with host colonization resistance were

tested. Four of them were found to inhibit toxin production

without affecting the growth of both C. difficile strains and

the commensal library.169 In addition to 2-AI, there are

number of anti-virulence compounds such as Ebselen and

benzodiazepinedione that inhibit the glucosyltransferase

activity of TcdA and TcdB and have the potential to reduce

disease symptoms.170,173 Furthermore, Ebselen has been

used in phase II clinical trials, and was recently reported

to ameliorate β-amyloid pathology, tau pathology and cog-

nitive impairment in triple-transgenic Alzheimer’s disease

mice.174 Whether C. difficile or its toxins should be

included in the current “infectious theory” of Alzheimer’s

disease is beyond the scope of this review.

An alternative way of inactivating TcdB is by triggering

its auto-proteolysis in the gut lumen prior to cell uptake

using the allosteric activator inositol hexakisphosphate

(IP6). Although IP6 can trigger the auto-processing of

TcdB in vitro, the cleavage is abolished if performed in

the presence of luminal concentrations (>10 mM) of cal-

cium. In a recent study, Ivarsson et al attempted to address

the problem of calcium chelation by synthesizing a series of

IP6 analogs where the six phosphate groups were progres-

sively replaced by sulfates culminating in inositol hexasul-

fate (IS6).175 An optimal balance between allosteric activity

and interference by calcium was reached using the phos-

phate-sulfate hybrid IP2S4. IP2S4 attenuated colitis in CDI

mouse models after oral dosing; moreover, a thiol-phos-

phate form of the analog IT2S4 was shown to rescue mice

in a fulminant CDI model. Figure 4 shows in-vivo IP2S4

and IP6 attenuating activities in mice.

Bacteriocins
Bacteriocins are a group of antimicrobial peptides riboso-

mally produced by Gram-negative and Gram-positive bac-

teria. A recent study, conducted by Egan et al, explored the

role bacteriocins may have in the GIT. In a genome mining

project, the authors retrieved 641 genomes (307 whole gen-

omes and 334 draft genomes) from microorganisms in the

human gut. The genomes represented 199 bacterial genera,

including Lactobacillus, Streptococcus, Clostridium and

Bacillus.176

Nisin is a bacteriocin produced by a group of Gram-posi-

tive bacteria that belongs to Lactococcus and Streptococcus

species. Nisin is classified as a Type A (I) lantibiotic that is

synthesized from mRNA and has been used for many years as

a food additive. Similar to vancomycin, lanthipeptides such as

nisin also targets a cell wall component, in this case lipid II.

Recent studies by Fliss et al177 assessed the in vitro efficacy of

nisin Z and A on C. difficile cells and spores. Nisin A and Z

both inhibited the growth of twenty C. difficile isolates, and

minimum inhibitory concentrations (MIC) were estimated at
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6.2μg/mL for nisinZ and 0.8μg/mL for nisinA. In addition,C.

difficile spores were also susceptible to nisin A (25.6 μg/mL),

reducing spore viability by 40–50%. The MIC value for nisin

A was comparable to the MICs obtained for lacticin 3147.

However, when used as standalone therapy resistance to nisin

A frequently occurs.178 A simple way to minimize resistance

as well as improve therapeutic efficacy is to incorporate a

germinator or potentiate the antibiotic/antibiotic peptide with

a primary metabolite. The effectiveness of this approach was

recently demonstrated by Se-Wook Oh et al in which the

synergistic action of nisin and lysozyme (20 nmol/L nisin

and 0.2 mmol/L lysozyme) resulted in no viable C. difficile

spores being detected after 2 hrs of incubation.179

Lacticin 3147 is another bacteriocin produced by

strains of L. lactis180 with potent anti-C. difficile activity

with concentrations as low as 18 μg/mL capable of elmi-

nating 106 CFU/mL of C. difficile <30 mins, comparable

in efficacy to metronidazole and vancomycin in a model

fecal environment. An alternative to 3147 is the lantibiotic

actagardine. When combined with ramoplanin or metron-

diazole it behaves in a partial synergistic/additive fashion

against 61.5% and 54.4% of target C. difficile strains

investigated.181 In addition, a recent study demonstrated

that combinations of the class II bacteriocin, durancin 61A

and the broad-spectrum antimicrobial reuterin yielded

fractional inhibitory concentration index (FIC) indices of

0.2 against C. difficile, indicating highly synergistic

activity.182 But perhaps the bacteriocin with the most

therapeutic potential was thuricin. Initial work revealed

that thuricin was as effective as metronidazole and vanco-

mycin against C. difficile in a distal colon human model.

Moreover, further studies showed thuricin interacted in a

partial synergistic manner when combined with ramopla-

nin against 31% of the target CD strains investigated.183

Conclusions
With the recent emergence of hypervirulent strains in

Europe, Australasia45 and North America, there is an urgent

need to develop alternative/adjunctive therapeutic options to

metronidazole and vancomycin in order to minimize the

ongoing problem of recurrence and prevent the spread of

vancomycin-resistant enterococci in hospital environments.

The alternative therapies discussed each have their

advantages, vaccination and monoclonal antibodies are

probably the most cost effective in the long term.131 On

the other hand, they do not reduce the bacterial load nor

prevent C. difficile colonization or potential spore trans-

mission. Moreover, challenges to vaccination strategy will

arise from a patient’s inability to generate a rapid, long-

lasting and protective response. However, it is pleasing to

note that many anti-toxin therapies are on the cusp of

approval and when combined with other biotherapeutic

options such as FMT or tailored spore formulations indi-

vidual therapeutic solutions will become more available.

Figure 4 Swiss mice infected with fecal slur from a patient with recurrent Clostridium difficile infection. (A) Oral administration of IP2S4 but not IP6 significantly reduced the

acute inflammatory component of colitis compared with administration of myo-inositol. (B) Histological sections of excised colons. Inositol-treated mice (negative control)

displayed overt colonic structural changes characterized by mucosal ulceration and overlying exudate, marked acute and chronic inflammatory infiltrate and submucosal edema.

IP2S4- and IP6-treated mice had decreased mucosal damage and inflammatory infiltrate. Copyright ©2018. Reproduced with permission from Elsevier. Ivarsson ME, Durantie E,

Huberli C, et al. Small-molecule allosteric triggers of Clostridium difficile toxin B auto-proteolysis as a AQ3 therapeutic strategy. Cell Chem Biol. 2018;26(1):17–26.e13.175
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In addition to FMT and immunotherapies, multi strain-

phage treatments are one of the most promising emerging

therapies. However, numerous obstacles persist regarding the

isolation and therapeutic application ofC. difficile phages. Of

particular concern is how different combinations or the same

combination can affect toxin production in different hosts.

Moreover, it is important know the exact phage and antibiotic

resistance patterns of C. difficile strains in order to minimize

the risk of recurrence. As of yet, no experimental models

have investigated the use of multiple bacterial phages in the

treatment of rCDI and dysbiosis.

Although the biotherapies discussed herein have the poten-

tial to improve patient outcomes, the most difficult step is

translating these discoveries into therapeutics that are safe for

humans. This review has not covered other treatment options,

such as alternative antibiotics and antimicrobial agents.184–187

Future treatments will undoubtedly include a combination of

these therapies with the aim of reducing rCDI, and the number

of antibiotic resistant genes in C. difficile patients.188
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