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Agricultural production and quality are adversely affected by various abiotic stresses

worldwide and this will be exacerbated by the deterioration of global climate. To

feed a growing world population, it is very urgent to breed stress-tolerant crops with

higher yields and improved qualities against multiple environmental stresses. Since

conventional breeding approaches had marginal success due to the complexity of

stress tolerance traits, the transgenic approach is now being popularly used to breed

stress-tolerant crops. So identifying and characterizing the critical genes involved in

plant stress responses is an essential prerequisite for engineering stress-tolerant crops.

Far beyond the manipulation of single functional gene, engineering certain regulatory

genes has emerged as an effective strategy now for controlling the expression of many

stress-responsive genes. Transcription factors (TFs) are good candidates for genetic

engineering to breed stress-tolerant crop because of their role as master regulators

of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB,

WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some

TF genes have also been engineered to improve stress tolerance in model and crop

plants. In this review, we take five large families of TFs as examples and review the recent

progress of TFs involved in plant abiotic stress responses and their potential utilization to

improve multiple stress tolerance of crops in the field conditions.

Keywords: abiotic stress, transcription factors, transgenic plant, stress-responsive, stress tolerance

INTRODUCTION

Agricultural production and quality are adversely affected by a broad range of abiotic stresses
including drought, salinity, heat, and cold. Especially when these stresses occur in combination,
it can have devastating effects on plant growth and productivity. It is estimated that more than 50%
of worldwide yield loss for major crop are caused by abiotic stresses (Shao et al., 2009; Ahuja et al.,
2010; Lobell et al., 2011). According to the current climate prediction models, the deterioration of
global climate will inevitably cause an increased frequency of drought, heat wave, and salinization
(Easterling et al., 2000; Ipcc, 2007, 2008). This means that agricultural productivity will face
a greater challenge in fighting against environmental stresses. Meanwhile, the growing world
population will reach close to ten billion by the year 2050 and then almost two times of current
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agricultural productivity is needed to feed the large population
(Bengtsson et al., 2006; United Nations, 2015). Moreover, such
a tremendous increase of crop productivity must be achieved
with no increase in arable land and in the face of multiple
environmental stresses. Where is the way to solve this problem?
Many scholars and experts worldwide have reached a consensus
that breeding stress-tolerant crops with higher yields and
improved qualities against multiple environmental stresses is an
effective strategy, as well as one of the greatest challenges faced by
modern agriculture (Takeda and Matsuoka, 2008; Newton et al.,
2011; Liu J.-H. et al., 2014). In the past few decades, a great
deal of efforts has been devoted to breeding crop cultivars with
various stress-tolerant traits. Two main approaches have been
employed to this process. One is traditional breeding methods
such as wide-cross hybridization and mutation breeding, which
often brings about unpredictable results. Another is modern
transgenic technology by introducing novel exogenous genes or
altering the expression levels of endogenous genes to improve
stress tolerance. Since conventional breeding approaches have
marginal success due to the complexity of stress tolerance
traits, the transgenic approach is now being popularly used to
develop transgenic crops tolerant to abiotic stresses (Yamaguchi
and Blumwald, 2005). Therefore, deciphering the molecular
mechanisms by which plants perceive and transduce stress
signals to cellular machinery to initiate adaptive responses is
an essential prerequisite for identification of the key genes
and pathways to engineer stress-tolerant crop plants (Ray
et al., 2009; Heidarvand and Amiri, 2010; Sanchez et al.,
2011).

Substantial progress has been made to unravel the molecular
mechanisms of abiotic stress responses in plants by means of
high throughput sequencing and functional genomics tools.
To date, a number of critical genes involved in abiotic stress
tolerance have been identified and validated, which are generally
classified into two types: functional genes and regulatory
genes (Shinozaki et al., 2003). The former encodes important
enzymes and metabolic proteins (functional proteins), such
as detoxification enzyme, water channel, ion transporter, heat
shock protein (HSP), and late embryogenesis abundant (LEA)
protein, which directly function to protect cells from stresses.
The latter encodes various regulatory proteins including TFs,
protein kinases and protein phosphatases, which regulate signal
transduction and gene expression in the stress responses.
Although there have been numerous studies on functional
genes, most of these studies pay more attention to single gene
or several genes encoding enzymes and protective proteins
by imposing a given stress. Due to the complexity of stress
responses regulated by multi-genes, little success has been
achieved by a single functional gene approach to significantly
enhance plant stress tolerance (Mittler and Blumwald, 2010;
Varshney et al., 2011). Given the complexity and variability
of field conditions where crops are often simultaneously
subjected to multiple abiotic stresses or some in combination
(Ahuja et al., 2010), more and more studies have paid
close attention to regulatory genes and found that some
regulatory genes including TFs play essential roles in multiple
abotic stress responses by regulating a large spectrum of

