REVIEW

Recent advances in vanadium pentoxide (V_2O_5) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives

Top Khac Le, (**b***^a Phuong V. Pham, (**b**^b Chung-Li Dong, (**b**^c Naoufal Bahlawane, (**b**^d Dimitra Vernardou, (**b**^e Issam Mjejri, ^f Aline Rougier (**b**^f and Sok Won Kim (**b***^a)

Smart multifunctional V_2O_5 is an appealing oxide for energy-saving and energy-storage applications. This review article comprehensively analyzes its most recent advances and applications. The unique electronic structure of V_2O_5 with three bands triggers peculiar smart optical properties and multi-color appearance. The colors and optical characteristics of pristine V_2O_5 films are affected by the processing growth and conditions. The multi-chromism in V_2O_5 can be controlled by various external stimuli: applied voltage, electrochromic gas type, gasochromic; light source, photochromic; and temperature, thermochromic. Fundamental comprehension of chromism and "fixed-chromism" has been discussed. Chromism in V_2O_5 is reviewed, and the related advantages, drawbacks, and potential applications are emphasized with a focus on the fundamental aspects. General strategies to enhance the coloration performances of V_2O_5 chromogenic devices (CDs) are discussed. The role of the micro-nanostructural morphologies, growth conditions, doping elements, and hybrid composite structures on smart optical devices for improving the chromic performance is also addressed. The challenges that lie ahead of the commercialization of V_2O_5 -based applied research are presented.

DOI: XX.XXXX/XXXXXXXXX

1. Introduction

The energy demand for heating, air-conditioning, ventilation, and lighting has increased due to climate change and the development of buildings, vehicles, and technology devices. Unfortunately, they all produce more greenhouse-gas emissions and induce global warming and climate change.¹ The energy increase has reached approximately 40% in the EU, 30% in the US, and 30–40% in the world of primary energy.^{2–4} This energy can be reduced using optical devices to prevent and reduce excessive heating and lighting where necessary. Chromogenic devices (CDs) are known for their stimuli-dependent

^c Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui 25137, Taiwan

^e Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece

^f Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600, Pessac, France optical properties and have attracted worldwide attention for reducing global warming. Indeed, electrochromic (EC), gasochromic (GC), photochromic (PC), thermochromic (TC), ionochromic (IC), solvatochromic (SC), vapochromic (VC), and mechanochromic (MC) devices play an essential role in energy saving and make an outstanding contribution to protecting the environment as a key "green" technology.

Energy saving *via* CDs is currently a major focus in the nanomaterial science community with a large number of publications. In this perspective, CDs are not only crucial for smart windows as energy-saving devices but are also used in displays, windows for civil aircraft, light modulators, sensors, eyeglass, stimuli-responsive devices, rear-view mirrors, and switching optics.⁵ In addition, chromic properties are also extended to applications, such as thermal control in the IR region, and variable IR/NIR devices.^{6,7}

As stated earlier, chromogenics corresponds to irreversible/reversible changes in material color and optical characterization caused by a change in the chemical and physical properties due to external stimuli. Among them, electrochromism has attracted considerable attention because of the facile control of the insertion/de-insertion of metal ions and carrier concentration at the applied voltage, allowing control of the optical contrast, switching time, and coloration

^a Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea. E-mail: lekhactop@gmail.com, sokkim@ulsan.ac.kr

^b School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China

^d Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg

efficiency. Fritsch *et al.* first reported PC materials and their behaviors in 1867.⁸ In the 20th century, chromic materials have been studied extensively since the report by Pohl on the chromic phenomena of alkali halides.⁹ The possible change in the color produced by EC phenomena in dye materials was attributed to the shift of absorption and emission spectra under an electric field, which Platt studied in 1961.¹⁰ Deb reported the first application of electrochromism in an electrophotographic system using WO₃ thin films in 1969.¹¹ For the three next decades from 1970 to 1999, transition metal oxide (TMO) films (*e.g.*, WO₃, VQ, TiQ, MgO, Ni and V₂O₅) were used in CDs because of their higher thermal stability, strength, and chemical resistance. Since 2000, different morphologies of micro–nanostructures with large

surface areas and favorable transport properties have enhanced the coloration efficiency.⁸

The significant attention on CDs has prompted considerable interest in papers reviewing EC materials. W.C. Dautremont-Smith first reviewed EC TMO materials and displays that include cathodic and anodic colorations in 1982.^{12,13} Mortimer¹⁴, Thakur *et al.*,¹⁵ and Rai *et al.*¹⁶ reviewed other EC material types, such as conducting polymers, viologens, metal coordination complexes, Prussian blue, metal hybrids, hybrid materials (organic–inorganic), metal complexes, and metal Oplasmonics-metal/alloy. Recently, Wang *et al.*,² Ke *et al.*,⁵ Dalapati *et al.*,¹⁷ He *et al.*,¹⁸ and Tallberg *et al.*¹⁹ reviewed smart windows based on the electro-, thermo-, mechano-, and photochromic phenomena of materials. Recent progress in

Top Khac Le

Top Khac Le obtained his BS and MS degrees in Physics from the University of Science, Vietnam National University HCM City (US-VNUHCM). He then spent a few years as a researcher member and lecturer of faculty at the Dept. Materials Science of and Technology, US-VNUHCM. He earned his PhD degree in Physics (2019) from the University of Ulsan, South Korea. He is currently a Postdoctoral Researcher at the Energy Harvest

Storage Research Center (EHSRC, Department of Physics, University of Ulsan). His research interests include micro-nano material synthesis techniques, physical properties of vanadium oxides, and other metal oxide semiconductor materials. He also has interests in micronano applications in photocatalysis, solar cells, and chromogenic, optoelectronic, and thermoelectric devices.

Phuong V. Pham

Phuong V. Pham is a Distinguished Research Fellow at the School of Micro-Nano Electronics, Zhejiang University, China. He earned his PhD degree in SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), South Korea (2016). He then has spent a few years as a Postdoctoral Researcher and a Research Fellow at the School of Advanced Materials Science and Engineering, SKKU, and at the Center for Multidimensional

Carbon Materials (CMCM), Institute for Basic Science (IBS), South Korea, respectively. He is a recipient of the NSF Career Award of China for excellent young scientists. His research interests include low-dimensional materials, 2D material synthesis, new doping technique development, nanocomposites, block copolymers, plasma engineering for OLEDs, transistors, sensors, photodetectors, flexible displays, and wearable electronics.

Chung-Li Dong

Chung-Li Dong has a PhD in Physics (2004, Tamkang University, Taiwan) and conducted postdoctoral research at the Institute of Physics, Academica Sinica, Taiwan, and at the Advanced Light Source, Lawrence Berkeley National Laboratory, the USA from 2005 to 2009. From 2009 to 2015, he was a scientist at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. He is now an Associate Professor at the Department of Physics, Tamkang

University. His research focuses on synchrotron-based in situ/ operando spectroscopic studies of advanced and energy materials.

Naoufal Bahlawane

Naoufal Bahlawane is a lead research and Technology Associate at Luxembourg Institute of and Science Technology. He received his PhD (1998) in materials science from Lyon 1 University in France and was awarded JISTEC and Alexander von Humboldt Fellowships in Japan and Germany. He received a habilitation (venia legend) in Physical Chemistry at Bielefeld University in Germany. His research activities are related to

the surface chemistry and the interplay between the structure-properties and surface reactivity of materials. chromogenic research of TMOs highlights several materials, including WO₃,²⁰ VO₂,^{21–23} TiO₂,²⁴ MoO₃,²⁵ and NiO.²⁶ Among them, WO₃ has been studied extensively for EC applications (Fig. 1A); VO₂ has been studied extensively for TC applications for smart windows. Chromogenic V₂O₅ has attracted less attention.

Several review articles have focused on the battery applications of V₂O₅ because of its layered structure.²⁷⁻³² Nevertheless, no review articles have addressed the optical properties, chromic phenomena, and applications or reported the influence of V₂O₅ micro–nano structures, dopants, micro–nanocomposites, and hybrid materials to enhance the performance of V₂O₅based actual applications. Despite this, V₂O₅ has attracted considerable attention owing to its promising applications based on its multifunctional properties, as shown in Fig. 1B. Its electrochemical properties, *i.e.*, energy storage,^{30,31} electrochemical systems,³² and supercapacitors,^{33,34} have received most attention owing to its layered structure. On the other hand, less emphasis has been placed on the applications of its optical characteristics, such as photocatalysis,³⁵ photodetectors,³⁶ solar cells,³⁷ light-emitting diodes,³⁸ and waveguides.³⁹ The number of publications on chromogenics^{16,40} and gas-sensor^{41,42} applications of V₂O₅ is quite modest. Other applications, *e.g.*, thermoelectrics,⁴³ field-effect transistors,⁴⁴ magnetization,⁴⁵ ferromagnetism,⁴⁶ field emission,⁴⁷ mechanical properties, and electromechanical actuation⁴⁸ have also been investigated.

The various oxidation states of vanadium (V^{2+} , V^{3+} , V^{4+} , and V^{5+}) allow the existence of many oxides and form the ground for rich chemistry and physics. Multiple oxide phases include VO, V_2O_3 , VO_2 , V_2O_5 , and mixed phases, such as the Magnéli phase V_nO_{2n-1} (V_3O_5 , V_4O_7 , V_5O_9 , V_6O_{11} , and V_7O_{13}), and the Wadsley phase V_nO_{2n+1} (V_3O_7 , V_4O_9 , V_5O_{11} , V_6O_{13} , V_7O_{15} , and V_8O_{17}).^{49,50} Several vanadium oxides feature structure-driven properties, and some of them exhibit strong sensitivity to external stimuli.

Dimitra Vernardou

include the development and of electrodes within advanced m electrochromic devices.

Dimitra Vernardou received her PhD in Physical Chemistry from the University of Salford in 2005. During her PhD, she designed, optimized, and demonstrated an APCVD reactor to grow VO_2 and V_2O_5 coatings as thermochromic and electrochromic layers. She is currently an Assistant Professor in the Department of Electrical & Computer Engineering of Hellenic Mediterranean University. Important research targets of her group (https://cuttematerials.hmu.gr/)

nd characterization of materials as I manufacturing for battery and

Issam Mjejri *in chromogenic materials. He also has interest in investigating the relationship between the structure, morphology, and electro chemistry of novel transition metal oxides as positive electrodes for rechargeable Li-ion batteries and Na ion batteries.*

Aline Rougier

Aline Rougier received her Ph. D in 1995 from the University of Bordeaux. She is currently a senior CNRS researcher at the Institut de Chimie de la Matière Condensée de Bordeaux, ICMCB. Her expertise as Solid-State Chemist and Materials Scientist is in inorganic materials for energy storage and energy conversion applications. Her main topic is the study and optimization of electrochromic materials as powders or films, from the deep

investigation of their optical and electrochemical properties to their integration in devices for applications in the visible and infrared regions.

Sok Won Kim

Sok Won Kim received his BS in Physics Education from Seoul National University (1982) and his MS and PhD degrees in Physics from KAIST (Korea Advanced Institute of Science and Technology) (1987). He is currently a professor of physics with the University of Ulsan and President the Korean Society of of Thermophysical Properties. His research interests include measurement of the physicochemical properties of vanadium

Issam MJEJRI received his PhD in

Materials Chemistry from Tuni-

sia University in 2015. He joined

the CNRS (Bordeaux, France) as

a researcher in 2016 to work on

the synthesis and characteriza-

tion of the micro/nano material-

based transition metal oxides

and study their X-chromic prop-

erties. His main research interest

is to provide a comprehensive

view of the coloration mechanism

oxides $(V_2O_5 \text{ and } VO_2)$ and other metal oxide semiconductor materials. He also has interest in measuring the thermophysical properties of solids, films, and liquids using optical techniques.

Fig. 1 Number of publications (A) on chromogenics of metal oxides and (B) on V_2O_5 from 2000 to 2020. Source: ISI Web of Science, access date 2021-05-01.

These smart multifunctional materials are appealing for various applications, including energy saving and energy conversion. Among the various oxide phases, at standard temperatures and pressures, V_2O_5 is thermodynamically the most stable and exhibits outstanding optical and electrochemical properties.

 V_2O_5 is toxic to cells, but recent studies have shown that a surfactant of nanosized V_2O_5 is a promising candidate for use in biology and medicine.^{51–55} The warning toxicities reported in the U.S National Library of Medicine show that V_2O_5 is harmful if swallowed or inhaled and may cause respiratory irritation.⁵⁶ Nevertheless, V_2O_5 micro–nanostructures can act as nanoisozymes and naturally occurring vanadium haloperoxidases in specific biological and anti-biofouling agents.^{51,52} Nanoscale V_2O_5 can also mimic an enzyme cascade reaction because of its intrinsic peroxidase and glucose oxidase-like activity.^{53,54} V_2O_5 has been applied to selective colorimetric methods to detect glucose and fully restore the redox balance inside biomolecules. V_2O_5 NWs can act as a tandem nanozyme based on the absorption of the V_2O_5 surface that can be applied to the continuous monitoring of glucose.⁵⁵

Many synthesis methods have been used to engineer V_2O_5 micro-nano devices for applications in CDs with enhanced performance in coloration. Improving the coloration efficiency and switching time of smart V_2O_5 micro-nano films with different morphologies, such as NFs,⁵⁷ NRs,⁵⁸ NWs,^{59,60} and nanopores,⁶¹ has been a major focus. Improvement in optical properties is reported by doping with metals and rare earth elements, hybridized structures, and composites. Nevertheless, there have been no reviews published in this area. Understanding the fundamentals and the influence of micro–nanostructures, elements, dopants, and composite structures on the physical and chemical properties and morphologies of V_2O_5 is very important for enhancing the coloration efficiency of CDs. Thus, this general review presents the fundamentals, progress, and applications of chromogenic V_2O_5 .

2. Structure and morphology of V₂O₅

2.1 Crystal structure

Depending on the growth conditions, polymorphic phases including α -, β -, ϵ -, δ -, γ -, ζ -, and ω -phases were reported in V_2O_5 crystals. Among them, the α - V_2O_5 phase is the most stable, while other metastable V_2O_5 phases or the mixed phases can be formed by a transition from α - V_2O_5 at high temperatures, high pressures, or electrochemical operation.^{29,62–68} Moreover, α' , ε' -, δ' -, γ' -, ζ' -, and ω' - V_2O_5 are obtained by deintercalation, *i.e.*, complete removal of the metal ions (*e.g.*, M = Li, Zn, Al, and Mg) from α -, β -, ε -, δ -, γ -, ζ -, and ω - $M_xV_2O_5$.⁶³ Section 5.2.1 presents the detailed phase transition $\alpha \leftrightarrow \varepsilon \leftrightarrow \delta \leftrightarrow \gamma \leftrightarrow \zeta \leftrightarrow \omega$ by the deintercalation of V_2O_5 .

For forming a pure α -V₂O₅ phase without an electrochemical process, some of the phase transitions from the α phase, such as β -, δ -, γ -, and ζ -phases, occur as a function of pressure or temperature, while other phases are difficult to form.^{62,64,66,67} The energy required for the diffusion of O and V ions at low temperatures and pressures is sufficient to produce α -V₂O₅, and it can be converted into β - and δ -V₂O₅ structures or mixed phases at high temperatures/high pressures.⁶⁷ These transitions were observed at 5.3 GPa (from α - to β -V₂O₅) and at 9.5 GPa (from β - to δ -V₂O₅).⁶⁶ The energies required to convert α bulk into β - and γ -V₂O₅ bulk are 14.2 and 10.6 kJ mol⁻¹, respectively. The formation energy of the γ -, α -, and β -layer from α -bulk is 20.7, 19.9, and 17.9 kJ mol⁻¹ while that needed to convert the α -layer into the γ -V₂O₅ layer is 0.8 kJ mol⁻¹.⁶⁵

The stable structure of α -V₂O₅ corresponds to a layer-like structure with the D_{2h} -Pmmn space group with the lattice parameters of a = 11.51 Å, b = 4.37 Å, and c = 3.56 Å.^{50,69–71} α -V₂O₅ is formed by shared edges and corners of VO₅ pyramids to form zigzag lamellar sheets along the [010] direction.⁷² The metastable phases of V₂O₅ are derived from the puckering, sliding, and expanding of the layers, and interface of layers or the rotations of two edges share (VO₅) square pyramidal units.^{29,73,74} Table 1 lists the lattice parameters of the various phases. Note that lattice parameters *a*, *b*, and *c* depend on the coordination denoted.

Fig. 2A presents the α -V₂O₅ crystal structure and three views of the (001), (001), and (100) surfaces.⁷⁵ The primitive cell of atomic structure includes three oxygen centers bonding with vanadium: terminal O(1)–V = 1.58 Å, bridging O(2)–V = 1.78 Å, and bridging O(3)–V = 2.02 Å.^{50,69–71}

The ε -, and δ -phases correspond to the expanded α -phase, so they feature similar atomic structures.⁷⁶ Indeed, the edge-sharing distorted VO₆ octahedra of ε - and δ -V₂O₅ are connected

Table 1 Lattice parameters of various V2O5 phases

Dhace types		Lattice p	aramete	ers (Å)	
of V ₂ O ₅	Method	a	b	с	Ref.
α-phase	DFT	11.627	3.577	4.538	62
	Exp. pure V ₂ O ₅ powder	11.523	3.562	4.330	77
	Exp. α -Li _{0.0625} V ₂ O ₅	11.5121	3.5701	4.3737	335
β-phase	DFT	7.440	3.571	6.368	62
	Exp. pure V ₂ O ₅ NPs	7.1216	3.5720	6.2882	62
	Exp. β -Li _{0.3} V ₂ O ₅	15.288	3.7321	9.604	336
ε-phase	PBE + U	11.720	3.686	9.541	74
-	Exp. pure V ₂ O ₅ NRBs	11.65	3.68	13.5	337
	Exp. ε -Li _{0.6} V ₂ O ₅	11.40	3.56	4.53	338
δ-phase	GGA	11.9974	4.7041	5.4169	77
	Exp. pure V_2O_5 powder	11.9719	4.7017	5.3253	66
	Exp. δ -LiV ₂ O ₅	11.20	3.56	9.91	338
γ-phase	Hybrid DFT and HF	10.055	3.565	10.042	65
	Exp. pure V ₂ O ₅ NRs-NWs	9.946	3.585	10.042	68
	Exp. γ -LiV ₂ O ₅	9.64	3.60	10.60	338
ζ-phase	PBE + U	15.586	3.666	10.269	74
	Exp. pure V ₂ O ₅ NWs	15.275	3.604	10.098	153
	Exp. ζ -Li ₂ V ₂ O ₅	9.08	3.60	10.24	339
ω-phase	DFT	9.21	9.13	3.95	340
1	Exp. ω -Li _{0.4} V ₂ O ₅	9.17	9.17	4.09	341
	Exp. ω -Li _{2.65} V ₂ O ₅	9.21	9.21	4.09	341

by the corner O(1) to form layers with weak V–O(3) and V–O(2) interactions.^{63,74,77} For the γ -phase, oxygen forms five bonds with two types of vanadium cations resulting in a configuration with two different apex-connected VO₅ pyramids.^{65,68,78} The β -phase features five nonequivalent oxygen atoms bonded to two octahedrally coordinated vanadium atom types.^{62,65} The ζ -phase is formed by three distinct vanadium-centered polyhedral that share and connect with eight oxygen atoms.⁷⁴

Fig. 2B shows the top view of the vacancies on the (010) surface. Oxygen vacancies can be formed due to the removal of O(1), O(2), or O(3), as expressed in eqn (1)–(3). Goclon *et al.*⁷⁵ compared the formation energy of oxygen vacancies of the (100), (010), and (001) surfaces. In equilibrium, the energy required to form oxygen vacancies on (100) and (001) was 1.0–1.5 eV lower than that on (010), despite the (010) surface comprising approximately 85% of the total surface area of the crystal.

$$V_2O_5 \rightleftharpoons V_2O_{5-y} + \left(\frac{y}{2}\right)O_2 + (y)O_V^{2+} + (2y)e^-$$
 (1)

$$3V_2O_5 \rightleftharpoons V_6O_{13} + O_2 \tag{2}$$

$$\mathbf{V}_2\mathbf{O}_5 \rightleftharpoons \mathbf{V}_2\mathbf{O}_4 + \left(\frac{1}{2}\right)\mathbf{O}_2 \tag{3}$$

2.2 Morphologies of V₂O₅ and synthesis methods

2.2.1 Morphologies of V₂O₅. Various morphologies were fabricated using different synthesis methods that bring promising applications. V₂O₅ gels were first synthesized from NH₄VO₃ salt in 1885.⁷⁹ Thus far, considerable efforts have been made to improve the physical and chemical properties of V₂O₅, including the synthesis of various structures, such as 0D, 1D, 2D, and 3D structures. Fig. 3 shows a schematic diagram of the mechanisms to form different morphologies that depend on the growth conditions based on the bottom-up approach mechanism. At

Fig. 2 α -V₂O₅ crystal structure and oxygen vacancies: (A) Perspective view and top view along the (010), (001), and (100) surface directions, and (B) top view of vacancies on the (010) surface with the O(1) site, O(2) site, and O(3) site, reproduced with permission (Copyright 2022, American Physical Society⁷⁵).

Fig. 3 Schematic diagram of the mechanism of formation and TEM images of V_2O_5 morphologies: (A) TEM image and atomic model of NW and (B) atomic model of NT. The figures are reproduced with permission (Copyright 2022, Wiley⁴⁷ and American Physical Society⁸¹).

the beginning, a small cluster or small crystallites were formed, which coalesced to form larger crystallites, and grain boundary

diffusion at the surface was boosted to form morphologies, such as NPs, NWs, and NSPs. The formation process depends on the growth of preferential orientation of molecules and clusters. Owing to the formed layer and the layer by the vdW force (the vdW gap is approximately 4.4 Å), the V₂O₅ growth takes place preferentially along the [001] orientation with a layered structure because of the lowest surface energy of the (010) plane.^{75,80} The interlayer distance d (Å) and tangent angle (α°) between the layers play an important role in determining the dimensionality structure.

For $\alpha = 0^{\circ}$, V₂O₅ grows and extends in one or two orientations (Fig. 3A) to form 1D structures, such as NWs,⁴⁷ NFBs,³⁷ and NRs,^{82,83} or 2D structures, such as ultra-large NSHs,⁸⁴ and sponge-like structures from 2D NSHs.85 In the hydrothermal and solvothermal processes, the formation and growth of 1D or 2D materials can be based on Ostwald Ripening and Oriented Attachment growth mechanisms.⁸⁶ The pre-solution, temperature, and time reaction affect the reaction speed, activating crystal, and surface diffusion mobility. 1D and 2D V₂O₅ structures were self-assembled from nucleation or original vanadate, such as (VO₂)⁺ and VOOH.^{85,87} Micrometer-, centimeter-, and ultra-long NWs, NFBs, NSPs, and NRs were formed as a result of a continuous process in a long-term reaction.37,47,59,60,88-91 Similarly, this process can lead to the diameter increase or assembly of NWs and NFBs to form NBs.^{86,92,93} The bent layers (for $\alpha = 90^{\circ}$) may form nanoscrolls, NHLs, or closed NTs, as shown in Fig. 3B.^{81,94,95} In the vapor deposition and electrodeposition processes, the thin films were formed via nucleation and the expanded growth mechanism.

For $\alpha = 30^{\circ}$ or 45° , the growth in multiple directions cooccur, resulting in the formation of compact of 0D V₂O₅, such as QDs with average diameters of 3 nm,⁹⁶ 2-3 nm,⁹⁷ 5-8 nm,⁹⁸ and 30-50 nm,³⁵ or 3D V₂O₅, such as flower-like arrays,⁹⁹ porous hierarchical octahedra, and microspheres.^{100,101} In wet chemical reactions and solvothermal processes, nucleation and growth occurred to form particles. These particles grow or attach and self-aggregate to form larger particles or 3D V₂O₅ depending on precursors, concentrations, or reactants. However, due to preferential orientation along the [001] orientation, the direct synthesis of 0D V₂O₅ via the bottom-up method requires optimal conditions in terms of reaction rate, time, and temperature. The 0D VOr or vanadium-containing precursors (V(OH)₂NH₂ and VOOH) were commonly fabricated before being annealed in oxygen to form 0D V2O5.32 Annealing temperature also improves crystallinity, changes the crystal phase (*i.e.*, from α -phase to other phases), and alters the morphology (*i.e.*, from 0D to 1D).

Diverse 0D, 1D, and 2D V_2O_5 micro-nanostructured morphologies of various sizes have been separated from bulk V_2O_5 using the top-down technique. Mechanical shaking (ultrasonication), high-energy collision (ball milling process), or high-temperature treatment (by pulsed laser ablation or melting) was used to divide 3D V_2O_5 to lower dimensions. As illustrated in Fig. 4A, bulk V_2O_5 was exfoliated to layer 2D using an ultrasonication process. Fig. 4B shows the production of compact and hollow NPs (0D V_2O_5) from solid V_2O_5 pellets

Fig. 4 Schematic diagram of the top-down formation mechanism of lower dimensions: (A) 2D and (B) 0D. The figures are reproduced with permission (Copyright 2022, American Chemical Society^{102,103}).

using the PLA technique. Bulk V_2O_5 is ablated by the incident laser beam, forming a plume which is then deposited on the substrate.

2.2.2 Synthesis method. Different methods have been used to fabricate $V_2O_5^{50}$ with multiple morphologies, including bottom-up methods, top-down methods, and combined methods.

2.2.2.1 Bottom-up methods

(i) Physical vapor deposition (PVD). This technique is used to grow thin films under high vacuum, usually using plasma, laser, and heat to sputter or sublime a target material with the appropriate composition.⁵⁰ The inlet gas composition, pressure, substrate temperature, and substrate types are the main factors affecting the structure and physical properties of the grown V₂O₅ films. The PVD methods used to grow different V₂O₅ morphologies are PLD,¹⁰⁴ EBE,^{105,106} RF-sputtering,^{107,108} DC-sputtering,^{109,110} IB-sputtering,¹¹¹ and RFRP.¹¹²

Thiagarajan *et al.*¹⁰⁵ reported the influence of the nature of the substrates on morphology. The films exhibited very densely packed particles with a smooth surface (glass and ITO substrates) and different particle sizes with rough surfaces (Al, Cu, and FTO substrates). Kang *et al.*¹⁰⁶ examined the effects of the beam dose rate irradiation (EBE method) on the morphology and crystal structure. The rod-like morphologies appear at dose rate irradiation of 300–600 kGy with a buffer layer while the film was amorphous at 0–600 kGy without a buffer layer; V₂O₅ NRs were obtained at 800–1000 kGy in both cases.

(*ii*) Chemical vapor deposition. This technique including CVD,¹¹³⁻¹¹⁶ AP-CVD,¹¹⁷ LP-CVD,¹¹⁸ AL-CVD,¹¹⁹ MO-CVD,¹²⁰ PE-CVD,¹²¹ and AA-CVD¹²² is based mainly on the vapor phase reaction-adsorbed precursors (*i.e.*, VO(acac)₂, V(C₅H₈O₂)₃, and

 $VO(OC_2H_5)_3)$ on the substrate surface.⁵⁰ The reaction temperature, O_2 source, reaction time, and sample position are factors that play an important role in controlling the morphology, crystal structure, and surface of the thin film.^{50,113}

Among these factors, the deposition temperature is used to control the morphology and thickness of the film. When the deposition temperature was increased from 320 $^\circ C$ to 420 $^\circ C$ for the same duration, the length of V₂O₅ NWs increased from 10 µm to 100 µm while the widths remained approximately 80 nm.¹¹⁶ The deposition temperature in the range of 500-700 °C significantly influences the porous morphology, surface, and size of the film, whereas different NP sizes of 15, 60, and 30 nm were obtained at 900, 1100, and 1300 °C, respectively.¹¹³ Yin et al.¹¹⁴ examined the influence of the substrate temperature on the surface roughness of 1D porous V₂O₅ micro-nanotubes. The surface changed from porous (at 220 °C) to much less porous (at 260 °C) and smooth (at 320 °C). Musschoot et al.123 compared the influence of thermal and plasma-enhanced (PE) ALD/CVD on V₂O₅ films. The as-grown films deposited by CVD at 300 $^{\circ}$ C and PE O₂ ALD at 150 $^{\circ}$ C were crystalline with 001-oriented V2O5, whereas the as-grown films deposited by thermal and PE H₂O ALD at 150 °C were amorphous.

