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Abstract 
Dimethyl fumarate (DMF) is an electrophilic compound previously 
called BG-12 and marketed under the name Tecfidera®. It was 
approved in 2013 by the US Food and Drug Administration and the 
European Medicines Agency for the treatment of relapsing multiple 
sclerosis. One mechanism of action of DMF is stimulation of the 
nuclear factor erythroid 2-related factor 2 (NRF2) transcriptional 
pathway that induces anti-oxidant and anti-inflammatory phase II 
enzymes to prevent chronic neurodegeneration. However, 
electrophiles such as DMF also produce severe systemic side effects, 
in part due to non-specific S-alkylation of cysteine thiols and resulting 
depletion of glutathione. This mini-review presents the present status 
and future strategy for NRF2 activators designed to avoid these side 
effects. Two modes of chemical reaction leading to NRF2 activation 
are considered here. The first mode is S-alkylation (covalent reaction) 
of thiols in Kelch-like ECH-associated protein 1 (KEAP1), which 
interacts with NRF2. The second mechanism involves non-covalent 
pharmacological inhibition of protein-protein interactions, in 
particular domain-specific interaction between NRF2 and KEAP1 or 
other repressor proteins involved in this transcriptional pathway. 
There have been significant advances in drug development using both 
of these mechanisms that can potentially avoid the systemic side 
effects of electrophilic compounds. In the first case concerning 
covalent reaction with KEAP1, monomethyl fumarate and monoethyl 
fumarate appear to represent safer derivatives of DMF. In a second 
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approach, pro-electrophilic drugs, such as carnosic acid from the herb 
Rosmarinus officinalis, can be used as a safe pro-drug of an 
electrophilic compound. Concerning non-covalent activation of NRF2, 
drugs are being developed that interfere with the direct interaction of 
KEAP1-NRF2 or inhibit BTB domain and CNC homolog 1 (BACH1), 
which is a transcriptional repressor of the promoter where NRF2 
binds.
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The KEAP1/NRF2 pathway
Neurons are highly sensitive to the balance system between  
oxidation and reduction, and the disruption of this system can lead 
to inflammatory reactions contributing to various acute and chronic 
diseases as well as to the normal aging process1,2. Activation of 
the KEAP1/NRF2/anti-oxidant-response element (ARE) pathway  
by electrophiles (EPs) can activate this cellular redox defense  
system against these diseases2,3. The NRF2/KEAP1 pathway rep-
resents one of the major cellular defense systems against oxidative 
stress, inflammatory reactions, and exposure to toxic electrophilic  
compounds4–7. NRF2 is a transcription factor that induces various 
anti-oxidant, anti-inflammatory, and detoxification enzymes4–7. 
Under physiological conditions, KEAP1 protein binds to NRF2 
and functions as an adaptor protein for cullin 3 (encoded by 
Cul3 in humans) E3 ubiquitin ligase, which polyubiquitinates 
NRF2. Consequently, NRF2 is ubiquitinated and degraded by the  
proteasome4–7. Hence, the transcriptional activity of NRF2 is 
potently inhibited under normal conditions4–7.

KEAP1 contains critical cysteine thiols that react with endogenous 
and exogenous EPs6,8–11. This reaction reduces the ability of KEAP1 
to induce ubiquitination and degradation of NRF26,8–11. After EP 
reaction, NRF2 dissociates from the cytoplasmic complex with 
KEAP1, enters the nucleus, and accumulates there to drive tran-
scription of its target phase II genes, which encode a coordinated 
system of anti-oxidant and anti-inflammatory enzymes. These  
proteins include enzymes that generate the major cellular anti-
oxidant, glutathione (GSH)6,8–11. Thus, NRF2 activators have been 
shown to be anti-inflammatory and neuroprotective at least in part 
via redox regulation6,8–11.