downstream stress-responsive genes. Thus, genetically modifying
the expression of certain regulatory genes can greatly influence
plant stress tolerance because it mimics or enhances stress
signals to regulate many downstream stress-responsive genes
at a time (Century et al., 2008; Yang et al., 2011). Among the
regulatory genes, stress-responsive TFs have attracted particular
attention due to their important roles in plant stress responses
(Chen and Zhu, 2004; Xu et al., 2008a). In this paper,
we mainly review the recent progress of TFs involved in
plant abiotic stress responses and their potential utilization
to improve multiple stress tolerance of crops in the field
conditions.

THE GENERIC SIGNALING PATHWAY
INVOLVED IN PLANT ABIOTIC STRESS
RESPONSES

As sessile organisms, plants have evolved various defense
mechanisms at multiple levels to respond to unfavorable
environment including diverse abiotic stresses. As stated before,
it is imperative to dissect regulatory mechanisms of stress
response and identify the key regulators involved in this
process to breed or genetically engineer stress-tolerant plants.
With the availability of plant genomes and various omics
tools including genomics, transcriptomics, and proteomics
tools, major progress has been made in deciphering the
stress signaling pathways and relevant components involved
in plant abiotic stress response, but there is still much more
to be determined (Liu J.-H. et al., 2014). According to
our current knowledge about stress signaling pathways, the
generic signaling pathway for any given abiotic stress can be
divided into the following major steps: signal perception, signal
transduction, stress responsive gene expression, in turn the
activation of physiological, and metabolic responses (Chaves
et al., 2003; Yamaguchi-Shinozaki and Shinozaki, 2006; Pérez-
Clemente et al., 2013). In this process, plant cells first
perceive stress stimulus through sensors or receptors located
in the cell wall or membrane. Then the captured extracellular
signals are converted into intracellular ones through second
messengers including calcium ions, inositol phosphate, reactive
oxygen species (ROS), cyclic nucleotides (cAMP and cGMP),
sugars, and nitric oxide. Subsequently, these second messengers
initiate the corresponding signaling pathways to transduce
the signals (Chaves et al., 2009; Bhargava and Sawant, 2013).
In many signal transduction pathways, the phosphorylation,
and dephosphorylation of proteins mediated by protein kinase
and phosphatases, respectively, is an important and effective
mechanism for signal relay (Singh et al., 2003). For example,
the mitogen activated protein kinases (MAPKs) pathway and
calcium-dependent protein kinases (CDPKs) pathway are known
to be involved in plant abiotic stress responses (Schaller et al.,
2008; Huang G.T. et al., 2012). At the end of the phosphorylation
cascade, TFs are activated or suppressed by protein kinases
or phosphatases, and they further bind specifically to cis-
elements in the promoters of stress-responsive genes and regulate
their transcription (Danquah et al., 2014). Meanwhile, TFs
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FIGURE 1 | Generic signaling pathway involved in plant abiotic stress responses.

themselves are regulated at the transcription level by other
upstream components (Hirayama and Shinozaki, 2010) and
also subjected to various tiers of modifications at the post-
transcription level, such as ubiquitination and sumoylation,
thus forming a complex regulatory network to modulate the
expression of stress responsive genes, which in turn determine
the activation of physiological and metabolic responses (Dong
et al., 2006; Miura et al., 2007; Mizoi et al., 2013). All the
components mentioned above, from the foremost receptors
to the downstream functional genes, constitute the generic
pathway for plant abiotic stress signal transduction (Figure 1).
As one of the most important regulators, TFs function as
terminal transducers and directly regulate the expression of an
array of downstream genes by interacting with the specific cis-
elements in their promoter region (Yamaguchi-Shinozaki and
Shinozaki, 2006). In the last few decades, considerable research
has been conducted to identify and characterize various TFs
involved in plant abiotic stress responses either in abscisic acid
(ABA)-dependent pathway or ABA-independent pathway, such
as AP2/EREBP, MYB, WRKY, NAC, bZIP, and so on (Vinocur
and Altman, 2005; Umezawa et al., 2006; Golldack et al., 2011).
Numerous efforts have been also made to improve plant stress
tolerance by engineering these TF genes, and some promising
results have been reported in succession (Table 1). In the
following sections, we mainly summarize current information
on several major TF families including their features, roles, and
biotechnological uses for improving the abiotic stress tolerance
in plants.