(*iii*) Solution method. Solution methods, including WCR,³⁵ hydrothermal,⁴⁷ CBD,¹²⁴ sol–gel,³⁰ ECAD,¹²⁵ ESS,¹²⁶ ED,⁶⁷ TP,¹²⁷ SP,¹²⁸ and ESP,^{36,129,130} are used widely to synthesize nanostructures. Among these solution methods, WCR and hydrothermal methods are used widely because of the simple processing and low cost. Sukanya Datta *et al.*¹³¹ reported various morphologies of nanostructured V₂O₅, such as 3D microbeads, 2D NSHs, and 1D nanofleeces using different deep eutectic solvent relines. Mu *et al.*¹³² controlled different morphologies, NFLs, nanoballs, NWs, and NRs, using different pre-solutions (acid-solvents), such as H₂C₂O₄–C₂H₅OH, HNO₃–C₂H₅OH, HNO₃–H₂O, and H₂C₂O₄–H₂O, respectively. Wang *et al.*¹³³ prepared V₂O₅ NWs and NSHs with different growth times. For short reaction times, V₂O₅•nH₂O sheets were synthesized, while NWs were obtained after extended reaction times.

2.2.2.2 Top-down methods. Bulk V₂O₅ is converted to small nano-sized particles or sheet-layers using physical and chemical treatments, such as mechanical dynamic, thermal, etching-reaction, laser ablation, and ultrasonication.¹³⁴ These methods can be used to fabricate high purity NPs, but they are unsuitable for preparing uniform-shaped particles. Top-down methods have been reported to prepare abundant morphologies of V_2O_5 , such as $TE_5^{60} MQ_5^{135} TD_5^{136}$ ultrasonication (liquid exfoliation),¹⁰² PLA,^{80,137} dissolution–splitting,¹³⁸ and exfoliation),¹⁰² BM.^{139,140} Díaz-Guerra et al.¹³⁶ examined the influence of the treatment duration on morphology using the TD method. Micro-rods, urchin-like structures, and nanotips were formed during annealing under Ar at 700 °C for 10 and 15 h. Rui et al. obtained ultrathin V2O5 NSHs with lateral dimensions of 100-400 nm by sonicating V₂O₅ powder at RT for three days.¹⁰² Zou et al.¹⁴⁰ used the BM method, adding $H_2C_2O_4$ to prepare V_2O_5 NPs of various sizes based on different milling times. After three hours of grinding, the powder particle size decreased

from 500 to 40 nm. Taylor *et al.*¹³⁷ prepared "nearly spherical" α -V₂O₅ NPs with sizes below 100 nm and "flower-like" β -V₂O₅ NSs with a micrometer size by irradiating bulk vanadium flakes immersed in DI water with a Nd:YAG laser. The surface morphologies were also controlled using different Nd:YAG laser treatments from vanadium sols.¹⁴¹

2.2.2.3 Combined methods. Various V_2O_5 morphologies have been studied extensively using a combination of different methods, such as MQ-hydrothermal,⁸⁶ WCR-hydrothermal,^{84,95} LASPsol-gel,¹⁴¹ and UV irradiation-sol-gel.¹⁴² Mesoporous ultra-large V_2O_5 NSHs were synthesized by combining WCR and hydrothermal methods.^{84,143} V_2O_5 NWs, 50–100 nm in diameter and up to several micrometers in length, were prepared using the MQ method by heating V_2O_5 powder at high temperatures (800 °C) and quickly pouring the powder into water with vigorous stirring and autoclaving the solution at 200 °C for four days.¹⁴⁴ Ultralong NBs with widths in the range of 30–200 nm were formed by heating the powder at 850 °C and heating a solution containing the heated powder at 220 °C for a few days.

Recently, the combination of many techniques was used to fabricate different morphologies, such as NTLs, NTs, NPRs, NHLs, and nanobox.^{33,145–151} In these combinations, the V₂O₅ layer is deposited on substrates with different mask types as prepared previously. Chen *et al.*¹⁴⁶ and Liu *et al.*^{147,148} grew V₂O₅ layers on anodic aluminum oxide (AAO) using the ALD method. The results showed that the size of the NTLs and NTs depends on the AAO pore diameter and the number of deposition cycles. The NPRs with different pore diameter sizes were prepared in two steps: (1) PS spheres with different diameter sizes were used to fabricate the monolayer or multilayers colloidal crystal templates; and (2) a V₂O₅ film was deposited into colloidal crystal templates using the ED or ECAD method and the PS spheres were then removed.^{145,149,150}

In another study, multi-shelled V₂O₅ hollow microspheres were controlled by a repeated adsorption process of vanadium precursor on carbonaceous microspheres (CMSs).³³ The hydrothermally synthesized CMSs were dispersed in a solution containing a vanadium precursor (NH₄VO₃) by ultrasonication for 10-30 min and kept in a water bath at 40-70 °C for 6 h. Both metal cations and metal anions were adsorbed by CMSs to form CMS/vanadium oxide composite spheres. The resulting composites were annealed at 400 °C for 30 min to obtain hollow spheres. The different hollow spheres, including double-, triple-, thick single-, porous triple-shelled, and multi-cavities, were obtained easily by repeating the adsorption process several times and stirring in different acidic aqueous solutions. Similarly, Liu et al. obtained V₂O₅ multiscale hierarchical boxes after 2 h air-annealing at 500 °C of an autoclaved (12 h at 200 °C) solution mixture containing vanadium oxytriisopropoxide and carbon hollow cubes.33

The morphology of the V_2O_5 micro–nanostructures can be controlled by a combination of post-annealing of the films obtained *via* solution, CVD, and PVD processes. Specifically, the shell number of V_2O_5 was controlled by heat treatment of NSPs.¹⁵² Double-shell hollows were formed by annealing a solid sphere at 350 °C obtained by solvothermal synthesis. Singleshell NHLs were obtained after annealing at 450 $^{\circ}$ C while double-shell NHLs were formed after annealing at 350 $^{\circ}$ C.¹⁵² Similarly, single, double, or multi-shelled hollows can also be controlled by heat treatment at different temperatures.

Different types of 1D V₂O₅ nanostructures, including NTs, NFBs, and NRs, were formed by annealing electrospun NFBs at 400, 500, and 600 °C, respectively.¹²⁹ The as-deposited V₂O₅ film grown by the ED method had a smooth surface and became a rod-like structure as the annealing temperature was increased from 400 to 500 °C. When annealed at higher temperatures (550–650 °C), the rod-like structure of V₂O₅ tends to form long-rods due to the high diffusion rate on the surface and becomes stream-shaped slices.⁶⁷ Different scales of the belt-like NRs were formed by annealing the V₂O₅ powder formed from the MB method at 630 °C for different durations.¹³⁹

3. Bandgap and optical transition

3.1 Bandgap

Fig. 5 compares the V₂O₅ electron structural density of states between α - and γ -,⁷⁸ α - and β -,⁶² and α - and ζ -phases.¹⁵³ No experimentally or computationally determined bandgaps of pure ϵ - and ω -V₂O_{5- ν} have been reported.

Pure V_2O_5 is an n-type direct/indirect gap semiconductor.^{69,154–156} The electronic structure of V_2O_5 is rather complicated and depends on the morphology, number of oxygen vacancies, and crystal phase.⁵⁰ At RT, α - V_2O_5 bulk has a direct bandgap of approximately 2.3–2.4 eV and an indirect gap of approximately 1.9–2.0 eV. The VB widths were 5.5 \pm 0.5 eV (bulk) and 5.0 \pm 0.5 eV (single-layer).⁶⁹ Rather than being a single band, the CB is made up of two bands, with a main CB and a split-off CB.^{154,157} These split-off

Fig. 5 Comparison of the density of states (A) between the O(1) site, O(2) site, and O(3) site of α -V₂O_{5-y}, (B) between α -V₂O₅ and γ -V₂O₅, (C) between α -V₂O₅ and β -V₂O₅, and (D) between α -V₂O₅ and ζ -V₂O₅. The figures are reproduced with permission (Copyright 2022, American Chemical Society,¹⁵⁹ American Physical Society,^{62,78} and Royal Society of Chemistry¹⁵³).

CBs have a bandwidth of 0.75 eV and are localized at 0.6 eV below the main CB. $^{\rm 136,154,158}$

Oxygen vacancy-induced V_2O_{5-y} leads to changes in the atomic, crystalline, and electronic structures.^{159,160} When oxygen atoms are removed from the lattice, the electrons are left behind. The V–O bonding in the crystal changes because of the regulated atomic structure and hybridized V 3d-O 2p.⁵⁰ Consequently, the geometric structure is altered and forms mid-gap states and surface states. Scanlon *et al.*¹⁵⁹ calculated the delocalized defect electronic states in V_2O_{5-y} using gradient-corrected DFT on-site Coulomb interactions (GGA+*U*). The results revealed the appearance of mid-gap at approximately 0.7–1.0 eV above the VB due to oxygen vacancies. The experimental results revealed this gap at approximately 1.8 eV above the VB.¹¹⁸ The mid-gap states due to O(1), O(2), and O(3) vacancies are located at ~0.95, 0.75, and 0.69 eV, respectively, as shown in Fig. 5A.

As shown in Table 1, these phases of crystal and electronic structures are similar because there is little difference between the lattice parameters and the unit cell volumes of α -V₂O₅, ϵ -V₂O₅, and δ -V₂O₅. Therefore, the band gaps of α -, ϵ -, and δ -V₂O₅ are homologous. Although the space group and unit cell parameters of γ -

 V_2O_5 are different from those of α - V_2O_5 , γ - V_2O_5 retains similar structural features.⁶⁵ The main CB of γ - V_2O_5 was also separated to form a split-off band. The shape, width of split-off CB, and narrow gap from main CB and split-off CB of γ - V_2O_5 were similar to those of α - V_2O_5 , as shown in Fig. 5B.^{65,78} On the other hand, this split-off was not observed in β - and ζ - V_2O_5 , while the gaps of β - and ζ - V_2O_5 were narrower than those of α - V_2O_5 (Fig. 5C and D).^{62,65,161}

3.2 Optical transition

The theories and experiments showed that the optical bandgap (E_{opt}) and transition intensity between the bands in V₂O₅ were affected by many factors.⁵⁰ The special band structure of V₂O₅ leads to a peculiar smart optical transition. In pure β - and ζ -V₂O₅, there is one optical transition only (VB \leftrightarrow CB), while two optical transitions (VB \leftrightarrow main CB and VB \leftrightarrow split-off CB) are present in pure α -, ε -, δ -, and γ -V₂O₅. In particular, in pure α -V₂O_{5-y} with three bands, four optical transitions (VB \leftrightarrow main CB, VB \leftrightarrow split-off CB, VB \leftrightarrow mid-gap state and surface state, mid-gap state \leftrightarrow main CB) may occur. Therefore, in the literature, the E_{opt} and PL position of V₂O₅ do not coincide. Table 2 lists some articles on the

Table 2Optical bandgap and photoluminescence peak position of different V_2O_5 morphologies

Morphology	Parameter note	Synthesis method	<i>E</i> _{opt} (eV) determined from UV-vis spectroscopy	Excitation wave- length source for PL measurement (nm)	PL peak position (nm)	Ref.
0D V ₂ O ₅	Spherical-like NPs of diameter size in range	WCR	2.12	475	502	172
	10–15 nm NPs with a perfectly spherical shape of average diameter in the range 5–8 nm	WCR	2.92	380	460, 593	98
	NPs of average diameter 96.5 nm with roughness 1.926 nm (2D) and 3.46 nm (3D)	Sol-gel	3.27	325	382, 397, 450, 469, 530, 557	171
$1D V_2O_5$	NWs with an average diameter of 50 nm and length of many tens um	LPCVD	2.74	266	450, 690	118
	NWs with 30 nm in diameter and several tens of micrometer in length	Hydrothermal	2.16, 2.30	< 350	579, 687.5	174
	NWs with an average diameter of 80 nm and length of $10-100 \ \mu m$	CVD	2.48	365	350-700	116
	NRBs of 100–300 nm diameter and length several hundred micrometers.	Heating foil	2.30	457	550-750	39
	NBs of 50–70 nm diameter and lengths of several tens of microns.	Hydrothermal	2.02	_	571, 634	259
	NFBs of 20–150 nm diameter and length several micrometers.	Hydrothermal	2.20	_	504, 540, 632- 647	286
$2D V_2O_5$	Thin film deposited on ITO substrate	PLD	2.32	_	524	173
	Thin film deposited on glass substrate at 300 $^\circ\mathrm{C}$	SP	1.99	285	475, 513, 532, 552	128
	Thin film grown on FTO substrate with average particle size of 200 nm	E-Beam	2.05	330	485, 510, 528, 545	105
$3D V_2O_5$	Bulk powder	Commercial	2.20	365	375	116
	Micro–nano powder	WCR	2.39	325	382, 420, 468, 550	176
Other	Micrometer lamellar powder morphologies	WCR L-shaped micro– nanostructures	2.2	325 Hydrothermal	427–826 1.91	177 260
	424, other peaks	198				
	Lamellar plates	MQ	2.16	480	650, 730	342
	Flake	SP	2.05	285	475, 513, 532, 552	128
	Platelet (various dimensions)	Sol-gel	2.36	350	486, 496, 520, 553	343
Micro– nanorods	WCR	2.468	_	418, 453	344	

 $E_{\rm opt}$ and PL characterization of V₂O₅, particularly the synthesis method and morphology.

The E_{opt} or E_g of V_2O_5 is defined via UV-vis spectrum measurements because of the transition between the VB and split-off CB. The band edge absorption (E_{opt}) of the film has been estimated based on the Tauc or Cody plots and Tauc's law, $\alpha \nu = A(\nu - E_{opt})^n$, where, ν , A, E_{opt} , and *n* are the photon energy, a constant, optical bandgap, n = 1/2 and 2 correspond to directly and indirectly allowed transitions; n = 3/2 and 3 correspond to forbidden transitions, respectively.^{50,162,163} Almost all reports derive an E_{opt} of V_2O_5 from the tailing absorption spectra with $E_{\rm opt} \approx 2.3$ eV (2.2–2.4 eV). Calculation using the Perdew-Burke-Ernzerhof function results in an $E_{\rm opt}$ of 2.325 eV.¹⁶⁴ The lower or higher $E_{\rm opt}$ values, such as from 1.6–2.2 eV, $^{118,128,165-168}$ 2.6–3.0 eV, 98,169,170 and 3.0-3.49 eV^{165,171} were reported. Similarly, optical recombination shows different PL peak positions, number of peaks, and broad emission, which are distributed over wide ranges. The differences between the PL peaks, including one peak,^{116,172,173} two peaks,^{98,118,174} three peaks,¹⁷⁵ many peaks,^{128,171} and a broad peak,^{39,105,116,176,177} have been observed.

4. Multicolor of the original V_2O_5 film

Optical characterization of V_2O_5 was affected by the growth parameters, element-doped V_2O_5 , and V_2O_5 based on

composites, leading to multi-color of the original film ("fix" chromism). Fig. 6A shows the distribution of the reports regarding the E_{opt} of V_2O_5 (survey 210 samples of 78 works). The wide distribution of the absorption and PL spectrum predicts the multicolor of "fix" and "responsive" chromic V_2O_5 ranging from dark blue to dark orange, as shown in Fig. 6B.

Fig. 7–9 reveal the existence of various absorptions and different colors of the original films. The "fix" chromic phenomena are the optical characterization of V_2O_5 materials with a fixed color production and irreversible color change. The different colors or transmitted-reflected light intensity of the film are determined before, and these films are called pristine V_2O_5 or modified-pristine V_2O_5 films. Hence, the presentation of "fix" chromism of V_2O_5 is needed to understand the fundamentals and applications of chromic V_2O_5 .

4.1 Influence of the growth parameters

The fully stoichiometric phase of pure V_2O_5 exhibits orange color in optical coloration.¹⁷⁸ The growth conditions can change the stoichiometry of the V_2O_5 film because oxygen vacancies or other oxidation states of vanadium, sequentially, nonstoichiometric phase exhibit different colors, such as pale yellow, yellow-brown, dark green, and grayish-black.

Fig. 7A-D show the influence of ambient and temperature annealing on the color film and absorption spectra. The blue

Fig. 6 Distribution of the reports on V_2O_5 optical characterization: (A) optical bandgap and (B) possible color distribution of fixed and responsive chromogenics.

Fig. 7 Absorption spectra and photographs of V_2O_5 films: (A) with thermally induced oxygen vacancy, (B) under different annealing gas conditions, (C) and (D) at different annealing temperatures, and (E) before and after spontaneous aging. The figures are reproduced with permission, (Copyright 2022, American Physical Society,¹⁷⁸ Royal Society of Chemistry,¹⁷⁹ Elsevier,^{180,181} and Wiley⁸³).

Fig. 8 Photographs of pure and doped V₂O₅ films with: (A) different dopant elements, (B) different fluorine dopant percentages, and (C) different chromium dopant percentages. The figures are reproduced with permission, (Copyright 2022, Springer,¹⁹³ Elsevier,¹⁹⁴ and American Chemical Society¹²⁰).

Fig. 9 Photographs of pure V_2O_5 and $M@V_2O_5$ composites: (A) V_2O_5 / PANI composite NFs under different electropolymerization times and (B) pure and GO/ V_2O_5 composite keep six months and eight weeks, respectively. The figures are reproduced with permission (Copyright 2022, Elsevier²⁰³ and Royal Society of Chemistry²⁰⁴).

shift in the visible region, which increases in the NIR spectral range from 1200 to 1700 nm due to increasing nonstoichiometric ratio, was attributed to the increase in oxygen vacancies in V_2O_5 NWs. This leads to different film colors (S1 orange, S2 yellow, S3 dark yellow, S4 brow, S5 dark green, and S6 black, Fig. 7A).¹⁷⁸ The absorption spectra shift toward a longer wavelength because of the low valence state (V⁴⁺ and V³⁺), when annealed in nitrogen, which leads to a color change from yellow to dark green (Fig. 7B).¹⁷⁹ Oxygen vacancies also occur during the growth of V_2O_5 to form mid-gap states, which leads to an absorption shift. V_2O_5 nanostructures, including NSPs, NPs, NRs, and NWs, contain the V⁴⁺ oxidation state at 30.0, 4.7, 10.9, and 12.8%, respectively.³⁵

The colors of vanadium oxides change due to variations of the phase evolution, structural distortion, and morphological deformation when the samples are annealed at increasing temperature and time, as shown in Fig. $7C^{180}$ and Fig. $7D^{83}$). After 21 days of aging, the partial self-reduction of V⁵⁺ to V⁴⁺ was caused by the V₂O₅ xerogel acting as an acid with mobile protons and the localized electron density at the metal center. As a result, the film color changes from orange to green (Fig. 7E).¹⁸¹

The initial color of the V_2O_5 film is affected by the intensity of the optical transition leading to variations in the absorption and the transmittance spectra. The transmittance curves of the V_2O_5 film with different thicknesses and O_2/Ar ratios during the sputtering process revealed three main regions (range $300 < \lambda < 490, 490 < \lambda < 800, and \lambda > 800 nm$.¹⁸² The transition percentages of the first and third regions decrease with increasing thickness while that of the second region fluctuates. The formation of oxygen vacancies leads to increased absorption in the near-infrared region and a decrease in the optical bandgap.¹⁸³ V₂O₅ NBs exhibit different colors ranging from brownish to brilliant yellow, corresponding to a blue shift of the absorption edge with an extended reaction time from 6 h to 48 h. The films exhibit the color change when deposited at different temperatures, i.e., pale yellow (RT), light brown (300 °C), and black (500 °C).¹⁷⁰ The color of the pristine film changes from orange \rightarrow light green \rightarrow orange during the annealing process.184

Furthermore, the E_{opt} is closely related to the color of the film; therefore, the original V₂O₅ exhibits various colors. Table 3 lists the effects of the morphology, growth conditions, dopant element, dopant concentration, composite element, and composite concentration on the E_{opt} of V₂O₅ micro–nanos-tructures. These factors can increase, decrease, or fluctuate the E_{opt} .

The optical band changes due to changes in the morphology originating from the precursor to the nanostructure.¹⁸⁵ In particular, it is affected by different substrates,105 oxygen pressures,186 types,¹⁶⁸ partial precursor precursor concentration,¹⁸⁷ growth times,¹⁸⁸ ambient annealing conditions,¹⁷⁹ and annealing temperatures.^{167,188} The E_{opt} of films fabricated by the EBE method increases from 2.18 (840 nm) to 2.36 eV (1200 nm) or from 2.04 (oxygen partial pressure 10^{-7} mbar) to 2.30 eV (oxygen partial pressure 10^{-4} mbar) while E_{opt} decreases from 2.50 to 2.20 eV with increasing film thickness (fabricated by DC sputtering) from 110 to 450 nm.^{109,186,189}

 $E_{\rm opt}$ also changes due to non-stoichiometry and the influence of the crystallite size. $E_{\rm opt}$ of the film reduced from 2.47 to 2.12 eV and from 2.53 to 2.35 eV when the substrate temperature was increased from 30 to 500 °C,¹⁰⁴ and from 350 to

Table 3	Influence of growth	parameters,	dopants,	and	composites	to	the	optical	bandgap	of	V ₂ C) ₅
---------	---------------------	-------------	----------	-----	------------	----	-----	---------	---------	----	------------------	----------------

Typical morphologies	ypical morphologies Synthesis method Investigated parameter		Note	$E_{\rm opt}$ (eV)	Ref.
_	Different morphologies were pre- pared by the hydrothermal	Different V ₂ O ₅ nano morphologies	Precursor: 2–5 µm diameter Wire: 20–30 nm diameter	2.20 2.55	185
Film	method The films were grown on glass substrates by the DC sputtering	Film thickness (d) and crystallite size (L)	Rod: $30-40$ nm diameter d = 110 nm, $L = 17.4$ nm d = 315 nm, $L = 24.8$ nm	2.55 2.50 2.27	109
Film	method The films were grown on glass substrates by the EBE method	Film thickness (d) and crystallite size (L)	d = 450 nm, L = 26.4 nm d = 1200 nm, L = 31 nm d = 1100 nm, L = 35 nm d = 995 nm, L = 40 nm d = 910 nm, L = 45 nm	2.20 2.36 2.33 2.31 2.26	189
NBs	NBs were prepared by the hydro- thermal method	Diameters	d = 840 nm, — 52.7 nm 46.3 nm	2.18 2.25 2.74	345
Film	SP	The films were deposited on the micro slide glass substrate at dif- ferent substrate temperatures	44.7 mm 300 °C 325 °C 350 °C 375 °C 400 °C	3.00 1.99 2.01 2.03 2.04	128
Film	PLD	The films were deposited on glass at different substrate temperatures	400 °C 30 °C 200 °C 400 °C	2.05 2.47 2.22 2.32	104
Film	CSP	The films were deposited on glass at different substrate temperatures	500 °C 350 °C 400 °C 450 °C	2.12 2.53 2.51 2.47 2.35	190
Film	RF Sputtering	The films were deposited on quartz with different RF powers	100 W 200 W 300 W 400 W 500 W 600 W	2.33 2.80 2.40 2.40 2.60 2.50 2.60	346
Sheet	Thermal calcinating	Pristine V_2O_5 NSHs were treated thermally in a H_2/Ar atmosphere at different temperatures for 30	700 W 0 °C 250 °C 300 °C	2.60 2.13 2.06 1.92	167
Film	Sol-gel	minutes The films were annealed at 300 °C for 3 h under different ambient	350 °C Annealing in nitrogen Annealing in air	1.87 2.28 2.37	179
Film	EBE	conditions The films were deposited on a glass substrate at 553 K in a vacuum at different oxygen partial	$P = 5 \times 10^{-7} \text{ mbar}$ $PO_2 = 5 \times 10^{-5} \text{ mbar}$ $PO_2 = 2 \times 10^{-4} \text{ mbar}$	2.04 2.20 2.30	186
Film	EBE	The films were deposited on dif- ferent substrate types	Glass ITO	2.36 2.10 2.05	105
Film	Sol-gel	The films were deposited on ITO by different precursors	Metalorganic Organic Inorganic	2.03 1.70 2.2 2.5	168
Film	Sol-gel	The films were deposited on ITO with different molar percentages of ICS-PPG	0% 1% 5%	2.44 2.48 2.52	347
NRs and NSPs	Hydrothermal	The films were hydrothermally deposited at 230 °C for different deposition times (t_d) and were annealed at 500 °C (t_c)	$t_d = 4$ h and $t_a = 1$ h $t_d = 4$ h and $t_a = 2$ h $t_d = 8$ h and $t_a = 1$ h $t_a = 8$ h and $t_a = 2$ h	2.45 2.46 2.34 2.35	188
NPs	NPs were prepared by the sol–gel method	Different element doped V ₂ O ₅ NPs	Pure V_2O_5 Gd doped V_2O_5 Nd-doped V_2O_5	2.18 2.12 2.10	172
Thin film	The films were deposited on an ITO substrate by the PLD method	Different element doped V_2O_5 to form $M_xV_2O_5$	Pure V_2O_5 Ag-doped V_2O_5 (Ag _{0.24} V ₂ O ₅) Nb-doped V_2O_5 (Nb _{0.3} V ₂ O ₅) Ce-doped V_2O_5 (Ce _{0.25} V ₂ O ₅) Nd-doped V_2O_5 (Ce _{0.25} V ₂ O ₅) Sm-doped V_2O_5 (Sm _{0.26} V ₂ O ₅) Dy-doped V_2O_5 (Dy _{0.25} V ₂ O ₅)	2.32 2.15 2.16 2.44 2.50 2.52 2.51	173

Table 3 (continued)					
Typical morphologies	Synthesis method	Investigated parameter	Note	$E_{\rm opt}$ (eV)	Ref.
Film	The films were deposited on a	Different Mg doping concentra-	Mg = 0.0%	2.18	108
	glass substrate by RF-sputtering	tions in V_2O_5	Mg = 6.7%	2.25	
	0 1 1 0		Mg = 12.5%	2.45	
			Mg = 15%	2.35	
Film	Composite materials were pre-	Different Li doping concentra-	$V_{1.85}Li_{0.15}O_{2-\delta}$	2.22	135
	pared by the MO method	tions in V_2O_5 to form $V_{2-r}Li_rO_{2-\delta}$	V_{1} sLi ₀ 2 $O_{2-\delta}$	2.16	
	r dy	2-3	V1 75 Lio 25 O2 8	2.14	
			$V_{1,7} = -0.23 = 2 - 0$	2.08	
Film	The films were deposited on an	Different W doping concentra-	V:W = 1:0	2.43	196
	FTO substrate by RF-sputtering	tions in $V_2 O_{\epsilon}$ (V:W)	V:W = 28:1	2.37	190
		uons m +205 (++++)	V: W = 14:1	2.29	
			$V \cdot W = 9 \cdot 1$	2.25	
			V:W = 7:1	2.10	
			$V \cdot W = 3.5 \cdot 1$	2.55	
			$V \cdot W = 3.3 \cdot 1$	2.02	
NDc	NBs were prepared by the WCP	Different Cd dening concentre	$v \cdot vv = 2 \cdot 1$	2.70	105
INKS	method	tions in V.O.	Gd = 0%	2.107	195
	method	uons in v_2O_5	Gd = 1%	2.181	
			Gd = 3%	2.145	
			Gd = 5%	2.098	
			Gd = 10%	2.044	
NPS	NPs were deposited by the sol-gel	Different Sn doping concentra-	Sn = 0%	3.27	1/1
	spin-coating method	tions in V_2O_5	Sn = 2%	3.19	
			Sn = 4%	3.11	
			Sn = 6%	3.07	
L-shape and NWs	L-shaped and NWs were synthe-	Different F doping concentrations	F = 0%	1.91	198
	sized by the hydrothermal method	in V_2O_5	F = 1.42%	1.87	
			F = 1.69%	2.04	
			F = 1.74%	1.94	
3D micro-nano spheres	Micro/nanospheres were prepared	Different volumes of SnCl ₄	$S_0: X = 0$ ml	2.30	197
	by the solvothermal method	solution (X ml $SnCl_4$ of 0.1 M)	$S_0: X = 0$ ml	2.31	
		added in the V ₂ O ₅ precursor and	$S_1: X = 1 ml$	2.21	
		the difference between before and	$S_{1a}: X = 1 ml$	2.28	
		after annealing (S_{xa}) at 550 °C for	$S_2: X = 2 ml$	2.11	
		1 h	$S_{2a}: X = 2 ml$	2.25	
			$S_3: X = 3 ml$	1.89	
			$S_{3a}: X = 3 ml$	2.22	
NRs	Nanocomposite films were pre-	V_2O_5/GO nanocomposite with dif-	0% GO	2.670	205
	pared by the sol-gel spin-coating	ferent volume percentages of GO	1% GO	2.632	
	method	1 0	2% GO	2.619	
			3% GO	2.608	
Film	The films were deposited by the	Different volumes of isopropyl	LCP	2.47	206
	drop-casting method	alcohol (IPA) were mixed with	LCP heat treated	2.18	200
	arop custing method	vanadium oxytriisopropoyide and	LCP-PFG	2.10	
		chosen additive (IPA · alkovide ·	LCP-PEG heat treated	2.11	
		additive) 1000 · 10 · 1 (LCP)	HCP	2.11	
		$250 \cdot 10 \cdot 1$ (HCP) and the effect of	HCP heat treated	2.02	
		250.10.1 (HOF), and the effect of		2.09	
		poryeuryiene giyeor - PEG	HCD DEC host trasted	2.39	
Cal	WCD	VO /IDA (1,1) compositor war	Fresh	2.49	27
Gei	WUK	v ₂ O ₅ /IPA (1:1) composites were	FICSII	2.70	3/