Additionally, NRF2 activators can potently induce coordinated 
expression of genes involved in the autophagy system, includ-
ing p6212–14. In turn, p62 protein then activates the NRF2/ARE  
pathway, representing a positive feedback loop between the 
NRF2/ARE pathway and autophagy network12–14. By simulat-
ing autophagy in this fashion, NRF2 activators can potentially  
remove misfolded proteins and thus suppress several diseases 
associated with abnormal protein conformation12–14. NRF2 activa-
tors have also been suggested to be neuroprotective against Alzhe-
imer’s disease (AD), Parkinson’s disease (PD), and Huntington’s  
disease (HD)6,8–14 on the basis of results in animal models of  
these neurodegenerative disorders.

During oxidative stress, p62 expression is enhanced via an  
NRF2-mediated mechanism. The increased p62 can interfere with 
NRF2/KEAP1 binding and thus results in a positive feedback 
loop, increasing NRF2 activation12–14. The detailed mechanism of  
p62-KEAP1-NRF2 interaction remains contentious, but some  
possible scenarios have been proposed13. For example, p62 has a 
STGE motif in its KEAP1-interacting domain and thus p62 may 
directly bind to KEAP1. The p62 STGE motif may potentially  
compete with the NRF2 ETGE motif, which is essential for  
KEAP1-NRF2 interaction13. When p62 is upregulated by NRF2 
under oxidative stress, p62 then may compete out NRF2 from the 
KEAP1-NRF2 complex, thus allowing NRF2 to translocate into the 
nucleus and activate the ARE in the promoter region of phase II 
genes13.

However, some NRF2 activators that upregulate p62, such 
as arsenic, may result in impairment of autophagy, and p62  
activation of NRF2 often occurs in the setting of autophagy  
impairment13. Thus, increased p62 can be associated with impair-
ment of autophagy rather than facilitation12. Although NRF2  
controls the expression of several autophagy-related genes14, 
the functional linkage between NRF2 and these putative tar-
get autophagy genes under physiological or pathophysiological  
conditions remains to be determined.

NRF2 manifests both positive and negative attributes with respect 
to cancer and other diseases15,16. On the one hand, NRF2 activators  
have been proposed for the treatment of various forms of  
cancer6,8,9. In contrast, other recent investigations based on genetic 
findings suggest that NRF2 activation can promote neoplasia, pos-
sibly by enhancing resistance to cancer treatment15,16. For example,  
gain-of-function mutations in NRF2 and loss-of-function muta-
tions in KEAP1 have been encountered in tumors of the digestive 
tract15,16. Further investigation is merited to clarify the biological 
significance of NRF2 activation in cancer15,16.

Cysteine-mediated regulation of KEAP1
Among the cysteine thiols of KEAP1 protein, the most character-
ized reactive thiols are Cys151, Cys273, and Cys288, and they 
have differential roles in the activation of the KEAP1/NRF2 path-
way. The major cysteine residues of KEAP1 that react with EPs 
are Cys151, Cys273, and Cys288. Each of these cysteine thiols 
may differentially regulate phase II anti-oxidant gene expression  
stimulated by the KEAP1/NRF2 transcriptional pathway17,18.

For example, KEAP1 Cys151 contains the most important thiol 
for activation of the KEAP1/NRF2 transcriptional pathway18,19. 
Located in the N-terminal BTB domain, Cys151 may be very  
reactive because of a stretch of basic amino acids in the α5 heli-
cal structure19,20. One model suggests that covalent modification 
of Cys151 causes dissociation of the KEAP1/Cullin3 heterodimer, 
resulting in inhibition of NRF2 ubiquitination19,20. Reaction of 
Cys151 with EPs is thus critical for inhibition of NRF2 degrada-
tion mediated by KEAP1-dependent degradation of NRF219–21. 
In contrast, mutation of KEAP1 Cys151 produces constitutive  
inhibition of NRF2 under both physiological and pathologi-
cal conditions in cell-based assays22,23. Additionally, ubiquitina-
tion and degradation of NRF2 require cysteine residues 273 and  
288 of KEAP1. Previous studies of mutations revealed that sub-
stitution of Cys273 or Cys288 prevented KEAP1 from repressing 
NRF2 activity under homeostatic conditions24–26.

