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Abstract 
Mesenchymal stromal cells (MSCs) are among of the most studied cell 
type for cellular therapy thanks to the ease of isolation, cultivation, 
and the high ex vivo expansion potential. In 2018, the European 
Medicines Agency finally granted the first marketing authorization for 
an MSC product. Despite the numerous promising results in 
preclinical studies, translation into routine practice still lags behind: 
therapeutic benefits of MSCs are not as satisfactory in clinical trial 
settings as they appear to be in preclinical models. The bench-to-
bedside-and-back approach and careful evaluation of discrepancies 
between preclinical and clinical results have provided valuable 
insights into critical components of MSC manufacturing, their 
mechanisms of action, and how to evaluate and quality-control them. 
We sum up these past developments in the introductory section 
(“Mesenchymal stromal cells: name follows function”). From the huge 
amount of information, we then selected a few examples to illustrate 
challenges and opportunities to improve MSCs for clinical purposes. 
These include tissue origin of MSCs, MSC culture conditions, immune 
compatibility, and route of application and dosing. Finally, we add 
some information on MSC mechanisms of action and translation into 
potency assays and give an outlook on future perspectives raising the 
question of whether the future clinical product may be cell-based or 
cell-derived.
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Mesenchymal stromal cells: name follows function
In 2018, the first marketing authorization for a mesenchymal 

stromal cell (MSC) product was granted by the European  

Medicines Agency for the treatment of complex perianal fistulas 

in patients with Crohn’s disease1. From a regulatory perspective,  

MSCs are classified as an advanced therapy medicinal prod-

uct (ATMP) (https://www.ema.europa.eu/en/human-regulatory/ 

overview/advanced-therapy-medicinal-products-overview). This  

represents a milestone in the long history of MSCs, which were 

first described in 1867 by Cohnheim as non-hematopoietic bone 

marrow–derived cells to migrate through the bloodstream to 

distant sites of injury and participate in tissue regeneration2.  

In the 1970s, Friedenstein et al. characterized them as a minor 

subpopulation of marrow-derived plastic adherent cells with  

osteogenic and hematopoietic supportive potential3. He also  

established the term colony-forming unit-fibroblast. In the 1990s, 

Caplan4,5 and Pittenger et al.6 coined the term “mesenchymal  

stem cells” on the basis of the multi-lineage differentiation  

potential of these cells. At this time, controversy arose as to  

whether these cells are stem cells or not. Bianco and Robey 

and colleagues used the term “skeletal stem cells” for cells 

residing in the postnatal bone marrow and giving rise to  

cartilage, bone, hematopoiesis-supportive stroma, and marrow  

adipocytes in defined in vivo assays7–9. In 2006, to put an end 

to the discussion, the International Society for Cell and Gene  

Therapy defined the term “mesenchymal stromal cells” and 

set up minimal criteria defining (bone marrow–derived) MSCs  

(Table 1)10. At that time, it became evident that MSCs (or 

at least cells with similar characteristics) could be isolated 

from a variety of different tissues, suggesting a perivascular  

origin11,12. Given the similarity to fibroblasts, Haniffa et al.  

asked: “Mesenchymal stem cells: The fibroblasts’ new clothes?”13.  

However, with the increasing use in (pre)clinical studies, it  

became evident that apparently not the proposed multi-lineage 

differentiation potential but rather their secreted bioactive  

molecules that modulate immune and inflammatory responses  

were key to exerting therapeutic effects (in fact, only few 

transplanted cells were found in vivo to be engrafted and  

differentiated)14,15. Thus, Caplan introduced the term “medicinal 

signaling cells” to illustrate their versatility and flexibility to  

adapt to the local milieu16. We interpret the abbreviation  

“MSCs” as “mesenchymal stromal cells” as, according to our 

own experimental observations, the cells do not fulfil “stem cell”  

criteria such as indefinite self-renewal.

