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Thermal metamaterials exhibit thermal properties that do not exist in nature but can be
rationally designed to offer unique capabilities of controlling heat transfer. Recent
advances have demonstrated successful manipulation of conductive heat transfer and led
to novel heat guiding structures such as thermal cloaks, concentrators, etc. These advan-
ces imply new opportunities to guide heat transfer in complex systems and new packaging
approaches as related to thermal management of electronics. Such aspects are important,
as trends of electronics packaging toward higher power, higher density, and 2.5D/3D
integration are making thermal management even more challenging. While conventional
cooling solutions based on large thermal-conductivity materials as well as heat pipes and
heat exchangers may dissipate the heat from a source to a sink in a uniform manner, ther-
mal metamaterials could help dissipate the heat in a deterministic manner and avoid
thermal crosstalk and local hot spots. This paper reviews recent advances of thermal
metamaterials that are potentially relevant to electronics packaging. While providing an
overview of the state-of-the-art and critical 2.5D/3D-integrated packaging challenges,
this paper also discusses the implications of thermal metamaterials for the future of elec-
tronic packaging thermal management. Thermal metamaterials could provide a solution
to nontrivial thermal management challenges. Future research will need to take on the
new challenges in implementing the thermal metamaterial designs in high-performance
heterogeneous packages to continue to advance the state-of-the-art in electronics
packaging. [DOI: 10.1115/1.4047414]

Keywords: thermal management, electronics cooling, heat guiding, heterogeneous
package

1 Introduction

Metamaterials are structures that are artificially engineered to
obtain properties that are not available in nature. For instance,
advances in optical metamaterials have allowed sophisticated con-
trol over light or electromagnetic waves. As one of the most influ-
ential and popular benchmarks, an invisibility cloak, has been
achieved at both microwave regimes [1,2] and optical frequencies
[3–8] based on the theory of transformation optics. Coordinate
transformation-based methodologies connect metamaterial prop-
erties with thermal dissipation in devices, which further inspires
the study of thermal metamaterials for heat control. Various ther-
mal metamaterials that are conduction-based have been demon-
strated through numerical [9–11] or experimental [12–15] studies
under steady-state or transient conditions. Additionally, scattering
cancelation-based bilayer thermal cloaks have been experimen-
tally demonstrated in 2D [16,17] or 3D [17,18]. Topology
optimization-based finite element methods have also been
explored to enable heat flow control in arbitrary (e.g., noncircular
or nonspherical) geometries [19,20] and bifunctional cloaking
[21]. The combined manipulating of thermal and dc fields [22], as
well as, thermal-composite design optimization methods for ther-
mal management of printed circuit board (PCB)-based electronics

[23] have been considered. Thermal radiation-based metamateri-
als have been actively studied [24] but not been reviewed in this
paper due to their limited relevance to electronic packaging at the
present.

Indeed, thermal metamaterials can make an impact on elec-
tronic packaging [25]. With rapid development of nanoelec-
tronics, 3D-integrated circuits (ICs), and flexible electronics,
thermal management is becoming more challenging [26]. For
example, in 2.5D packages, the logic power as well as the number
of high band width memory (HBM) layers continue to increase
[27,28]. One critical challenge in 2.5D packages is thermal cross-
talk as the logic chip and HBM are placed close to each other
while they require different operating temperatures [29,30]. Thus,
thermal metamaterials are needed to facilitate heat dissipation and
protect temperature-sensitive components [31–33]. In 3D pack-
ages, thermal resistances and operating temperatures continue to
increase. Conventional thermal management approaches include
through-silicon-via optimization [34–40] and single- or two-phase
cooling with microchannels [41–46].

In this paper, we review and summarize the recent progress,
and outlook, of thermal metamaterials as related to challenges in
thermal management of electronic packaging. In Sec. 2, we
review thermal metamaterials with a focus on anisotropic heat
spreaders and diffusers, thermal cloaking and isolating, and heat
guiding and bending devices. This section discusses theoretical
and experimental advancements and thermal metamaterials that
are related to packaging applications. In Sec. 3, we review the
thermal management challenges in heterogeneous integration with
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a focus on multichip implementations and multilayer stacking. In
Sec. 4, we discuss package-level cooling capacities and implica-
tions of thermal metamaterials for packaging applications and
potential research directions in the future.

2 Recent Progress in Thermal Metamaterials

In the last decade, there have been significant advances in the
field of thermal metamaterials. The trend in thermal metamaterials
has been toward practical demonstrations such as thermostats
[47], thermal camouflage [48], dual-function thermal metamateri-
als [49], and active heat flow control [50,51]. In this section, we
review the recent progress in conduction-based thermal metamate-
rials that are relevant to potential applications in electronic
packaging.

2.1 Anisotropic Heat Spreader. The ability to control
thermal energy through mediums has significant implications
beyond fundamental study. The controlled transmission of heat is
hard to achieve in one material or device because heat is carried
by a broad spectrum of high-frequency (terahertz) phonons that
are hard to control [52]. Moreover, microscale heat transport in
solids is diffusive based on the Fourier’s law of heat conduction:
qi ¼ �kijrTj, where kij represents the second-order thermal-
conductivity tensor. Here, qi and rTj are the heat flux and temper-
ature gradient in the ith and jth directions, respectively. The path
of heat conduction can be controlled by engineering an artificial
material with prescribed anisotropy in its thermal-conductivity
tensor.

With respect to functional devices based on thermal passage,
Chang et al. first fabricated thermal diodes using carbon nano-
tubes and boron nitride nanotubes [53]. The nonuniform mass

deposited along the tube yielded a higher conductance when heat
flows from the high-mass region to the low-mass region. Some 2D
materials like black phosphorous had also shown thermal-
conductivity anisotropy arising from the anisotropic phonon dis-
persion relation [54,55].