500 °C, ¹⁹⁰ respectively. $E_{\rm opt}$ increases from 2.5 eV to 2.2 eV as a function of treatment temperature in the hydrothermal process.¹⁹¹ On the other hand, the films fabricated by spray coating revealed an increase in $E_{\rm opt}$ from 1.99 to 2.05 eV with increasing substrate temperature from 300 to 400 °C.¹²⁸

In another work, the color process transformed from greenish-yellow to yellow as a function of temperature and annealing time.⁸³ The transformation from the as-deposited m to β -V₂O₅ due to heat treatment also impacts the absorption d and film color. The α -V₂O₅ strongly absorbs light at wavelengths of approximately 410 nm and shows a slight blue shift gras a function of the annealing temperature. In contrast, mixing α - and β -V₂O₅ leads to a substantial shift of the tailing and

absorption to lower energy.⁶⁷ Consequently, the film color changes from dark yellow to transparent yellow. Similarly, the films prepared by AA-CVD appeared brown (as-deposited) and yellow (post-annealing).¹⁹²

4.2 Influence of dopants

Suitable doping elements may alter the band structure and modify E_{opt} . The color of the produced V₂O₅ changes following dopant element and amount. Fig. 8A reveals that the color of V₂O₅ micro-powder changes from yellow (undoped) to dark green/yellow (2% Na-doped), orange (3% Ba-doped), and bright yellow (3% Al-doped).¹⁹³ The film color changed to pale yellow according to the fluorine dopant amount (Fig. 8B).¹⁹⁴ Doping

with metal, non-metal, and rare-earth-doped V₂O₅, such as Gd, Nd, Ag, Nb, Ce, Sm, Dy, Mg, Li, W, Sn, Yb, La, and F, affects the E_{opt} of V₂O₅ with no clear tendency.^{108,135,171-173,195-200}

The E_{opt} increased with increasing Ce-, Sm-, Dy-, and Mgdoped V2O5, whereas Sn-, Nb-, Gd-, Ag-, and Li-doped V2O5, lead to a decrease in E_{opt} . For Nd, F, La, Yb, and W doping, E_{opt} changes depending on the dopant concentration. The E_{opt} decreased when the V:W ratio was lower than 9:1, but this trend was reversed, and E_{opt} increased when V:W was higher than 7:1. Depending on the environments, such as the solvent, temperature, time reaction, and pressure, dopants bond with different functional groups in the vanadium precursors, which affects the V₂O₅ properties. The different radii of elements with reaction dynamics lead to the competition and replacement or location between the layers of the doping element inside V_2O_5 at different positions, leading to a change in the local and band structures.¹³⁵ Dopants can urge or inhibit crystallization processing. The lattice constant and crystalline size decrease with decreasing dopant radius compared to the radius of the host lattice while they increase with increasing dopant radius. These elements form V-M oxide or local vanadate (MVO₄). The experimental results show that the unit cell volume of M-doped V_2O_5 (M = Na, Ba, and Al) changes according to pure V₂O₅, being largest with 3% Ba and smallest with 2% Na.¹⁹³

Moreover, dopants can act as donors in V₂O₅ to form new energy levels below the CB. The new transition between the VB and new energy levels occurs easily, which leads to a decrease in E_{opt} .^{135,196} On the other hand, a higher excess donor concentration fills the new energy level and shifts the $E_{\rm f}$ to a higher energy state.173,196 The insertion of an ionic element also generates defects and oxygen vacancies to produce lower oxidation states, such as V^{4+} and $V^{3+}.$ The fraction of $V^{4+}\!/\!V^{5+}$ or (V^{4+} + $V^{3+})/V^{5+}$ increases with increasing dopant concentration, which provides more electron carriers. Electrons were also generated due to the replacement of V^{5+} by M^{x+} (x > 5). For example, the replacement of V⁵⁺ by Cr⁶⁺ or W⁶⁺ provides excess electrons. These electrons can enter the split-off band, which widens the $E_{\rm opt}$ and causes a color change. The color films change from bright yellow to mustard yellow and olive green, corresponding to the Cr doping concentrated increase of 0.21%, 2.41%, and 4.34%, respectively (Fig. 8C).¹²⁰ The optical bandgap is $E_{\rm g} = E_{\rm opt} + \Delta E_{\rm g}^{\rm BM}$, where $E_{\rm opt}$ is the optical bandgap of pure V₂O₅, and $\Delta E_{\rm g}^{\rm BM}$ is the Burstein–Moss shift, as described in eqn (4).²⁰¹

$$\Delta E_{\rm g}^{\rm BM} = \frac{{\rm h}^2}{8\pi^2 m_{\rm vc}^*} (3\pi^2 n_{\rm e})^{2/3} \tag{4}$$

where, $(m_{vc}^*)^{-1} = (m_c^*)^{-1} + (m_v^*)^{-1}$ is the effective mass.

4.3 Influence of composites

The color change observed for composite materials, based on at least two constituents, is associated with a modulation of E_{opt} because of the change in physical and chemical properties of the original materials.²⁰² Fig. 9A reveals the different colors corresponding to the different electropolymerization times of V₂O₅/PANI composites.²⁰³ Pure V₂O₅ NFBs exhibit yellow color,

and after increasing the electropolymerization deposition time, V₂O₅/PANI color changes to yellow-green (30 s), green (60 s), deeper green (180 s), and dark green (240 s). The color of gel produced changes after eight weeks by mixing V₂O₅ and GO with the assistance of an acid, while the color of pure V₂O₅ remains in D.I water after six months (Fig. 9B).²⁰⁴ The presence of GO as an oxidizing agent accelerates the oxidation process, causing the morphology to change and the V⁴⁺ state to rise. Moreover, V⁵⁺ is reduced to V⁴⁺ due to a partially reversible reaction of H₂O molecules of V₂O₅ hydrate and alcohol in organic molecules, which changed the color from red to green (gel).³⁷

The E_{opt} of the GO/V₂O₅ composites decreased from 2.67 to 2.608 eV because of the effects of the narrowing gap ($E_g \sim 0.5 \text{ eV}$) of GO with increasing GO concentration from 0 to 3 vol %.²⁰⁵ The E_{opt} was also affected by the polymer types (isopropyl alcohol – PIA, alkoxide, and polyethylene glycol – PEG) and different dilutions (low concentration dilution – LCP and high concentration dilution – HCP).²⁰⁶ The HCP film showed a higher E_{opt} than the LCP film, but E_{opt} decreased to 0.51 eV and 0.38 eV in the PEG-containing LCP and HCP thin films, respectively.

In particular, the $E_{\rm opt}$ and optical transmission of all films decreased after heat treatment, which led to different colors of the pristine film. Hence, the composite materials affect the color of the pristine film because of the absorption shift and the alteration in intensity variation of the optical transmittance. Another example is the presence of carbon on the surface of V₂O₅ NBs, which decreased the ΔT and produced a blue shift in the as-prepared film and after annealing at 250 °C. In contrast, ΔT increased dramatically after annealing at 300, 350, and 400 °C and reached the highest transmittance of 80% (at 790 nm) after annealing at 350 °C.²⁰⁷

5. Chromic phenomena of V₂O₅

5.1 Chromogenic properties of V₂O₅

In contrast to "fix" chromism, "responsive" chromogenics including electrochemical-, gas-, photon-, and thermalreduction processing, can control the V_2O_5 film color *via* direct control of the band structures through external stimuli, such as applied voltage (electric current), gas concentration, excitation light source, and temperature. These external impacts lead to a reversible/irreversible physical and chemical reaction that alters both the electronic and atomic structures of the material. Fig. 10 shows the four types of CDs using V_2O_5 , namely electrochromic, ECD; gasochromic, GCD; photochromic, PCD; and thermochromic, TCD.

Owing to the special band structure, the color change is caused by a shift in the absorption and intensity of the transmitted/reflected light. Fig. 11 shows the transmission spectra of the chromogenic V₂O₅ devices (except TCDs). The changes in E_{opt} and transmittance/reflectance are the most important parameters for evaluating the possible chromic phenomena of V₂O₅ (where λ_b/λ_c and T_b/T_c are the tail of the

Fig. 11 Simulation of the transmission spectra of V_2O_5 film at three states: initial state, bleached state, and colored state.

absorption/transmittance and percentage transmittance (%) in the bleached/colored states, respectively). Furthermore, parameters, such as the switching time, optical density, coloration efficiency, cycling stability, durability, and operational environment, are the figures of merit to evaluate CDs. Depending on the utilization, the efficiency of the CDs can be evaluated using different parameters.

The change in optical bandgap (ΔE_{opt}) is the altered electron band structure of a material that leads to an absorption shift ($\Delta \lambda$) due to the relationship between the energy of absorption and excitation $\Delta E = \frac{hc}{\lambda}$ (where *h* is Planck's constant and *c* is the speed of light in vacuum), as defined by eqn (5) and (6).

$$\Delta E_{\rm opt} = E_{\rm c} - E_{\rm b} \text{ or } \Delta E = E_{\rm c/b} - E_i \tag{5}$$

$$\Delta \lambda = \lambda_{\rm c} - \lambda_{\rm b} \text{ or } \Delta \lambda = \lambda_{\rm c/b} - \lambda_{\rm i}$$
(6)

The optical transmittance/reflectance variation $(\Delta T/\Delta R)$ is the offset intensity of light transmittance $T(\lambda)$ or light reflectance $R(\lambda)$ between the color state and bleach state or between the color (bleach) state and initial state. This is an essential parameter for evaluating the intensity of the color change in a chromogenic device and can be estimated at a specific wavelength or in white light.¹⁵ Although $T(\lambda)$, $R(\lambda)$, and the intensity of absorption $A(\lambda)$ have the relation, $T(\lambda) + R(\lambda) + A(\lambda) = 1$, the optical contrast was calculated using eqn (7) or (9). Moreover, the optical contrast can also be evaluated from the ratio of $T(\lambda)$ or $R(\lambda)$ between states, as shown in eqn (8) or (10).¹⁵

$$\Delta T (\%) = T_{\rm b}(\lambda) - T_{\rm c}(\lambda) \text{ or } \Delta T (\%) = T_{\rm b/c}(\lambda) - T_{\rm i}(\lambda)$$
(7)

$$\Delta R (\%) = R_{c}(\lambda) - R_{b}(\lambda) \text{ or } \Delta R (\%) = R_{c/b}(\lambda) - R_{i}(\lambda)$$
(8)

$$CR = T_b/T_c \text{ or } CR = T_i/T_{c/b}$$
(9)

$$CR = R_b/R_c \text{ or } CR = R_i/R_{c/b}$$
(10)

 $\Delta\lambda$ and ΔT occur simultaneously in V₂O₅ chromic materials. Consequently, V₂O₅ shows the anodic coloration toward short wavelengths and cathodic coloration at longer wavelengths. In particular, in V₂O₅, $\Delta\lambda$ can be changed while ΔT is maintained or slightly changed. This leads to a color change while the brightness changes only slightly.

The switching response time (t_c and t_b) is defined as the time for color conversion of transmittance (reflectance) percentage,⁹³ with specific standards for this parameter.²⁰⁸ The switching response time for chromogenic materials was evaluated as a color conversion reaching 90–95%, but some studies were based on a range of 70 to 85%.^{60,208}

The optical density (OD) is the change in the absorbance of a thin film, which is defined in eqn (11). OD expresses the change in the optical absorption coefficient (or transmission) at a given wavelength before and after the colored states (or bleached state and colored state).^{15,18}

$$\Delta \text{OD}(\lambda) = \log \frac{T_{\text{b}}(\lambda)}{T_{\text{c}}(\lambda)}$$
(11)

where T is the transmittance.

The coloration efficiency (CE) is one of the most important metrics for evaluating EC materials and is defined as the change in OD acquired by the injected charge per unit area, as expressed in eqn (12).^{142,209}

$$CE(\eta) = \frac{\Delta OD}{Q} = \frac{\log\left[\frac{T_{b}(\lambda)}{T_{c}(\lambda)}\right]}{Q},$$
 (12)

where *Q* is the electronic charge injected into the EC material per unit area.

5.1.1 Cycling stability. The thermal stability and long-term lifetime are standards to evaluate and determine the cycling stability of CDs. CDs usually undergo fatigue or failures inside solid materials during cycling caused by physical changes or chemical reactions.¹⁵ This leads to a loss of optical contrast and a decrease in performance. The standard to evaluate differs according to the CD types and applications. For example, stable EC materials are expected to exhibit a life cycle of more than 10⁴ cycles. ECDs require at least 15 000 cycles to maintain stability over 20 years in building windows and 10⁶ cycles in eyewear and rear-view mirrors.¹⁹² Sections 5.2 to 5.5 provide details on the values and mechanism of all parameters.

5.2. Electrochromic process in V₂O₅

5.2.1 Fundamentals of electrochromic V₂**O**₅. The form of the layers in the α -V₂O₅ structures provides inserted spaces for intercalated metal ions (M^{*n*+}), such as Li, Na, K, Ca, Mg, Al, and Zn metals. Since 1970, V₂O₅ has been a positive electrode candidate for metal ion intercalation.^{210,211} Among various ions, lithium has been used extensively in ion batteries and electrochromism. The electrochemical reaction for M^{*n*+} and Li⁺ ion injection/extraction in V₂O₅ is expressed in eqn (13) and (14).^{210,211}

$$V_2O_5 + x(M^+ + e^-) \rightleftharpoons M_x V_{(1-x)}^V V_x^{IV}O_5$$
(13)

$$V_2O_5 + xLi^+ + xe^- \rightleftharpoons Li_xV_2O_5$$
(14)

The lithium concentration x in $\text{Li}_x \text{V}_2 \text{O}_5$ is given by $x = \frac{N_{\text{Li}}}{N_{\text{V}_2 \text{O}_5}}$, where $N_{\text{V}_2 \text{O}_5} = \frac{\rho \cdot A \cdot d \cdot N_A}{M}$ is the number of $\text{V}_2 \text{O}_5$ molecules in the sample (where the volume of the layer is Ad; ρ , N_A , and M are the density of materials, Avogadro's constant, and the molar weight, respectively) and $N_{\text{Li}} = \frac{Q}{e}$ is the number of inserted lithium-ions with $Q = \frac{I}{t}$ (where I is a sufficiently low applied current, and t is the time necessary to apply a current to obtain the lithium concentration).²¹² The lithium concentration x in $\text{Li}_x \text{V}_2 \text{O}_5$ is characteristic of the film color. For example, when x = 0.5 and 1, green and blue colors are observed, as shown in eqn (15) and (16), respectively.⁹⁰ On the other hand, the specific relationship between the x value and color of ECDs depends on the intrinsic film.

$$V_2O_5 + 0.5Li^+ + 0.5e^- \rightleftharpoons Li_{0.5}V_2O_5$$
 greencolor (15)

$$\text{Li}_{0.5}\text{V}_2\text{O}_5 + 0.5\text{Li}^+ + 0.5\text{e}^- \rightleftharpoons \text{Li}\text{V}_2\text{O}_5 \text{ bluecolor} (16)$$

The layers are held together *via* weak vdW forces. The ion injection/extraction can alter the V_2O_5 film color because of the alteration of the crystal structure and band structures leading to a phase transformation. In crystallized phases, the change in lattice parameters caused by Li⁺ ion intercalation leads to phase transformations for α -, ε -, δ -, γ -, and ζ -Li_xV₂O₅, as shown in Fig. 12A.

De Jesus et al.29 and Cocciantelli et al.73 discussed the diffusion pathways in the intercalated materials and phase transition in V_2O_5 . The α -, ϵ -, and δ -Li_x V_2O_5 showed a quite reversible transformation, while γ - and ζ -Li_xV₂O₅ remained after the charge-discharge cycle. In the first discharge, phase transition occurs as line D_0 (Fig. 12A). For a low lithium concentration ($x \le 0.1$), the interlayer spacing of V₂O₅ expanded slightly, and the α -V₂O₅ phase was retained. For $0.1 \le x \le 0.35$, the α -phase coexists with another orthorhombic ɛ-phase, stabilizing the ɛ-V2O5 with increasing concentration, $0.35 \le x \le 0.8$. With the further insertion of lithium ions (0.88 $\leq x \leq 1$), ε -V₂O₅ transforms to δ -V₂O₅. The γ -phase coexists with the δ -phase (1 $\leq x \leq$ 1.4), and the ζ -phase coexists with the δ -phase (1.4 $\leq x \leq 2.0$).^{29,73} For the first recharge (line C₁, Fig. 12A), a mixture of $\delta + \gamma$ phases at $x \ge 0.9$, $\varepsilon + \gamma$ at $x \approx 0.7$, $\alpha + \gamma$ at $x \approx 0.5$, and $\alpha + \gamma$ ' occurs as x tends to zero. At the beginning of the second discharge (line D_1 , Fig. 12A), lithium ion intercalations occur first in the γ 'phase. The formation of the δ -phase occurs for a higher lithium concentration than the first discharge. In contrast, the coexistence of the γ -phase with the δ -phase and ζ -phase occurs at lower lithium concentrations.

In chromic applications, optical reversibility is the most important property. Therefore, a lithium concentration in the range $0 \le x \le 1$ is the most appropriate to investigate the chromic phenomena in V₂O₅ materials. The high crystallinity of V₂O₅ could exhibit better reversibility than low crystallinity or amorphous films.¹⁶

Fig. 12 Phase transition and the arrangement of VO_n polyhedral: (A) result of XRD analysis: (D₀) first discharge, (C₁) first charge, (D₁) second discharge, and (D₅) fourth charge. (B) Structural phase transition in V₂O₅: (a) layered orthorhombic α -V₂O₅ structure, (b) α -Li_xV₂O₅, (c) ϵ -Li_xV₂O₅, (d) δ -Li_xV₂O₅, and (e) γ -Li_xV₂O₅, reproduced with permission (Copyright 2022, Elsevier⁷³).

As the lithium insertion content is approximately 0 < x < 1, V_2O_5 skeletons do not change, and the apical V=O bonds follow one direction along the *b*-axis. The α - V_2O_5 phase transforms to α -, ε -, and δ -Li_x V_2O_5 because of the puckering of layers and the expanding interlayer space (Fig. 12B(a)–(d)). This leads to the entire reversibility of the $\alpha \leftrightarrow \varepsilon \leftrightarrow \delta$ phase transitions as a re-charge.²¹³ Further increases in the lithium content to 1 < x < 2 result in the rotations of two edge share (VO₅) square pyramidal units by 90 °C (Fig. 12B(e)), leading to an irreversible transformation of γ - and ζ -Li_x V_2O_5 .⁷³ This distortion allows higher lithium concentrations with a complicated oxidation process.²⁹

During electrochemical reduction, electrons are injected to reduce pentavalent vanadium (V^{5+}) to lower valence states, such as (V^{4+}) and (V^{3+}). The V^{4+}/V^{5+} or V^{3+}/V^{5+} ratio depends on the cathodically and anodically polarized values. Table 4 lists the amount (%) of V^{5+} , V^{4+} , and V^{3+} with different states (pristine, colored state, and bleached state) of the film *via* XPS fitting

Table 4 Atomic percentage of V in different valence states (V⁵⁺, V⁴⁺, and V³⁺) in the as-deposited film and reduced/oxidized film

	Atomic pe different v	Atomic percentage of V in different valence states				
Sample	$V^{5^{+}}$ (%)	V^{4+} (%)	V^{3+} (%)	Ref.		
As-deposited V ₂ O ₅	100	0.0	_	184		
Annealed for 30 min	71	29				
Annealed for 24 h	89	11				
+0.2 V	91	09	_			
-2.0 V	13	87	_			
Pristine V ₂ O ₅	75.91	18.02	6.08	348		
+2.0 V	81.15	10.78	8.07			
-0.3 V	9.06	80.02	10.92			
-1.5 V	7.99	80.12	11.90			
-2.0 V	6.65	81.73	11.62			
As-prepared SnO ₂ /V ₂ O ₅	76.2	23.8		262		
+1 V	76.0	24				
+0.4 V	52.2	44.8				
-1 V	43.7	56.3				
As-deposited V ₂ O ₅	91	9		216		
+1.9 V	93	7				
-0.3 V	68	32				
-0.9 V	27	73				
As-deposited V ₂ O ₅	57.45	42.55		349		
+2 V	75.35	24.65				
-2 V	35.78	64.22				
As-deposited V ₂ O ₅	83.89	4.46	11.65	244		
+2 V	90.40	4.92	4.68			
+1.5 V	83.28	11.71	5.01			
+1.0 V	73.28	25.11	1.61			
-0.2 V	29.39	65.30	5.31			
-0.5 V	4.29	83.25	12.46			

calculations. The color of pure vanadium oxide is yellow-orange (V^{5+}) , blue (V^{4+}) , green $(V^{3+}$ or mixture V^{4+} and $V^{5+})$, and violet (V^{2+}) .^{31,214} Other vanadium oxides, such as V_2O_3 , and the family of Wadsley phases (V_nO_{2n+1}) , such as V_3O_7 , also exhibit multivalences during the EC process.^{215–217}

Owing to the presence of V^{3+} ions, the color of the film changes to olive green, and the multiple colors in V₂O₅ are attributed to the presence of V^{3+}/V^{4+} and V^{5+} .^{83,216} A potential range where the vanadium ions with the two oxidation states coexist at a well-defined ratio can explain the green intermediate coloring by the occurrence of the V^{5+}/V^{4+} redox couple.^{57,82,214,216,218} The mechanism of the multielectrochromism observed in vanadium oxides is explained by a change in the oxidation state and a structural modification. Indeed, the CV curve, Fig. 13A, shows a phase transition to α/ϵ , ε/δ , and δ/γ during the reduction process that corresponds to three cathodic peaks at 0.38 (C1), 0.19 (C2), and -0.70 V (C3), respectively. Accordingly, ε/α , δ/ε , and γ/δ phase transitions occur at the three anodic peaks, denoted as A1, A2, and A3, respectively.57

These findings are consistent with the color of V^{3^+} , V^{4^+} , and V^{5^+} in the ionic liquid [EMIM][VO₃] during the electrolysis process (Fig. 13B). The yellow color of the initial V^{5^+} changes to blue (V^{4^+}), green (mixed V^{4^+}/V^{5^+}), and dark green (V^{3^+}) upon electrolysis. The origin of the color change observed for vanadium oxide was also explained by a structural change between the amorphous and crystallized states (Fig. 13C).²¹⁶ During cycling, the reduction process leads to a mixture of V^{4^+} and

Fig. 13 Change in the oxidation state, color, and structural modification: (A) CV curves of V₂O₅ at various scan rates, (B) color change corresponding to the three oxidation states of ionic liquid [EMIM][VO₃], and (C) *ex situ* grazing incidence XRD of the V₂O₅ film before cycling (a) and after 50 cycles at the oxidized state (b), reduced green state (c), and reduced blue state (d). The figures are reproduced with permission (Copyright 2022, Nature,⁵⁷ Royal Society of Chemistry,²¹⁹ and American Chemical Society²¹⁶).

 V^{5^+} and passes from the crystalline to the amorphous state. The bleaching process (oxidized state) leads to a fully oxidized V^{5^+} state, which is in agreement with the orange color. The complete reoxidation at the end of each cycle allows the recrystallization of pristine $V_2O_5.$

Moreover, Li^+ intercalation alters the crystalline order, leading to a phase transformation, reacts with oxygen in the lattice to form lithium oxides (LiO and Li₂O), and generates V_o defects.¹⁷⁸ Consequently, the proportion of the V⁴⁺ oxidation state increases, and a mid-gap state between the VB and splitoff CB was formed (Fig. 14a and b).

The appearance of a new transition between the VB and midgap states (Fig. 14b) leads to an increase in the absorption in the NIR region. The excess electrons move the entire crystal and begin to fill the unoccupied mid-gap states and split-off states (Fig. 14c). Consequently, the optical transitions of absorption (or transmittance) have four kinds of transitions: (1) VB \leftrightarrow main CB in the range of 300–450 nm, (2) VB \leftrightarrow split-off CB in the range of 450–600 nm, (3) VB \leftrightarrow mid-gap states in the range of 650–850 nm, and (4) mid-gap states \leftrightarrow main CB in the range > 1000 nm. These transitions are noted as I-1, I-2, I-3, and I-4, respectively, as shown in Fig. 14c. These may lead to the simultaneous color collectives of V₂O₅ thin films.

For the colored state, in the film-upon reduction, the electron concentration increases, leading to an increase in the Fermi level (E_f) to split-off CB. Consequently, the conductivity increases, the optical bandgap changes, and a color center is formed. When the electron concentration is high enough, E_f enters between the main CB and the split-off CB (Fig. 14c).^{29,50,158,178,220} The transition from the split-off CB to the main CB is forbidden. In contrast, the transition from the VB to the split-off CB appears weakly because of the filled electrons in the split-off CB. Therefore, the absorption intensity I-1 decreases slightly while the absorption intensity I-2 decreases strongly. The absorption spectra begin to shift to a shorter wavelength (Fig. 14b and 14c). The absorption due to a transition between the mid-gap state and main CB and the shift to a shorter wavelength co-occur, leading to an increased absorption intensity I-3 and I-4.

A phase transition occurs when the lithium concentration is increased, which causes a change in the density of states of V_2O_5 . When Li-ions lie between O(1) and V ions or between two O(2) ions, the V=O(1) bonding lengths become shorter or longer compared to the initial lattice of V_2O_5 . Electrons from the Li₂s orbitals transfer to the V3d states due to the higher $E_{\rm f}$. The split-off CB becomes narrower (bandwidth increases) or even disappears (split-off CB merges with CB), leading to an increase in the bandgap (Fig. 14d).^{29,50,158,178,220} Consequently, the absorption transition from the VB to the split-off CB (noted I-2) disappears or shifts to a higher energy. Supposedly, these I-1, I-2, I-3, and I-4 transitions co-occur. In this case, the transmittance of the colored state shifts to a shorter wavelength, and the intensity decreases in the IR and NIR regions, as shown for the colored state in Fig. 11.

Lithium ions and excess electrons are withdrawn reversibly from V_2O_5 in the bleached/oxidized state. The recrystallization

Fig. 14 Schematic diagram of the energy band structure and optical transition ability in V₂O₅: (a) pure V₂O₅, (b) and (c) V₂O_{5-ν}, and (d) Li_xV₂O₅.

Fig. 15 CL spectra of lithiated/delithiated Li_xV₂O₅: (A) α -V₂O₅, (B) lithiated δ -LiV₂O₅, (C) lithiated γ -Li₂V₂O₅, and (D) de-lithiated ϵ -Li_xV₂O₅ (0.1 < x < 0.3), reproduced with permission (Copyright 2022, Royal Society of Chemistry²²¹).

process, reformation of the split-off state, and some of the defects are recovered. The amount of V^{4+} after bleaching (oxidized state) can become less than or equal to that of the as-deposited film (pristine V_2O_5) (Table 4). Absorption occurs primarily due to a transition from the VB to the split-off CB and from the VB to the main CB, while the transitions from the VB to the mid-gap state and from the mid-gap state to the main CB are very weak. Consequently, the absorption intensities of I-1 and I-2 are strong, while the absorption intensities of I-3 and I-4 are very weak.

Fig. 15 shows the recombined transition (depth-resolved cathodoluminescence (DRCL) spectroscopy) spectra $Li_xV_2O_5$ ²²¹ The DRCL spectra of α -V₂O₅ with an electron beam energy ($E_{\rm B}$ = 0.5 kV) showed peaks at 1.8–2, 3.2, 3.6–3.7, and 4.0 eV, with a wide feature of approximately 2 eV and 3.6 eV as $E_{\rm B}$ increased (Fig. 15A). With δ -LiV₂O₅, the features around 1.8-2.0 eV were suppressed, and a new peak at 2.45 eV was observed for $E_{\rm B}$ = 0.5 kV. As $E_{\rm B}$ increases, these peaks < 3 eV are suppressed, and a peak around 4.0 eV was observed (Fig. 15B). With γ -Li₂V₂O₅, the weak peak at 2.45 eV remains, but the peaks below 3.0 eV are suppressed. Except for the 4.0 eV feature, all emission spectrum vanished as $E_{\rm B}$ was increased (Fig. 15C). With the de-lithiated ε -Li_xV₂O₅ (0.1 < *x* < 0.3), the narrow peak at 1.8 eV and broad peak at 2.45 eV were observed at a low $E_{\rm B}$. As $E_{\rm B}$ increased, the peak at 3.3 eV appeared ($E_{\rm B}$ = 1.0 kV and 2.0 kV) while the narrow peak at 1.87 eV was suppressed (Fig. 15D).