Despite arguments about the most appropriate name, MSCs 

have emerged as the most intensely studied cell type for  

experimental cell therapy. Starting with the first use in patients 

in a hematological transplant setting17, numerous clinical  

indications have been investigated, ranging from hematological 

disorders (including graft-versus-host disease, or GvHD),  

bone/cartilage defects, diabetes, cardiovascular and neurological  

diseases (including autoimmune diseases), and liver and renal 

diseases18–20. The ease of isolation, cultivation, and the high  

ex vivo expansion potential in line with the numerous therapeutic 

mechanisms (paracrine pro-regenerative, anti-fibrotic, anti-

apoptotic, pro-angiogenic, and immunomodulatory functions)  

have contributed to this broad exploitation.

Challenges and opportunities to improve mesenchymal 
stromal cells for clinical purposes
Despite the promising results in preclinical studies, therapeutic 

benefits of MSCs are not as satisfactory in clinical trial settings21. 

This section addresses some factors that might contribute to this 

disparity and how to improve the therapeutic capacity of MSCs 

(Figure 1).

Tissue origin of mesenchymal stromal cells
The most prevalent source for MSCs is adult bone marrow18.  

Adipose tissue is emerging as an important source, as exemplified 

Table 1. Definition of mesenchymal stromal cell.

Adherence to 
plastic

Specific surface 
markers

In vitro multipotent 
differentiation potential

Positive: 

CD105 

CD73 

CD90 

 

Negative: 

CD45 

CD34 

CD14 

CD11b 

CD79a 

CD19 

HLA class I

Osteoblasts 

Adipocytes 

Chondroblasts

The minimal criteria defining the mesenchymal stromal cell by the 
International Society for Cell and Gene Therapy (according to 10).

Figure 1. Bench-to-bedside-and-back. Challenges and opportunities 

in translating mesenchymal stromal cell (MSC)-based therapy from 

basic research to clinical practices, including immunogenicity of 

MSCs, Good Manufacturing Practice–compliant MSC manufacturing 

as well as determining the route of administration and dosing. MoA, 

mechanism of action.
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by the ATMP granted marketing authorization by the  

European Medicines Agency (mentioned above). We and others 

have tried to understand how interchangeable MSCs from  

different tissue sources are and whether one may be more suitable 

for certain disease entities than for others. The observed  

differences suggest an “environmental niche memory”, which  

could help to select the most appropriate tissue source for a  

certain clinical indication12,22–26.

Mesenchymal stromal cell culture conditions and cellular 
fitness
Usage of fetal bovine serum (FBS) as culture supplement has 

been a major issue in MSC production27. The growing concern  

relates to transmission of pathogens such as prions and possible 

immune reactions against xenogeneic agents28,29. Consequently,  

as a replacement of FBS, other supplements have been intro-

duced. One of the most common is platelet lysate (PL)29–31, 

as it contains growth factors suitable to support MSC ex vivo  

expansion without causing genomic instability32. However, the 

use of PL is not without concerns: batch-to-batch variation and  

pathogen reduction need to be addressed to standardize PL use  

in MSC manufacturing33.

MSC culture conditions differ enormously, hampering  

comparability of data34. Cellular “fitness” is considered the most  

critical parameter and is influenced by cellular/replicative age  

and potential “cryo-injury”21,35,36.

Expansion of MSCs in vitro, required to achieve clinical doses 

(see below), ultimately results in replicative senescence that  

compromises therapeutic efficacy37,38. Thus, genomic stability 

should be addressed as a safety measure before clinical  

application39. In addition, the thawing of cryopreserved MSCs  

just before transplantation may hamper their therapeutic  

capacity. In most animal experiments, MSCs are harvested  

freshly before the transplantation, while on the peak of the  

replicative phase. Meanwhile, in clinical trial, most MSCs are pre- 

banked and expanded to their proliferative limit, frozen down, 

and just thawed prior the transplantation35,40. Following retrieval  

from liquid nitrogen, MSCs have been shown to undergo a heat 

shock response (“cryo stun effect”) leading to cell injury for  

at least the first 24 hours40. This has been shown to compro-

mise immune-modulation function, enhance vulnerability to 

lysis by immune cells and the complement system, and decrease  

in vivo persistence upon intravenous administration40. A rescue  

culture for a few days could eventually reduce this “cryo stun 

effect”.