AP2/EREBP TRANSCRIPTION FACTORS

AP2/ERFBP family includes a large group of plant-specific TFs
and is characterized by the presence of the highly conserved
AP2/ethylene-responsive element-binding factor (ERF) DNA-
binding domain that directly interact with GCC box and/or
dehydration-responsive element (DRE)/C-repeat element (CRT)
cis-acting elements at the promoter of downstream target genes
(Riechmann and Meyerowitz, 1998). AP2/ERFBP TFs perform
a variety of roles in plant developmental processes and stress
responses, such as vegetative and reproductive development,
cell proliferation, abiotic and biotic stress responses, and plant
hormone responses (Nakano et al., 2006; Licausi et al., 2010;
Sharoni et al., 2011). Presently, a multitude of AP2/ERFBP
members have been identified in various species by means of
genome-wide analysis, such as 145 in Arabidopsis (Riechmann
and Meyerowitz, 1998), 163 in rice (Sharoni et al., 2011), 200
in poplar (Zhuang et al., 2008), 291 in Chinese cabbage (Song
et al., 2013), 171 in foxtail millet (Lata et al., 2014), 116 in moso
bamboo (Wu et al., 2015). Based on the number and similarity of
AP2/ERF domains, these AP2/EREBP TFs are grouped into four
major subfamilies: AP2 (Apetala 2), RAV (related to ABI3/VP1),
DREB (dehydration-responsive element-binding protein), and
ERF (Sakuma et al., 2002; Sharoni et al., 2011). Among these, both
ERF and DREB subfamilies have been extensively studied due to
their involvement in plant responses to biotic and abiotic stresses.

The DREB subfamily can regulate the expression of multiple
dehydration/cold-regulated (RD/COR) genes by interacting with

Frontiers in Plant Science | www.frontiersin.org 3 February 2016 | Volume 7 | Article 67

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wang et al. Recent Advances Utilizing Transcription Factors

TABLE 1 | Some examples of transgenic plants over-expressing transcription factor genes in recent years.

Family Gene Donor Acceptor Enhanced tolerance References

AP2/ERFBP LcDREB3a Leymus chinensis Arabidopsis Drought and salinity↑ Peng et al., 2013

LcDREB2 Leymus chinensis Arabidopsis Salinity↑ Peng et al., 2013

LcERF054 Lotus corniculatus Arabidopsis Salinity↑ Sun et al., 2014

VrDREB2A Vigna radiata Arabidopsis Drought and salinity↑ Chen et al., 2015

GmERF3 Glycine max Tobacco Drought and salinity↑ Zhang et al., 2009

GmERF7 Glycine max Tobacco Salinity↑ Zhai et al., 2013

SsDREB Suaeda salsa Tobacco Drought and salinity↑ Zhang X. et al., 2015

JERF3 Solanum lycopersicum Rice Drought↑ Zhang et al., 2010

OsDREB2A Oryza sativa Rice Drought and salinity↑ Mallikarjuna et al., 2011

OsERF4a Oryza sativa Rice Drought↑ Joo et al., 2013

AtDREB1A Arabidopsis Rice Drought↑ Ravikumar et al., 2014

TaERF3 Triticum aestivum Wheat Drought and salinity↑ Rong et al., 2014

TaPIE1 Triticum aestivum Wheat Cold↑ Zhu et al., 2014

EaDREB2 Erianthus arundinaceus Sugarcane Drought and salinity↑ Augustine et al., 2015

StDREB1 Solanum tuberosum Potato Salinity↑ Bouaziz et al., 2013

MYB AtMYB15 Arabidopsis Arabidopsis Drought and salinity↑ Ding et al., 2009

LcMYB1 Leymus chinensis Arabidopsis Salinity↑ Cheng et al., 2013b

GmMYBJ1 Glycine max Arabidopsis Drought and cold↑ Su et al., 2014

TaMYB3R1 Triticum aestivum Arabidopsis Drought and salinity↑ Cai et al., 2015

TaPIMP1 Triticum aestivum Tobacco Drought and salinity↑ Liu et al., 2011b

SbMYB2 Scutellaria baicalensis Tobacco NaCl, mannitol, and ABA stresses↑ Qi et al., 2015