In recent studies, silicon nanostructures with vertically etched
holes, or holey silicon, had demonstrated significant thermal-
conductivity reductions and anisotropic thermal conductivity in
the in-plane and cross-plane directions [56–58]. Ren and Lee had
shown that the unique thermal-conductivity anisotropy in holey
silicon is ideal for thermoelectric cooling (TEC) to address on-
chip hot spots [59,60]. In the in-plane direction, the neck size
dominated phonon boundary scattering reduces the thermal con-
ductivity (kx and ky), which sustains a large temperature gradient
for enhanced thermoelectric effects. In the cross-plane direction,
the low frequency (long wavelength) phonons are less susceptible
to surface disorder. The persistent long wavelength phonons lead
to a high cross-plane thermal conductivity (kz), which facilitates
heat dissipation. To address such increasingly severe hot spot
issues in nanoscale and high-power electronics, a lateral TEC
design based on holey silicon is shown in Fig. 1(a). The heat gen-
eration by electronics was modeled by a combination of a
70W � cm�2 background heat flux and a 700W � cm�2 hot spot
heat flux as representative values for future electronics. The top of
holey silicon undergoes convective heat transfer to 25 �C ambient
air with a constant/equivalent convection coefficient value of
8700W �m�2K�1, which represents the use of an advanced heat
exchanger [61]. With an optimal applied current, the hot spot tem-
perature of the holey silicon-based TEC was 15 �C lower com-
pared to that of the bulk silicon-based TEC; see Fig. 1(d). Holey
silicon-based TEC can be potentially used to provide localized
cooling to power electronics and optoelectronic devices [16,61].

Fig. 1 (a) The holey silicon-based lateral TEC design. The black arrows indicate the convectional heat flux. The cooler size
(lcooler), holey Si chip thickness (lhs), and holey Si chip size (lhs) are in the range of 50–500lm, 50–150lm, and 1–12mm,
respectively. (b) The design of the perfect thermal diffuser with an input heat flux q00

5 23 106 W �m22. The symbols refer
to the materials with isotropic thermal conductivities, i.e., ka5282W �m21K21, kb5 12W �m21K21, kc5 118W �m21K21,
kd5 29W �m21K21, ke5 110W �m21K21, kf5 31W �m21K21, kg5169W �m21K21, and kh520W �m21K21. (c) Schematic of the
cross-sectional view of the bilayer thermal metamaterial spreaders. (d) Cross-sectional temperature profiles of bulk silicon
and holey silicon-based TEC with an optimal applied current (I5 0.9 A) that balances the Peltier effect and Joule heating. (e)
Temperature profiles of (b). (f) Temperature profile comparison of (c) with metamaterial spreader and all Cu designs (Figures
reprinted with permission (a) and (d) from Ren and Lee [59], Copyright 2017 IOP Publishing; (b) and (e) from Vemuri and Ban-
daru [62], Copyright 2016 Springer Nature; (c) and (f) from Hamed and Ndao [63]. Copyright 2017 Elsevier B.V.).
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Anisotropic heat spreaders/diffusers can also be designed
through the metamaterial approach for passive cooling applica-
tions. Vemuri and Bandaru reported a perfect thermal diffuser by
rationally placing constituent materials in the radial and the azi-
muthal directions [62]. Figure 1(b) shows the design of thermal
diffuser. When a hot spot heat flux is applied at the center, the iso-
therm lines are equally spaced through the spreader; see Fig. 1(e).
The source temperature of the anisotropic heat spreader is signifi-
cantly lower compared to that obtained using a single material
with isotropic thermal conductivity. The advantage of such
designs includes the regularization of heat transport, so as to con-
trol the path of heat transfer, e.g., to obtain a uniform temperature
distribution avoiding hot spots. The facilitating methodology
involves a metamaterial architecture, constituted from individual
thermal meta-atoms at any given point in the diffuser and with
spatially varying values for the thermal conductivity. Hamed and
Ndao designed a bilayer thermal diffuser based on coordinate
transformation to increase the thermal spreading efficiency [63].
Figure 1(c) shows the cross-sectional view of the heat spreader
design with alternating layers of copper (kCu¼ 400W �m�1K�1)
and polydimethylsiloxane (PDMS, kPDMS¼ 0.15W �m�1K�1).
With constant temperatures applied to the chip (T1¼ 80 �C) and
spreader (T2¼ 27 �C) surfaces, the metamaterial heat spreader
allows for much higher heat spreading to guide heat in the lateral
direction compared to a pure Cu spreader reference, see Fig. 1(f).

In additional to cooling, efficient heat expanders are designed
through coordinate transformation to provide a large surface of
uniform temperature when there is a small hot spot. Liu et al.
developed a plate heater based on transformation thermodynamics
that can transiently provide a large and homogeneous-temperature
surface powered by a thermal source whose area is 100 times
smaller compared to that of the surface [64]. Han et al. con-
structed a thermal expander based on an elliptical thermal cloak
that works as a high-efficiency point-to-plane heat source conver-
tor with excellent transient performance [65].

2.2 Heat Cloaking and Isolating. Thermally sensitive ele-
ments, electronic circuits, components, or systems may be

arranged to be in a region with minimum thermal disturbances,
i.e., where the thermal gradient across the elements may be as
close to zero as possible, irrespective of the temperature variations
in the surroundings. A region where such a gradient may be estab-
lished may be defined as a thermal cloak. The bending of the heat
flux, through individual materials arrangement in a metamaterial
immediately suggests applications [12] to thermal concentrators
or thermal cloaks [11], where the temperature gradient could be
engineered to be equal to zero in the cloaked region. Experimen-
tally, a temperature gradient less than 0.004K/cm was measured
over the cloaked region [66]. Thermal invisibility cloak reduces
temperature disturbance in the cloaked region and has the poten-
tial for many thermal management functions [22,67]. A majority
of thermal cloaking research focuses on hiding the object from
external heat flow. Fan et al. [68] and Chen et al. [69] first investi-
gated thermal cloaking based on coordinate transformation meth-
odologies, which indicates the required transformed properties in
the physical space to realize invisibility [67]. Li et al. developed a
bifunctional cloak possessing both electrical and thermal cloaking
functionalities. The desired anisotropic thermal conductivity for
coordinate transformation is obtained by filling nanoparticles into
a substrate based on effective medium theory [9]. Guenneau et al.
adopted coordinate transformation to thermodynamics and
designed a multilayered thermal cloak consisting of homogeneous
isotropic materials with realistic diffusivities [10].