As it has become clear that culture conditions can greatly affect 

MSC function, it also opens a new window for MSC priming 

to improve their therapeutic efficacy. A growing body of data  

report a wide array of priming approaches, from usage of  

cytokines, growth factors, hypoxia, pharmaceutical drugs, and 3D 

culture using biomaterials41,42. For example, MSC priming with 

interferon-gamma (IFN-γ) is considered key to suppress T-cell  

proliferation, partly through production of indolamine-2,3- 

dioxygenase (IDO) and programmed cell death-1 ligand (PDL-1) 

upregulation43. Indeed, allogeneic infusion of IFN-γ–primed  

MSCs to non-obese diabetic/severe combined immunodeficiency 

(NOD/SCID) mice reduced GvHD symptoms44. However, MSC 

priming with IFN-γ should be carried out with caution as it can 

upregulate the expression of HLA class I and II molecules, which 

could affect immune compatibility45.

Lastly, another challenge to bring MSCs to clinical applica-

tion is upscaling of MSC culture. A number of strategies for  

upscaling cell, secretome, or extracellular vesicle production 

have been reported and reviewed extensively46–48. However,  

economically feasible approaches that meet Good Manufacturing 

Practice compliance have yet to be standardized49.

Route of application and dosing
Depending on the clinical purposes, MSCs are administered  

differently, either systemically infused or locally injected.  

Contrary to the old belief that MSCs migrate to the site of  

injury and replace the injured tissue once MSCs are injected 

intravenously, they are mostly trapped in lungs and die within  

24 hours50. Pulmonary embolism and infarct of three related  

patients have been reported after adipose MSC infusion51. MSCs 

express tissue factor, a cell surface glycoprotein that plays an 

important role in extrinsic coagulation, which by triggering  

procoagulation has led to thromboembolic events after MSC  

infusion. Thus, adding an anti-coagulant during the infusion  

should be considered52.

The majority of preclinical studies using mice and rats infuse 

around 50 million and 10 to 20 million MSCs per kilogram of  

body weight, respectively53,54. Meanwhile, the average number 

of MSCs transfused intravenously is 100 million per patient,  

corresponding to 1 to 2 million per kilogram of body weight55. 

This may in part explain the huge discrepancy of outcome  

between preclinical and clinical studies, assuming that the  

therapeutic benefit is dose-dependent21. Although the notion 

of increasing MSC dose might be tempting, safety should be 

assessed carefully for it might, for example, increase the risk for  

embolism or adverse reactions. In addition, the lack of standard-

ized pharmacodynamics and pharmacokinetics models applied to  

MSCs represents a limiting factor56.

Another potential explanation for the translational gap between 

clinical and preclinical data is that, in patients, the degree of  

severity might be too high for MSC therapy to be as efficacious 

as in animal studies. In order to get better clinical outcomes,  

MSC-based therapy may be considered as prevention treat-

ment together with first-line therapy and not only as salvage or 

even palliative therapy. However, this notion will require proper  

risk–benefit evaluation and support from ethics committees.

Hemocompatibility and immune compatibility
For a long time, MSCs have been considered to be immune- 

privileged, allowing their transplantation across histocompat-

ibility barriers57. Recent data, however, indicate that MSC  

transplantation may provoke donors’ humoral and cellular  

immune responses, especially in allogeneic settings21,58. In GvHD, 

in fact, this immune recognition appears to be fundamental for 

the therapeutic effect: MSCs recognized by cytotoxic T cells  
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undergo apoptosis and are phagocytosed by macrophages 

which subsequently elicit immunosuppression via prostaglandin  

E
2
 (PGE

2
) and IDO activities59–61.

MSCs have also been shown to elicit an instant blood-mediated 

inflammatory reaction (IBMIR) in both a cell dose- and a donor-

dependent manner62. Non-bone marrow-derived MSCs appear 

to express higher levels of pro-coagulant tissue factor, which  

makes them more likely to induce IMBIR63. Adding anti- 

coagulants during MSC transplantation may be a good option 

for clinical application36,52. Likewise, the selection of tissue  

factor–negative or low expressing MSCs has been proposed as a 

strategy to improve hemocompatibility63.