DMF/MMF/MEF
Dimethyl fumarate
Dimethyl fumarate (DMF) is currently approved for clini-
cal use by the US Food and Drug Administration (FDA) and the  
European Medicines Agency for the treatment of relapsing multi-
ple sclerosis (MS)27,28. DMF is an alkylating agent, similar to the 
classic NRF2 activator sulforaphane, which can non-specifically 
and covalently modify nucleophilic groups in proteins, including  
cysteine thiols29,30. As a result, serious side effects can occur with 
this type of drug. For example, a 30% decline in lymphocyte  
counts has been reported after administration of DMF, which 
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may predispose to infection31–34. DMF has two congeners: mono-
methyl fumarate (MMF) and monoethyl fumarate (MEF). Recent  
research interest has shifted to MEF and MMF with the hope 
of developing a safer drug than DMF because both of these  
congeners are less electrophilic than DMF35–38. DMF has also  
been shown to react with other thiol targets, which appear to  
predominate over KEAP1, at least in T cells39.

Monoethyl fumarate
DMF and MEF react with disparate KEAP1 thiols, and DMF is 
more reactive toward a larger number of cysteines35–39. MEF 
appears to solely modulate Cys151 on KEAP1 and manifests sig-
nificantly less reaction with other KEAP1 cysteines compared with 
DMF (Figure 1)35,36. On the other hand, DMF induces greater NRF2  
protein accumulation than MEF35,36. Potentially accounting for  
some of its side effects, DMF has also been shown to acutely deplete 
GSH in a concentration-dependent manner32,34,35,39. In contrast, 
MEF maintains GSH levels and, in fact, may produce an increase,  
possibly due to NRF2 stimulation of GSH synthetic enzymes35,36. 
Thus, MEF may prove to be less toxic than DMF35,36.

Monomethyl fumarate
A recent study demonstrates similar therapeutic benefits for DMF 
and its bioactive metabolite MMF in a rat model of PD and brain 
stroke37,38. Despite their similar pharmacological effects in vivo, 
MMF is a less potent NRF2 activator and manifests less toxicity 
in vitro, probably because it manifests orders of magnitude less 
non-specific alkylating capacity than DMF (Figure 2)37,38. The 
discovery of the therapeutic effects of MMF in an experimental 
PD model without substantial non-specific alkylating properties  
compared with DMF suggests that MMF may be a candidate for PD 
and stroke therapeutics37,38. MEF may also potentially be consid-
ered as a therapeutic agent since its alkylating capacity is also low 

like that of MMF35–38. Nonetheless, the lack of specificity of these 
alkylating NRF2 activators with regard to other protein thiol targets 
as well as further consideration of their pharmacokinetic and phar-
macodynamic properties may limit their ultimate usefulness37,38.

Hydroxycarboxylic acid receptor 2 as an alternate target
Other experiments suggest that HCAR2 activation, rather than 
NRF2 activation, may be partially responsible for the beneficial 
action of DMF and MMF in PD and MS models40,41. HCAR2 
is a G protein–coupled receptor whose ligands are hydroxyl- 
carboxylic acids produced from energy metabolism in order 
to sense cellular metabolic status40,41. HCAR2 is expressed in  
a number of immune cells and other cell types40,41. Emerging 
evidence suggests that HCAR2 exerts potentially therapeutic  
anti-inflammatory actions40,41. Along these lines, in Hcar2-/-  
mice, the beneficial effect of DMF in a mouse model of MS 
(autoimmune encephalomyelitis or experimental autoimmune 
encephalomyelitis) is completely abrogated, consistent with the 
notion that HCAR2 plays an important role in the effect of DMF40,41.  
Anti-inflammatory effects of DMF in the brain have also been 
posited to be NRF2-dependent, at least in part42. If HCAR2 is  
indeed a major therapeutic target of DMF in AD, PD, and HD, 
then the ketone body ß-hydroxybutyrate, a known HCAR2 lig-
and, may prove to be a more suitable therapeutic than DMF,  
MEF, or MMF43,44. Hence, additional thiol targets of DMF  
and related compounds are a major focus of current studies.