SbMYB7 Scutellaria baicalensis Tobacco NaCl, mannitol, and ABA stresses↑ Qi et al., 2015

LeAN2 Lycopersicum esculentum Tobacco Chilling and oxidative stresses↑ Meng et al., 2014

LeAN2 Lycopersicum esculentum Tomato Heat↑ Meng et al., 2015

AtMYB44 Arabidopsis Soybean Drought and salinity↑ Seo et al., 2012

OsMYB2 Oryza sativa Rice Drought, cold, and salinity↑ Yang et al., 2012

OsMYB91 Oryza sativa Rice Salinity↑ Zhu et al., 2015

MdSIMYB1 Malus × domestica Apple Drought, cold, and salinity↑ Wang et al., 2014

WRKY AtWRKY28 Arabidopsis Arabidopsis Salinity↑ Babitha et al., 2013

OsWRKY45 Oryza sativa Arabidopsis Drought and salinity↑ Qiu and Yu, 2009

TaWRKY79 Triticum aestivum Arabidopsis Drought↑ Qin et al., 2013

VvWRKY11 Vitis vinifera Arabidopsis Drought↑ Liu et al., 2011a

ZmWRKY33 Zea may Arabidopsis Salinity↑ Li et al., 2013

GhWRKY34 Gossypium hirsutum Arabidopsis Salinity↑ Zhou et al., 2015

GsWRKY20 Glycine soja Arabidopsis Drought↑ Luo et al., 2013

TaWRKY79 Triticum aestivum Arabidopsis Salinity and ionic stress↑ Qin et al., 2013

TaWRKY93 Triticum aestivum Arabidopsis Salinity, drought, and low temperature↑ Qin et al., 2015

TaWRKY10 Triticum aestivum Tobacco Drought and salinity↑ Wang et al., 2013

GhWRKY39 Gossypium hirsutum Tobacco Salinity↑ Shi et al., 2014

BdWRKY36 Brachypodium distachyon Tobacco Drought↑ Sun et al., 2015

ZmWRKY58 Zea may Rice Drought and salinity↑ Cai et al., 2014

MtWRKY76 Medicago truncatula Medicago truncatula Drought and salinity↑ Liu et al., 2016

NAC ANAC019 Arabidopsis Arabidopsis Cold↑ Jensen et al., 2010

ONAC063 Oryza sativa Arabidopsis Salinity and osmotic tolerance↑ Yokotani et al., 2009

GmNAC20 Glycine max Arabidopsis Salinity and freezing tolerance↑ Hao et al., 2011

ZmSNAC1 Zea may Arabidopsis Cold, salinity, and drought↑ Lu et al., 2012

BnNAC5 Brassica napus Arabidopsis Salinity↑ Zhong et al., 2012

(Continued)
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TABLE 1 | Continued

Family Gene Donor Acceptor Enhanced tolerance References

TaNAC67 Triticum aestivum Arabidopsis Cold, salinity, and drought↑ Mao et al., 2014

TaNAC29 Triticum aestivum Arabidopsis Drought and salinity↑ Huang et al., 2015

MLNAC5 Miscanthus lutarioriparius Arabidopsis Drought and cold↑ Yang et al., 2015

TaNAC2a Triticum aestivum Tobacco Drought Tang et al., 2012

AhNAC3 Arachis hypogaea Tobacco Drought↑ Liu et al., 2013

SNAC1 Oryza sativa Wheat Drought and salinity↑ Saad et al., 2013

OsNAP Oryza sativa Rice Cold, salinity, and drought↑ Chen et al., 2014

bZIP ABP9 Zea may Arabidopsis Drought, salinity, and cold↑ Zhang et al., 2011

GmbZIP1 Glycine max Arabidopsis Drought, salinity, and cold↑ Gao et al., 2011

ZmbZIP72 Zea may Arabidopsis Drought and salinity↑ Ying et al., 2012

TabZIP60 Triticum aestivum Arabidopsis Drought, salt, and freezing tolerance↑ Zhang L. et al., 2015