Moreover, allogeneic MSC transplantation can provoke an  

adaptive immune response in mice through increased T-cell  

memory and allo-antibodies64,65. The latter may be associated 

with complement-mediated cytotoxicity58. Yet only two clinical  

trials1,67 report the development of donor-specific antibodies in 

patients who have received allogeneic MSCs66. But the authors 

argue that the increased allo-antibodies have no relevance in 

the clinical outcome or the occurrence of adverse events1,67.  

Moreover, in two other clinical trials, which used allogeneic  

MSCs to treat type 2 diabetes and diabetic nephropathy, there 

was no report of patients developing donor-specific HLA  

antibodies despite donor–recipient mismatching68,69. Although the 

results from clinical studies seem encouraging, the scarcity of  

studies elucidating possible allo-immune reactions may cause a  

bias in the observed trend66. The occurrence of FBS (used as  

culture supplement for cell expansion)-specific antibodies 

has prompted the search for alternative and improved culture  

conditions as described above70.

Mechanisms of action
Mesenchymal stromal cell secretome
The MSC secretome is composed of different soluble factors, 

including cytokines, growth factors, chemokines, immunomodu-

latory molecules, cell organelles, and nucleic acids, which are  

produced, some of these eventually encapsulated in extracellu-

lar vesicles, and secreted or directly transferred to neighboring 

cells71,72. These factors can modulate the immune system,  

inhibit cell death and fibrosis, stimulate vascularization, and 

promote tissue remodeling (Figure 2)73. MSCs can adapt  

efficiently to the local milieu and change their secretome74. On 

one hand, this significantly hampers the understanding of their  

mechanisms of action (MoAs) in vivo and the establishment of 

predictive and quantitative potency assays. On the other hand, it  

paves the way to potentially improve therapeutic efficacy (for  

example, the preconditioning with different factors that activate 

very specific signaling pathways). Treating MSCs in vitro with  

hypoxia, 3D culture, or soluble factors such as stromal cell– 

derived factor 1 (SDF-1) or transforming growth factor-beta  

(TGF-β) triggers Akt, ERK, and p38MAPK signaling pathways. 

These pathways, at the same time, can induce the production of 

cytoprotective molecules (catalase, heme oxygenase-1, and so 

on), pro-regenerative (basic fibroblast growth factor, hepatocyte  

growth factor, insulin-like growth factor-1, and so on) and pro- 

angiogenic (vascular endothelial growth factor, or VEGF) factors, 

and also immunomodulatory cytokines (IDO, PGE
2
, interleukin-6, 

and so on)42,71.

Extracellular vesicles
Extracellular vesicles (EVs) are further candidates to explain 

the therapeutic effects of MSCs. EVs are membrane-enclosed  

particles of different sizes (exosomes, microvesicles, and apop-

totic bodies) released by cells in the plasma and other body  

fluids75,76. EVs transport biologically active molecules and  

genetic information to target cells, influencing their function77. 

Thanks to these characteristics, EVs are also emerging as  

biomarkers for various diseases78. EVs carry a wide variety 

of genetic material, in particular microRNAs, which play an  

important role in the biological function of EVs. These small 

RNAs regulate the cell cycle and migration (for example, miR-

191, miR-222, miR-21, and let-7a), inflammation (for example,  

miR-204-5p), and angiogenesis (for example, miR-222 and  

miR-21). In a new therapeutic approach, MSC-derived EVs 

Preconditioning

of MSC

Isolation of MSC

Secretome

MoA-based

Potency Assay

Clinical

Application

Soluble factors

EVs

Anti-Apoptotic Anti-Fibrotic Immunomodulatory Angiogenenic

Figure 2. Mesenchymal stromal cell (MSC) secretome in clinical application. Strategies to harness the MSC secretome for clinical 
purposes include preconditioning/priming of MSCs to manipulate their paracrine factors, isolation of the secretome, and establishing MoA-
based potency assay. EV, extracellular vesicle; MoA, mechanism of action.
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are being engineered by increasing or modifying their content  

(proteins or RNA)77. As an example, an effective drug deliv-

ery system for wound healing in diabetes was developed by  

transfecting non-coding RNA (Lnc-RNA-H19) into EVs79. Based 

on these data, some researchers suggest that the conditioned  

medium or even EVs should be used as drugs rather than  

MSCs80.