The first experimental demonstration of thermal cloaking was
shown by Narayana and Sato [12]. Multilayered composites are
used to achieve thermal cloaking as well as thermal concentration
and flux rotation in a steady-state condition. Figure 2(a) shows the
multilayer-based thermal cloak with 40 alternating layers of latex
rubber (material A, kA¼ 0.13W �m�1K�1) and silicone elasto-
mers (material B, kb¼ 2.6W �m�1K�1). The host background
material is agar-water block with khb¼ 0.56W �m�1K�1 and
k2h � kAkB is the key to achieve the least perturbation [12]. The
steady-state temperature profile with a lateral temperature gradient
is shown in Fig. 2(d). Dede et al. fabricated multilayer-based ther-
mal cloak using a standard PCB manufacturing process [15].
Schittny et al. [13] and Ma et al. [14] experimentally realized

Fig. 2 (a) The steady-state thermal cloak composed of latex rubber film (material A) and silicone elas-
tomers (material B) with agar-water as the background material. a5 0.8 cm and b52.7 cm. (b) The
transient thermal cloak composed of Cu and PDMS. (c) The omnidirectional elliptical thermal cloak
composed of a stainless steel object, a Cu shell, and a PDMS insulating layer. (d) The measured tem-
perature profile of (a). (e) The measured temperature profile of (b) at t5 120s. (f) The measured tem-
perature profile of (c) at t5 5min. (Figures reprinted with permission (a) and (d) from Ref. [12],
Copyright 2012 American Physical Society; (b) and (e) from Schittny et al. [13]. Copyright 2013
American Physical Society; (c) and (f) from Han et al. [65]. Copyright 2018 John Wiley & Sons, Inc.).
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transient thermal cloaks that allow real-time thermal protection to
the object. The design of a Cu-based transient thermal cloak is
shown in Fig. 2(b). The temperature profile with a lateral tempera-
ture gradient applied for 120 s is shown in Fig. 2(e), where the
temperature in the cloaked region is smaller than its surroundings.
However, in the long-time limit, a small amount of thermal energy
will diffuse into the cloaked region due to the finite thermal con-
ductivity of the insulating layers. The temperature of the cloaked
region will eventually heat up and approach the steady-state tem-
perature [13]. Han et al. established a general design method to
create steady-state thermal cloaks by using only homogeneous
and natural materials [11]. He and Wu designed an open cloak, in
which the temperature of the cloaked object can be sharply
reduced compared to the closed cloak when the window is located
at the low-temperature side [31]. Coordinate transformation-based
thermal cloaks commonly rely on parameter simplification or
directional functions for anisotropic geometries. Han et al. demon-
strated an omnidirectional thermal cloak that is derived directly
from the conduction equation without approximation [48]. The
elliptical thermal cloak is shown in Fig. 2(c). The thermal cloak
works along arbitrary directions of heat flow and its performance
is validated in the time-dependent case as shown in Fig. 2(f) (tem-
perature profile at t¼ 5min). Moreover, a thermal cloak sensor,
which is capable of cloaking itself and receiving the incoming sig-
nal simultaneously can also be achieved.

Another approach to construct a thermal cloak is scattering can-
celation as discussed by Alu and Engheta to apply metamaterials
for reducing the total scattering cross section of spherical and
cylindrical objects [70]. The bilayer thermal cloak consists of two
concentric shells, the inner layer is a thermal insulator to block
heat flux from entering the object, and the outer layer minimizes
the temperature distortion introduced by the inner layer. This tech-
nique was further developed in the experimental realization of a

bilayer thermal cloak with only homogeneous and isotropic mate-
rials in 2D [17] and 3D [18] scenarios, as shown in Figs. 3(a),
3(b), 3(d), and 3(e). In addition to thermal cloaking, Ma et al.
experimentally demonstrated an electric-thermal bifunctional
cloak based on the same method [16].

Yet another strategy in constructing thermal cloaks for steady-
state heat conduction is to use gradient-based homogenization
design and optimization. Here, a thermal composite may be
designed by representing the explicit heterogeneous microstruc-
ture of the composite via homogenized effective anisotropic mate-
rial properties. In such a way, an optimization objective function
is defined, and a gradient-based optimizer is exploited in minimiz-
ing the functional through the local design of the anisotropic
material thermal-conductivity layout. This method was first pro-
posed for thermal-composites by Dede [19] and then extended by
Dede et al. [20], where optimal thermal composite annular struc-
tures were independently designed to realize effective heat flux
cloaking, focusing, or reversal/guiding devices. The benefit of this
numerical method is that it is highly geometrically flexible and
can be applied to the design of arbitrarily shaped thermal metama-
terials, as explained in Ref. [20]. Such material optimization
techniques have been further applied by Fachinotti et al. [71] in
the fabrication of anisotropic heat flux manipulation devices.
Additionally, following He and Wu [39], the material design opti-
mization technique has been employed in Ref. [40] for the useful
design of “open” (i.e., cold side open) thermal cloaks for
temperature-sensitive device cloaking or shielding in multilayer
PCBs.

Despite this progress, in practice, the capability of the thermal
metamaterial is limited because of the narrow range of thermal
conductivities in natural solid materials, which ranges about four
orders of magnitude from 0.1 to 1000W �m�1K�1 at room tem-
perature [72]. For thermal cloak designs based on coordinate

Fig. 3 (a) The 2D bilayer thermal with sealant as the background material (2.3W �m21K21). The inner
and outer layers are polystyrene and Inconel 625 alloy with thermal conductivity of 0.03 and
9.8W �m21K21, respectively. The object in the center is an Al cylinder. (b) The 3D bilayer thermal cloak
with stainless steel as the background material and Cu thin disk punched into the hemispherical hole.
(c) Thermal zero-index cloak with Cu as the background material and stainless steel as the clocked
object. The outer layer is Cu with drilled holes and the inner layer is a channel filled with water. (d) The
measured temperature profile of (a). (e) The measured temperature profile of (b). (f) The measured tem-
perature profile of (c). (Figures reprinted with permission, (a) and (d) from Han et al. [17]. Copyright
2014 American Physical Society. (b) and (e) from Xu et al. [18]. Copyright 2014 American Physical Soci-
ety. (c) and (f) from Li et al. [74]. Copyright 2019 Springer Nature.)
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transformation, scattering cancelation, or gradient-based design
optimization methods, the thermal conductivity of the conductive
or inner layers needs to be much larger than that of the back-
ground substrate. To minimize the perturbation of the heat flux
at the interface with the background, the metamaterial-based
composite needs to be embedded in a background corresponding
to the geometric mean of the thermal conductivities of the meta-
materials’ constituents [73]. Consequently, most of the thermal
cloaks cannot operate when the background substrate is a high-
thermal-conductivity material, e.g., Li et al. designed a thermal
cloak that works in high-thermal-conductivity-backgrounds [74].
They identified an equivalence between zero index in Maxwell’s
equation and infinite thermal conductivity in Fourier’s law and
theoretically proved that the integrated high-speed fluid field is
equivalent to a material with an infinitely large thermal conduc-
tivity. A near thermal zero-index cloak is constructed with a
solid conductor embedded with circulating fluid as shown in
Fig. 3(c). Their thermal cloak works with Cu as the background
material and acts as a transient temperature sensor as the temper-
ature of the object follows the environmental changes as shown
in Fig. 3(f).