Jarry *et al.*²²² observed the relationship between the color change and the local structure of vanadium oxide during the electrochemical process. The color of the film changes with the associated phase transformation (Fig. 16A), orange \leftrightarrow yellow gold \leftrightarrow light green \leftrightarrow darker green corresponding to (3.4 V: α -V₂O₅) \leftrightarrow (3.2 V: ϵ -Li_xV₂O₅) \leftrightarrow (2.8 V: δ -Li_xV₂O₅) \leftrightarrow (2.2 V: γ -Li_xV₂O₅), respectively. On the other hand, colored/reduction– bleached/oxidation states are not perfectly symmetrical. The color of the fully oxidized material (3.4 V: α -V₂O₅) does not return to the pristine α -V₂O₅ film color (orange) because of an irreversible phase transformation of γ -V₂O₅ as x > 1.

Fig. 16B presents the Raman spectra of pristine α-V₂O₅ with cycled Li_xV₂O₅ samples and reference powders (Li₂O, V₂O₄, and V₂O₃). The vibrations between O and V, such as O(a)–V, V–O(a)–V, and O(a)–V–O(b), generate 21 Raman active modes, 7A_g + 3B_{1g} + 7B_{2g} + 4B_{3g}. The Raman spectra showed 11 peaks, including 102 (Ag), 144 (either B_{1g} or B_{3g}; B_{1g}/B_{3g}), 195 (Ag/ B_{2g}), 283 (B_{1g}/B_{3g}), 301 (Ag), 403 (Ag), 483 (Ag), 523 (Ag), 701 (B_{1g}/B_{3g}), 850 (B_{1g}), and 993 (Ag) cm⁻¹.²²³ The Raman spectra of pristine pure α-V₂O₅ showed a predominant low-frequency peak at 143 cm⁻¹, corresponding to the bent vibration mode B_{3g}, while the highest frequency ν (d₁) mode at 995 cm⁻¹ originates from the V=O₁ double bonds. Other peaks were at 480, 525, and 700 cm⁻¹ from the vibration modes A_g (V–O₃–V), ν (d₄), and ν (d₃), respectively. For δ-Li_xV₂O₅ (sample VI, V, and VIII, $x \approx 1$),

Fig. 16 Electrochemical and Raman spectra of $\text{Li}_x V_2 O_5$ (0 < x < 2): (A) electrochemical and (B) Raman spectra of $\text{Li}_x V_2 O_5$ as a function of lithium deintercalation/intercalation (0 < x < 2), reproduced with permission (Copyright 2022, American Chemical Society²²²).

the peak of mode B_{3g} is extinct while the peak of 995 cm⁻¹ was shifted to 967 and 957 cm⁻¹. For γ -Li_xV₂O₅ (sample II and IV, $x \approx 2$), these signature peaks disappeared as a shoulder of a peak at 930 cm⁻¹, and two new peaks appeared at 830 and 730 cm⁻¹.

For α -Li_xV₂O₅ and Li-poor ϵ -Li_xV₂O₅ (sample IX, $x \approx 0$), these peaks did not recover perfectly, such as the original position and intensity of pristine pure α -V₂O₅. The Raman spectra of the reference powders (LiO₂, V₂O₄, and V₂O₃) showed that the peaks of V₂O₄ (155 and 267 cm⁻¹) and V₂O₃ (223, 300, and 500 cm⁻¹) did not overlap with the peaks of Li_xV₂O₅ while the peak at approximately 523 cm⁻¹ for Li₂O overlapped with that of α , ϵ , and δ -Li_xV₂O₅.

5.2.2 V₂O₅ electrochromic thin films and devices. Colton reported the first study on the photochromism and electrochromism of V₂O₅ films fabricated by vacuum evaporation using X-ray electron and absorption spectroscopy in his PhD thesis and publications in 1976–1977^{224–226} after the important studies on the ability of lithium intercalation in V_2O_5 materials by John B. Goodenough, M. Stanley Whittingham, 210 and Akira Yoshino (Nobel prize in chemistry 2019 for the development of lithium-ion batteries). The V₂O₅ film changes color from yellow to greenish-blue with upon lithium intercalation and X-ray irradiation. Dickens *et al.*²²⁷ examined the relationship between the phase transition and the coloration of $\text{Li}_x \text{V}_2 \text{O}_5$ (0.1 < x < 1.1) in 1979. The phase transition and coloration occurred with increasing lithium content in $Li_xV_2O_5$: ochre (x = 0.1), pale green (x = 0.24), dark green (x = 0.45-0.69), dark blue (x = 0.78), and blue black (x = 1.08).

Sato *et al.* designed the EC light transmission modulators containing an aqueous electrolyte solution between the EC layer electrode (WO₃, MoO₃, and V₂O₅ film) and the SnO₂ transparent electrode substrate.²²⁸ Compared to WO₃ and MoO₃ films, the transmittance spectrum of the V₂O₅ film shifted towards a shorter wavelength with a decrease in intensity, extending to the UV region following the change in lithium intercalation. Rauh *et al.*²²⁹ and Yoshino *et al.*²³⁰ reported another sandwich-type modulator using two V₂O₅ films as two EC elements on ITO substrates in 1987. These modulator systems showed that V₂O₅ electrodes could operate as both EC

and counter layers, and the coloration exhibited both anodic and cathodic colorations of $V_2 \mathrm{O}_5$ films.

From 1975 to 1999, studies focused on the shift in the absorption-transmission spectra in visible light and the change in light intensity in the IR and NIR regions. Other important key figures of merit to evaluate the performance of ECDs, such as the coloration efficiency, cycling life, and switching time, have attracted less attention. Classical V₂O₅ films for ECDs are usually fabricated by RF magnetron sputtering,^{229,231,232} DC magnetron sputtering,^{158,233} thermal evaporation,^{225,226,234,235} and sol-gel²³⁶⁻²³⁸ methods. The advantage of these techniques is the good adhesion of the film to the substrate. Nevertheless, the compact morphologies decrease the diffusion rate and reversibility. The absorption tail shifted to a higher energy (shorter wavelengths) from 2.25 to 3.1 eV (x = 0 to 0.75), from 2.38 to 2.75 eV (x = 0 to 11),¹⁵⁸ from 2.7 to 3.4 eV,²²⁶ and from 2.27 to 2.47 eV (x = 0 to 0.86)²³² upon lithium intercalation in $\text{Li}_x V_2 O_5$. The absorption in the NIR and IR regions also increased when cathodically polarized, and the reversibility decreased when anodically polarized. Consequently, the film color varied depending on the applied voltage (or current). For example, the following EC changes have been observed: yellow \leftrightarrow greenish-blue,²²⁶ yellow \leftrightarrow blue,²³² pale-yellow \leftrightarrow gray,²³³ yellow \leftrightarrow yellowish,²³⁵ yellow \leftrightarrow green,²³⁶ yellow \leftrightarrow green \leftrightarrow deepblue,²³⁷ yellow \leftrightarrow light-blue,²³⁹ and blue \leftrightarrow green \leftrightarrow yellow.²⁴⁰

Nagase *et al.* introduced a new coloration using V₂O₅-based composites, such as Au-V₂O₅ and V₂O₅-TiO₂.^{234,238} Fig. 17 compares the coloration of pure V₂O₅ and V₂O₅-based composites.^{234,238} In the V₂O₅-TiO₂ system (*x*-TiO₂, *x* = 0 for pure V₂O₅ and *x* = 1 for pure TiO₂), the pristine film color and EC coloration are affected by the *x* value. The color change of blue \leftrightarrow green \leftrightarrow yellow (*x* = 0–0.3), gray \leftrightarrow yellow (*x* = 0.5), and reddish-brown \leftrightarrow gray \leftrightarrow green \leftrightarrow yellow (*x* = 0.7) occurred as the films were polarized while only a color change of dark-blue \leftrightarrow transparent (*x* = 1) was observed.²³⁸ Similarly, the new coloration of reddish-violet \leftrightarrow green due to the effective dielectric constant of Au grains was observed in Au-V₂O₅.²³⁴

There are fewer reports on the response time and CE of a compact V_2O_5 film at this stage. The compact granular

Fig. 17 Optical absorption spectra of (A) V_2O_5 -TiO₂(x) films with (a) x = 0.7 and (b) x = 0 and (B) coloration Au- V_2O_5 films with 26% Au content. The figures are reproduced with permission (Copyright 2022, American Physical Society^{234,238}).

morphology of a V₂O₅ film with grains, 80–100 nm in size, produced a low CE value of approximately 13 cm² C⁻¹ at 630 nm with a slow response time of approximately 60 s and an unsatisfactory reversibility of approximately 70%.²⁴¹ The sol-gel V₂O₅ film reached only 30% transmittance modulation at 700 nm when 3.0 V was applied for 5 min and required 10 min to reach saturation. The V₂O₅ film prepared by thermal evaporation showed an increase in transmittance of 48.9% at 400 nm and 14.1% at 700 nm. The E_{opt} increased from 2.03 to 2.62 eV when the amount of intercalated lithium-ions ranged from 0 to 0.54.²⁰¹

Since 2000, various V_2O_5 micro-nanostructure morphologies have improved the CE and switching response time of smart films. Large volume, large specific surface area, and short diffusion distance have made outstanding contributions to the switching response time of ECD. The redox reaction occurs on the surface before diffusion into the inside of the solid. This is favored by the many electroactive sites and favors the chargetransfer resistance.⁵⁷ Emphasizing this morphology, 1D nanostructured V_2O_5 as an EC layer, such as NRs,^{82,83,150,184} NWs,^{59,60,89,90} NBs,⁹³ and NFs,⁵⁷ has been reported.

The NR arrayed film with a 100 nm diameter has a six times faster response rate than the sol-gel thin film.⁵⁸ Different 1D-V₂O₅ types were formed by annealing macroporous amorphous phases that showed bleaching-coloration times of 5.6–4.3 s, 8.0–6.5 s, 9.3–8.8 s, and 7.4–8.9 s at 460 nm.^{57,83,150} NBmembrane hybrid structures with a width of 20–40 nm fabricated by a hydrothermal method showed a high contrast of 62% with bleaching-coloration time of 7.0–9.9 s at 700 nm.⁹³ Compared to commercial bulk V₂O₅ with a contrast of 3.8% at 490 nm and a bleaching–coloration time of 8.5–6.6 s, ultra-long NBs (length up 20 mm, width 10–30 nm) inhibit excellent EC with a contrast of 41.6% and a bleaching–coloration time of 4.2–1.4 s.²⁴² A rapid bleaching–coloration time (2.6–2.8 s) is achieved for NWs with an average width of approximately 15 nm and several micrometer lengths.⁸⁹

The advantages of the solution and chemical methods on the growth of 1D nanostructures allow the easy control of the size, orientation, and morphology. Nevertheless, the weak physical adhesion strength and poor physical/chemical contact with the substrate may decrease the efficiency and redox cycling time. The transmittance modulation of the NRs decreased by approximately 5.6% in the NIR region after 100 cycles.¹⁵⁰ Regarding the NBs, they were peeled off from the substrate after several cycles.⁹³ This led to a decrease in optical contrast and an increase in transmission of coloration $\Delta T_{colored}$ before and after a certain number of cycles. The contrast decreased by 92.5% after 100 cycles, and $\Delta T_{colored}$ increased 15.33% after 70 cycles.⁹³

The 1D-membrane stability was improved by treating the substrate surface, producing a composite or encrusted structure, and employing physical methods. A linear polythylenimine surface treatment of the substrate increased $\Delta T_{colored}$ by only 0.8% after 70 cycles.⁹³ A polyaniline (PANI) composite with V₂O₅ NWs showed an enhanced switching time compared to the pristine material and maintained cycling stability.⁸⁹ Multicolor (black, pale, yellow, light yellow, and dark green) V₂O₅/PANI CDs demonstrated cycling stability for 1000 cycles and rapid bleaching–coloration times of 1.5–2.3 s. The optical contrast retention at 1000 cycles was 85% for MnO₂-entrusted V₂O₅ compared to 80% for bare V₂O₅.⁹⁰ V₂O₅ NWs with diameters ranging from 10 to 100 nm and lengths up to several hundred nanometers fabricated by the TE methods were stable for 1000 redox cycles.⁶⁰

Other morphologies of V₂O₅ micro-nanostructures, *i.e.*, NPs,^{214,243} stacked multilayer film,²⁴⁴ and NSs,²⁴⁵ have been investigated on flexible ECDs. NPs and NSs show excellent contact with a flexible substrate, but the difference in the method and morphology has advantages and disadvantages for each EC material. NP EC materials exhibit long-term cycling with 18% decreased ΔT after more than 30 000 cycles but a slow switching time in the ranges $t_c = 139-230$ s (t_c) and $t_b = 92-$ 230.²¹⁴ Stacked multilayer film exhibits a fast response time with $t_c/t_b = 20.9/34.4$ s and excellent stability with 17.75% decreased ΔT after 2000 cycles.²⁴⁴ In contrast, ultrathin NS (4 to 40 nm) EC material showed a rapid t_c - t_b of 4.1–6.4 s but has poor stability with 35% decreased ΔT after 100 cycles.²⁴⁵ Surca et al.²⁴³ synthesized NPs (100 nm) using a mechanical milling method, and then the film was coated using a spin-coating technique on ITO-PET before being treated thermally at 150 $^\circ\mathrm{C}$ for 1 h. Interestingly, ΔT increases to 6% and 24% after the 41st and 521st cycles, respectively, compared to the 6th cycle.

Fig. 18 Schematic diagram of the growth of V₂O₅ nanostructures: (A) 3DOM and NRs and (B) Gyroid morphology. The figures are reproduced with permission (Copyright 2022, Elsevier¹⁵⁰ and Wiley²⁴⁶).

In general, V₂O₅ is characterized by slower response times than WO₃. Nevertheless, EC V₂O₅ has superior deintercalation/ intercalation capacity with a reduced optical band spectrum. The coloration state can be operated and maintained at a low potential (voltage range of ±1 V).^{16,145} Fortunately, most applications of EC materials, such as EC windows, do not require rapid response times.¹²⁴ In particular, to reduce the switching time below 100 ms, the nanostructured device should satisfy the lithium-ions diffusion distance, $x = \sqrt{2Dt} \sim 5$ nm, where *D* and *t* are the diffusion coefficient and response time, respectively.²⁴⁶ This size is approaching the Bohr radius *a*_B = 4.52 nm.^{50,247} This affects the bandgap of semiconductor materials because of the quantum confinement effects.

Novel micro-nanostructures, such as three-dimensionally ordered macroporous (3DOM), 3DOM of 1D morphology, and Gyroid structures, were fabricated using the new technique or combination of techniques, as shown in Fig. 18.^{150,246} These structures can meet the rapid switching time due to rapid intercalation-deintercalation diffusion. The effective diffusion coefficient *D* of lithium ions (Li⁺) can be estimated from the Randles–Servcik equation (eqn (17)).^{57,248}

$$J = 269 \times 10^3 A n^{2/3} D^{1/2} C_0 v^{1/2}$$
 (17)

where *J*, *A*, *n*, *C*₀, *D*, and *v* are the current density at the oxidation state, effective surface area of the electrode (cm²), number of electrons transferred in the unit redox reaction, concentration of diffusion species of electrolyte (mol cm⁻³), effective diffusion coefficient (cm² s⁻¹), and potential voltage scan rate (V s⁻¹), respectively.

The chronocoulometric response under diffusion-limited conditions can be expressed using eqn (18).²⁴⁹

$$Q = 2n^{-1/2} FAD^{1/2} C_0 t^{1/2} + Q_{\rm dl} + nFA\Gamma$$
(18)

where Q_{dl} and Γ are the double-layer charging and the concentration of adsorbed species participating in the faradaic reaction, respectively.

Li's research group developed EC films of threedimensionally ordered macroporous (3DOM) and 3D crystalline NRs and NFs.^{57,83,89,145,150,249,250} Fig. 19 A presents the 3DOMs with different pore diameters of 210, 340, and 840 nm. The similar thicknesses of $1.1 \pm 0.1 \mu$ m of dense and 3DOM films resulted in the same solid volume but different surface areas. Compared to the dense film, the 3DOM films showed high transmittance modulation, faster switching response, and high OD because of the increased active area of whole nanostructures, as shown in Fig. 19B and C. Among them, the 3DOM V_2O_5 film with a pore size of 210 nm showed the highest EC performance with $\Delta T = 50\%$ (at 650 nm), $t_c = 1.7$ s, and $t_b = 3.2$ s because this size obeys the short Li⁺ diffusion distance and larger active surface areas for more effective Li⁺ intercalation.

Steiner's research group grew gyroid-structured electrodes for EC and supercapacitor applications.^{246,251,252} The small size of the periodic DG V_2O_5 with a cubic unit cell size of 41.5 \pm 1 nm, strut diameter of 11.0 ± 0.3 nm, and high specific surface led to a rapid response time. The short switching time of DG with a $t_{\rm b}/t_{\rm c}$ of 82.5 \pm 2.9 ms/86.7 \pm 2.3 ms was comparable to the inverted opals structure of 122-235 ms. Fig. 20A and B show the cross-sectional SEM images and a schematic diagram of DG for CDs. The photograph and UV-vis-NIR spectrum (Fig. 20C and D) revealed a vivid yellow and green-gray color for the oxidized state at the anode (+3.5 V) and reduced state at the cathode (-3.5 V) for 20 s, respectively. Both anodic and cathodic colorations clearly showed an enhanced absorption peak at approximately 425 nm that decreased sharply in the visible-NIR region. The dynamic optical behavior and the temporal response showed a change in color under an applied potential of ± 1 V that reached the full redox state at ± 3 V, as shown in Fig. 20E.²⁵¹

Moreover, combinations between the V_2O_5 micro-nanostructures and other materials to form a micro-nanocomposite or hybrid structure and enhance the EC performance have been reported: Ag@V_2O_5,⁵⁹ MnO_2@V_2O_5,⁹⁰ V_2O_5@PEDOT,¹¹² Carbon@V_2O_5,²⁰⁷ Carbon@V_2O_5@PEDOT:PSS,²⁵³ Mo@V_2O_5,²⁴⁸ MoO_3@V_2O_5,^{254,255} polymer@V_2O_5,²⁵⁶ TiO_2@V_2O_5,^{257,258} PED-OP@V_2O_5,²⁵⁹ graphene @poly@V_2O_5,²⁶⁰ RGO@V_2O_5,²⁶¹ SnO_2@V_2O_5,²⁶² and NiO@V_2O_5.²⁶³ In addition, bi-layer and multi-layer structures, such as WO_3/V_2O_5/WO_3/V_2O_5,²⁶⁴ TiO_2/ V_2O_5,²⁶⁵ GO/V_2O_5 NSs/GO/V_2O_5 NSs,²⁴⁵ and V_2O_5 dot-decorated WO_3,⁹⁶ improve the optical properties. Metal, GO, RGO, and PEDOT, with high carrier mobility, have higher electrical conductivity, which improves the ECD switching time. Furthermore, owing to volume expansion during cycling, crystalline pure V_2O_5 became amorphous, resulting in a decrease in stability. Vanadium ion dissolution can be inhibited by M@V_2O_5 composite structures, improving durability.^{89,266}

Xiong *et al.*⁵⁹ reported the electrochromism applications of V_2O_5 NWs and Ag particle-decorated V_2O_5 (SVO) NWs. The small diameter of both the SVO and V_2O_5 NWs of 10–20 nm showed an advanced switching time due to the short diffusion

Fig. 19 The electrochromic properties of 3DOM V_2O_5 : (A) SEM images of films with different pore sizes: (a and b) 210 nm, (c and d) 340 nm, (e and f) 840 nm, and (g and h) dense film. (B) Transmittance contrast of (a) 3DOM and (b) dense V_2O_5 films, (c) optical density, and (d) digital photographs of 3DOM films with different potentials. (C) Switching response curves of films with different pore sizes: (a) 210 nm, (b) 340 nm, (c) 840 nm, and (d) dense V_2O_5 film, reproduced with permission (Copyright 2022, Royal Society of Chemistry¹⁴⁵).

Fig. 20 The electrochromic properties of double-gyroid structured V_2O_5 : (A) cross-section SEM image of the DG film, (B) schematic diagram of two laterally offset DG structured electrodes, (C) photograph of ECDs (oxidized state: yellow color and reduced state: green-gray color), (D) transmittance spectra, and (E) transmittance variations during chronopotentiometry (+2 mA cm⁻² for the initial 20 s and -2 mA cm⁻² for the remaining time), reproduced with permission (Copyright 2022, American Chemical Society²⁵¹).

distance. The presence of Ag product with more electronic concentration led to better electrical conductivity than that of pure V_2O_5 . Consequently, the t_c of SVO was more than 20 times

faster than that of pure V_2O_5 NWs because of the enhanced diffusion coefficient. On the other hand, Ag NPs could promote catalytic behavior that leads to an unstable colored state. The

Fig. 21 $V_2O_5/W_{18}O_{49}$ electrochromic: (a) schematic diagram of the co-assembly process, (b) SEM and TEM images (ratio 3 : 3), and (c) optical images upon 2.0 and -0.5 V applied voltages of 10 layers, reproduced with permission (Copyright 2022, American Chemical Society²⁶⁷).

high conductivity of the composite due to the contribution of high conductivity materials, such as graphene, GO, RGO, and PEDOP, improves the switching time.^{205,259–261}

Composite materials exhibit improved electrical, mechanical, and optical properties vielding durable ECDs. A previous study reported that a SnO₂/V₂O₅ hybrid still maintained 85% optical modulation of the original value after 2000 cycles, while pure V_2O_5 lost almost 90% after 300 cycles.²⁶² The ΔT and CE of polymer/V2O5 composite ECD after being stored for several weeks were approximately 40-30% and 8-20% lower than the initial cycle and after 100 redox cycles, respectively.256 In particular, the ECD of the V₂O₅-TiO₂ (70:30) composite exhibited a high ΔT of 68% at 580 nm and long-term cycling stability with a decreased ΔT of 2% after 150 000 cycles.²⁵⁷ Wang *et al.*²⁶⁷ used Langmuir-Blodgett technique to co-assemble V2O5 and W18O49 NWs (Fig. 21a and b) with different mass ratios. The colored-bleached states of pure V₂O₅ NWs inhibit orange and green colors while pure WO₃ inhibits the transparent and blue colors with applied voltages of 2.0 and -0.5 V. Multicolors from orange, green, and gray depend on the mass ratio, as shown in Fig. 21c.

Another addition for improving the EC performance is doping. V_2O_5 is an n-type semiconductor with a low electron carrier concentration that leads to low electrical conductivity. The room-temperature conductivity of pure V_2O_5 thin films ranged from approximately 10^{-2} to $10^{-1} \Omega^{-1} \text{ cm}^{-1}$.²⁶⁸ The intercalation/deintercalation processes were strongly affected by electronic conductivities and ionic diffusivities.²⁶⁹ Towards this direction, the role of doping on the improvement of electrical conductivity (*i.e.*, large carrier concentration) was investigated.²⁷⁰ The experimental result showed that the electrical conductivity of element-doped V_2O_5 ($M_xV_{2-x}O_5$) increased from 10^{-3} to $5-7 \times 10^{-1} \Omega^{-1} \text{ cm}^{-1}$ (M = Ag, Cu),²⁶⁹ and from 4×10^{-4} to $2 \times 10^1 \Omega^{-1} \text{ cm}^{-1}$ (M = Na).²⁷¹

Ti-, Mo-, W-, Fe-, Ta-, and Mg-doped V2O5 showed improved EC performance in cycling stability, switching time, CE, and optical contrast.^{108,196,248,272-278} Among them, Ti-doped V₂O₅ showed outstanding properties. Li et al.²⁷² prepared durable reinforced hybrid type ECDs based on modified Ti-doped V₂O₅ films and solution-phase ethyl viologen. The results showed that the ECDs exhibited long-term cycling stability with only a slight decrease in ΔT after 250 000 cycles. 4% Ti-doped V_2O_5 showed a high $\Delta T\%$ of 51.1% (at 415 nm) and CE of 95.7 cm⁻² C⁻¹ compared to 36.0% and 53.1 cm⁻² C⁻¹ for pure V₂O₅. Fe-doped V₂O₅ exhibited an enhanced switching speed $(t_c = 2.0 \text{ s and } t_b = 3.7 \text{ s})$ compared to bare V₂O₅ $(t_c = 4.6 \text{ s and})$ $t_{\rm b} = 6.0$ s).²⁷³ A high Mg content (15% Mg-doped V₂O₅) enhanced the visible transmittance of pristine film and improved the CE to 71.3% compared to 9% for pure V_2O_5 (at 560 nm).¹⁰⁸ The transmittance contrast of W-doped V₂O₅ increased with increasing W content (expect ratio V:W = 9:1), and its maximum gains were 76.9% (at 560 nm) and 77.5% (at 750 nm) in the V: W = 2:1 case.¹⁹⁶ Table 5 lists the EC performance (*i.e.*, t_c/t_b , OD, ΔT , and CE) and illustrates the considerable progress in nanoscience to upgrade the EC parameters of different micro-nanostructural morphologies, doping elements, and hybrid composite structures.