Pro-electrophilic drugs as pathologically activated 
therapeutic drugs
Pro-electrophilic drugs
Redox imbalance (for example, excessive oxidation over reduc-
tion) is believed to contribute to a variety of diseases1. Prior use 
of EPs to improve redox balance by activating transcriptional  

Figure 1. DMF and MEF modulate distinctive repertoires of cysteine thiols on KEAP1. Although DMF reacts with many cysteine residues, 
including Cys151, Cys273, and Cys288, MEF appears to react preferentially with Cys151. DMF has proven to be more toxic than MEF, 
although DMF and MEF both activate NRF2, at least in vitro35,36. DMF, dimethyl fumarate; KEAP1, Kelch-like ECH-associated protein 1; MEF, 
monoethylfumarate; NRF2, nuclear factor erythroid 2-related factor 2.
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Figure 2. Discrepancy between in vivo and in vitro actions of DMF and MMF in murine PD models. DMF and MMF show comparable 
protective action in an in vivo rodent model of PD. In contrast, MMF is far less potent than DMF in terms of in vitro NRF2 activation37,38. There 
are at least two possible explanations for this discrepancy. One possible interpretation is that DMF and MMF display differential ADME/T 
(absorption, distribution, metabolism, excretion, toxicity) parameters in vivo37,38. Another possible explanation is that reaction with HCAR2 
or another target mediates the protective effects by DMF37,38. DMF, dimethyl fumarate; HCAR2, hydroxycarboxylic acid receptor 2; MMF, 
monomethylfumarate; NRF2, nuclear factor erythroid 2-related factor 2; PD, Parkinson’s disease.

systems against oxidative stress has been met with mixed success, 
largely because of side effects due to the indiscriminate action of 
EPs2. A newer approach uses pro-drug forms of EPs, known as  
pro-electrophilic drugs (PEDs), such as carnosic acid (CA), an 
active ingredient in the herb rosemary (Rosmarinus officinalis)45–50. 
Additional compounds of interest include zonarol (ZO) and iso-
zonarol (IZ), which are found in seaweed (Dictyopteris undulata)  
(Figure 3)51,52, as well as related synthetic chemicals53,54. Impor-
tantly, these PEDs do not react directly with cysteine thiols.  
However, oxidative stress triggers their conversion from hyd-
roquinone to quinone, representing an active EP. The EP then 
triggers KEAP1/NRF2/ARE transcriptional activity, resulting  
in the production of anti-oxidant/anti-inflammatory phase II 
enzymes45,49.

The combined efforts of the authors’ research groups have led to 
the development of PEDs that are activated by the very oxida-
tive stress that they then serve to counteract. This type of action 
has been deemed a pathologically activated therapeutic or ‘PAT’ 
drug55,56—a drug that is active only at the site where it is needed 
and thus represents a gentle tap or pat compared with more indis-
criminant reagents that are reactive throughout the body, such as 
more conventional EPs45,49. Since PEDs are not activated in nor-
mal cells, they do not indiscriminately react with other thiols such 
as GSH; moreover, the cells undergoing oxidative stress in which 
PEDs are converted to EPs already display depleted levels of GSH; 
hence, the EP generated from the PED does not encounter the 
normally high levels of GSH with which to react45,49. This type of 
action may help to minimize the side effects of PEDs while retain-
ing beneficial activity48,49. Thus, the anti-oxidant NRF2-activating 

therapy of PEDs is targeted only to cells ‘in need’. Additionally, 
owing to their stimulation of a transcriptional pathway producing 
endogenous anti-oxidant enzymes, PEDs exhibit a more sustained  
and amplified action than standard anti-oxidant compounds45,48. 
Accordingly, our recent neurobehavioral and histological  
readouts suggest that CA, acting as a PED, and administered  
orally, transnasally, or parenterally in vivo, can be an effec-
tive treatment for AD and other neurologic conditions in rodent  
models46,47,50.