2.3 Heat Guiding and Bending. With the trend toward high
packaging density of electronics, it becomes severely important to
dissipate heat in a well-defined path to reduce thermal crosstalk
between adjacent devices and protect thermally sensitive compo-
nents. While an extensive number of fundamental studies about
thermal metamaterials have shown heat flow manipulation, the
ideal thermal metamaterials are usually composed of curved
lines or complex structures that are costly to fabricate [75]. On the
other hand, thermal shifters composed of two isotropic materials
have shown the ability to bend heat flux on demand with
good manufacturability [66,76]. Considering two alternatively
stacked isotropic materials with thermal conductivities of k1
and k2 as shown in Fig. 4(a). The heat flux rotation is a function
of the composite layer orientation. Assuming material 1 is
Cu (k1¼ 390W �m�1K�1) and material 2 is stainless steel
(k2¼ 42W �m�1K�1), the heat flux can be bended upward by
26 deg when composite layer orientation h¼ 45 deg; see Fig. 4(b)
[66]. Figure 4(c) shows the relationship between heat flux rota-
tion, thermal-conductivity ratio of two materials, and the rotation
angle of the composite. A large thermal-conductivity ratio leads
to a large heat flux rotation [76].

The thermal shifter could be used as a unit cell to enable multi-
functional thermal metamaterials such as a thermal cloak, concen-
trator, etc. [75,77]. Figure 5(a) shows the design of a tunable
thermal cloak by the diverse assembly of 4� 4 thermal shifters
with orientations of 615 deg, 645 deg, and 675 deg. The thermal
shifter unit cell was composited of Cu and PDMS; see Fig. 5(b).
Figure 5(c) shows that the thermal shield has a reduced tempera-
ture gradient in the center when subject to a lateral temperature
gradient. Kang et al. reported a temperature-responsive thermal
cloak that can induce dynamic changes in thermal energy distribu-
tion by integrating phase-change materials (PCMs) [33]. The ther-
mal cloak was constructed by 4� 4 thermal shifters with a similar
design as shown in Fig. 5(a). The two materials are stainless steel
and n-octadecane filled with multiwalled carbon nanotube
(MWCNTs) and Cu power, which is used as the phase-change
nanocomposite (PCNC) to provide a modulation of thermal con-
ductivity with respect to ambient temperature; see Fig. 5(d). The
transition temperature of PCNC is 28 �C, and the thermal conduc-
tivity of PCNC is 5.0 and 0.75W �m�1K�1 at 20 and 35 �C,
respectively. Figures 5(e) and 5(f) show the temperature profiles
of the thermal cloak at low and high ambient temperatures with
respect to a lateral temperature gradient. At a low-temperature
range of 20–24 �C, PCNC is in the solid-state phase and has a
comparable thermal conductivity to stainless steel, the thermal
cloaking is at off-mode. On the contrary, at a high-temperature
range of 30–41 �C, PCNC transforms into a liquid phase state and
with a much lower thermal conductivity, which acts as a thermal
insulator and protects the cloaked region (thermal cloaking at on-
mode). The temperature responsive thermal cloak can be poten-
tially applied to protect temperature-sensitive devices through
related isolation as well as dissipation.

3 Thermal Management Challenges in Heterogeneous

Thermal management has long been considered as one of the
keys to maximize device performance and reliability. Compared
to conventional MCPs (multichip packages) and SIP (system in
package), advanced heterogeneous packages face more challenges
in thermal management due to the targeted finer pitches, 3D
stacks, more inputs/outputs (I/Os), higher densities, higher power
consumptions, and higher performance applications [78–81].

Thermal management challenges in heterogeneous packages
can be understood from two points of view. First, high-

Fig. 4 Heat flux rotation as a function of composite sample orientation. (a) The rotated layer orientation with h5 45deg. x and
y correspond to the coordinate systems. k1 and k2 are the thermal conductivities of the stacked layers. (b) Steady-state tem-
perature profile measured when h545deg. The upward bended heat flux is evident with a horizontally applied temperature
gradient. (c) The variation of the heat flux bending angle / with composite layer orientation h at different thermal-conductivity
ratios (k1/k2). (Figures reprinted with permission (b) from Vemuri et al. [66]. Copyright 2014 AIP Publishing LLC; (c) from
Vemuri and Bandaru [76]. Copyright 2013 AIP Publishing LLC.)
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performance chips are laterally placed close to each other while
their temperature-sensitivity and mechanical-reliability metrics
are different. This is a common scenario in 2.5D package
platforms [28,46,79,82–93]. Second, high-performance chips are
vertically stacked, while the thermal resistance increases with the
number of stacked chips. This is a common scenario in 3D pack-
age platforms such as TSV-SIP (through silicon via) and HBM
[94–103]. These two categories of thermal management chal-
lenges are reviewed in Secs. 3.1 and 3.2.

3.1 Thermal Management Challenges Due to Multichip
Implementations. In 2.5D package platforms, chips can be
located in one interposer, regardless of which node process they
are, to achieve enhanced performance, lower tolerance, and higher
power efficiency, which are required for heterogeneous packages
to achieve a minimal footprint. To minimize the package area,
high power chips are located as close as possible. In this section,
the details of thermal management challenges in side-by-side mul-
tichip implementations are reviewed with discussions of high
power density requirements, thermal crosstalk, varying tempera-
ture criteria, thermal interface materials (TIMs), and substrate
thermal resistance.