The overlapped colors obtained by combining two EC types between V_2O_5 and other counters were attributed to the various colors using the simultaneous reversible color of two counters in V_2O_5 /electrolyte/counter(s) (counters = VO_x , TMOs, polymers). Classical V_2O_5 films were also studied to change the

Sample	Synthesis method	Evalua- tion wave- length (nm)	Colora- tion time (s)	Bleaching time (s)	Optical density (ΔOD)	Transmit- tance ΔT (%)	Coloration effi- ciency CE ($cm^2 C^{-1}$)	Ref.
One-spin film	The film was deposited on an ITO	630	_	_	0.31	37	11 36	236
Two-spin film	substrate by sol-gel spin-coating	000	_	_	0.55	56	12.5	200
Film – 250 °C	The film was deposited on an FTO	420	4.5	4.0	0.897	18.46	33.22	343
Film – 350 $^\circ C$	substrate by sol-gel spin-coating,		2.7	2.2	1.277	51.76	49.13	
Film – 450 °C	was annealed at different		2.4	2.1	1.730	56.09	110.98	
Film – 3% O ₂	The films grown by RF-sputtering	400	_	_	1.93	30.39	52.9	350
(300 °C)	at different O2/Ar gas ratios and	560			0.479	27.5	13.1	
. ,	different substrate temperatures	750			0.35	18.6	9.6	
Film - 6% O ₂		400	19.5	20.25	1.81	35.14	73	
(300 °C)		560			0.22	14.6	8.87	
F ¹		750			0.28	17.5	11.4	
Film – 11% O_2		400	—	—	1.97	36.9	84.5	
(300°C)		560				0.0	- 0.1	
Film - 25 °C (6%		750	_	_	0.21	9.0 21.3	9.1 35.3	
$P_{1111} = 23 C (0.000)$		400 560			0.05	21.3	21.9	
02)		750			0.41	23.9	22.1	
Film – 150 °C		400	_	_	1.61	33.2	131.9	
(6% O ₂)		560			0.39	25.8	32.5	
(3,3,5,2)		750			0.28	17.66	23.2	
Film – 300 °C		400	20	20	1.81	34.7	73	
(6% O ₂)		560			0.22	14.6	8.9	
		750			0.28	17.5	11.4	
Film – 375 nm	The film was deposited on an ITO	800	6	6	0.85	80	14	237
Film: 250 (fresh)	V_2O_{ϵ} was prepared on FTO by	700	3	_	0.21	40	18	181
Film: 250 (aged)	electrophoretic deposition and		5.1		0.26	43.15	22.4	
Film: 420 (fresh)	was treated with isopropanol		5.90	_	0.28	47.30	20.20	
Film: 250 (aged)	1 1		8.7	_	0.38	50.20	25	
Film: 780 (fresh)			18.80	_	0.41	50.40	18.70	
Film: 780 (aged)			18.0	—	0.57	57.90	26.30	
Film – 3 min	The films were prepared by CBD	400	20	56	—	55	—	124
(240 nm)	at 85 °C for different deposition	500	—	—	—	23	—	
	times (min)	900	_	—	_	17	—	
Film – 20 min		400	_	_	_	1	—	
(830 nm)		500			—	28	_	
V.O. partialas	The films were inhist printed	900	61	36	_	55	- 40	014
(65 nm) 0.1 V	from a gel on PET/ITO, EC		230	230	—	4.1	42	214
0.5 V	measurement with different		192	170	—	20.4	40	
1.1 V	applied voltages (V)		184	118	—	37.1	30	
1.5 V		750	143	103	_	39.6	16	~ ~
Templated 2%	WCR (layered structured with dif-	600	30	39	—	18.0	25.0	82
Templated 10%	ferent polymer concentrations)		29	27	_	17.4	27.0	
NBs-membrane	NBs were fabricated by the	700	30 7 0	30	_	20.0	20.7	03
NDS-membrane	hydrothermal method and drop- casted on ITO	700	7.0	5.5		02	20.7	93
Powder	Commercial	490	6.8	8.5	_	3.8	8.4	242
NBs	NBs were fabricated by the simple	150	1.4	4.2	—	41.6	83.3	212
	solution treatment process							
NFS	V_2O_5 was deposited into PS col- loidal crystal templates, and the film was annealed at 450 °C for 4	450	8.9	7.4	_	34	32	57
NWs	n NWs were grown on ITO using the TE method	415	6	5	_	37.4	_	60
Dense film	V ₂ O ₅ was deposited into PS col-	450	13.1	13.5	_	16	_	145
	loidal crystal templates with dif-	650			0.07	10	_	
	ferent sizes of PS by the ECAD	900			0.05	4	_	
3DOM with pore	method. A dense film was grown	450	1.7	3.2	—	24	_	
size 210 nm	without a template	650			0.33	50	_	
		900			0.31	47	—	
3DOM with pore		450	2.2	5.7	_	26	_	
size 340 nm		650			0.28	38	—	
		900			0.23	30	_	

Table 5 (continued)

Sample	Synthesis method	Evalua- tion wave- length (nm)	Colora- tion time (s)	Bleaching time (s)	Optical density (ΔΟD)	Transmit- tance ΔT (%)	Coloration effi- ciency CE ($cm^2 C^{-1}$)	Ref.
3DOM with pore		450	3.0	3.5	_	19	_	
size 840 nm		650	0.0	0.0	0.15	19	_	
		900			0.15	18	_	
Macroporous	V ₂ O ₅ network was electro-	430	0.122	0.235	0.57	14.1	$24 imes 10^4$	246
Nano-gyroid	chemically deposited onto a		0.082	0.086	0.97	49.8	33.9×10^4	
0.	mesoporous template (DG							
	morphology)	150					00.5	
3D ordered mac-	V_2O_5 was deposited into PS col-	460	2.3	4.5		34.01	83.6	83
roporous	film was appealed at different	1000			0.07	16.41		
(3DOM)	temporatures for different	460	17	4 5		10.40	00 1	
3DOM - 250 C -	annealing times	1000	1.7	4.5	0.18	20.89	00.1	
3DOM-300 °C -	annearing times	460	57	71		29.85	88 3	
4 h (curving		1000	0.7	/.1	0.28	31.62	00.0	
platelets)								
3DOM - 350 °C -		460	6.5	8.0	_	38.48	98.5	
4 h (NRs)		1000			0.25	28.94		
3DOM - 350 °C -		460	8.8	9.3	—	27.43	96.9	
7 h (3D NRs)		1000			0.27	36.69		
NWs	Pure and Ag-doped V ₂ O ₅ were	633	6	1	—	32	—	59
Ag-V ₂ O ₅ NWs	hydrothermally synthesized, and a suspension containing NWs was dip-coated onto ITO		0.2	0.1	—	54	_	
V ₂ O ₅ NWs (-3.0 V; +3.0 V)	NWs were fabricated by the sol- vothermal method, MnO ₂ was	550	1.57	_	_	30.78	51.66	90
V_2O_5 NWs (-2.5 V; +3.0 V)	coated onto V_2O_5 by the electro- deposition method		2.06	—	—	26.35	52.87	
MnO_2/V_2O_5 NWs (-3.0 V; +3.0 V)	-		5.91	—	—	26	32	
MnO_2/V_2O_5 NWs (-2.5 V; +3.0 V)			4.39	—	_	23.81	45.59	
V ₂ O ₅ NWs	NWs were fabricated by the WCR	665	2.8	2.6	—	40	_	89
V ₂ O ₅ /PANI composite NWs	method, V_2O_5 /PANI composites were prepared by the in-situ poly- merization method		2.3	1.5	—	40	_	
V ₂ O ₅ film	NiO film was deposited by the	776	3	4	0.77	30	24.5	263
NiO/V ₂ O ₅ hybrid film	CBD method, V_2O_5 was deposited on ITO and NiO/ITO by the ED method		8	11	0.97	35	30.6	
V ₂ O ₅ film	SnO ₂ nanoflake array was pre-	450	7	6	0.45	37	66	262
SnO_2/V_2O_5 film	pared by the hydrothermal method, the V_2O_5 film was deposited on FTO and SnO_2/FTO by the ED method		5	8	0.6	47	118	
V:W (1:0)	Mixed $W/WO_{3-}V_2O_5$ (W-doped	560	19.5	20.2	0.15	9.10	10.48	196
V W (20 4)	V_2O_5) films were deposited on an	/50	20 -	25.6	0.21	12.24	14.68	
V:W(28:1)	different W/V ratios	560 750	20.7	25.6	0.20	15.08	11.89	
$\mathbf{V} \cdot \mathbf{W} (14 \cdot 1)$	unreferit w/v fatios	560	147	11	0.15	9.40 19.17	21.66	
•••• (14.1)		750	14.7	11	0.17	12.02	14.08	
V:W (9:1)		560	16	8.5	0.22	14.44	10.52	
		750			0.12	7.86	5.69	
V:W(7:1)		560	25.8	11.1	0.30	20.10	13.89	
		750			0.34	21.37	15.34	
V:W (3.5:1)		560	47.3	15.5	0.98	44.30	24.12	
		750			0.92	45.30	22.64	
V:W(2:1)		560	68.7	33.3	3.95	76.90	41.15	
	Dura and V.O. ODDOG (1)	750	6.0	2.5	3.96	77.50	41.26	110
$v_2 O_5/11O$	Pure and V_2O_5 (a)PEDOT films	650	6.2 1 E	2.5	_	6.8 10.05	37	112
$v_2 O_5 / W O O_3$ $V_2 O_2 - PEDOT /$	MoO ₂ /PET substrates by the PEDD		15 10	14	_	7 1	28 24	
	method		10	14	_	/.1	24 1	
V ₂ O ₅ -PEDOT/ MoO ₂	method		16	3	—	16.9	53	
0% Ti-V₂O₌	Ti-doped V ₂ O ₅ films were depos-	415	6	6	_	36	53.1	276
4% Ti-V ₂ O ₅	ited on an ITO substrate by the ED		6	8	0.68	51.1	95.7	
10% Ti-V ₂ O ₅	·		5	6	0.51	39.7	63.0	

Table 5 (continued)

Sample	Synthesis method	Evalua- tion wave- length (nm)	Colora- tion time (s)	Bleaching time (s)	Optical density (ΔΟD)	Transmit- tance ΔT (%)	Coloration effi- ciency CE (cm ² C ^{-1})	Ref.
20% Ti-V ₂ O ₅	method using a gel precursor solution		9	15	_	11.2	54.7	
V_2O_5/TiO_2	The film was deposited by electrodeposition from mixture solution $V_2 \Omega_r$ and $Ti \Omega_2$ (70:30)	580	5	4	1.7	68	72	258
0% Mg-V ₂ O ₅	Mg-doped V_2O_5 films were depos- ited by the RF sputtering method	560 750	19.5	20.5	_	14.8 17.3	9 11.2	108
6.7% Mg-V ₂ O ₅	nou of the ru opatiering method	560 750	—	—	_	33.6 27	22 18.6	
15% Mg-V ₂ O ₅		560 750	10	4	_	34.4 21.4	71.3	
V ₂ O ₅ -polymer (1st cycle)	V ₂ O ₅ -polymer hybrid particles were prepared by the self-	450	23	20	3.354	33	86	256
20th cvcle	organization method: the films		24	22	3.003	30	77	
100th cycle	were inkiet printed from solution		20	27	2.448	25	72	
After storing	on ITO. The cycling stability of electrochromism was evaluated		24	27	1.96	20	56	
V_2O_5	V ₂ O ₅ NSs/GO composites were	425	4.1	6.1	_	41.8	21.66	245
VG-1	prepared by the liquid-phase		0.9	1.1		32.7	_	
VG-2	exfoliation method, and then were		1.3	1.7	_	45.1	38.9	
VG-4	deposited on the ITO/PET		1.6	2.0	_	57.5	43.69	
VG-6	substrate		2.3	3.6	_	60.2	32.57	
Bare VR	V ₂ O ₅ NRs/GO films were prepared	415	5.6	6	_	42.60	_	205
VR/G1	on FTO by sol-gel spin-coating		3.4	5.2	_	40.99	_	
VR/G2			1.4	2.5	_	40.92	—	
VR/G3			2.3	4.1	_	40.78	—	
V_2O_5	V_2O_5 sol was prepared by the melt	633	6.3	11.8	_	25.5	5.9	
V ₂ O ₅ /RGO	quenched method, and then it was mixed with RGO. Mixture of the solution was ultrasonicated.		4.4	7.3	_	34.9	11.3	261
Pure V_2O_5	The graphene/poly (ethylene	650	4.6	2.4	_	19.64	_	260
Poly/V ₂ O ₅	oxide)/V ₂ O ₅ composites were pre-		5.2	1.8	_	21.14	_	
Graphene/V ₂ O ₅	pared by the sol-gel method		2.0	4.0	_	26.48	_	
Graphene/poly/ V ₂ O ₅			3.8	1.8	_	30.28	_	
Pure V ₂ O ₅	V ₂ O ₅ -MoO ₃ films were grown on	630	23	20	0.14	17	14.96	255
5% MoO ₃ mixed	an FTO substrate by the PSPT method from mixed solution		32.14	46.39	0.16	14	19.96	
10% MoO ₃ mixed V ₂ O ₅	method from mixed solution		30.06	52.36	0.24	23	29.81	
$15\% \text{ MoO}_3$ mixed V ₂ O ₅			23.50	48.39	0.31	25	35.27	
V ₂ O ₅ /WO ₃	V ₂ O ₅ /WO ₃ films were grown on an ITO substrate by the hydro- thermal method	550	3.5	4.1	_	87.8	19.76	218

color as a counter electrode in Li_xWO₃/electrolyte/V₂O₅ devices.^{229,231–233} The electrochemical reaction of lithium-ions in WO₃ could be transferred to V₂O₅ following α -Li_xWO₃ + V₂O₅ \rightleftharpoons α -WO₃ + Li_yV₂O₅.²³² Therefore, the combination of a change in light transmittance intensity in WO₃ and the change in color in V₂O₅ acts as a complementary pair in an ECD.²³²

The single V₂O₅ film suppressed the 500 nm absorption and a slight increase in the broad absorption in the NIR region, while the OD of the Li_xWO₃/PC and LiClO₄/V₂O₅ modulations gained near zero at 500 nm and increased strongly in the NIR region (Fig. 22). The color of the ECDs in colored-bleached states is dark green-blue and a very pale blue, respectively.²²⁹ The ECD using the WO₃/Ta₂O₅/LiPON/V₂O₅ structure exhibited an increase in ΔT from 19.1% (at cycle 1500) to 24.9% (at cycle 5000).²⁷⁹ The T_c of V₂O₅/LiPON/Li_xWO₃ increased from 12% (at cycle 5) to 13.7% (at cycle 500).²⁸⁰ The simultaneous reversible color changes of $Mo-V_2O_5$ (orange \leftrightarrow blue \leftrightarrow green) and WO_3 (blue \leftrightarrow white) were also combined.²⁴⁸

Park *et al.* studied the overlapped color on PET/ITO/polyaniline NFs/electrolyte($C_2H_3N-C_4H_6O_3-LiClO_4$)/ V_2O_5 /ITO/PET.²⁸¹ The ECDs and skin-attachable strain sensor (SASS) were integrated on the skin using an Arduino circuit, as shown in Fig. 23. The redox processes in polyaniline and (de)-intercalation of ions in the V_2O_5 film occur simultaneously because of the participation of both ClO_4^- and Li^+ from the $LiClO_4$ gel electrolyte. The change in color from pale yellow to dark blue (polyaniline film) and from yellow to green (V_2O_5 film) resulted in ECD exhibiting a wide color range from yellow to dark blue, as shown in Fig. 23C and D. ECD exhibited high CE values of 56.88 cm² C⁻¹ (dark blue) and 65.44 cm² C⁻¹ (yellow), stable

Fig. 22 Optical density and transmittance of $\text{Li}_x V_2 O_5$: (A) as a function of x (x = 0 - 0.782) and (B) $\text{Li}_x WO_3/\text{LiClO}_4$ -propylene carbonate/ $V_2 O_5$ modulation, reproduced with permission (Copyright 2022, Elsevier²²⁹).

Fig. 23 Schematic diagram of an integrated system based on ECD and SSAS: (A) The interactive color-changeable system of an ECD and SASS on hand skin, (B) SASS using the PVA/MWCNT/PEDOT:PSS nanocomposite on a PDMS substrate and transmittance spectrum of SASS (inset), (C) ECD and photograph of color change from yellow to dark green, and (D) the color changes together with finger motions, reproduced with permission (Copyright 2022, Royal Society of Chemistry²⁸¹).

cycling, and rapid switching response times of t_b = 2.6 s and t_c = 1.5 s; thus, it is a suitable adapter with a strain sensor.

 V_2O_5 exhibits multifunctional activity, such as battery, supercapacitor, electrochromism, and photovoltaic activities. ECDs and energy storage of V_2O_5 have a common operating mechanism (charge–discharge).²⁸² Overall, the ECDs can be combined with energy conversion and storage devices. Nevertheless, they have many features in common, including materials, structure requirements, and operating mechanisms, and discrepancies regarding CE. Specifically, a high CE (*i.e.*, low charge density) and rapid response time are necessary for ECDs. On the other hand, batteries or supercapacitors require a high charge density. The proposed strategies to improve the performance include doping through the addition of Ti in

Fig. 24 Incorporation of EC materials and other devices: (A) Schematic diagram and photograph of EESDs: (a) Zn–SVO EESDs, (b) color overlap *via* the incorporation of orange, yellow and green colors, (c) transmittance spectra, (d) orange color display with an OCP of 1.56 V, (e) 0.5 V regulated LED powered by the Zn-SVO EC display at 1 and 40 min, (f) six colors of Zn–SVO display. (B) Schematic diagram of PECDs: (a and c) pristine V_2O_5 NB and PEDOP/ V_2O_5 NB hybrid, (b and d) the coloring counter electrodes of V_2O_5 NB and PEDOP/ V_2O_5 NB hybrid. (C) Schematic diagram of PRESDs: (a) Ag@ V_2O_5 photoanodes and AC cathodes, (b) photograph of the designed optical coin cell with an optical window (diameter is 8 mm) and its schematic illustration. The figures are reproduced with permission (Copyright 2022, Nature,¹⁸⁴ Royal Society of Chemistry,²⁵⁹ and American Chemical Society²⁸⁶).

 $V_2O_5^{283}$ to promote lattice distortion and the increase in ion insertion kinetics along with the addition of another oxide, such as MnO₂, providing enhanced stability and increased energy storage performance.⁹⁰

Furthermore, V_2O_5 has a unique band structure allowing it to absorb almost the entire solar spectrum. Therefore, the incorporation of EC materials and batteries (or supercapacitor) to form EC energy storage devices (EESDs),^{184,283–285} using a solar cells and EC materials to form photo-electrochromic devices (PECDs),²⁵⁹ using the battery (or supercapacitor) with a solar cell to form photo-recharge energy storage devices (PRESDs) and using solar cells and CDs to form photovoltachromic devices (PVCDs)²⁸⁶ are an advantage in energy-saving applications. Fig. 24 shows the three moduli, including EESDs (Fig. 24A), PECDs (Fig. 24B), and PRESDs (Fig. 24C).

Zhang *et al.*¹⁸⁴ fabricated a Zn-sodium vanadium oxide (Zn-SVO) EC display by sandwiching Zn foil between two SVO electrodes, as shown in Fig. 24A(a). The SVO electrode was deposited on the ITO substrate using a bar-coating method from a solution containing V₂O₅ NRs. The combination of two electrodes led to an overlay color, resulting in six colors (orange, amber, yellow, brown, chartreuse, and green) (Fig. 24A(b and f)) compared to a single SVO electrode demonstrating three colors (orange, yellow, and green). Fig. 24A(d) shows the fully charged state (orange-colored) of the device, which means a battery with an open-circuit potential of 1.56 V and provides power to an LED. Nevertheless, the orange hue of the display may be regained using a charging procedure in which Zn is plated onto Zn foil, and Zn^{2+} is removed from the reduced SVO electrode. $Zn^{2+}/2e^-$ intercalation produces a large amount of V⁴⁺ and a small amount of V³⁺.³⁴

The performance could be further enhanced utilizing hybrid systems, such as Zn²⁺/Al³⁺, because Zn²⁺ ions have poor kinetics affecting the capacity, switching, and CE of the EC material. In contrast with Zn^{2+} , Al^{3+} can enhance the performance because of its tri-valence and small ionic radius.²⁸³ Hence, the hybrid electrolyte system can overcome any disadvantages arising from either Zn²⁺ or Al³⁺ and promote a new approach to enlarge the activity of materials used in EESDs. Wang et al.²⁸³ combined many strategies, such as materials (Ti-doped V₂O₅, PEDOT:PSS/ inorganic composites, and hybrid Li/Al-ion electrolyte) chromogenic counters (V_2O_5 and WO_3), and electronic multifunction devices (EC and energy storage devices) to design new threeelectrodes (two EC films and one metal frame as anode). The device exhibited high capacity, multicolor (light yellow, transparent, light red, dark green, dark blue, and black), rapid switching, and long-term stability.

Reddy et al.²⁵⁹ prepared PECDs using pure V₂O₅ or PEDOP/ V₂O₅ composite energy storage-photoelectrochromic cells and the CdS/TiO₂ solar cell, as shown in Fig. 24B. Electron-hole pairs were generated in the CdS/TiO₂ layer. These electrons were transferred by an external circuit and caused the intercalation of Na⁺ on the opposite side. Consequently, the PEDOP/ V₂O₅ film was charged as a storage battery, and the color of the film changed from yellow to green. The bleaching process occurred when sunlight was blocked or in the dark. In contrast, Boruad et al.²⁸⁶ prepared a zinc-ion capacitor (ZIC) using a Ag@V2O5 NFBs photoanode and an activated carbon (AC) cathode as the $h\nu$ -ZIC devices, as shown in Fig. 24C. The electron-hole pairs were generated directly in Ag@V₂O₅ with light irradiation. These holes were transferred to an AC cathode by an external circuit while electrons accumulated on Ag@V₂O₅ NFBs. The anions diffused to the AC cathode, and cations were inserted inside the photo-anode for photo charging. This process can occur simultaneously through three mechanisms: photoconversion, photo-capacitor, and photo-electrochromic.

CDs are also used to visualize the reduction/oxi-dation states and to determine the cycle life of energy storage devices (ESDs) without the need for destructive analysis or extra techniques.^{284,285} Zhang *et al.*²⁸⁴ fabricated 1D V₂O₅ NRB and 2D exfoliated graphene NSH hybrid (EG/V₂O₅) for stimulusresponsive micro-supercapacitors and EC windows. The EG/ V₂O₅ devices exhibited supercapacitance (with an ultrahigh energy density and an ultra-fast responsive time) and an excellent reversible EC. The EG/V₂O₅ device exhibited stimulus-responsive behavior through the relationship between the color change and absorption spectroscopy during the charge–discharge process (0 \leftrightarrow 1 V), as shown in Fig. 25A. When the voltage reached 1V, the device showed the deepest purple color and highest absorbance, and then became colorless and exhibited lowest absorbance at 0V. The cycle life of ESDs can be gleaned through its relation to cation intercalation and photonic crystal (PhCs) in periodicity of materials. The charge–discharge process of metal ions at different rates alters the ordered periodicity because of the crystal structure change, leading to PhC variations and color changes (Fig. 25B).²⁸⁵ The phase change may be exploited to aid real-time diagnostics by monitoring the color of inverse opal V_2O_5 during charge– discharge operations.

5.3. Gasochromic process in V₂O₅

5.3.1 Fundamentals of gasochromic V₂**O**₅. Gasochromism of metal oxides, which involves a H⁺ intercalation-deintercalation process due to oxidation and reduction, is similar to the EC mechanism. Therefore, GC phenomena have often been confused with electrochromism. Unlike the ECDs that need an external bias or electric current to drive color switching, the GC phenomenon is activated *via* a redox reaction of a solid interacting with a gas directly. The working principle can be used for gas sensors and optical sensors in addition to building windows. The electrical and optical properties varied under exposure to various gases, such as methanol, ethanol, acetone, isopropanol, ammonia, and hydrogen.^{4,182,287-290} Among them, hydrogen is the most common gas used as a redox gas in gasochromism.

To comprehend the fundamentals of gasochromism in V_2O_5 , Fig. 26 summarizes the process of coloration (bleaching) of V₂O₅ with hydrogen (oxygen) gas, which is similar to the mechanism of WO₃.²⁹¹⁻²⁹³ The hydrogen molecules (H₂) are dissociated catalytically by using platinum (Pt) or palladium (Pd) to form H^+ ions at the surface (Fig. 26A(1)). They then diffuse into the interior between the layer structure and the pore surface of V_2O_5 (Fig. 26A(2)). The H atoms migrate to the V_2O_5 surface and interact with the lattice oxygen of V_2O_5 (Fig. 26A(3) and eqn (19)).²⁹⁴ The H⁺ diffuses along the surface via water molecules adsorbed on the surface, and electron diffuses into the subsurface. Finally, the oxygen vacancies are generated and diffuse into the interior, followed by the escape of water formed by the hydrogen and surface oxygen (Fig. 26A(4) and eqn (20)). Protons continuously diffuse internally from the surface through favorable planes or sites. For the bleaching process, oxygen molecules (O_2) are adsorbed and dissociated on Pt to O^{2-} ions (Fig. 26B(1)). These ions transfer to the surface and diffuse into the pores of V_2O_5 (Fig. 26B(2)), diffuse internally, and react with oxygen vacancies (Fig. 26B(3)). The resulting oxygen vacancies diffuse to the near surface (Fig. 26B(4)). The protons migrate to the surface, and hydrogen is oxidized at the surface by O^{2-} ions to form the original V_2O_5 and water molecule (eqn (21)).

$$V_2^{5+}O_5^{2-} + xH^+ + xe^- \rightarrow H_xV_{2-x}^{5+}V_x^{4+}O_5^{2-}$$
 (19)

$$V_2^{5} * O_5^{2-} + 2xH^+ + 2e^- \rightarrow xH_2^+O^{2-} + V_2^{(5-x)+}O_{5-x}^{2-}$$
 (20)

Fig. 25 V_2O_5 ECDs for visualizing and gleaning electrochemical properties: (A) photographs and UV-vis spectra of the electrochromic EG/V₂O₅-MSCs at different voltages and (B) schematic representation of Li-induced variation and SEM images of IO V₂O₅; inset: the variation in color change as a result of charge/phase change. The figures are reproduced with permission (Copyright 2022, Wiley^{284,285}).

$$2H_{x}V_{2-x}^{5+}V_{x}^{4+}O_{5}^{2-} + xO^{2-} \rightarrow xH_{2}^{+}O^{2-} + 2V_{2}^{5+}O_{5}^{2-} + xe^{-}$$
(21)

These processes cause structural rearrangement and reduce V^{5+} to V^{4+} and V^{3+} . Hydrogen ions can react with oxygen at O(1), O(2), or O(3) to form localized H₂O molecules and produce an oxygen vacancy. Chen *et al.*²⁹⁵ used XRD, XAS, and EXAFS to analyze the reduction effect during the GC reaction. XRD showed that the peak of colored V₂O₅ shifted to a higher 2 θ

angle than the bleached state, indicating that the interlayer distance was altered, as shown in Fig. 27A. Therefore, hydrogen insertion changes a transition and thus the electronic structure. Fig. 27B shows the V L-edge and O K-edge XAS to reveal the electronic structure. Two prominent peaks at 514–521 eV and 521–528 eV of the V L-edge are due to the electron transitions from the V $2p_{3/2}$ and $2p_{1/2}$ energy levels to the V 3d unoccupied state, and two pre-peaks at 529–534 eV originated from the O 2p states hybridized with the V $3d_{2g}$ ($3d_{xy}$,

Fig. 26 Schematic diagram of the gasochromic mechanism: (A) coloration by hydrogen and (B) bleaching by oxygen.

Fig. 27 Gasochromic properties of the V_2O_5 film: (A) XRD patterns, (B) V L-edge and O K-edge spectroscopy, (C) V K-edge XAS spectra, and (D) EXAFS spectra of bleached and colored states, reproduced with permission (Copyright 2022, IOPscience²⁹⁵).

 $3d_{yz}$, and $3d_{xz}$) and V 3d-eg $(3d_{x^2-y^2}$ and $3d_{z^2})$ states, respectively. The V L-edge of the colored film was shifted to a lower energy and became featureless compared to the bleached film, suggesting a reduced charge state and a deformed atomic structure. The O K-edge confirmed that the valence decreased as the peak for O 2p-V 3d-t_{2g} decreased upon the GC reaction. In addition, the angle-dependent XAS provided further evidence of structural deformation. The pre-peak of the V K-edge of the colored film shifted to a lower energy and decreased in intensity compared to its bleached state (Fig. 27C), which is consistent with the results of a reduced charge state and structural deformation from the V L- and O K-edges.

To gain insight into the atomic structural rearrangement, a Fourier transform (FT) of the EXAFS $k^3\chi$ data at the V K-edge from k = 2 to 10 Å⁻¹ indicates the difference in the radial distribution between the colored and bleached states (Fig. 27D). Curve fitting of the bleached state led the V–O bond lengths in VO₆, O(1) = 1.61 Å, O(2) = 1.76 Å, and O(3) = 1.90 Å. In contrast, the colored states involving V–O bonding in

symmetrical Oh are V–O = 1.67 and 1.91 Å. The inset in Fig. 27D shows the increase in symmetry of the VO₆ octahedral in colored V_2O_5 compared to the bleached state.

Moreover, the sudden decrease in resistance or increase in conductivity during a gas-phase reaction suggests the exchange of electrons or holes. The rapid response and recovery speeds of the V_2O_5 sensor with hydrogen gas at RT is an evidence of a direct reaction without loading any extrinsic catalysts, such as Pt or Pd.⁴¹

The behavior of the electrical and optical properties of the V₂O₅ film also changes after exposure to organic vapors. Oxygen molecules in an ambient environment were absorbed facilely on the V₂O₅ surface because of the high electron affinity. They captured the free electrons of the CB to form chemisorbed negatively charged oxygen ions, such as O₂⁻ and O⁻, as shown in Fig. 28A and eqn (22)–(24).^{296,297}

$$O_2(gas) \rightarrow O_2(ads)$$
 (22)

$$O_2(ads) + e^- \rightarrow O_2^-(ads)$$
(23)

Fig. 28 Schematic diagram of the gasochromic mechanism: (A) In air and (B) in a reducing gas.

$$O_2^{-}(ads) + e^{-} \rightarrow 2O^{-}(ads)$$
(24)

When a V_2O_5 film is exposed to organic vapor, the reduction gas is oxidized by the negatively charged surface oxygen ions and releases electrons, as shown in Fig. 28B.^{296,297} These electrons move to the entire crystal and fill the CB, leading to an increase in conductivity and a change in optical transmittance. V_2O_5 exhibits high sensitivity to a range of gases, as defined in eqn (25)–(28).^{296,297}

$$C_2H_5OH + 6O_{ads}^- \rightarrow 2CO_2 + 3H_2O + 6e^-$$
 (25)

$$C_6H_5CH_3 + 3O_{ads}^{-} \rightarrow C_6H_5COOH + H_2O + 3e^{-}$$
(26)

$$2NH_3 + 3O_{(ads)}^- \rightarrow N_2 + 3H_2O + 3e^-$$
 (27)

$$2(CH_3)_3N + 21O_{(ads)} \rightarrow N_2 + 6CO_2 + 9H_2O + 21e^-$$
 (28)

These processes involving exposure to organic gases are similar to the bleaching process using hydrogen. Rizzo *et al.*²⁸⁹ observed the GC response of the V₂O₅ films to NH₃ by FTIR spectroscopy and compared it with the spectrum of NH₄VO₃. These authors suggested that V₂O₅ NPs react with NH₃ at RT to form ammonium metavanadate (NH₄VO₃), as described in eqn (29). The "bleaching" process for recovering V₂O₅ is achieved by annealing at 350 °C under ambient conditions.

$$V_2O_5 \xrightarrow{NH_3,RT} NH_4VO_3$$
 (29)

5.3.2 V_2O_5 gasochromic thin films and devices. Gasochromic devices (GCDs), similar to the EC system, have a modular double-glazed unit while the gas for catalysis replaces the electrolyte, as shown in Fig. 10B. Compared to ECDs, GCDs have a slower response time, but GCDs can be produced over a large area. The chromic phenomena of V_2O_5 films exposed to different gases, such as ethanol, methanol, acetone, isopropanol,²⁸⁷ and ammonia,²⁸⁹ revealed ΔT modulations. The film color was slightly modified when exposed to ethanol, methanol, and ammonia gases, whereas it did not change when exposed to the remaining gases. The films exhibited an anodic coloration with bleaching when exposed to gas. On the other hand, ΔT reached only 4–5% after 100 min of exposure to methanol or ethanol. The color returned to the initial film color

after annealing in air at 350 °C.²⁸⁹ The low ΔT , slow $t_{\rm b}$, and the need for high temperatures to return to the original color have limited the applications to smart windows or switching optical devices.