PtrABF Poncirus trifoliata Tobacco Drought↑ Huang et al., 2010

GmbZIP1 Glycine max Tobacco Drought, salinity, and cold↑ Gao et al., 2011

LrbZIP Nelumbo nucifera Tobacco Salinity↑ Cheng et al., 2013a

OsbZIP71 Oryza sativa Rice Drought and salinity↑ Liu C. et al., 2014

DRE/CRT cis-elements (A/GCCGAC) located in the promoters
of RD/COR genes that are responsive to water deficit and low-
temperature, such as COR15A, RD29A/COR78, and COR6.6
(Stockinger et al., 1997; Liu et al., 1998; Lucas et al., 2011).
A lot of DREB-type TFs have been tested in many plants
including Arabidopsis, wheat, tomato, soybean, rice, maize, and
barley (Agarwal et al., 2006; Lata and Prasad, 2011; Mizoi et al.,
2012). According to the variation in some conserved motifs
and biological functions in divergent species, DREB TFs are
further classified into two major subgroups: DREB1/C-repeat-
binding factor (DREB1/CBF) and DREB2, and each of them is
involved in separate signal transduction pathway under abiotic
stresses (Dubouzet et al., 2003). Commonly, DREB1/CBF genes
are involved in low temperature stress responses in Arabidopsis
and rice, while DREB2 genes respond to dehydration, high
salinity and heat shock (Liu et al., 1998; Sakuma et al., 2002; Lucas
et al., 2011). For example, three major DREB1/CBF members in
Arabidopsis, DREB1A/CBF3, DREB1B/CBF1 and DREB1C/CBF2
are rapidly induced in response to cold stress (Stockinger et al.,
1997; Gilmour et al., 1998; Liu et al., 1998; Shinwari et al., 1998).
Over-expressing any one of these three DREB1s/CBFs displayed
significantly improved tolerance to freezing, drought, and high
salinity in transgenic Arabidopsis (Gilmour et al., 1998; Jaglo-
Ottosen et al., 1998; Liu et al., 1998). Further, over-expressing
Arabidopsis DREB1/CBF genes improved freezing tolerance in
oilseed rape (Jaglo et al., 2001) and chilling tolerance in tomato,
tobacco and rice (Tsai-Hung et al., 2002; Kasuga et al., 2004;
Ito et al., 2006). Some DREB1/CBF homologous genes have also
been isolated from many other plant species including tomato,
oilseed rape, wheat, rye, rice, and maize, and some of them have
been used to produce transgenic plants with improved tolerance
to abiotic stress (Jaglo et al., 2001; Dubouzet et al., 2003; Qin
et al., 2004). In contrast, DREB2 genes have been studied in a
limited number of plant species, but the existing studies have
shown that DREB2 genes are also involved in abiotic stress
responses in plants. In Arabidopsis, DREB2A and DREB2B are

major DREB2s induced by dehydration, high salinity, and heat,
whileDREB2C is induced by heat later than them (Liu et al., 1998;
Nakashima et al., 2000; Sakuma et al., 2006b; Lim et al., 2007).
Over-expression of the constitutively active form of AtDREB2A
from Arabidopsis improved the tolerance to drought and osmotic
stress in transgenic Arabidopsis plants (Sakuma et al., 2006a;
Xu et al., 2008b). Over-expression of ZmDREB2A from maize
enhanced drought tolerance in transgenic Arabidopsis plants
(Qin et al., 2007). The transgenic plants harboring GmDREB2
from soybean also showed enhanced tolerance to drought and
high salinity without any growth retardation (Chen et al., 2007),
as was observed in transgenic rice by over-expressingOsDREB2A
under control of stress-inducible RD29A promoter (Mallikarjuna
et al., 2011).