3.1.1 High Power Density. Thermal management challenge is
mostly driven by the continuous increase in power density. Many
of the 2.5D package platforms use a silicon interposer to intercon-
nect logic chips and HBMs [78–80,88,93], which have a high heat
flux more than 100W � cm�2 in a single package [81,104,105].
This requires effective cooling very close to the heat source. How-
ever, some of the 2.5D packages have various layers, such as TIM
and heat slug layers, between the heat source and the heat sink for
reliability concerns at the board level [83,85,89,92]. When the
heat sink has a rough contact surface and the 2.5D package has a
large thermally induced or assembly warpage, the possibility of
the active device cracking and failure increases after the heat sink
is attached. Heat slugs and a TIM layer can be used to reduce the

possibility of having a device crack for 2.5D packages but
increases the thermal resistance between the heat sink and heat
source. In the same time, the logic power is continuously
increased with higher stacked HBMs for meeting performance
requirements [27,28]. According to the international technology
roadmap for semiconductors [106], the power density of the
microprocessor has increased from about 40W � cm�2 (in the pres-
ent day) to about 100W � cm�2 (in 2020). A high efficient cooling
solution is needed at the system level to address the increased
number of hot spots in a single package. The system-level solution
refers to cooling with the casing and other systems, and the board-
level solution refers to cooling without the casing. Thermal meta-
materials may provide a better path for cooling through controlled
heat flux transfer in the latter case.

3.1.2 Thermal Crosstalk. In advanced heterogeneous pack-
ages, heat generation in each device can affect neighboring units
[28,46,78,81,83,107]. In the 2.5D package platform, the logic
device and HBMs are placed within 500lm because of signal
integrity/power integrity (SI/PI) performance. Thermal crosstalk
could have detrimental effects, such as an increase in leakage
power [108]; see Fig. 6. In general, for logic devices whose
current leakage significantly increases with temperature, heat
generation from adjacent devices leads to increased current leak-
age, which could aggravate the self-heating and increase the tem-
perature. To reduce the thermal crosstalk, the distance between
the individual logic chips could be increased, a low-thermal-
conductivity material mold could be employed to create a thermal
barrier between the devices, or a thermal metamaterial design
could be implemented to realize a thermal channel running from
hot spots to heat sink.

3.1.3 Differences in Operating Temperature and Power
Generation. In general, each device has a maximum operation
temperature, such as 125 �C for a logic chip and 85 �C for a
memory chip [29,30], that affects the reliability of operation

Fig. 5 (a) Thermal cloak design with 43 4 thermal shifters; (b) the unit cell of the steady-state thermal cloak; (c) the
steady-state temperature profile of (b) with respect to a lateral temperature gradient; (d) the unit cell of the temperature-
sensitive thermal cloak; (e) the temperature profile of the temperature responsive thermal cloak at a low-temperature
range. Thermal cloak is at off-mode and shows a linear temperature profile in the center. (f) The temperature profile of
the temperature responsive thermal cloak at a high-temperature range. Thermal cloak is at on-mode and shows a
cloaked region in the center. (Figures reprinted with permission (a) and (c) from Park et al. [75]. Copyright 2017 Springer
Nature. (e) and (f) from Kang et al. [33]. Copyright 2019 Elsevier B.V.)
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[28,30,46,84,109]. These temperatures are considered as upper
limits for reliable operations and performance and should not be
exceeded. However, if devices with different operational tempera-
ture limits are placed adjacent to each other such as in 2.5D pack-
age platforms, the chip of a lower operation temperature limit
could easily exceed the limitation due to the thermal crosstalk
from a higher operating temperature chip. Also, the logic chip
power is normally higher than that of the memory chip when they
operate for high performance, which causes a significant thermal
crosstalk from logic to memory. This thermal crosstalk effect can
be observed from a power envelop graph.

Figure 7 shows the power envelop graphs for IPOP (interposer
package on package) and FO-SIP (fan-out system in package)
package platforms [28]. The inflection point is observed due to
different maximum operation temperature limits of logic and
memory chips. From the power envelope graph, the graph area
can be considered as a metric scope of performance or efficiency
and better thermal performance package shows larger power enve-
lope area. Figure 7 shows that the FO-SIP’s power envelope area is
larger than IPOP’s power envelop area, which means the FO-SIP is a
thermally enhanced platform compared with IPOP. With the opti-
mal thermal management solution, the logic chip and HBM could
be placed closely with the maximum performance and operating
temperatures close to 125 �C and 95 �C, respectively, and the
power envelope area would be increased as shown in Fig. 7.

3.1.4 Thermal Interface Material Issues. Thermal interface
materials are generally used between active devices and a cooling
system, whose performance is related to the thermal conductivity
and the bond layer thickness (BLT) [110–112]. High-thermal con-
ductivity and low BLT are preferred for thermal management
[113–115]. In 2.5D package platforms, TIMs are typically used on
ASIC (application-specific) and HBM [85]. ASIC and HBM have
different thermomechanical properties, because ASICs are made
of a single chip, and HBMs are made of several chips with multi-
level vertical stacks. Even with the same applied pressure, HBM
is more vulnerable to mechanical stresses. For this reason, when
the same TIM is applied on ASIC and HBM, the BLT is likely to
be limited by the HBM’s mechanical reliability. When the BLT is
fixed, different TIMs could be used on each individual device to
maximize the performance. Alternatively, the height of the devi-
ces could be modified to the TIM’s compression characteristics
for the heterogenous package [116], as shown in Fig. 8. In addi-
tion, due to the large size of the substrate, the TIM’s performance
is degraded by voiding, pumping out, and drying out by warpage
depending on the operational temperature change. Material selec-
tion is facilitated through power thermal cycle inspection of the
selected TIM to identify the least impact on performance degrada-
tion. Considering that metamaterials make use of an effective
thermal medium approximation, the related design principles may
be used to controllably fabricate a multilayer TIM.

Fig. 6 Si Interposer with a 2.5D package. HBM size is 7.75mm3 11.87mm3 720lm. (Figure reprinted
with permission from Lee et al. [108]. Copyright 2016 Institute of Electrical and Electronics Engineers.)

Fig. 7 A power envelope analysis chart. The inflection points
are observed due to different maximum operation temperature
limits of logic and memory chips. (Figure reprinted with permis-
sion from You et al. [28]. Copyright 2018 Institute of Electrical
and Electronics Engineers.)

Fig. 8 Flatten backside can manage the BLT with same TIM at
same time. However, because of the different mechanical reli-
ability, the TIM’s thermal-conductivity choice is restricted. If
can control the logic chip and memory chip individually as like
nonflattened backside, the TIM’s thermal-conductivity choice is
not restricted. (Figure reprinted with permission from Hou et al.
[116]. Copyright 2017 Institute of Electrical and Electronics
Engineers.)
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3.1.5 Thick Substrate. For the advanced heterogenous pack-
age, multiple devices are placed on one substrate and thus the
number of signal I/Os and power I/Os tend to increase the effec-
tive substrate thickness [80,81,117]. When substrates become
thicker, the vertical thermal resistance is increased by the number
of substrate dielectric layers that nominally have low-thermal con-
ductivity. A thick substrate is one of the main thermal challenges
for 2.5D integration. Thermal metamaterials can be considered to
enhance heat transfer through the substrate, when integrated
with interposer design, and other thermal solutions such as the
thermal via, a metal core, and metal block solutions may also be
considered.