Liu *et al.*²⁹⁸ first examined the irreversible color change from yellow to blue and the slight optical modulation of the V₂O₅ film when exposed to hydrogen. The transmittance spectrum shifted strongly toward a shorter wavelength (<500 nm), indicating anodic coloration, whereas it exhibits cathodic coloration at wavelengths longer than 500 nm. The chromic phenomena of vanadium oxide highlight the role of oxygen stoichiometry in the thermodynamic reaction between the hydrogen gas phase and vanadium oxide. The high oxygen stoichiometry samples deposited in the oxygen environment (the TE method) and 5% O_2/Ar (the sputtering method) showed pronounced coloration compared to the samples deposited in the hydrogen environment (the TE method) and without oxygen (the sputtering method). Shanak et al.¹⁸² reported the effects of oxygen in terms of the O2/Ar ratio and thickness on the gasochromism of V₂O₅ films. The low O₂/Ar ratio or very thin films did not reveal clear chromic phenomena (both cathodic and anodic colorations for the first cycle). On the other hand, the films were improved by the increased O2/Ar ratio and thickness. The higher O₂/Ar ratio and thicker film exhibited anodic coloration only.

The atomic and electronic structures determine the performance of chromogenic materials. Dong's research group has revealed the GC coloration mechanism based on a thin platinum (Pt) layer as a catalyst coated on V2O5 thin film to dissociate the hydrogen molecules.^{4,288,290,299,300} Different factors, such as synthesis methods (sol-gel and RFS), layer thicknesses, and metal dopant in V_2O_5 , were investigated. A VO_x film deposited on a Corning 1737 substrate by RFS showed that the initial film color and colored film were affected by the Ar/O2 ratio and annealing temperature.^{290,300} The different initial color depends on the O2 concentration and annealing temperature and can affect the GC performance because of the coexistence of V^{4+} of VO_2 and a mixture of V^{4+} and V^{5+} in the asgrown V_2O_5 film.^{290,300} The color of the film with an Ar/O₂ ratio of 20:1 remained almost black after gasochromism, whereas the color of the film with Ar/O₂ ratios of 20:3 and 4:1 changed from light yellow to gray. In particular, for the sample prepared in pure O₂, the color changed from deep yellow to dark gray.³⁰⁰

Fig. 29 Oxidized-reduced state of vanadium oxide films: (A) SEM images of films with different film thicknesses; (a and d) 285 nm, (b and e) 385 nm, and (c and f) 625 nm. (B) Optical spectra and images: (a and b) transmittance spectra of films for bleached-colored states, (c) transmittance changes (ΔT), (d) thickness dependence of transmittance, and (e) photographs of the film with different thicknesses for bleached-colored states, reproduced with permission (Copyright 2022, Elsevier²⁸⁸).

If the films are exposed for a long time (72 h), they become hydrogen-saturated and turn black due to amorphization and a transition to an irreversible phase of $H_x VO_y$.²⁹⁰

In view of applications, a darkened state of the film is required; it can be achieved by just applying a thicker GC film with the same material. Hence, a new material need not be designed, and the intrinsic properties of the film need not be modified. Thickness-dependent studies were conducted on V_2O_5 films of 285, 385, and 625 nm synthesized by a sol-gel process that exhibited excellent GC performance.²⁸⁸

Fig. 29 presents an SEM image, transmittance spectroscopy, transmittance change ΔT , transmittance at $\lambda = 700$ nm, transmittance change at $\lambda = 700$ nm, and photographs of the color change in the film in the bleached-colored states. The film surface became rougher than in the bleached state after exposure to hydrogen gas, as shown in Fig. 29A(a–f). The transmittance in both states and the percentage of transmittance modulation between the colored and bleached states

demonstrate the effects of film thickness on optical coloration. Although a thinner film exhibited higher transmittance than the thicker film, the latter led to a higher ΔT value at $\lambda > 650$ nm (Fig. 29B(a–c)). Indeed, ΔT of the 625 nm film was the highest, $\Delta T = 40\%$ at $\lambda = 740$ nm. As estimated at $\lambda = 700$ nm in Fig. 29B(d), the transmittance decreased with increasing thickness, whereas the transmittance modulation increased with thickness. The film color changed from yellow to gray for the 285 nm film and to black for the 385 nm and 625 nm films (Fig. 29B(e)).

Doping and hybridization are the most widely used strategies to improve the physical and chemical properties compared to their bare counterpart. Mo-doped V₂O₅, $(MoO_3)_{1-x}(V_2O_5)_x$ composites and $(WO_3)_{1-x}(V_2O_5)_x$ composites were investigated to improve the GC performance and time response.^{4,301,302} Chang *et al.*³⁰¹ reported the coloration performance and response time of the composite oxide films of $(MoO_3)_{1-x}(V_2O_5)_x$ with x = 0.00, 0.01, 0.03, and 0.05. The GC efficiency of the

Fig. 30 In situ V K-edge XAS spectra of the colored state: (a) pure V_2O_5 film, (b) pre-edge regions of V_2O_5 , Mo- V_2O_5 , and different vanadium oxides, and (c) Mo- V_2O_5 films. Insets (a) and (c) show the time dependence reaction of the valence, reproduced with permission (Copyright 2022, Royal Society of Chemistry⁴).

MoO₃ film was improved by V₂O₅ doping. The (MoO₃)_{0.99}-(V₂O₅)_{0.01} sample exhibited the shortest response time and highest change in transmittance. The modified MoO₃ film using a V₂O₅ over layer showed a stronger H₂ response than single MoO₃.³⁰³ Ranjbar *et al.*³⁰² reported the gasochromism of (WO₃)_{1-x}(V₂O₅)_x with x = 0.00, 0.09, 0.17, 0.23, 0.29, and 0.33. The E_{opt} decreased from 3.55 to 2.50 eV with increasing vanadium oxide concentration in WO₃.

The pure and Mo-doped V₂O₅ films fabricated using the solgel spin coating method exhibited excellent GC coloration. Insitu XAS was performed to determine the GC mechanism in terms of local atomic and electronic structures. The film color changed from light yellow to dark brown (inset, Fig. 30b).⁴ A mixture of pyramid- and octahedral-like structures was found in Mo-doped V₂O₅, while the significant pyramid-like structure was identified in pure V₂O₅. The presence of more O_h (V⁵⁺) in the Mo-doped V₂O₅ led to a four-fold faster response to H₂ than that of the pure V₂O₅ film.

The *in-situ* XAS spectra (Fig. 30a and c) showed that the same peak shifted to a lower energy and the intensity of the pre-edge peak decreased after the reaction time. However, the reaction time was 90 min for Mo-V₂O₅ and 330 min for pure V₂O₅, suggesting the importance of symmetric apical V–O bond in the GC effect. The more symmetric apical V–O bond leading to the faster coloration rate was demonstrated through the in-situ XAS study. Consequently, the Mo-V₂O₅ film exhibited faster GC coloration than the pristine V₂O₅ film (GC performance of ΔT = 20.3% compared with ΔT = 16.9% at λ = 750 nm, respectively) being strongly correlated with the local atomic structure of the film.

GC windows are an alternative to other chromogenic windows for energy conservation but are also promising for use as a hydrogen sensor. The safe handling of hydrogen gas is of great importance for hydrogen energy technology because the amount of hydrogen tends to increase at a low concentration of approximately 4% in the atmosphere, which is a major issue in the future hydrogen economy. The hydrogen sensor based on the GC material requires no external electrical energy and consumes low power. When the GC windows are exposed to hydrogen, the change in optical transmission can be monitored and used as a hydrogen detector. Therefore, it is safer than other sensor technologies based on electrical measurements, which may give rise to an explosion. The advantages and disadvantages of GC applications need to be considered.

The construction of GCD is inexpensive and straightforward because only a single thin film is sufficient and can be coated easily on any glass substrate and even on flexible plastic substrates. Unlike ECDs, a transparent electrically conducting layer is not required in GCDs. On the other hand, water is critical for the GC film to transport hydrogen rapidly. Water should not escape from the GC film during the operation, particularly at higher temperatures. An integrated system that includes the gas supply system (pressurized bottle or electrolyzer), gas pump, and power supply is required for large-scale applications, indicating that additional external energy is indispensable. Another potential application of the GC effect is GC mirrors based on metal hydrides that turn the colored state into a transparent state by taking up hydrogen.^{304–306}

5.4. Photochromic process in V₂O₅

5.4.1 Fundamentals of photochromic V₂O₅. PC materials exhibit irreversible/reversible color changes or photo-induced coloration when exposed to a light source. Owing to the heat absorption and photocatalysis ability of V₂O₅, the PC mechanism can be operated following three cases (1) without excess temperature, (2) with excess temperature, and (3) photoinserted hydrogen.

Electron-hole pairs can be separated, as shown in eqn (30),^{50,307} to contribute to the PC phenomenon following two mechanisms with and without hydrogen-containing molecules.

$$V_2O_5 \xrightarrow{h\nu} V_2O_5^* + e^- + h^+$$
(30)

For the sample without hydrogen-containing molecules, the separated electrons move throughout the entire crystal and fill the split-off CB leading to an $E_{\rm f}$ shift. Owing to the separated state, electrons will relax to lower energy states and generate phonon energy because of collisions and scattering. Therefore, the contribution of this effect to photochromism is small compared to the photo-injection of hydrogen.³⁰⁸

Nishio *et al.*³⁰⁹ reported the visible-light photochromism without a significant decrease in the effect. The coloration to blue-black may be caused by the reduction of V^{5+} to a lower valence, such as V^{4+} and V^{3+} . Two cases with and without heat treatment were investigated to discriminate the photochromism only and simultaneously occurring thermochromism-photochromism in V_2O_5 .³⁰⁹ Fig. 31 presents a model for light-induced thermochromism and bleaching of V_2O_5 . Although irradiation heated the sample to above 400 °C, the color did not change after removing the irradiation as the sample cooled down rapidly to RT (route $1 \rightarrow 3 \rightarrow 4$, Fig. 31A). When the sample was reheated to 400 °C, its color state was maintained as it was cooled rapidly to RT (route $4 \rightarrow 2 \rightarrow 5$, Fig. 31A). Two different thermal treatments were also investigated. In the first method, the sample was heated to 400 °C and held at this

temperature during irradiation for 60 min. In the end, irradiation was stopped, and the sample was cooled rapidly to RT. The color state for this method followed the route, $1 \rightarrow 4 \rightarrow 5$ (Fig. 31B). In the second method, the sample was held at RT during irradiation for 60 min, heated rapidly to 400 °C, and held at that temperature for 30 s before cooling to RT. The color state of the sample for this method followed the route $1 \rightarrow 3 \rightarrow$ $2 \rightarrow 6$, as shown in Fig. 31B.

The temperature increase (Δt), when exposed to laser intensity (I_0), is expressed using eqn (31).³¹⁰

$$(\alpha \tau)^{1/2} \cdot \rho \cdot C_{\nu} t \cdot I_0 \cdot \tau \tag{31}$$

where α , τ , ρ , and C_{ν} are the thermal diffusivity, pulse duration, mass density, and specific heat, respectively. If parameter values are $\alpha = 6 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$, $\rho = 3.36 \text{ g cm}^{-3}$, $C_{\nu} =$ 0.71 J (g K)⁻¹, $\tau = 36$ ns, and $I_0 = 3.88 \times 10^6 \text{ W cm}^{-2}$, Δt reaches 1222 K (~949 °C). Therefore, the actual temperature at the surface can be more than 976 °C, which is higher than the melting point of V₂O₅ (~690 °C).³¹⁰

Fig. 32 shows the change in surface morphology of a thin film and pellet V_2O_5 after pulsed laser irradiation.^{310,311} After 10 pulses of irradiation, the rod-like structure at the film surface transformed to a porous structure (Fig. 32A and B).³¹¹ The surface roughness of the bulk-type pellet made by pressing a commercial powder became smooth and less porous after a single pulse of laser illumination (Fig. 32C and D).³¹⁰ The crystal structures were disordered, which led to a substoichiometric composition and formed new local traps because of oxygen deficiencies.³¹² These vacancies form V⁴⁺, V³⁺, and a mixture phase (Wadsley or Magnéli phase). The increasing temperature also extended the crystal and expanded the split-off of V₂O₅. The increasing temperature led to a TC phenomenon, which will be presented in detail in the next section.

The PL intensity changes as a result of the enhanced oxygen vacancies caused by the photoreduction and sample heating during laser irradiation.^{106,118,309} At shorter wavelengths, the PL intensity decreased initially and increased at longer wavelengths. The peak of the PL intensity at ~690 nm decreased

Fig. 31 Photochromism of models for light-induced thermochromism and bleaching process of V_2O_5 . The background color of the figure represents the color of the sample, reproduced with permission (Copyright 2022, American Chemical Society³⁰⁹).

Fig. 32 SEM images of (A) and (B) the as-grown and colored V_2O_5 film after 10-pulse irradiation, (C) and (D) fresh and colored V_2O_5 pellets after one pulse irradiation. The figures are reproduced with permission (Copyright 2022, Elsevier³¹¹ and IOPscience³¹⁰).

slightly and became static after an initial exposure for 45 min, whereas a PL peak appeared at ~450 nm with enhanced intensity.¹¹⁸ The broad peak at 540–840 nm was quenched because of the increased temperature and photochromism when the film was irradiated for 60 min.³⁰⁹ Two more peaks appeared at 408 and 448 nm after 10 pulses of irradiation, and the band edge of the V₂O₅ film increased.^{106,313}

Due to the absorption of water (H₂O) or origins of polymers (CH₃OH, C₃H₅OH, and (CH₃)₂NCHO), the enhanced oxygen vacancies in sample were caused by decomposed H₂O or –OH led to the formation of a new oxidation state.^{106,118,314} On the other hand, the oxygen molecules (O₂) of H₂O or –OH on the V₂O₅ surface are difficult to reduce with the electrons in the CB and mid-gap state because the negative potential of the redox potential of H⁺/H₂ (4.5 eV, vacuum level) is at a higher level of the CB of V₂O₅ (5.0–5.2 eV, vacuum level).^{37,315–317} On the other hand, the holes react easily with H₂O or the original polymers

on the V₂O₅ surface to form hydrogen ions. These electrons and hydrogen ions interact and react with V₂O₅ to form $H_xV_2O_5$, which are called hydrogen metal bronzes, as shown in eqn (20). Eqn (32)–(34) present the reaction of H₂O and CH₃OH with holes.^{307,314}

$$h^+ + H_2O \rightarrow H^+ + OH$$
 (32)

$$h^{+} + CH_{3}OH \rightarrow H^{+} + CH_{2}OH$$
(33)

$$h^+ + CH_2OH \rightarrow H^+ + CH_2O$$
 (34)

Gavrilyuk³⁰⁸ presented the detailed mechanism of photoinjection of hydrogen from DMFA on TMOs. The V_2O_5 films were fabricated directly in an ambient condition containing DMFA (CH₃)₂NCHO. These molecules were adsorbed on the V_2O_5 surface at O(1) because it has only one strong bond (Fig. 33A) and form of a donor-acceptor due to the overlap of

Fig. 33 Schematic diagram of (A) DMFA adsorption, donor-acceptor formation, and hydrogen bonds of DMFA- V_2O_5 . (B) Possible position for the inserted hydrogen inside V_2O_5 crystalline reproduced with permission (Copyright 2022, Royal Society of Chemistry³¹⁸).

the vacant d orbitals on the surface of the cation and the p orbital of O(2) with a lone electron pair.³¹⁸ The donor–acceptor (DA) bond (between the oxide and the molecules) and the bond of a proton (between H₂ and O(1) of V₂O₅) were generated. Fig. 33B shows a schematic diagram of the structure formation, including a sheet layer and cross-sectional layer (*z*-direction).

The transmission spectra for the ν (C=O) stretching vibration in the vapor, liquid, and adsorbed DMFA in the FTIR spectra results confirmed the formation of the DA bond.³⁰⁸ The association in liquid led to a shift from 1725 cm⁻¹ to 1675 cm⁻¹. This peak shifted continuously to smaller wavenumbers 1650 cm⁻¹ when DA bonding was achieved due to the nucleophilic attack of the adsorbed molecules. Similarly, the peak of ν (C=O) also shifted from 1650 cm⁻¹ of adsorbed DMFA in liquid to 1625 cm⁻¹ of adsorbed DMFA containing deuterium. Hydrogen insertion can diminish the π overlap, which led to an elimination of the π state (valence band) and π^* state (conduction band) and a change in the E_{opt} of V₂O₅.

The N concentration (cm^{-3}) of the center inserted into thin film plays an essential role in the CE. The f concentration can be estimated using Smakula's equation (eqn (35)).³¹⁹

$$N \times f = 0.87 \times 10^{17} \frac{n}{(n^2 + 2)^2} \alpha_{\max} W$$
 (35)

where *f*, *n*, α_{max} , and W are the oscillator strength, refractive index, absorption coefficient in the band maximum, and halfbandwidth (eV), respectively. If the reflection losses are neglected, $\alpha_{\text{max}} \approx 2.31 \frac{D_{\text{max}}}{d}$, where d is the film thickness. This leads to the effect of the layer thickness on the PC sensitivity (ΔD_{max}) .

5.4.2 V_2O_5 photochromic thin films and devices. Despite early studies, there are relatively few reports on V_2O_5 photochromism. The application of PC V_2O_5 in smart windows has been limited because of the small changes in OD, poor reversibility (reversibility is not complete), and a slow response time.¹⁸ TMOs (except V_2O_5) have a narrow response in the ultraviolet (UV) region (< 400 nm) because it comprises only a few percent of the incident solar energy spectrum sunlight, while visible light (400–700 nm) occupies approximately 50% and NIR-IR (>700 nm) near 50%.^{3,320}

 V_2O_5 has a wide response in the spectrum from UV to visible light, such as thermal bleaching, multi-coloration, and high fatigability, which leads to a more interesting study. Table 6 lists the performance, including the switching time, OD, ΔT , and CE of GC, PC, and TC. The photo-coloration contrast and optical switching of the PC material were affected by the exposed light intensity, wavelength of the source, and irradiation time.² Photochromism in amorphous TMO films, including WO₃, MoO₃, and V₂O₅, prepared by vacuum evaporation, has been studied.^{11,225,308} The film color developed gradually and was tinged with a blue color after irradiation for several hours.²²⁵

Commercial V_2O_5 powder exhibits PC behavior under laser irradiation.^{309,310} The pink-yellow color of the V_2O_5 pellet (disk) turned immediately to a deep blue-black (Fig. 34A).³¹⁰ The reversed color was obtained by annealing the colored sample at 400 $^{\circ}$ C. UV-visible diffusion reflectance of the colored sample is slightly higher in the UV region (<460 nm) and much lower in the longer wavelength region (>460 nm) than that of the uncolored sample.

Fig. 34B shows the fresh and colored films after 10 pulses of irradiation of V_2O_5 films prepared by RF sputtering.³¹¹ The color transformed from bright green (the as-grown film) to a deep dark blue. The transmittance of the colored film was much lower in the visible and NIR region than that of the uncolored film. The variation of the ΔT was approximately 46% at 560 nm and 14% at 900 nm, leading to broad absorption features without the abrupt absorption of a colored film. The V₂O₅ film fabricated by $E_{\rm B}$ shows that $E_{\rm opt}$ increased from 2.29–2.34 eV after UV irradiation for 30 min.³¹³

Gavrilyuk's research group developed V_2O_5 photochromism.^{308,314,318,319,321} Different synthesis methods, such as sol-gel, evaporation, and melting, were carried out to fabricate V_2O_5 films. Different organic molecules, such as CH_3OH , C_3H_5OH , and $(CH_3)_2NCHO$, as well as H_2O , were used on hydrogen photo-injection to investigate the CE. These studies confirmed that the PC sensitivity of V_2O_5 was influenced by the organic adsorbate, temperature, and film thickness, as shown in Fig. 35.^{318,319,321}

Fig. 35A compares the PC sensitivities of different thinner V_2O_5 films illuminated for 120 min.³¹⁹ The generated electronproton plasma diffused deeply into the film. This process was also affected by the porosity, thickness, and size of film particles and depended on the smallest particles. On the other hand, the plasma diffusion process reduced the concentration of injected centers, which lowered $E_{\rm f}$. Consequently, a thicker film achieved a higher PC sensitivity than a thinner film. For the shift region, the optical shift showed a difference between the low energy (L-E) and high energy (H-E) of the absorption edge.

Fig. 35B presents the optical shifts of the sample at RT and 25 K.³¹⁸ The optical spectra shape was similar at L-E (<2.5 eV) and showed a blue shift at higher energy (>2.5 eV). For illumination at RT, the maximum shift reached 0.87 eV in the L-E and 0.77 eV in the H-E while the shift reached 0.78 eV in the L-E and 0.7 eV in the H-E, when illumination at 25 K. In particular, the OD showed an additional shift of 0.2 eV in the L-E and 0.5 eV in the H-E during the return to RT, whereas the intensity of the absorption band below 2.5 eV remained unchanged. The temperature affected the photoreaction to form a V-O₁···H+ bond. The radicals formed at 25 K after the photo-detachment of H₂ through various stages and were more stable than at *RT*. This led to an enhanced optical shift reaching 0.9 eV in the L-E and 1.28 eV in the H-E.

Recently, PC properties of the Ag-doped V_2O_5 , V_2O_5 -based composites, and CTA/ V_2O_5 NP bionanocomposites were investigated.^{307,322,323} Both undoped and Ag-doped V_2O_5 films were colored by UV light irradiation and bleached with visible light irradiation and electrochemical processes. Un-doped films turned brown when exposed to UV light for 5 h and returned to dark yellow when bleached by visible light

Sample	Method	Chromo- genic types	Test conditions	Evaluated wavelength (nm)	Colora- tion time (min)	Bleaching time (min)	Optical transmit- tance (reflec- tance) ΔT (ΔR) (%)	Optical band change $\Delta E_{ m opt}$ (eV)	Ref.
V ₂ O ₅ film	The film was grown using the TE	GC	Ethanol		_	100	5	_	287
2 0	method		Methanol		—	100	4	—	
			Acetone		_	100	—	_	
N.O. Class		00	Isopropanol	- 10	—	100		_	205
V_2O_5 mm	substrate by sol-gel spin-coating	GC	Hydrogen	740	_	_	39	_	295
V_2O_5 film	The film was grown on a glass substrate by the TE method	GC	Hydrogen	545	—	—	12	_	298
0% O ₂ -V ₂ O ₅	The films were grown on a glass				—	_	6	—	
f_{1} Im $5\% O_{2} - V_{2}O_{5}$	substrate by a sputtering method				_	_	8	_	
film									
V ₂ O ₅ film: 285 nm	The film was deposited on a glass substrate by sol–gel spin-coating	GC	Hydrogen	700	—	—	13	—	288
V_2O_5 film:					—	—	20	—	
V_2O_5 film:					_	_	28	_	
625 nm									
V ₂ O ₅ film	The film was deposited on an ITO	GC	Hydrogen	550	_	_	13.9	_	299
D	substrate by sol-gel spin-coating	00	TT 1	800		_	16.9	_	
Pure V_2O_5	A Mo-modified V_2O_5 film was	GC	Hydrogen	/50	100		16.9		4
Mg-V ₂ O ₅	membrane substrate by sol-gel				23	_	20.3		
x = 0.00	$(MoO_3)_{1-x}(V_2O_5)_x$ composite films	GC	Hydrogen	450	12	18	31.8	_	301
x = 0.01	were grown by the PLD method				9	15	53.6	_	
<i>x</i> = 0.03					10	15	35.2	_	
x = 0.05					13.	5 13	32.5	_	
x = 0.00 x = 0.01				550	11	1/ 7 1/	43.0	_	
x = 0.01 x = 0.03					9.	5 15	45.6	_	
x = 0.05					13	12.5	50.1	_	
x = 0.00				650	11	17	45.2	_	
x = 0.01					8.	7 14	65.8	_	
x = 0.03					9.	5 15	50.5	_	
x = 0.05	A V.O. based composite film was	DC	IT invadiation	700	13	12.5	54.7	0.05	207
$v_2 O_5$ particles	A v_2O_5 -based composite min was prepared by the sol-gel method	PC	UV IIIadiation	700	10		11	0.05	307
V ₂ O ₅ film	The film was deposited on an	PC	Laser	560	10 pulses		49		311
. 2 - 3	Al ₂ O ₃ substrate by the RF sput- tering method		irradiation						
V ₂ O ₅ pellet	V ₂ O ₅ pellets were prepared at a	PC	Laser	600	_	_	6.0	_	310
	pressure of 8 MPa from commer-		irradiation						
V O	The film was deposited on a	TC	₽T_80 °C	2000	_	_	2.5	_	351
V ₂ O ₅	quartz substrate by the RF sput- tering method	10	KI 50 C	2000			2.3		551
Film: 9, RT, -	The film was deposited on a	TC	RT–200 °C	2500	_	_	30	_	110
Film: 15, 400, —	quartz substrate by the DC mag-				_	_	3.5	_	
Film: 20, RT, —	netron method with different				_	_	17	—	
Film: 9, RT, 400	oxygen pressures, substrate tem-				—	_	11.5	_	
Film: $20, RT,$	peratures, and annealing				_		15		
Film: 20, RT,	temperatures				_	_	39	_	
200 0% Mo V O	Mo donad V.O. films wara	TC	250, 400 °C	2500 2200			12		220
$10\% \text{ MO-V}_2\text{O}_5$	denosited on a glass substrate by	10	250-400°C	2300-3300	_	_	15	_	330
$20\% \text{ Mo-V}_2\text{O}_5$	the SP method		25-50 °C		_		18		
V ₂ O ₅	Pure and Cr-doped V_2O_5 films	TC	40–220 °C	550	_		19	0.17	120
V ₂ O ₅ 300 nm	were deposited on a silicon sub-		50–200 °C		—	_	3	_	
$V_2O_5 \ 1.2 \ \mu m$	strate by the MOCVD method		50–200 °C		—	—	18	—	
$V_2O_5 2.4 \ \mu m$			50–200 °C		—	_	20	_	
4.34% $\text{Cr-V}_2\text{O}_5$	The film was deposited on class	тC	40-220 °C	550	_	_	3 27	— 0.61	206
V_2O_5/FTO	and FTO substrates by the RF sputtering method	10	250 500 C	1000	_	_	25		520

Fig. 34 Photographs of (A) fresh and colored V₂O₅ pellets and (B) the asgrown and colored V₂O₅ films. The figures are reproduced with permission (Copyright 2022, IOPscience³¹⁰ and Elsevier³¹¹).

irradiation for 4.5 h or recharged at +1.0 V for 60 s. For Agdoped V₂O₅, the film rapidly became brown after only 4 min exposure to UV light. The bleaching sample required 6 h of visible irradiation or 20 s discharging at +1.0 V. The absorption spectra showed that the response of Ag-doped V₂O₅ is faster than that of the pure V₂O₅ film because of the contribution of absorption of UV light of Ag NPs.³²²

Miyazaki *et al.*³⁰⁷ observed the natural reversible PC properties of V₂O₅-based composites at RT. For coloration, the transmittance spectra showed an absorption shift and a decrease in the IR and NIR regions (Fig. 36). The E_{opt} increased slightly from 2.52 eV to 2.61 eV, and the film color changed from yellow to green to pale blue after irradiation for 1 h. Natural bleaching showed that the film almost returned to the initial color after 48 h in the dark.