In some circumstances (for example, GvHD mentioned  

above), dead or dying cells may contribute to therapeutic  

efficacy. Thus, an improved understanding on MSC “necrobi-

ology” has been proposed, considering apoptosis, autophagy, 

mitochondrial transfer, and also vesicles61. Recognition by the  

innate immune system in different disease contexts may be key to  

understand and improve MSC function60,81.

Potency assays
For advanced clinical trials, assays that can verify MSC  

identity and quality and can predict their functionality in vivo 

are required82. Owing to the manifold functions of MSCs and  

their rapid adaptation to the local milieu, which may modify  

their function at sites of injury, disease, or inflammation, assays to  

predict these functions in vivo are hard to develop.

Agreed quality-control criteria include the determination of 

presence and absence of certain surface markers and of MSC  

differentiation potential, their senescence status, their secre-

tome and immunomodulatory functions. In addition, surrogate 

assays which more specifically test the proposed therapeutic  

mechanism of action, for example angiogenesis have been  

established83–87. The group of Galipeau was the first to suggest 

a combinatorial assay matrix as a platform to integrate different 

assays88,89. In the first study, they employed secretome analysis 

and quantitative RNA-based array to estimate the immunomodu-

latory capacity of MSCs and their crosstalk with peripheral  

blood mononuclear cells (PBMCs), in which CXCL9, CXCL10, 

VEGF, and CCL2 secretion and expression were correlated 

with suppression of T-cell proliferation88. The other study  

investigated the phosphorylation of signal transducer and  

activator of transcription (STAT) in MSC-PBMC co-culture  

settings where STAT1 and STAT3 phosphorylation was asso-

ciated with MSC immunoinhibitory capacity89. Moreover,  

Phinney et al. reported a “Clinical Indications Prediction Scale” 

that, based on Twist-1 expression levels, could predict therapeutic 

efficacy: high levels of Twist-1 predict higher angiogenic  

potential, whereas low levels are in line with improved anti- 

inflammatory and immunosuppressive actions90.

We expect rapid progress in the development of combinatorial 

potency assays based on the increasing knowledge of MSC  

biology (omics, including single-cell analyses)91,92. Integrating 

this more comprehensive insight into MSC heterogeneity with  

MSC molecular signatures and their highly complex inter-

action with the local microenvironment in line with a better  

understanding of molecular mechanisms of action in various  

pathological settings will hopefully enable easy-to-perform  

assays with predictive value.

Future perspectives
The key questions for the future may be, do we need cells? Do 

we need viable cells, or do apoptotic cells and subcellular  

components such as EVs, or mitochondria, or just the secretome  

do a similar job?

The biological properties of the MSC secretome and how it  

orchestrates MSC immunomodulatory and regenerative capacity 

in the disease context remain enigmatic, prompting further  

studies. Moreover, given the possibility of modulating MSCs  

and their secretome, a disease-specific MSC priming (for instance, 

with pro-inflammatory cytokines) may improve efficacy.

Lastly, in order to standardize MSC therapy and avoid outcome 

bias, rigorous potency assays are needed. However, the selection 

of specific potency assays, whether it is a disease-specific (for  

example, angiogenesis and immunomodulation) or a more  

general (for example, proliferation) evaluation of MSC function 

that can be used regardless of diseases’ pathophysiology, needs  

further elucidation.

Given the enormous knowledge gain in MSCs over the past 

years, largely obtained by bench-to-bedside-and-back approaches 

and recapitulated by the continuous adaptation of the term  

MSCs (“name follows function”), we expect the development 

of novel translational strategies. A better understanding of  

failures, the identification and consequent mitigation of chal-

lenges and finally an improved understanding of MoAs, trans-

lating into robust potency assays, will be key for a successful  

translation of MSCs into clinical practice.
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