3.2 Thermal Challenges Due to Three-Dimensional
Implementation. Similar to 2.5D package platforms, 3D package
platforms are designed to implement heterogeneous integration
with a minimal footprint while providing advantages in lowering
latency, reducing power consumption, and increasing interconnect
bandwidth. With 3D interconnections, the stacked chips create
complex thermal management challenges. In this section, the
details of thermal management challenges and solutions are
reviewed including heat removal through stacked chips, thermal
resistance by joint layers, limited thermal spreading by thinned
chips, and TSV solutions.

3.2.1 Heat Removal Through Stacked Chips. In 3D chip
stacks, the hottest die is the one closest to the substrate due to I/O
count or S/I and P/I performance reasons. The heat from the hot-
test chip is dissipated through the stacked devices, which causes
challenges for thermal management because each stacked chip
works as a thermal resistance, and the heat from the hottest chip
affects the other chips; see Fig. 9. The hottest device should be
located close to the cooling system or should have a direct
heat path from the hottest chip to the cooling system to enhance
cooling efficiency. Aditya et al. [118] shows that the thermal
advantages in the TSV-SIP package platform.

3.2.2 Die Bonding. In the 3D stack platform, chip bonding is
the main factor for increasing the vertical thermal resistance
[100,102,119,120]. A 3D stack joint layer consists of microbumps
and a nonconductive film (NCF). A microbump’s thermal conduc-
tivity is about 60W �m�1K�1 and the NCF thermal conductivity
is about 0.5W �m�1K�1, both of which are significantly lower
than Si thermal conductivity of about 120W �m�1K�1. So, both
features contribute to dramatically increase the vertical thermal
resistance. In addition, the chip back end of line layer has lower
thermal conductivity than Si [121–123], which also contributes to
increase the vertical thermal resistance. Moreover, the interface
thermal contact resistance in the junction also contributes.
Because of these reasons, the vertical thermal resistance increases
rapidly with the number of interconnection layers as shown in
Fig. 10.

3.2.3 Thinned Chip. If there is no limit to the package thick-
ness, the chip thickness can be as thick as possible to increase the
heat spreading of the hot spot inside the chip [124]. However, the
package thickness is usually constrained by system design which
affects the 3D stacked device height. In particular, for intercon-
nection using TSVs, the chip thickness is restricted due to a design
limitation of the TSV [125]. A chip thickness with TSVs can be
much lower than the maximum thickness allowed for single-chips
without TSVs (about 780lm) [126], which can lead to limited lat-
eral heat spreading or increased lateral thermal resistance.

3.2.4 Nonhomogeneous Three-Dimensional Connections. The
TSV count, location, dimension, and thermal properties are con-
sidered as design parameters to enhance TSV heat transfer. More-
over, when the locations of TSVs are well aligned with other
stacked chips, this could work as a thermal path from the heat
source to the heat sink [38,127–134]. For example, thermal TSVs
(TTSVs), either integrated with thermal metamaterials or
designed using metamaterial principles, can be placed close to hot
spot regions to facilitate enhanced heat dissipation in 3D ICs

Fig. 9 Schematic of 3D stacked chips with two case (a) processor on top and (b) memory on top. Processor has
higher power and temperature than memory. (Figure reprinted with permission from Agarwal et al. [118]. Copy-
right 2017 Association for Computing Machinery.)
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[135], following the principle laid out in Sec. 2.1. However, for
the complicated 3D connection, the placement of thermal TSV
can be one of the design challenges. The area near the hot spot is
a very “popular zone” to enhance SI/PI and thermal performance.

To get the maximum performance of the nonhomogeneous 3D
connection, the thermal TSV placement should be considered in
SI/PI design as well.

When the stacked devices have different floorplans from each
other, the signal/power TSVs are not located at the same position.
In this case, thermal-aware floorplanning technologies, integrated
with metamaterial elements and architectures can be used. Ther-
mally aware floorplanning techniques can be categorized into
TTSV insertion-based floor planning, force-directed technique-
based floor planning, metaheuristic-based floor planning, and
other floor planning methods [136]. From a package structure per-
spective, TTSV insertion-based floorplanning is a useful solution,
as shown in Fig. 11. Many TTSV insertion-based floor planning
studies had focused on an optimization method to reduce the num-
ber of TTSVs to keep peak temperature below the temperature cri-
teria [34,36,37,39,40]. When the area and size of the 3D stacked
devices are not the same, the smaller chip works as a heat path
and the remaining area of the chip works as a thermal bottleneck.
So, it is necessary to optimize the chip position or create an
additional thermal channel, which may be achieved through a
metamaterial with high contrast in the individual layer thermal
conductivity as outlined in Sec. 2.3.

4 Thermal Metamaterials and Cooling Solutions for
Packaging

Advanced electronic devices have been increasingly demanded
to have integration of more functions into individual chips. This
has resulted in high-density packaging of electronics. Moreover,
device and interconnect scaling dramatically affect the design and

Fig. 10 Vertical thermal resistance is increased along with the
number of interconnection layers. (Figure reprinted with per-
mission from Leduc et al. [120]. Copyright 2007 Institute of
Electrical and Electronics Engineers.)

Fig. 11 TSV placement for 3D stacks. Thermal-aware TSV allocations can decrease temperature (Figure reprinted with
permission from Cuesta et al. [132]. Copyright 2015 Elsevier B.V.).
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architecture of advanced assembly and packaging of electronics.
Over the recent decade, power density associated with this scaling
has been increasing because of increase in power dissipation and
scaling down of the effective die area. It is also expected that
power density will steadily increase for next-generation devices to
beyond 1 kW � cm�2 [137,138]. High heat fluxes on the compo-
nents due to increase in power density create many challenges
such as electromigration, material creep, thermal cycling, warp-
age; thus, thermal design and architecture considerations need to
effectively keep the temperature under control to ensure reliable
operation of electronics. Typical dies have different regions such
as core, cache, so there are nonuniform power densities associated
with these regions; thus, local heat fluxes can exceed
100W � cm�2. Cloaking and related thermal control applications,
facilitated through metamaterial architectures (see Sec. 2.2), may
be particularly useful in this regard for thermally sensitive device
protection on the die.