5.5. Thermochromic process in V₂O₅

5.5.1 Fundamentals of thermochromic V_2O_5 **.** The dynamics of the optical properties as a result of thermal stimulation was observed for various vanadium oxide phases, among which VO₂ has attracted increasing attention owing to its MIT at near RT (340 K). Lower MIT temperatures were reported for VO (126 K), V₆O₁₃ (150 K), and the Magnéli phases, such as V₂O₃ (165 K), V₄O₇ (250 K), V₅O₉ (135 K), V₆O₁₁ (177 K), and V₈O₁₅ (70 K).³²⁴

Recently, some studies provided evidence of the SMT^{325,326} or MIT^{107,327} in V₂O₅. These reports reveal metallic behaviors at high temperatures. The transition temperature in V₂O₅ is one exception, while the experimental results converge towards a loss of lattice oxygen (vanadyl group) without a structural change. This section discusses some of the reports related to the TC phenomena of V₂O₅ materials.

Kang *et al.*¹⁰⁷ have reported temperature-dependent spectroscopic ellipsometry measurements of V_2O_5 films. An abrupt change in the extinction coefficient was observed at 265 to

Fig. 35 Optical density spectra of the V₂O₅ film. (A) ΔD_{max} of different film thicknesses, (B) before and after the illumination time (t); before and after the illumination time (t) at 25 K ((7) illumination and heating up to *RT*, (8) illumination, heating up to RT, and maintain for 2 h). The figures are reproduced with permission (Copyright 2022, Elsevier³¹⁹ and Royal Society of Chemistry³¹⁸).

Fig. 36 Optical spectra change on the coloring and bleaching of composite films before and after UV-Vis irradiation: (A) Transmittance spectra and (B) the time dependence of transmittance change, reproduced with permission (Copyright 2022, Royal Society of Chemistry³⁰⁷).

325 °C, and a Drude absorption feature indicating the presence of a metallic phase was observed above 310 °C. Blum *et al.*³²⁷ reported a reversible MIT of a V₂O₅(001) single crystal at 77– 127 °C. Scanning tunneling microscopy revealed the nucleation and growth of vanadyl (V=O) oxygen vacancies with temperature, which was consolidated by density functional theory (DFT) and Monte Carlo calculations. This reversible phenomenon occurred exclusively at the surface at 77–127 °C and became irreversible at higher temperatures by forming V₆O₁₃ and V₂O₃. These results were discussed by Pergement *et al.*³²⁸ and Aita,³²⁹ who questioned the pertinence of describing this phenomenon as an MIT.

Pergement³²⁸ suggested that heating V₂O₅ in this and other similar references induces a reduction and the formation of phases that are metallic at these temperatures. Aita³²⁹ suggested that the XRD peak shift with a trend change at 200 °C indicates a structural transition from α -V₂O₅ to γ' -V₂O₅, a metastable polymorph. The monitoring of the lattice parameters, *a*, *b*, and *c*, of α -V₂O₅ as a function of temperature revealed a linear increase in "*c*" with temperature, while "*a*" and "*b*" remain unchanged.¹²⁰ The linear trend of "*c*" from 20 to 300 °C did not confirm the hypothesis of the α -V₂O₅ to γ' -V₂O₅ transition.

The distorted octahedra inside the V_2O_5 crystal affect the indirect vanadium-vanadium interactions with the intermediate vanadyl group. A shift in the (001) XRD peak,^{107,120} a change in peak intensity, and a shift in the Raman spectrum were observed.

Fig. 37A(a) presents the reversible temperature-dependent Raman shifts.²²³ In most of the peaks, the intensity decreased with sample heating and returned to the original level when the sample was cooled to RT (Fig. 37A(b)). In particular, the modes at 483 and 850 cm⁻¹ vanish above 257 °C and re-emerge after cooling to RT. The peak at 483 cm⁻¹ was ascribed to V–O(2)–V bending deformation along the *z*-direction, whereas the peak at 850 cm⁻¹ was attributed to the antiphase stretching mode of V–O(2) bonds. The Raman shift of approximately 7 to 13 cm⁻¹ was

observed over the temperature range of 77–377 °C (Fig. 37A(c)). The intensity ratio of the peak at 144 cm⁻¹ (corresponding to the vibration O(x)-V–O(x)) and 993 cm⁻¹ (corresponding V=O(1) stretching mode) increased rapidly above 177 °C (Fig. 37A(b)). This trend was attributed to the possible loss of O(1) atoms from the structure of V₂O₅.

Fig. 37B(a) shows the temperature-dependent XRD patterns over the 25–300 °C range.¹²⁰ The (001) peak showed a shift towards a lower XRD angle while the (200) peak remained unaffected (Fig. 37B(b)). Fig. 37B(c and d) show the reversible shift without any hysteresis effect, and they demonstrate a symmetric-like point at 160 °C. The obtained results agree with the increase in the distance between the "ab" layers of V_2O_5 with increasing temperature.

The relaxed structure, lattice expansion, phase transition, and oxygen vacancy in local structure might cause the appearance of mid-gap state and new split-off bands, and cause downward shifts of old split-off bands. Regarding E_{opt} , a decrease in $E_{\rm opt}$ with increasing temperature was reported: from 2.33 to 1.72 eV (RT–500 °C),³²⁶ from 2.14 to 2.07 eV (27– 377 °C),²²³ and from 2.13 to 1.96 eV (40-220 °C).¹²⁰ The PL position peak also shifted and extended to a broad peak with increasing temperature.325 Moreover, the measured temperature dependence of the photon energy showed that these parameters are reduced over the range of 280-295 °C. At higher temperatures (310-325 °C), the photon energy decreased significantly because of the metallic behavior.¹⁰⁷ The electrical measurements also showed that the resistance decreased suddenly with increasing temperature in the 227-277 °C, 223 280-480 °C,¹⁰⁷ and 277–377 °C ranges.³²⁵ While disregarding the debate on the MIT/SMT behavior, the changes in the E_{opt} and PL with the temperature well below 300 °C support the presence of thermochromism in V_2O_5 .

5.5.2 V_2O_5 thermochromic thin films and devices. Compared to the EC and GC devices, TC V_2O_5 devices have attracted less attention because they are difficult to control. Nevertheless, TCDs and PCDs are based on a single thin film, and they can be

Fig. 37 Thermochromic properties of V_2O_5 : (A) Temperature-dependent Raman spectra of V_2O_5 NRs: (a) increasing-decreasing temperature in the range 300–650 K, (b) altered vibrational frequencies, (c) intensity ratio of the peak at 144 cm⁻¹ and 993 cm⁻¹. (B) XRD patterns of the V_2O_5 film at different temperatures (a) and contour plot of the peaks corresponding to (200) and (001) reflexes (b), (c and d) the reversibility of the thermochromism is monitored by measuring the shift of the reflex (001) in the heating and cooling stages. The figures are reproduced with permission (Copyright 2022, American Chemical Society^{120,223}).

operated under direct sunlight without an additional control system. These are advantages for applications, such as pure smart windows on buildings or non-contact optical temperature sensors.

The change in the IR transmittance (region $2500-4000 \text{ cm}^{-1}$) due to TC of V_2O_5 was investigated. Cui *et al.*¹¹⁰ compared optical transmittance in the IR region of the V_2O_5 film at RT and 200 °C. The films were deposited by sputtering at different substrate temperatures, annealing temperatures, and ratios of oxygen partial pressure. The transmittance variation reached 30% and 39% for the sample without annealing and the sample annealed at 400 °C, respectively.

Nazemiyan *et al.*³³⁰ compared the TC properties of pure and Mo-doped V₂O₅. For the pure V₂O₅ film, the IR transmittance increased slightly with heating up to 250 °C and decreased sharply with heating up to 300–400 °C. The transparency of the TC film was observed clearly at 50 °C. In contrast, the transmittance decreased 1/6 orders of magnitude from 50 to 300 °C for the Mo-doped film because of the increase in carrier concentration. The SMT behavior exhibited that the resistance measurement also showed a decrease from $> 10^6 \Omega$ to $< 10^3 \Omega$ at 25 °C and above 300 °C, respectively.

Recently, evidence of visible TC behavior in V_2O_5 powder and coating was demonstrated.^{120,331,332} This behavior

Fig. 38 Color modulation state (thermochromism), photographs of the film at different temperatures: (A) pure V_2O_5 film and (B) 4.34% Cr-doped V_2O_5 film, reproduced with permission (Copyright 2022, American Chemical Society¹²⁰).

demonstrates the opposite orange to deep orange transition due to a temperature increase. The color transition from green to red in the mixed V₂O₅ and Cr₂O₃ powder was attributed to the TC behavior.³³¹ Kumar et al.^{120,332} examined the visible thermochromism of V₂O₅ films grown by CVD on silicon, glass, and metal substrates. Fig. 38A shows the reversible TC for undoped V₂O₅ films on a silicon substrate. The color changed from bright yellow to deep orange with increasing temperature. The total hemispherical reflectance (THR) revealed a red shift with heating that was reversible with cooling. For the Cr-doped V_2O_5 thin film, the initial film at RT showed a different color compared to pure V₂O₅, with a dependence on the Cr doping concentration. For a doping concentration of 4.34%, the color changed from dark olive green to dark clay orange with increasing temperature from 30 to 300 °C (Fig. 38B). The THR revealed a slight shift, while the lattice parameter "c" increased by 0.045 Å.¹²⁰

Conclusions and perspectives

6.1 Conclusions

This review presents the role of CDs in energy-saving applications. The crystalline and atomic structures of α -, β -, ε -, δ -, γ -, ζ -, and ω -phases of pure V₂O₅ and M_xV₂O₅ as well as their band structure were also discussed. The formation mechanism and synthesis methods to fabricate micro–nanostructured V₂O₅, including bottom-up (*i.e.*, physical vapor deposition, chemical vapor deposition, and solution method), top-down, and combined methods to control the morphologies of various zero dimension to three dimensions were presented. The wide ranges of E_{opt} due to the unique electronic structure of α -V₂O_{5-y} with three bands (main CB, split-off CB, and mid-gap state) were clarified. The multi-colors of the original V₂O₅ films (fixed chromism) due to the growth parameters, dopants, and composites were discussed.

Common parameters to evaluate the efficiency of V_2O_5 CDs, *i.e.*, the change in the optical bandgap, the optical transmittance, switching time, optical density, coloration efficiency, cycling stability, durability, and operational environment, are presented. The fundamental characteristics of chromogenic V_2O_5 , including the electro-, gaso-, photo-, and thermochromism related with the advancements through decades, working mechanism, recent progress, and applications are summarized. In addition, the synthesis methods, structures (crystalline and electric band structures), and optical properties, which play an essential role in improving the CE, are outlined.

The micro-nano structure increases the surface area and limits the diffusion distance to improve the switching response time of ECDs and GCDs of V_2O_5 . Element-doped V_2O_5 and materials@ V_2O_5 composites increase the electronic conduction for enhancing the chromic performance of V_2O_5 devices. The ECDs using M-doped V_2O_5 exhibited long-term cycling stability and a high CE (M = Ti), rapid switching speed (M = Ag and Fe), and high visible transmittance (M = W and Mg). Similarly, Mdoped V_2O_5 also demonstrates a faster response time on GCDs (M = Mo) and PCDs (M = Ag) while presenting new colors on TCDs (M = Cr). CDs show an improved switching time and enhanced durability because they prevent vanadium ion dissolution in the electrolyte and contribute to the high conductivity materials, *i.e.*, GO, RGO, PEDOP, and Ag.

The colored-bleached state contrasts of some metal oxides, such as WO₃, NiO, TiO₂, and MoO₃, correspond to two states of bright and dark, which lead to non-aesthetic smart windows with a dull and black appearance. The colored state can reduce the temperature inside the room but decrease the light intensity in the visible region, while the bleached state can enhance glare, resulting in user discomfort. As discussed above, the color change to the V_2O_5 film caused by both an absorption shift and intensity variation of light transmission/reflection occurs simultaneously, a potential material for smart windows. This shows that both anodic and cathodic colorations cause multistates, corresponding to multicolor. The colored state shows enhanced transmittance in the shorter wavelength region but reduced transmittance in the NIR and IR regions. Hence, it can reduce the temperature but still maintain visible light transmission. The bleached state decreases in the shorter wavelength region, mitigating glare and making the color comfortable.

Furthermore, some important opening research directions for prospects as a guide for the wider materials science community are provided. The following communities will have high potential interest in this review, including physicists interested in the fundamentals of the optoelectronic characteristics, chemists/electrochemists interested in the synthesis and application of V₂O₅, and materials scientists and nanotechnology integrators. The synergy between these communities will potentially trigger the development of V₂O₅ chromogenics to the level of other established materials.

6.2 Perspectives

GCDs, PCDs, and TCDs are based on simple integration with a single thin film deposited on different substrates. There is no need for transparent conducting electrodes and an electrolyte, which may lead to easy fabrication on a large scale and prolonged service life. However, PCDs and TCDs have received less attention because of their relatively low performance and slow response. V₂O₅ TCDs operate at high temperatures, while PCDs need high excitation source intensities (e.g., laser source). PCDs and TCDs are also passive methods that make it challenging to control chromogenic parameters. Therefore, V₂O₅ PCDs and TCDs do not find practical applications on smart windows. The photo- and thermal-reaction processes on V2O5 are explained and the potential for other applications in the future is highlighted. ECDs and GCDs are the active methods to control parameters, such as ΔT , $t_{\rm b}$, $t_{\rm c}$, and ΔD . On the other hand, at higher temperatures, during operation, water can be deposited on the surface of GCDs, leading to a decrease in performance and service life. Among the chromogenic applications of V2O5, ECDs have many advantages for smart windows applications. Nevertheless, there is no detailed study on the cost and assessed feasibility to produce V₂O₅ for large-scale commercialization. ECD_S have complicated structures, including multilayer, electrolyte, and applied electrical system that requires a complicated setup, repair, and maintenance that may lead to high cost.⁵

Reducing global warming, alleviating climate change, energy saving, and green technology have attracted worldwide attention. Smart windows are crucial for energy saving and are a key to green technology to protect the environment and help develop a global society-economy. In view of the practical applications, multicolor, high optical transmittance, high optical contrast ratio, rapid switching response time, high color efficiency, long-term cycling, durability, and large-scale production are desirable for chromogenic materials, but the achievements in these parameters are challenging. The current research shows that the use of a single "technique" cannot meet these requirements. Therefore, the combination of "multitechniques" as "multidisciplinary integration" is a solution to optimize the above parameters. As shown in Fig. 39, the possible combinations of different strategies based on V_2O_5 materials are given as follows:

Strategy 1: combination of different synthesis methods, including bottom-up and top-down methods based on two or more steps, can fabricate various morphologies on a large scale. Moreover, the morphologies can be controlled and remain stable. For example, pure, metal-doped, and materials@V2O5 composites with different sizes and morphologies can be prepared using a solution method. Systematic methods are needed to correlate the aspect ratio, size, and oxygen deficiency of particles with the optical properties, including the response kinetic to external stimuli and the stability. Different NP sizes of pure or V₂O₅-based composites also can be obtained via a solid-state reaction using the mechanical milling method. Different ratios of various pure powders were mixed and ball milled to form a composite powder, which was then dispersed in a solvent. These solutions can be sprayed, electro-spun, rolled, spin-coated, casted, screen-printed, or co-assembling using the Langmuir-Blodgett technique on different substrates. These techniques can be used to prepare the monolayer or multilayer V_2O_5 on a large scale. Subsequently, the film can be annealed at different temperatures or atmospheres to control the surface morphology.²¹ Thus far, many breakthroughs have been achieved in the research and development of micronanostructured V₂O₅ by combining many fabrication methods. V₂O₅ NPR/NTL can meet the high surface area and stability, but direct self-organization of V2O5 nanopore is difficult owing to the instability of vanadium oxide during growth in a watercontaining electrolyte.¹²⁵ This architecture can be achieved by intermediate film growth or using dielectric breakdown etching. For example, V metal or a V₂O₅ dense film can be deposited on a substrate and covered by another film, such as TiO₂ and Al₂O₃. Nanopore of the intermediate film was prepared by the ECAD method that plays a nuclei role to grow V₂O₅ NPR/NTL.

Strategy 2: combination of different morphologies of V_2O_5 micro-nanostructures, including 0D, 1D, and 2D, can produce the desired V_2O_5 micro-nanoarchitectures. The tailored micronanostructure and rational designs are the keys for improving the surface area and achieving a short ion diffusion length and ion transport.⁴⁰ Owing to the novel behaviors, micro-nanostructured V_2O_5 has become a potential candidate for energy saving and energy storage. In addition, the utilization of heterojunctions could significantly enhance the electron-hole pair separation and oxidation kinetics in water for improving PC performance.

Strategy 3: combination of V_2O_5 with other materials via doping, composite, and hybrid formation can improve the physical and chemical properties of the materials. Recent developments of various synthesis methods and their combinations open new avenues for integrating multifunctional materials.² For example, the coexistence of other phases of vanadium oxide (VO_x) can amplify the chromic phenomena. Searching for accurate rates and coloration mechanisms of vanadium oxides can produce new colors and reduce the TC transition temperature. The combination of doping and composite can control the bandgap, enhance the long-term

Fig. 39 Illustration of the prospects for improving V_2O_5 chromogenic devices.

durability, and improve conductivity. The cycling stability and electrochemical performance can be enhanced by integrating nanostructured V_2O_5 with a carbonaceous material and a conductive polymer.³² Such development of new nanocomposites could potentially reduce the number of carbonaceous materials and conductive polymer under optimized electrochemical processes.

Although showing multicolor, the initial or bleaching state of the V_2O_5 fully stoichiometric phase exhibits an orange color. There is not enough light intensity in shading cases for smart windows. Therefore, the combination of V_2O_5 with other chromogenic materials, such as WO₃, MoO₃, and TiO₂, can meet the two standards, intensity and multicolor. The key challenges are to find a suitable mass ratio for EC performance and other chromogenic parameters. The influence of WO₃, MoO₃, and TiO₂ materials on the physical and chemical properties and the pathway ion at the interface between the materials also need examination. All the above open research trends in the future for chromogenic material@V₂O₅ composites.

Strategy 4: a combination of different chromogenic mechanisms, such as TC-PC, GC-EC, and PC-EC, can improve chromogenic performance. Based on the V_2O_5 TC and PC mechanisms discussed above, the color change phenomena in materials can occur due to the simultaneous optical and thermal absorption when exposed to light. Nevertheless, the influence of the V_2O_5 chromic types needs to be validated further.

Strategy 5: a combination of different chromogenic counters can produce a multicolor due to the overlay color with different counters. The regulated suitable color will result in a comfortable room that improves the quality of life with higher productivity. Most studies focused on a V_2O_5 single electrode but did not examine the influence of electrolyte type, another electrode, and substrate to ECDs. Practical applications require V_2O_5 ECDs to meet the synchronous system (*i.e.*, two electrodes and the electrolyte).³³³ As a result, the interface properties (*i.e.*, physical and chemical properties at the interface between the electrolyte and the EC layer, and between the EC layer and the substrate), as well as the mechanism of volume expansion, should be investigated thoroughly.

Strategy 6: combination of optoelectronic couple devices, such as EESDs (based on self-powered EC batteries mechanism), PECDs, and PVCDs (based on self-photo-recharge) to improve energy-saving performance. PECDs and PVCDs are the ideal perspectives of future buildings because of self-power and self-spectral tunability.³³⁴ The combination of energy generation, energy storage, and chromogenics to become a three-in-one device will be the trend of future study and is receiving more attention that improves the energy-saving performance. Nevertheless, the challenge is determining how to combine them in the best possible way.

Despite considerable research efforts, challenges still remain, such as the long-term durability, possibility of large-scale production, reduced costs for commercialization, and installation complexity (ECDs and GCDs).^{2,5} The multidisciplinary integration, including physics, chemistry, materials science, and nanomaterial technology, is a great solution. Many studies have focused on optimizing the coloration performance, but integrated application-oriented research is still lacking.40 This leads to studies on V_2O_5 CDs to expand the use beyond the laboratory scale through commercialization. Therefore, the ingenious combination of two or more strategies (Fig. 39) based on multidisciplinary integration will be critical for parameter optimization to open opportunities to solve these problems but also are challenges. For example, a combination of materials can help choose the components accurately and control the concentration in materials@V2O5 composites precisely.

These challenges also need further fundamental and experimental investigations. This review also provided the keys to finding the appropriate solutions for developing V_2O_5 CDs and multifunctional devices (EESDs, PECDs, and PVCDs) in which V_2O_5 chromogenic mechanisms have similar phenomena. Furthermore, many studies on V_2O_5 applications were highlighted, such as photocatalysis, gas sensors, thermal sensors, electrochemical systems, battery systems, photoresponse, MIT, SMT, data display, optical signal processing, and optical switch.

This review presents the latest progress related to the advances of chromogenic V_2O_5 , the fundamental aspects, and the applications related to energy saving. This review is an opening discussion because nanostructured V_2O_5 -based research has challenges that remain to be overcome. Moreover, there is a huge space for nanostructured- V_2O_5 development, which requires more efforts in academia and industry toward new energy saving and storage applications in the future.

List of abbreviations:

(a) General

VO Vanadium monoxide

VO_2	Vanadium dioxide	CBD	Chemical bath deposition
V_2O_3	Vanadium sesquioxide	ECAD	Electrochemical anodization deposition
V_2O_5	Vanadium pentoxide	ESS	Electrostatic spray
WO ₃	Tungsten oxide	ED	Electrodeposition
MoO ₃	Molybdenum trioxide	TP	Thermal pyrolysis
GO	Graphene oxide	CSP	Chemical spray pyrolysis
RGO	Reduced graphene oxide	ESP	Electrospun
PEDOT	Poly(3,4-ethylenedioxythiophene)	CVD	Chemical vapor deposition
PEDOP	Poly(3,4-ethylenedioxypyrrole)	AP-CVD	Atmospheric-pressure CVD
DMFA	Dimethylformamide	LP-CVD	Low-pressure CVD
CTA	Cellulose triacetate	AL-CVD	Atomic layer CVD
PS	Polystyrene	MO-CVD	Metal-organic CVD
TMOs	Transition metal oxides	PE-CVD	Plasma-enhanced CVD
ITO	Indium-tin oxide	AA-CVD	Aerosol-assisted CVD
FTO	Fluorine-doped tin oxide	PLD	Pulsed laser deposition
PET	Polyethylene terephthalate	ALD	Atomic layer deposition
SMT	Semiconductor-metal transition	PLA	Pulsed laser ablation
MIT	Metal-insulator transition	LASP	Laser-assisted surface processing
E_{opt}	Optical bandgap	EBE	Electron beam evaporation
$E_{ m g}$	Bandgap	TE	thermal evaporation
$E_{\rm c}$	Optical bandgap of colored state	RF-sputtering	Radio-frequency sputtering
$E_{\rm b}$	Optical bandgap of bleached state	DC-sputtering	Direct current sputtering
E_i	Optical bandgap of initial (pristine) film	IB-sputtering	Ion beam sputtering
$T_{\rm c}(\lambda)$	Colored transmittance	RFRP	Radio-frequency rotating plasma
$T_{\rm b}(\lambda)$	Bleached transmittance	TD	Thermal deposition
$T_{\rm i}(\lambda)$	Initial transmittance	MQ	Melting quench
$R_{\rm c}(\lambda)$	Colored reflectance	BM	Ball milling
$R_{\rm b}(\lambda)$	Bleached reflectance	DFT	Density-functional theory
$R_{\rm i}(\lambda)$	Initial reflectance	OLCAO	Orthogonalized linear combination of atomic
VB	Valence band		orbitals
CB	Conduction band	(1)	
RT	Room temperature	(d) Measureme	nt method
vdW	van der Waals	SEM	Scanning electron micrograph
		TEM	Transmission electron microscope
(b) Morphol	ogy	STM	Scanning tunneling microscopy

0D, 1D, 2D, and 3D

	Zero-, one-, two-, and three-dimension(s)
QDs	Quantum dots
NPs	Nanoparticles
NPRs	Nanoporous
NRs	Nanorods
NWs	Nanowires
NBs	Nanobelts
NFBs	Nanofibers
NFLs	Nanoflowers
NTs	Nanotubes
NTLS	Nanotubulars
NHs	Nanohollows
NSHs	Nanosheets
NSPs	Nanospheres
NRBs	Nanoribbons
DG	Double-gyroid

(c) Synthesis method

PVD	Physical vapor deposition
WCR	Wet chemical reaction

SEM	Scanning electron micrograph
TEM	Transmission electron microscope
STM	Scanning tunneling microscopy
XRD	X-Ray diffraction (XRD)
XPS	X-Ray photoelectron spectroscopy
XAS	X-ray absorption spectroscopy
EXAFS	Extended X-ray absorption fine structure
PL	Photoluminescence
CL	Cathodoluminescence
UV	Ultraviolet
IR	Infrared
NIR	Near infrared

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The Priority Research Centers Program supported this work through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2019R1A6A1-A11053838). The authors thank Dr Chinh Tam Le, Dr Van Quang Nguyen, and Dr Khoi Dang Dinh for the discussion and suggestion.

Notes and references

- 1 M. J. Serpe, Nature News Views, 2019, 565, 438-439.
- 2 Y. Wang, E. L. Runnerstrom and D. J. Milliron, Annu. Rev. Chem. Biomol. Eng., 2016, 7, 283–304.
- 3 C. G. Granqvist, P. C. Lansåker, N. R. Mlyuka, G. A. Niklasson and E. Avendaño, *Sol. Energy Mater. Sol. Cells*, 2009, 93, 2032–2039.
- 4 Y. R. Lu, H. H. Hsu, J. L. Chen, H. W. Chang, C. L. Chen,
 W. C. Chou and C. L. Dong, *Phys. Chem. Chem. Phys.*, 2016,
 18, 5203–5210.
- 5 Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P. S. Lee and Y. Long, *Adv. Energy Mater.*, 2019, **9**, 1–38.
- 6 K. Sauvet, L. Sauques and A. Rougier, *Sol. Energy Mater. Sol. Cells*, 2009, **93**, 2045–2049.
- 7 J. L. Victor, C. Marcel, L. Sauques, N. Penin and A. Rougier, *Sol. Energy Mater. Sol. Cells*, 2021, 227, 11113.
- 8 D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato and R. Martins, *Chromogenic applications*, 2019.
- 9 R. W. Pohl, Proc. Phys. Soc., London, 1937, 49, 3-31.
- 10 J. R. Platt, J. Chem. Phys., 1961, 34, 862-863.
- 11 S. K. Deb, Appl. Opt., 1969, 8, 192–195.
- 12 W. C. Dautremont-Smith, Displays, 1982, 3, 67-80.
- 13 W. C. Dautremont-Smith, Displays, 1982, 3, 3-22.
- 14 R. J. Mortimer, Annu. Rev. Mater. Res., 2011, 41, 241-268.
- 15 V. K. Thakur, G. Ding, J. Ma, P. S. Lee and X. Lu, Adv. Mater., 2012, 24, 4071–4096.
- 16 V. Rai, R. S. Singh, D. J. Blackwood and D. Zhili, Adv. Eng. Mater., 2020, 22, 1–23.
- 17 G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk and S. Masudy-Panah, *Prog. Mater. Sci.*, 2018, **95**, 42–131.
- 18 T. He and J. Yao, Prog. Mater. Sci., 2006, 51, 810-879.
- 19 R. Tällberg, B. P. Jelle, R. Loonen, T. Gao and M. Hamdy, *Sol. Energy Mater. Sol. Cells*, 2019, **200**, 109828.
- 20 K. Thummavichai, Y. Xia and Y. Zhu, *Prog. Mater. Sci.*, 2017, **88**, 281–324.
- 21 S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang and A. Yu, *Prog. Mater. Sci.*, 2016, **81**, 1–54.
- 22 Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao and Y. Long, *Joule*, 2018, 2, 1707–1746.
- 23 M. E. A. Warwick and R. Binions, *J. Mater. Chem. A*, 2014, 2, 3275–3292.
- 24 D. Kowalski, D. Kim and P. Schmuki, *Nano Today*, 2013, **8**, 235–264.
- 25 T. He and J. Yao, J. Photochem. Photobiol., C, 2003, 4, 125–143.
- 26 M. Mihelčič, A. Šurca Vuk, I. Jerman, B. Orel, F. Švegl, H. Moulki, C. Faure, G. Campet and A. Rougier, *Sol. Energy Mater. Sol. Cells*, 2014, **120**, 116–130.
- 27 J. Yao, Y. Li, R. C. Massé, E. Uchaker and G. Cao, *Energy Storage Mater.*, 2018, **11**, 205–259.