The ERF subfamily is the largest group of the AP2/EREBP
TF family (Dietz et al., 2010) and functions in plant stress
tolerance by regulating the stress-responsive genes through
interacting with the cis-element GCC boxes with core sequence
of AGCCGCC (Ohme-Takagi and Shinshi, 1995; Hao et al.,
1998). An array of ERF genes are induced by various abiotic
stresses, such as drought, high salinity, osmotic stress, and
cold (Xu et al., 2008a). Over-expression of these ERF genes
resulted in improvement of abiotic stress tolerance in transgenic
plants, as summarized in Table 1. It is worth mentioning
that some ERFs function in both biotic and abiotic stress
tolerance, and this is partly due to their involvement in various
hormonal signaling pathways including ethylene, JA, or SA
(Liang et al., 2008). For example, over-expressing TaPIE1 in
wheat significantly enhanced resistance to both pathogen and
freezing stress (Zhu et al., 2014). Over-expressing GmERF3
in tobacco not only enhanced resistance against infection by
pathogen and tobacco mosaic virus (TMV) but also improved
tolerance to high salinity and dehydration (Zhang et al., 2009).
So far, functions of a limited number of ERFs have been well
characterized, but most of ERF family members have yet to be
identified.
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MYB TRANSCRIPTION FACTORS

The MYB TFs are widely distributed in plants and form a large
family characterized by a highly conserved MYB domain for
DNA-binding, which contains from 1 to 4 imperfect repeats
(MYB repeat) at the N-terminus. In contrast, the activation
domain is located at the C-terminus and varies significantly
amongMYBs, leading to versatile regulatory roles ofMYB family.
According to the number of MYB domain repeats, the MYB TFs
are divided into four groups: 1R-MYB (MYB-related type), R2R3-
MYB, R1R2R3-MYB, and 4R-MYB, containing one, two, three,
and four MYB repeats, respectively. Among them, the R2R3-
MYBs are more prevalent in plants (Dubos et al., 2010; Ambawat
et al., 2013; Li et al., 2015). So far, large numbers ofMYBmembers
have been identified in different plant species, such as 198 in
Arabidopsis (Yanhui et al., 2006), 183 in rice (Yanhui et al., 2006),
229 in apple (Cao et al., 2013), 177 in sweet orange (Hou et al.,
2014), 209 in foxtail millet (Muthamilarasan et al., 2014).

Numerous MYB TFs have been found to function in many
significant physiological and biochemical processes including cell
development and cell cycle, primary and secondary metabolism,
hormone synthesis and signal transduction, as well as in plant
responses to various biotic and abiotic stresses (Allan et al.,
2008; Dubos et al., 2010; Ambawat et al., 2013). Recently, some
abiotic stress-responsive MYB TFs in Arabidopsis and other
plants have been well summarized by Li (Li et al., 2015). For
example, AtMYB15 improved freezing tolerance by regulating
CBF expression (Agarwal et al., 2006); AtMYB44, AtMYB60, and
AtMYB61 improved drought tolerance by regulating stomatal
movement (Cominelli et al., 2005; Liang et al., 2005; Jung
et al., 2008). Especially, AtMYB96 improved drought tolerance
either by integrating ABA and auxin signals (Seo et al.,
2009) or by activating cuticular wax biosynthesis (Seo et al.,
2011), and also improved freezing and drought tolerance
by regulating a lipid-transfer protein LTP3. This fact shows
that a MYB factor can regulate diverse target genes involved
in various physiological processes under abiotic stresses. In
addition, OsMYB2 from rice was induced by salt, cold, and
dehydration stress. The transgenic plants with over-expressing
OsMYB2 exhibited enhanced tolerance to various stresses by

the alteration of expression levels of numerous genes involving
diverse functions in stress response (Yang et al., 2012). Salt and
freezing tolerance in Arabidopsis was significantly enhanced by
over-expressing either GmMYB76 or GmMYB177 from soybean
(Liao et al., 2008).

WRKY TRANSCRIPTION FACTORS

The WRKY family is also extensively distributed in plants and
contains many members. WRKY TFs are characterized by the
presence of one or two highly conserved WRKY domains of
about 60 amino acid residues, which contains a conserved
WRKYGQK motif at the N-terminus and a C2H2 or C2HC
zinc-finger motif at the C-terminus The WRKY domains can
specifically bind to W-box cis-elements with a core sequence
of TTGACC/T, located at the promoters of many target genes.
According to the number of WRKY domains and the feature of

the zinc finger motif, the WRKY TFs can be categorized into
three groups. Group I members contain two WRKY domains
and a C2H2 zinc-finger motif, whereas group II and III members
contain one WRKY domain with a C2H2 and C2HC zinc-finger
motif, respectively (Eulgem et al., 2000; Ulker and Somssich,
2004; Pandey and Somssich, 2009; Rushton et al., 2010). Since
the cloning of the first cDNA encoding a WRKY protein (SPF1)
from sweet potato (Ishiguro and Nakamura, 1994), an increasing
number of WRKY TFs have been identified in various plants,
such as 74 in Arabidopsis (Ulker and Somssich, 2004), 102 in
rice (Wu et al., 2005), 104 in poplar (He et al., 2012), 86 in
Brachypodium distachyon (Wen et al., 2014), 182 in soybean
(Bencke-Malato et al., 2014), and 116 and 102 genes in two
different species of cotton (Dou et al., 2014).