Inhibitors of protein-protein interaction
KEAP1-NRF2 PPI
NRF2 has a Neh2 domain in its N-terminal regulatory region,  
which is important for binding to the Kelch-DC domain of the 
C-terminus of KEAP117–20. Peptides capable of blocking the  
KEAP1-NRF2 protein-protein interaction (PPI) have been identi-
fied and proven to be protective in models of global ischemia57,58. 
Importantly, this non-covalent mechanism of action is com-
pletely different from electrophilic NRF2 activators, which react  
at Cys151 of the N-terminal domain of KEAP1 in a covalent 
manner17–20. Recent structural and functional studies have further  
illuminated the details of the non-canonical mechanism of NRF2 
activation17–20. The Kelch-DC domain of KEAP1 binds to NRF2 via 
either its DLG or ETGE motif; both of these motifs are thought 
to be the major targets of non-covalent inhibitors of KEAP1-
NRF2 PPI59,60. In a hinge-and-latch model of this interaction, the  
ETGE motif has a higher affinity for KEAP1 than the DLG  
motif, which causes the latter to associate and dissociate from 
KEAP1 in a dynamic manner, resulting in oscillations between a 
‘closed’ (associated) and ‘open’ (dissociated) conformation59,60.
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Figure 3. Activation of the KEAP1/NRF2 pathway by PEDs (PED 1, CA; PED 2, ZO). The PED compounds CA (with adjacent or “ortho-” 
position hydroxyl groups)46,47,49,50 and ZO (with hydroxyl groups located directly across the ring, in the “para-” position)51,52 become oxidized 
to the electrophilic quinone form. CA and ZO quinones undergo nucleophilic attack by a critical KEAP1 cysteine thiol. The reaction forms a 
KEAP1-CA or KEAP1-ZO adduct. This results in release of NRF2 from KEAP1/NRF2 complexes, accumulation of NRF2 in the nucleus, and 
subsequent transcriptional activation of phase II enzymes45,46. Phase II anti-oxidant and anti-inflammatory enzymes reduce reactive oxygen 
species and thus improve the resilience of neurons. Importantly, the oxidation of hydroquinone (PED) to quinone (EP) is triggered by oxidative 
stress, which is then combatted by this transcriptional activity, as described in the text45,49. CA, carnosic acid; EP, electrophile; KEAP1, Kelch-
like ECH-associated protein 1; NRF2, nuclear factor erythroid 2-related factor 2; PD, Parkinson’s disease; PED, pro-electrophilic drug; ZO, 
zonarol.

KEAP1-NRF2 PPI inhibitors
Non-electrophilic NRF2 activators have been proposed as  
therapeutic agents for chronic neurodegeneration and inflam-
mation because of their potentially lower incidence of side effects  
compared with EPs (Figure 4)59,60. Using peptide displacement 
for high-throughput screening, small molecules have been identi-
fied that interfere with KEAP1-NRF2 binding57–60. Accordingly, 
KEAP1-NRF2 PPI inhibitors are being studied as NRF2 activators 
in several disease models6,61,62. Taking advantage of this molecu-
lar mechanism of action should allow chemists to optimize such 
agents for the development of non-covalent NRF2 activators63–67. 
To date, many studies of KEAP1-NRF2 PPI inhibitors have 
focused on the KEAP1-NRF2 ETGE motif59,60. However, the affin-
ity of this binding reaction is very high and difficult to inhibit59,60.  
In contrast, as alluded to above, the KEAP1-NRF2 DLG interac-
tion is weaker and has rapid association and dissociation rates59,60.  
Thus, inhibition of binding at the KEAP1-NRF2 DLG may  
represent an improved approach to further develop effective 
KEAP1-NRF2 PPI inhibitors59,60. Another possible target is  

the p62 STGE motif, which can compete with the NRF2 ETGE 
motif for binding to KEAP112–14.