4.1 Cooling Capacities of One Package to System Level.
Traditional cooling techniques have limitations on removing these
localized high-power densities �100W � cm�2. Air cooling which
is either active or passive has been one of the most commonly
used traditional cooling techniques due to availability, simplicity,
and capability to cool less than �250W power dissipation [139].
Heat spreaders, heat sinks with or without heat pipes are typical
examples used in concert with air cooling. In passive air cooling,
natural convection, conduction, and radiation heat transfer can
cool the electronic components/devices via heat spreaders or heat
sinks. Up to �10W could be cooled by passive air cooling [140].
This type of cooling is useful for small electronic devices that
have lower power. In active air cooling, external components such
as a fan or blower circulate air over the electronics. In general,
multiple fans or blowers with different configurations are
designed to cool the high-density microelectronic packages. There
are also some challenges mainly on the fans or blowers; for
instance, higher rotational speeds result in higher noise which is
also restricted by the acoustic limit of the system environment,
and faster fatigue. Furthermore, heat sink design, TIM selection,
and overall mechanical assembly of components create reliability
concerns. Single-phase liquid cooling has long been applied when
power dissipation within the electronic component exceeds
�250W and when traditional air-cooling thermal management is
insufficient enough to cool below a thermal design point
[41,141,142]. Two-phase liquid cooling, jet impingement,
liquid–vapor phase change, immersion cooling, and direct liquid
cooling are some of the other cooling techniques that have been
continuously researched and developed for various electronic

applications to cool up to �600W � cm�2 [42]. However, cost,
leakage, and pressure drop within the system create concerns and
limitations. Thus, the acceptance of liquid cooling varies for dif-
ferent industries.

System-level packaging and thermal cooling are also chal-
lenged by high power components within a limited space. For
instance, IBM recently designed the fastest supercomputer in the
world [143] that has six graphics processing units (GPUs) having
300W thermal design power, and two central processing units
(CPUs) having 250W thermal design power, which is illustrated
in Fig. 12. This system has two parallel paths where water is used
as a liquid cooling to cool the high-power components (GPUs and
CPUs) and forced air cooling is applied for the other low power
components in the system. The evenly split flow cools CPU and
3 GPU modules that are connected via cold plate assembly in
each path. The cold plate assembly is flexible and can accommo-
date the expected height range of GPUs. Energy efficient data cen-
ter design was also considered and implemented.

The total power in the supercomputer is continuously increas-
ing and exceeding �3 kW. Moreover, the typical server size
installed into the racks is 2U (�88.9mm) high, 483mm wide, and
711mm deep, which makes the power density in the system high.
Also, preheat is a main concern for the back section of the super-
computers in only forced air-cooled systems as there are some
components such as I/O or OpenCapi cards that require high-
thermal cooling. Due to the wiring and motherboard design
constraints, design and architecture of these cards are not quite
flexible which affects the cooling power of such cards. In today’s
market, each card dissipates �40W with quad small form-factor
pluggable optical transceivers. The high-power generation is very
challenging for only forced air-cooled system especially with dra-
matically increasing field programable gate arrays powers due to
the preheating [144]. Thus, with on-chip hot spot heat fluxes
approaching �1 kW � cm�2 and high-power servers exceeding
�3 kW, next-generation thermal cooling techniques are crucial to
address the challenges and current limitations [145].

Similar device-to-package-to-system thermal challenges arise
for next-generation power electronics and sensors found in highly
automated and electrified vehicles. From a power electronics per-
spective, single- or two-phase remote (i.e., power package sepa-
rated from cold plate) cooling strategies have been extensively
investigated at the package level [146], and new near-junction
cooling solutions [43,44] are being actively explored for
compact, highly integrated, and high-performance alternatives
that may address power semiconductor heat fluxes approaching
�1 kW � cm�2. Here, TIM and thermal crosstalk issues may again
be a concern as active gate drive components are eventually inte-
grated into or placed close to the power package. Thermal routing

Fig. 12 Liquid cooled IBM power AC922
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for such gate drive components is already a challenge point [45],
and higher levels of integration for future mobility solutions (e.g.,
in-wheel motors) will continue to require innovative heat flow
control and anisotropic thermal routing in three-dimensions at
multiple scales. Thermal metamaterial-related architectures may
now be necessary to better regulate the path of heat transfer. In
addition to microelectronics-related applications, advanced
sensors, photonic components found in solid-state waveguide
devices, such as ring resonators or thermal phase-shifters, may
also benefit from the incorporation of effective thermal conduits
facilitated through geometrically considered placement of meta-
atom based materials (see Sec. 2.1) to reduce transient response
time and required actuation power [147,148]. Furthermore, the
integration of lasers on-chip for photonic sensing and processing
solutions also presents a host of thermal challenges due to the
proximity of the light source near other potentially thermally sen-
sitive components [149]. Thus, highly local-scale application of
thermal metamaterials as suggested by Loke et al. [150] is definite
area for future exploration for a variety of device-to-package
applications.

4.2 Thermal Metamaterials for Packaging and Future
Research. While thermal metamaterials with extraordinary prop-
erties are expected to be useful for thermal management applica-
tions [25], most of the work is limited to materials investigations
and fundamental studies. There have been recent developments in
using thermal metamaterials and taking advantage of heat flow
control for electronic systems at the PCB-level [23] and with
microelectromechanical systems [151]. Further investigations on
the implementation of thermal metamaterials could address chip-
integrated and package-level thermal management challenges. For
example, for 2.5D packages, thermal metamaterials based on ani-
sotropic material layouts for thermally cloaking, or isolating
designs could be used to engineer heat dissipation in a determinis-
tic manner and minimize thermal crosstalk between ASIC and
HBM (Fig. 13). Optimal patterning of interposers, as well as
TTSVs, could not only minimize thermal crosstalk but also limit
the temperature increase of the ASIC. For 3D packages, thermal
metamaterials based on bending or shifting designs could be used
to guide the heat efficiently toward heat sinks and facilitate heat
dissipation through HBM stacks. Thermal management of 3D
stacks could be further addressed by optimal arrangements of
TSVs and potential use of silicon-based thermoelectric cooling
elements [34,36,37,39,59,61,132,136]. Several studies discussed
the potential use of thermal metamaterials for circuit designs
[15,19,20,152]. Their work demonstrated an optimal separation of
a hot spot region and a temperature-sensitive device region using
the thermal metamaterial design functions in one PCB. We can
infer that thermal metamaterial designs can be applied to hetero-
geneous packages where multiple chips are used and multiple hot
spots are expected.