WRKY TFs have been shown to participate in various
processes in plants, including plant growth, seed development,
leaf senescence, and responses to biotic and abiotic stresses
(Rushton et al., 2010). Accumulating evidence has demonstrated
that WRKY TFs play key roles in plant responses to a variety
of abiotic stresses such as drought, salt, heat, cold, and osmotic
pressure, and these topics have been extensively reviewed recently
(Chen et al., 2012; Rushton et al., 2012; Tripathi et al., 2014;
Banerjee and Roychoudhury, 2015). Over-expression of some
stress-responsive WRKY genes showed enhanced tolerance to
abiotic stresses in transgenic plants. For example, transgenic
rice plants harboring OsWRKY11 gene showed significant heat
and drought tolerance (Wu et al., 2009). Transgenic Arabidopsis
plants over-expressing GmWRKY21 gene exhibited improved
tolerance to cold stress, while over-expressing GmWRKY54
gene improved tolerance to drought and salt stress (Zhou
et al., 2008). Transgenic Arabidopsis plants over-expressing
VvWRKY11 improved to tolerance mannitol-induced osmotic
stress (Liu et al., 2011a). Although someWRKYs in several plants
have been functionally characterized, the vast majority ofWRKYs
inmany plants, especially in non-model plants, are far from being
functionally elucidated.

NAC TRANSCRIPTION FACTORS

Like the transcription factor families mentioned above, the NAC
TFs also comprise a large plant-specific superfamily present in
a wide range of plant species. The typical features of a NAC
TF contain a highly conserved NAC domain in the N-terminal
region and a variable transcriptional regulatory region in the
C-terminal region. The NAC domain is associated with DNA
binding, nucleus-oriented localization, and the formation of
homodimers or heterodimers with other NAC proteins, while the
transcriptional regulatory functions as a transcriptional activator
or repressor (Olsen et al., 2005; Puranik et al., 2012). NAC TFs
can regulate the transcription of downstream target genes by
interacting with NAC recognition sequence (NACRS) with the
CACG core-DNA binding motif in the promoter of these genes.
NAC TFs have been found to participate in various processes
including flower development, formation of secondary walls and
cell division, shoot apical meristem formation, leaf senescence,
as well as biotic and abiotic stress responses (Olsen et al., 2005;
Tran et al., 2010; Nakashima et al., 2012; Nuruzzaman et al., 2013;

Frontiers in Plant Science | www.frontiersin.org 6 February 2016 | Volume 7 | Article 67

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wang et al. Recent Advances Utilizing Transcription Factors

Banerjee and Roychoudhury, 2015). To date, a lot of putative
NAC TFs have been identified in many sequenced species at
genome-wide scale, such as 117 in Arabidopsis and 151 in rice
(Nuruzzaman et al., 2010), 152 in soybean (Le et al., 2011),
204 in Chinese cabbage (Liu T.K. et al., 2014), 152 in maize
(Shiriga et al., 2014), tomato (Su et al., 2015). Moreover, quite
a lot of them have been found to be involved in abiotic stress
responses. For instance, 33 NAC genes changed significantly in
Arabdopsis under salt stress (Jiang and Deyholos, 2006), 40 NAC
genes changed under drought or salt stress in rice (Fang et al.,
2008), 38 NAC genes changed in soybean under drought stress
(Le et al., 2011), 32 NAC genes responded to at least two kinds of
treatments in Chrysanthemum lavandulifolium (Huang H. et al.,
2012). These stress-responsive NAC genes showed differential
expression patterns such as tissue-specific, developmental stage-
or stress-specific expression, indicating their involvement in the
complex signaling networks during plant stress responses. Some
of these stress-responsiveNAC genes have been over-expressed in
Arabidopsis, rice and other plants and displayed positive effects,
summarized in Table 1.