BTB and CNC homology 1 inhibitors
Yet another mechanism for ARE-mediated gene regulation involves 
BACH1, which functions as an inhibitor of NRF2-mediated tran-
scription by binding to small musculoaponeurotic fibrosarcoma 
proteins (sMAFs) and occupying ARE promoter elements68–71. 
As shown in Figure 4, the basic concept of BACH1 inhibition is  
competition between BACH1 and NRF2 for dimer formation with 
sMAFs on ARE-containing promoters68–71. In essence, BACH1 
inhibitors serve to inhibit the action of an inhibitor, resulting in 
NRF2 activation. sMAFs are leucine zipper–type transcription fac-
tors containing basic regions72,73. The basic region of sMAF family 
members contributes to the distinct DNA-binding mode of this class 
of proteins72,73. sMAFs form homodimers as well as heterodim-
ers with NRF2 or BACH172,73. Because NRF2 and BACH1 cannot 
bind to DNA as monomers, sMAFs are indispensable partners in  
order to bind to ARE-containing promotors. In contrast, sMAF 
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homodimers basically act as transcriptional repressors72,73. Addi-
tionally, binding of heme to BACH1 will displace this repressor, 
allowing it to be degraded68–71. As expected, BACH1 gene knock-
out results in activation of the KEAP1/NRF2 pathway and pro-
tection in various disease models68–71. Hence, the development of  
drugs that bind BACH1 could also contribute to activation of 
NRF2-dependent phase II enzymes and prove therapeutic in the 
future70,74.

Summary
In conclusion, new forms of both covalent and non-covalent NRF2 
activators have recently shown promise as protectants from neu-
rologic diseases; they may also be beneficial for other cell types 
affected in systemic diseases, including type 2 diabetes mellitus 
and possibly even normal aging. The new compounds offer hope 
of efficacy without indiscriminately reacting with protein thiols, 
which contribute to the multiple side effects observed with the older 
EP-like drugs, including curcumin and DMF. Recently, excite-
ment has been generated over the possibility of developing non- 
covalent NRF2 activators. However, the pathologically targeted 
covalent-reacting PED, CA, appears on the ‘generally regarded as 
safe’ (GRAS) list approved by the FDA and has been consumed 
in large quantities by humans for over two thousand years without 
incident. It is not yet clear whether the newer non-covalent NRF2 
activators will be as well tolerated by humans and avoid systemic 
toxicity. Considerable further discovery, optimization, and clinical 
testing will be needed to bring these new drugs to market for neuro-
logical as well as systemic diseases.
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Figure 4. Two types of PPI inhibitors can activate NRF2. NRF2-KEAP1 PPI inhibitors directly inhibit binding of NRF2 and KEAP1 proteins 
and result in NRF2 release, translocation into the nucleus, and activation of phase II gene transcription59,60. Under physiological conditions, 
BACH1 constitutively inhibits NRF2-mediated transcriptional activity68–71. BACH1 inhibitors bind to BACH168–71. Thus, BACH1 inhibitors can 
activate transcription of NRF2-dependent phase II genes74. In this figure, the “X” designates a partner of sMAFs72,73. X and sMAFs can form 
homo- or hetero-dimers and bind to ARE elements72,73. When “X” is a sMAF or BACH1, phase II enzymes are not induced; in contrast, when 
“X” is NRF2, phase II enzymes are induced72,73. ARE, anti-oxidant-response element; BACH1, BTB and CNC homology 1; KEAP1, Kelch-like 
ECH-associated protein 1; NRF2, nuclear factor erythroid 2-related factor 2; PPI, protein-protein interaction; sMAF, small musculoaponeurotic 
fibrosarcoma protein.
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