While the progress and development of thermal metamaterials
are promising for electronic packaging applications, direct
implementation of those thermal metamaterial designs in current
packaging systems will be very challenging, due to disruption of

used process flows, and further studies on their effectiveness,
compatibility, and scalability are necessary. Dede et al. [152] pro-
vides an example design of a synchronous buck converter utilizing
the various aspects of thermal metamaterials. It also talks about
the lacking electrothermal design methodologies that are needed
for incorporation of thermal metamaterial designs. Evans et al.
[153] demonstrates-power packaging design tools, in which the
tool could be adapted to incorporate thermal metamaterial design
into power electronics. Thus, electronics computer-aided design
(ECAD) or multi-objective optimization tools relevant to different
applications (e.g., Ref. [153] for power packaging, [154,155] for
light-emitting diode packaging, and [156] for microserver design)
could be modified to foster further integration of anisotropic heat
spreaders or thermal metamaterials.

From a material perspective, thermal metamaterial designs
would also benefit from advances in materials science research
that push the limits of high-thermal conductivity, khigh, and
low-thermal conductivity, klow, materials since the thermal-
conductivity contrast ratio, khigh/klow, is critical in the establish-
ment of effective designs. This ratio crucially affects both heat
flow control and the overall device maximum temperature profile.
Hence, advances in robust, reliable, and cost effective anisotropic
thermal composite substrates beyond traditional PCBs and
ceramic substrates that allow for easy implementation of high-
thermal-conductivity contrast ratios are needed.

Practical implementation of PCMs into new substrate or carrier
configurations is then another logical and challenging next-step
opportunity to address transient response. Nonsolid-state PCMs
have challenges associated with encapsulation, voiding, and long-
term reliability [157]. However, as discussed in Sec. 2.3, utiliza-
tion of these materials introduces new ways to actively manipulate
heat flow paths. Thus, to ensure packaging viability, compatibil-
ity, and scalability, the choices of materials for thermal metamate-
rial designs needs to be carefully reviewed. To avoid potential
thermal expansion and long-term interface issues, thermal meta-
material designs based on a homogeneous material may be pre-
ferred. Materials, with well-defined geometric structures, that are
easily fabricated or manufactured would be additionally useful.

Moving beyond thermal metamaterials that are passively
designed to manipulate directions of heat flow, future research on
active thermal metamaterial devices such as thermal diodes,
switches, or regulators could lead to new pathways of temperature
control and dynamic thermal management for electronic packag-
ing. The aforementioned PCMs fall into this category, as well,
and may be leveraged likewise in temperature adaptive response.

Finally, we expect future research could take on system-level
studies that focus on implementation of thermal metamaterials in
high-performance heterogeneous packages as related to frontier,
5G-related communications, or photonics applications.

5 Summary and Outlook

In this paper, we have reviewed the recent progress in
conduction-based thermal metamaterials and considered their
potential applications to electronic packaging. Such aspects indi-
cate that basic research in thermal metamaterials can make a

Fig. 13 Thermal metamaterial application example on 2.5D package platform. Cross-sectional schematic of a potential pack-
age platform where thermal metamaterials could be introduced in the area (1) to reduce thermal crosstalk between ASIC and
HBM and in the area (2) to facilitate heat dissipation through 3D stacks.
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positive impact not only on the fundamental understanding of heat
transfer but also on designs of next-generation electronics and
photonics. As notable examples, 2.5D and 3D packages can suffer
from nontrivial thermal management challenges such as thermal
crosstalk and local hot spots, and associated packaging designs
may benefit from the new capabilities of controlling heat transfer
paths in a deterministic manner, underlying the scope and aim of
thermal metamaterial design. We have reviewed thermal metama-
terial approaches including: (1) anisotropic heat spreaders and dif-
fusers, (2) heat cloaking and isolating, and (3) heat guiding and
bending and provided a comprehensive overview of the related
studies from the recent literature. We have analyzed the thermal
challenges of advanced heterogeneous packaging from two points
of view involving: (1) high-performance chips that are laterally
placed close to each other while their temperature-sensitivity and
mechanical-reliability metrics are different (via the 2.5D package
platform); and (2) high-performance chips that are vertically
stacked while the thermal resistance increases with the number of
stacked chips (via the 3D package platform).

While significant attention in the electronic packaging commu-
nity has been given to various thermal management techniques,
conventional approaches are usually confined to an individual
design scale such as the device, package, or system. Many prior
solution techniques operate in isolation and may ultimately con-
flict with each other. We have discussed the outlook on applying
thermal metamaterials for electronic applications, and metamate-
rial solutions could be used for thermal management at all of these
scales. While a thermal metamaterial design may be a good heat
transfer solution in of itself, further research and development into
associated and required multidisciplinary electronic packaging
methodologies may hold the key to synergy between thermal man-
agement techniques at multiple levels. This observation and anal-
ysis encourage new ECAD design tools, base material systems,
and active devices as critical future research directions. Thus, in
the future, research on thermal management may logically com-
bine efforts across technical fields by leveraging the metamaterial
concept.
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Nomenclature

I ¼ applied current
ipop ¼ interposer package on package
ka-h ¼ thermal conductivity of region a-h of the perfect thermal

diffuser
kA ¼ thermal conductivity of material A
kB ¼ thermal conductivity of material B
kCu ¼ thermal conductivity of copper
khb ¼ thermal conductivity of the host background material

khigh ¼ high-thermal conductivity
kij ¼ second-order thermal-conductivity tensor

klow ¼ low-thermal conductivity
kPDMS ¼ thermal conductivity of PDMS
kx, ky ¼ in-plane thermal conductivity

kz ¼ cross-plane thermal conductivity
k1 ¼ thermal conductivity of material 1

k2 ¼ thermal conductivity of material 2
q00¼ input heat flux to the perfect thermal diffuser
qi ¼ heat flux in the ith direction
sip ¼ system in package
t ¼ time

T1 ¼ temperature applied to the chip
T2 ¼ temperature applied to the spreader
h ¼ composite layer orientation
/ ¼ heat flux bending angle

rTj ¼ temperature gradient in the jth direction
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