bZIP TRANSCRIPTION FACTORS

The basic leucine zipper (bZIP) family contains a conserved bZIP
domain which is composed of a highly basic region for nuclear
localization and DNA binding at the N-terminus and a leucine-
rich motif for dimerization at the C-terminus (Landschulz et al.,
1988; Hurst, 1994). Like other TFs, the bZIP TFs not only play
pivotal roles in developmental processes but also respond to
various abiotic stresses such as drought, high salinity, and cold
stresses (Jakoby et al., 2002). Now, manymembers of the bZIP TF
family have been identified or predicted at genome-wide level in
some species. For example, it has been reported 75 in Arabidopsis
(Jakoby et al., 2002), 89 in rice (Nijhawan et al., 2008), 125 in
maize (Wei et al., 2012), 89 in barley (Pourabed et al., 2015), 55 in
grapevine (Liu J. et al., 2014), 96 in Brachypodium distachyon (Liu
and Chu, 2015). However, only a small portion of bZIP TFs has
been well studied and most studies on their involvement in stress
responses have shown that bZIP TFs are induced by ABA and
regulate the expression of stress-related genes in ABA-dependent
manner through interaction with specific ABA-responsive cis-
acting elements (ABRE) in their promoter region (Uno et al.,
2000; Kim et al., 2006; Zou et al., 2008). A lot of efforts have
been made to improve abiotic stress tolerance in transgenic
plants by over-expressing some stress-responsive bZIP genes
and some successful example have been achieved, as listed in
Table 1.

CONCLUSIONS AND PERSPECTIVES

Taking five large families of TFs as examples, this review
emphasizes the promising roles of TFs as tools to improve plant
responses to multiple abiotic stresses. In addition to the above-
mentioned several TF families, there are still other TF families
such as DNA binding with one finger (Dof) TFs, basic helix-
loop-helix (bHLH) TFs, homeodomain-leucine zipper (HD-Zip)
TFs, heat shock TFs (HSFs), etc. How to select the key TFs

in such a huge gene families and fully display its potential
is still an important issue before us. Although a great deal
of information about TFs has been accumulated on their
involvement in response to diverse abiotic stresses and a good
number of promising candidate TF genes have been validated,
but there are still some problems to be solved. First, functional
redundancy between different TF members may hinder the
dissection of the functions of an individual member. Second,
most of transgenic studies based on TFs focused on plant growth
and tolerance to a given stress at a given developmental stage
rather than whole stage. Moreover, the evaluation of transgenic
plants was conducted in controlled laboratory or greenhouse
conditions rather than field conditions. Third, the constitutive
over-expression of some TF genes may improve the stress
tolerance, but occasionally lead to negative effects in transgenic
plants such as dwarfing, late flowering, and lower yields. Finally,
the complete regulation mechanism of individual transcription
factor including its upstream and downstream co-regulators, as
well as their interactions remains largely unknown.

Abiotic stress response in plants is an extremely complicated
process because of the huge gene families and the complex
interactions between TFs and cis-elements on the promoters of
target genes. Moreover, one transcription factor may regulate a
vast array of target genes with the corresponding cis-elements
on the promoters, whereas one gene with several types of cis-
elements may be regulated by different families of TFs. Thus, the
stress-responsive TFs not only function independently but also
cross-talk between each other in response to various abiotic stress
responses, which indicates the complexity of signaling networks
involved in plant stress responses. In the future research, we
should first identify multiple stress-responsive TF genes by
comparing their expression patterns and the identification of
commonly regulated genes which have been proposed to be
required for universal stress responses or represent points of
cross-talk between signaling pathways (Prasch and Sonnewald,
2015). Genetic manipulation of these identified genes should
be a more powerful approach for improving plant tolerance
to multiple stresses than manipulation of individual functional
genes. Then, the selected TF genes should be validated not
only in model plant species but also in crop plants by use
of stress-inducible promoter which can minimize the negative
effects caused by over-expressing some TF genes. Furthermore,
the critical field trials are required to evaluate the transgenetic
plants, especially focusing on their growth and tolerance in the
whole life period. which is a necessary step in many strategies
to develop stress-tolerant crops. Taken together, we still need
to struggle for a complete understanding the precise regulatory
mechanisms involved in plant abiotic stress responses, which
helps to obtain the promising candidate TF genes for breeding
multiple abiotic stress-tolerant crops with better yields and
qualities.
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