- 28 S. Natarajan, S. J. Kim and V. Aravindan, *J. Mater. Chem. A*, 2020, **8**, 9483–9495.
- 29 L. R. De Jesus, J. L. Andrews, A. Parija and S. Banerjee, *ACS Energy Lett.*, 2018, **3**, 915–931.
- 30 A. Moretti and S. Passerini, *Adv. Energy Mater.*, 2016, 6, 1600868.
- 31 Y. Yue and H. Liang, Adv. Energy Mater., 2017, 7, 1-32.
- 32 M. Liu, B. Su, Y. Tang, X. Jiang and A. Yu, *Adv. Energy Mater.*, 2017, 7, 1–34.
- 33 J. Wang, H. Tang, L. Zhang, H. Ren, R. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P. Liu, Y. Zhang, Y. Wen, L. Gu, G. Ma, Z. Su, Z. Tang, H. Zhao and D. Wang, *Nat. Energy*, 2016, 1, 1–8.
- 34 D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah and L. F. Nazar, *Nat. Energy*, 2016, 1, 1–8.
- 35 T. K. Le, M. Kang and S. W. Kim, *Mater. Charact.*, 2019, **153**, 52–59.
- 36 W. B. Fu, G. L. Shang, X. X. Gong, L. De Zhang and G. T. Fei, *J. Mater. Chem. C*, 2017, 5, 1471–1478.
- 37 G. Terán-Escobar, J. Pampel, J. M. Caicedo and M. Lira-Cantú, *Energy Environ. Sci.*, 2013, **6**, 3088–3098.
- 38 H. Zhang, S. Wang, X. Sun and S. Chen, J. Mater. Chem. C, 2017, 5, 817–823.
- 39 B. Yan, L. Liao, Y. You, X. Xu, Z. Zheng, Z. Shen, J. Ma, L. Jong and T. Yu, *Adv. Mater.*, 2009, 21, 2436–2440.
- 40 W. Wu, M. Wang, J. Ma, Y. Cao and Y. Deng, *Adv. Electron. Mater.*, 2018, 4, 1–19.
- 41 Y. T. Wang, W. T. Whang and C. H. Chen, *ACS Appl. Mater. Interfaces*, 2015, 7, 8480–8487.
- 42 V. Mounasamy, G. K. Mani and S. Madanagurusamy, *Microchim. Acta*, 2020, **187**, 253.
- 43 H. Kim, T. K. Le, M. Kang, J. K. Lee, S. D. Park and S. W. Kim, *Mater. Lett.*, 2020, 277, 128394.
- 44 G. T. Kim, J. Muster, V. Krstic, J. G. Park, Y. W. Park, S. Roth and M. Burghard, *Appl. Phys. Lett.*, 2000, 76, 1875–1877.
- 45 A. B. Cezar, I. L. Graff, J. Varalda, W. H. Schreiner and D. H. Mosca, *J. Appl. Phys.*, 2014, **116**, 163904.
- 46 M. R. Parida, C. Vijayan, C. S. Rout, C. S. S. Sandeep, R. Philip and P. C. Deshmukh, *J. Phys. Chem. C*, 2011, 115, 112–117.
- 47 T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando and D. Golberg, *Adv. Mater.*, 2010, 22, 2547–2552.
- 48 G. Gu, M. Schmid, P. W. Chiu, A. Minett, J. Fraysse,
 G. T. Kim, S. Roth, M. Kozlov, E. Muñoz and
 R. H. Baughman, *Nat. Mater.*, 2003, 2, 316–319.
- 49 S. Surnev, M. G. Ramsey and F. P. Netzer, *Prog. Surf. Sci.*, 2003, **73**, 117–165.
- 50 T. K. Le, M. Kang and S. W. Kim, *Ceram. Int.*, 2019, 45, 15781–15798.
- 51 S. Ghosh, P. Roy, N. Karmodak, E. D. Jemmis and G. Mugesh, *Angew. Chem.*, 2018, **130**, 4600–4605.
- 52 F. Natalio, R. André, A. F. Hartog, B. Stoll, K. P. Jochum,
 R. Wever and W. Tremel, *Nat. Nanotechnol.*, 2012, 7, 530–535.

- 53 A. A. Vernekar, D. Sinha, S. Srivastava, P. U. Paramasivam,P. D'Silva and G. Mugesh, *Nat. Commun.*, 2014, 5, 1–13.
- 54 K. Qu, P. Shi, J. Ren and X. Qu, *Chem. Eur. J.*, 2014, **20**, 7501–7506.
- 55 Y. Ding, G. Ren, G. Wang, M. Lu, J. Liu, K. Li and Y. Lin, *Anal. Chem.*, 2020, **92**, 4583–4591.
- 56 U.S National Library of Medicine, Search 'VANADIUM PENTOXIDE', https://pubchem.ncbi.nlm.nih.gov/com pound/Vanadium-pentoxide).
- 57 Z. Tong, H. Lv, X. Zhang, H. Yang, Y. Tian, N. Li, J. Zhao and Y. Li, *Sci. Rep.*, 2015, **5**, 1–11.
- 58 K. Takahashi, Y. Wang and G. Cao, *Appl. Phys. Lett.*, 2005, 86, 1–3.
- 59 C. Xiong, A. E. Aliev, B. Gnade and K. J. Balkus, *ACS Nano*, 2008, **2**, 293–301.
- 60 K. C. Cheng, F. R. Chen and J. J. Kai, Sol. Energy Mater. Sol. Cells, 2006, 90, 1156–1165.
- 61 Y. Yang, D. Kim and P. Schmuki, *Electrochem. Commun.*, 2011, 13, 1198–1201.
- 62 J. M. Gallardo-Amores, N. Biskup, U. Amador, K. Persson,
 G. Ceder, E. Morán and M. E. Arroyo y De Dompablo, *Chem. Mater.*, 2007, **19**, 5262–5271.
- 63 M. B. Smirnov, E. M. Roginskii, K. S. Smirnov, R. Baddour-Hadjean and J. P. Pereira-Ramos, *Inorg. Chem.*, 2018, 57, 9190–9204.
- 64 R. Baddour-Hadjean, M. B. Smirnov, K. S. Smirnov, V. Y. Kazimirov, J. M. Gallardo-Amores, U. Amador, M. E. Arroyo-De Dompablo and J. P. Pereira-Ramos, *Inorg. Chem.*, 2012, 51, 3194–3201.
- 65 V. V. Porsev, A. V. Bandura and R. A. Evarestov, *Acta Mater.*, 2014, 75, 246–258.
- 66 P. Balog, D. Orosel, Z. Cancarevic, C. Schön and M. Jansen, *J. Alloys Compd.*, 2007, **429**, 87–98.
- 67 T. K. Le, M. Kang and S. W. Kim, *Mater. Sci. Semicond.* Process., 2019, **94**, 15–21.
- 68 N. Pinna, M. Willinger, K. Weiss, J. Urban and R. Schlögl, *Nano Lett.*, 2003, **3**, 1131–1134.
- 69 A. Chakrabarti, K. Hermann, R. Druzinic, M. Witko, F. Wagner and M. Petersen, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1999, **59**, 10583–10590.
- 70 S. Atzkern, S. Borisenko, M. Knupfer, M. Golden, J. Fink, A. Yaresko and V. Antonov, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2000, 61, 12792–12798.
- 71 J. Haber, M. Witko and R. Tokarz, *Appl. Catal., A*, 1997, **157**, 3–22.
- 72 S. Beke, Thin Solid Films, 2011, 519, 1761-1771.
- 73 J. M. Cocciantelli, J. P. Doumerc, M. Pouchard, M. Broussely and J. Labat, *J. Power Sources*, 1991, 34, 103–111.
- 74 A. Parija, Y. Liang, J. L. Andrews, L. R. De Jesus,
 D. Prendergast and S. Banerjee, *Chem. Mater.*, 2016, 28, 5611–5620.
- 75 J. Goclon, R. Grybos, M. Witko and J. Hafner, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2009, **79**, 1–14.
- 76 K. McColl and F. Corà, *Phys. Chem. Chem. Phys.*, 2019, **21**, 7732–7744.

- 77 B. Singh, M. K. Gupta, S. K. Mishra, R. Mittal, P. U. Sastry,
 S. Rols and S. L. Chaplot, *Phys. Chem. Chem. Phys.*, 2017,
 19, 17967–17984.
- 78 M. Willinger, N. Pinna, D. S. Su and R. Schlögl, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2004, 69, 1–7.
- 79 J. Wisniak, Educ. Quim., 2014, 25, 455-463.
- 80 R. Levi, M. Bar-Sadan, A. Albu-Yaron, R. Popovitz-Biro, L. Houben, C. Shahar, A. Enyashin, G. Seifert, Y. Prior and R. Tenne, *J. Am. Chem. Soc.*, 2010, **132**, 11214–11222.
- 81 V. Petkov, P. Y. Zavalij, S. Lutta, M. S. Whittingham, V. Parvanov and S. Shastri, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2004, 69, 3–8.
- 82 M. Alsawafta, A. Almoabadi, S. Badilescu and V.-V. Truong, J. Electrochem. Soc., 2015, 162, H466–H472.
- 83 Z. Tong, X. Zhang, H. Lv, N. Li, H. Qu, J. Zhao, Y. Li and X. Y. Liu, *Adv. Mater. Interfaces*, 2015, 2, 1500230.
- 84 S. Liang, Y. Hu, Z. Nie, H. Huang, T. Chen, A. Pan and G. Cao, *Nano Energy*, 2015, **13**, 58–66.
- 85 K. Zhu, C. Zhang, S. Guo, H. Yu, K. Liao, G. Chen, Y. Wei and H. Zhou, *ChemElectroChem*, 2015, **2**, 1660–1664.
- 86 M. Li, F. Kong, H. Wang and G. Li, *CrystEngComm*, 2011, 13, 5317–5320.
- 87 L. Wu, Y. Yu, X. Han, T. Xu, Y. Zhang, Y. Li and J. Zhi, J. Mater. Chem. C, 2013, 1, 6703–6708.
- 88 H. Liu and W. Yang, *Energy Environ. Sci.*, 2011, 4, 4000-4008.
- 89 K. Zhang, N. Li, X. Ma, Y. Wang, J. Zhao, L. Qiang, X. Li and Y. Li, J. Electroanal. Chem., 2018, 825, 16–21.
- 90 S. Sajitha, U. Aparna and B. Deb, *Adv. Mater. Interfaces*, 2019, **6**, 1–9.
- 91 X. Ren, Y. Liu and W. Guo, Sep. Purif. Technol., 2020, 253, 117501.
- 92 G. Li, S. Pang, L. Jiang, Z. Guo and Z. Zhang, *J. Phys. Chem.* B, 2006, **110**, 9383–9386.
- 93 W. Kang, C. Yan, X. Wang, C. Y. Foo, A. W. Ming Tan, K. J. Zhi Chee and P. S. Lee, *J. Mater. Chem. C*, 2014, 2, 4727–4732.
- 94 F. Krumeich, H. J. Muhr, M. Niederberger, F. Bieri, B. Schnyder and R. Nesper, *J. Am. Chem. Soc.*, 1999, **121**, 8324–8331.
- 95 T. K. Le, M. Kang, V. T. Tran and S. W. Kim, *Mater. Sci.* Semicond. Process., 2019, **100**, 159–166.
- 96 K. Tang, Y. Zhang, Y. Shi, J. Cui, X. Shu, Y. Wang, J. Liu, J. Wang, H. H. Tan and Y. Wu, *J. Mater. Chem. C*, 2018, 6, 12206–12216.
- 97 C. Han, M. Yan, L. Mai, X. Tian, L. Xu, X. Xu, Q. An, Y. Zhao, X. Ma and J. Xie, *Nano Energy*, 2013, 2, 916–922.
- 98 R. Abazari, S. Sanati and L. A. Saghatforoush, *Chem. Eng. J.*, 2014, 236, 82–90.
- 99 N. Van Hoa, T. T. H. Quyen, N. H. Nghia, N. Van Hieu and J. J. Shim, J. Alloys Compd., 2017, 702, 693–699.
- 100 Q. An, P. Zhang, F. Xiong, Q. Wei, J. Sheng, Q. Wang and L. Mai, *Nano Res.*, 2015, 8, 481–490.
- 101 C. Zhang, Z. Chen, Z. Guo and X. W. (David) Lou, *Energy Environ. Sci.*, 2013, **6**, 974–978.
- 102 X. Rui, Z. Lu, H. Yu, D. Yang, H. H. Hng, T. M. Lim and Q. Yan, *Nanoscale*, 2013, 5, 556–560.

- 103 R. Levi, M. Bar-Sadan, A. Albu-Yaron, R. Popovitz-Biro, L. Houben, C. Shahar, A. Enyashin, G. Seifert, Y. Prior and R. Tenne, *J. Am. Chem. Soc.*, 2010, **132**, 11214–11222.
- 104 C. V. Ramana, R. J. Smith, O. M. Hussain, C. C. Chusuei and C. M. Julien, *Chem. Mater.*, 2005, **17**, 1213–1219.
- 105 S. Thiagarajan, M. Thaiyan and R. Ganesan, *RSC Adv.*, 2016, **6**, 82581–82590.
- 106 M. Kang, M. Chu, S. W. Kim and J. W. Ryu, *Thin Solid Films*, 2013, **547**, 198–201.
- 107 M. Kang, I. Kim, S. W. Kim, J. W. Ryu and H. Y. Park, *Appl. Phys. Lett.*, 2011, **98**, 131907.
- M. Panagopoulou, D. Vernardou, E. Koudoumas, N. Katsarakis, D. Tsoukalas and Y. S. Raptis, *J. Phys. Chem. C*, 2017, **121**, 70–79.
- 109 P. Singh and D. Kaur, J. Appl. Phys., 2008, 103, 043507.
- 110 H. N. Cui, V. Teixeira, L. J. Meng, R. Wang, J. Y. Gao and E. Fortunato, *Thin Solid Films*, 2008, **516**, 1484–1488.
- 111 T. Gallasch, T. Stockhoff, D. Baither and G. Schmitz, J. Power Sources, 2011, 196, 428-435.
- 112 G. Y. Karaca, E. Eren, C. Alver, U. Koc, E. Uygun, L. Oksuz and A. U. Oksuz, *Electroanalysis*, 2017, **29**, 1324–1331.
- 113 H. A. Le, S. Chin, E. Park, G. Bae and J. Jurng, *Chem. Vap. Deposition*, 2012, **18**, 6–9.
- 114 H. Yin, K. Yu, H. Peng, Z. Zhang, R. Huang, J. Travas-Sejdic and Z. Zhu, *J. Mater. Chem.*, 2012, **22**, 5013–5019.
- 115 Y. Wang, Q. Su, C. H. Chen, M. L. Yu, G. J. Han, G. Q. Wang, K. Xin, W. Lan and X. Q. Liu, *J. Phys. D: Appl. Phys.*, 2010, 43, 185102.
- 116 M. C. Wu and C. S. Lee, *J. Solid State Chem.*, 2009, **182**, 2285–2289.
- 117 L. S. Price, I. P. Parkin, M. N. Field, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert and K. C. Molloy, *J. Mater. Chem.*, 2000, **10**, 527–530.
- 118 A. Othonos, C. Christofides and M. Zervos, *Appl. Phys. Lett.*, 2013, **103**, 133112.
- 119 H. Groult, E. Balnois, A. Mantoux, K. Le Van and D. Lincot, *Appl. Surf. Sci.*, 2006, **252**, 5917–5925.
- 120 S. Kumar, A. Qadir, F. Maury and N. Bahlawane, *ACS Appl. Mater. Interfaces*, 2017, **9**, 21447–21456.
- 121 D. Barreca, L. Armelao, F. Caccavale, V. Di Noto, A. Gregori, G. A. Rizzi and E. Tondello, *Chem. Mater.*, 2000, **12**, 98–103.
- 122 C. Piccirillo, R. Binions and I. P. Parkin, *Chem. Vap. Deposition*, 2007, **13**, 145–151.
- 123 J. Musschoot, D. Deduytsche, H. Poelman, J. Haemers, R. L. Van Meirhaeghe, S. Van den Berghe and C. Detavernier, *J. Electrochem. Soc.*, 2009, 156, P122.
- 124 M. Najdoski, V. Koleva and A. Samet, *J. Phys. Chem. C*, 2014, **118**, 9636–9646.
- 125 Y. Yang, S. P. Albu, D. Kim and P. Schmuki, *Angew. Chem.*, 2011, **123**, 9237–9241.
- 126 S. Wang, S. Li, Y. Sun, X. Feng and C. Chen, *Energy Environ. Sci.*, 2011, 4, 2854–2857.
- 127 X. F. Zhang, K. X. Wang, X. Wei and J. S. Chen, *Chem. Mater.*, 2011, 23, 5290–5292.
- 128 M. M. Margoni, S. Mathuri, K. Ramamurthi, R. R. Babu and K. Sethuraman, *Appl. Surf. Sci.*, 2017, **418**, 280–290.

- 129 H. G. Wang, D. L. Ma, Y. Huang and X. B. Zhang, *Chem. Eur. J.*, 2012, **18**, 8987–8993.
- 130 P. Sahatiya, C. S. K. Reddy and S. Badhulika, *J. Mater. Chem. C*, 2017, 5, 12728–12736.
- 131 S. Datta, C. Jo, M. De Volder and L. Torrente-Murciano, *ACS Appl. Mater. Interfaces*, 2020, **12**, 18803–18812.
- 132 J. Mu, J. Wang, J. Hao, P. Cao, S. Zhao, W. Zeng, B. Miao and S. Xu, *Ceram. Int.*, 2015, **41**, 12626–12632.
- 133 N. Wang, Y. Zhang, T. Hu, Y. Zhao and C. Meng, *Curr. Appl. Phys.*, 2015, **15**, 493–498.
- 134 N. Baig, I. Kammakakam, W. Falath and I. Kammakakam, *Mater. Adv.*, 2021, **2**, 1821–1871.
- 135 S. Khan and K. Singh, Sci. Rep., 2020, 10, 1-11.
- 136 C. Díaz-Guerra and J. Piqueras, *Cryst. Growth Des.*, 2008, **8**, 1031–1034.
- 137 P. Taylor, M. Kusper, T. Hesabizadeh, L. D. Geoffrion, F. Watanabe, E. Herth and G. Guisbiers, *Nanoscale Adv.*, 2021, 3, 1954–1961.
- 138 Z. L. Wang, D. Xu, L. M. Wang and X. B. Zhang, *Chem-PlusChem*, 2012, 77, 124–128.
- 139 A. M. Glushenkov, V. I. Stukachev, M. F. Hassan, G. G. Kuvshinov, H. K. Liu and Y. Chen, *Cryst. Growth Des.*, 2008, 8, 3661–3665.
- 140 Y. Zou, C. Wang, H. Chen, H. Ji, Q. Zhu and W. Yang, *Green Energy Environ.*, 2021, **6**, 169–175.
- 141 S. Beke, L. Korösi, S. Papp, L. Nánai, A. Oszkó, J. G. Kiss and V. Safarov, *Appl. Surf. Sci.*, 2007, **254**, 1363–1368.
- 142 W. Cheng, J. He, K. E. Dettelbach, N. J. J. Johnson, R. S. Sherbo and C. P. Berlinguette, *Chem*, 2018, 4, 821–832.
- 143 H. Song, C. Zhang, Y. Liu, C. Liu, X. Nan and G. Cao, *J. Power Sources*, 2015, **294**, 1–7.
- 144 R. Wang, S. Yang, R. Deng, W. Chen, Y. Liu, H. Zhang and G. S. Zakharova, *RSC Adv.*, 2015, 5, 41050–41058.
- 145 Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su and Y. Li, J. Mater. Chem. C, 2014, 2, 3651–3658.
- 146 X. Chen, E. Pomerantseva, P. Banerjee, K. Gregorczyk, R. Ghodssi and G. Rubloff, *Chem. Mater.*, 2012, 24, 1255–1261.
- 147 C. Liu, N. Kim, G. W. Rubloff and S. B. Lee, *Nanoscale*, 2017, **9**, 11566–11573.
- 148 C. Liu, E. I. Gillette, X. Chen, A. J. Pearse, A. C. Kozen, M. A. Schroeder, K. E. Gregorczyk, S. B. Lee and G. W. Rubloff, *Nat. Nanotechnol.*, 2014, 9, 1031–1039.
- 149 L. Li, U. Steiner and S. Mahajan, *J. Mater. Chem.*, 2010, **20**, 7131–7134.
- 150 Z. Tong, N. Li, H. Lv, Y. Tian, H. Qu, X. Zhang, J. Zhao and Y. Li, *Sol. Energy Mater. Sol. Cells*, 2016, **146**, 135–143.
- 151 X. Liu, Y. Hu, G. Jia, H. Zhang, H. Jiang and C. Li, *J. Mater. Chem. A*, 2016, **4**, 12030–12035.
- 152 F. Guo, M. Fan, P. Jin, H. Chen, Y. Wu, G. D. Li and X. Zou, *CrystEngComm*, 2016, **18**, 4068–4073.
- 153 P. M. Marley, T. A. Abtew, K. E. Farley, G. A. Horrocks, R. V. Dennis, P. Zhang and S. Banerjee, *Chem. Sci.*, 2015, 6, 1712–1718.
- 154 J. C. Parker, D. J. Lam, Y. N. Xu and W. Y. Ching, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1990, **42**, 5289–5293.

- 155 R. Irani, S. M. Rozati and S. Beke, *Mater. Chem. Phys.*, 2013, 139, 489–493.
- 156 E. Streng, O. Nilsen and H. Fjellvåg, J. Phys. Chem. C, 2012, 116, 19444–19450.
- 157 W. Lambrecht, B. Djafari-Rouhani and J. Vennik, J. Phys. C-Solid State Phys., 1981, 14, 4785–4795.
- 158 A. Talledo and C. G. Granqvist, J. Appl. Phys., 1995, 77, 4655-4666.
- 159 D. O. Scanlon, A. Walsh, B. J. Morgan and G. W. Watson, *J. Phys. Chem. C*, 2008, **112**, 9903–9911.
- 160 Z. R. Xiao and G. Y. Guo, J. Chem. Phys., 2009, 130, 214704.
- 161 T. M. Tolhurst, B. Leedahl, J. L. Andrews, P. M. Marley, S. Banerjee and A. Moewes, *Phys. Chem. Chem. Phys.*, 2016, 18, 15798–15806.
- 162 M. Beaudoin, M. Meunier and C. J. Arsenault, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1993, 47, 2197–2202.
- 163 J. Tauc, *Optical properties of solids*, Academic Press, New York, 1966.
- 164 T. D. H. Nguyen, K. D. Vo, H. D. Pham, T. M. D. Huynh and M.-F. Lin, *Comput. Mater. Sci.*, 2021, **198**, 110675.
- 165 P. D. Raj, S. Gupta and M. Sridharan, *Ceram. Int.*, 2017, 43, 9401–9407.
- 166 C. R. Aita, Y. L. Liu, M. L. Kao and S. D. Hansen, J. Appl. Phys., 1986, 60, 749–753.
- 167 J. Song, X. Gu, Y. Cao and H. Zhang, J. Mater. Chem. A, 2019, 7, 10543–10551.
- 168 M. B. Sahana, C. Sudakar, C. Thapa, G. Lawes, V. M. Naik, R. J. Baird, G. W. Auner, R. Naik and K. R. Padmanabhan, *Mater. Sci. Eng.*, B, 2007, 143, 42–50.
- 169 R. Santos, J. Loureiro, A. Nogueira, E. Elangovan, J. V. Pinto, J. P. Veiga, T. Busani, E. Fortunato, R. Martins and I. Ferreira, *Appl. Surf. Sci.*, 2013, 282, 590–594.
- 170 A. Kumar, P. Singh, N. Kulkarni and D. Kaur, *Thin Solid Films*, 2008, **516**, 912–918.
- 171 N. Singh, A. Umar, N. Singh, H. Fouad, O. Y. Alothman and F. Z. Haque, *Mater. Res. Bull.*, 2018, **108**, 266–274.
- 172 A. Venkatesan, N. R. Krishna Chandar, A. Kandasamy, M. Karl Chinnu, K. N. Marimuthu, R. Mohan Kumar and R. Jayavel, *RSC Adv.*, 2015, 5, 21778–21785.
- 173 Y. Iida and Y. Kanno, J. Mater. Process. Technol., 2009, 209, 2421–2427.
- 174 F. N. I. Sari, S. H. Lu and J. M. Ting, *J. Am. Ceram. Soc.*, 2020, **103**, 2252–2261.
- 175 T. K. Le, M. Kang, S. W. Han and S. W. Kim, *RSC Adv.*, 2018, **8**, 41317–41322.
- 176 M. Aslam, I. M. I. Ismail, N. Salah, S. Chandrasekaran, M. T. Qamar and A. Hameed, *J. Hazard. Mater.*, 2015, **286**, 127–135.
- 177 D. Dreifus, M. P. F. Godoy, A. C. Rabelo, A. D. Rodrigues, Y. G. Gobato, P. C. Camargo, E. C. Pereira and A. J. A. De Oliveira, *J. Phys. D: Appl. Phys.*, 2015, 48, 445002.
- 178 Q. Wang, M. Brier, S. Joshi, A. Puntambekar and V. Chakrapani, *Phys. Rev. B*, 2016, **94**, 245305.
- 179 D. Liu, Y. Liu, B. B. Garcia, Q. Zhang, A. Pan, Y. H. Jeong and G. Cao, *J. Mater. Chem.*, 2009, **19**, 8789–8795.
- 180 M. Zhu, D. Zhang, S. Jiang, S. Liu, H. Qi and Y. Yang, *Ceram. Int.*, 2021, 47, 15491–15499.

- 181 S. Surendren and B. Deb, *Electrochim. Acta*, 2021, **389**, 138629.
- 182 H. Shanak, H. Schmitt, J. Nowoczin and K. H. Ehses, *J. Mater. Sci.*, 2005, **40**, 3467–3474.
- 183 C. V. Ramana, O. M. Hussain, B. S. Naidu and P. J. Reddy, *Thin Solid Films*, 1997, **305**, 219–226.
- 184 W. Zhang, H. Li, W. W. Yu and A. Y. Elezzabi, *Light: Sci. Appl.*, 2020, **9**, 121.
- 185 W. Avansi, V. R. De Mendonça, O. F. Lopes and C. Ribeiro, *RSC Adv.*, 2015, 5, 12000–12006.
- 186 C. V. Ramana, O. M. Hussain, S. Uthanna and B. S. Naidu, *Opt. Mater.*, 1998, **10**, 101–107.
- 187 S. R. Indhumathi, M. Manoj Cristopher, P. Karthick, M. Dhivya Pushpa, B. Poornima, C. Gopalakrishnan and K. Jeyadheepan, *Mater. Sci. Semicond. Process.*, 2019, 100, 185–191.
- 188 M. M. Margoni, S. Mathuri, K. Ramamurthi, R. R. Babu, V. Ganesh and K. Sethuraman, *Appl. Surf. Sci.*, 2018, 449, 193–202.
- 189 S. Thiagarajan, M. Thaiyan and R. Ganesan, *New J. Chem.*, 2015, **39**, 9471–9479.
- 190 A. A. Mane, V. V. Ganbavle, M. A. Gaikwad, S. S. Nikam, K. Y. Rajpure and A. V. Moholkar, *J. Anal. Appl. Pyrolysis*, 2015, **115**, 57–65.
- 191 V. X. Hien, D. D. Nhat, N. T. Nghi, L. H. Phuoc, C. T. Khoa, D. D. Vuong and N. D. Chien, *Mater. Sci. Semicond. Process.*, 2021, **126**, 105670.
- 192 X. Li, K. Perera, J. He, A. Gumyusenge and J. Mei, *J. Mater. Chem. C*, 2019, 7, 12761–12789.
- 193 C. F. Armer, M. Lübke, I. Johnson, K. McColl, F. Cora, J. S. Yeoh, M. V. Reddy, J. A. X. Li and A. Lowe, *J. Solid State Electrochem.*, 2018, 24, 3703–3716.
- 194 M. Abyazisani, M. M. Bagheri-Mohagheghi and M. R. Benam, *Mater. Sci. Semicond. Process.*, 2015, 31, 693–699.
- 195 H. Chaudhary, K. Chaudhary, S. Zulfiqar, M. S. Saif, I. A. Alsafari, I. Shakir, P. O. Agboola, M. Safdar and M. F. Warsi, *Ceram. Int.*, 2021, 47, 32521–32533.
- 196 M. Panagopoulou, D. Vernardou, E. Koudoumas, D. Tsoukalas and Y. S. Raptis, *Electrochim. Acta*, 2019, 321, 134743.
- 197 L. H. Slewa, T. A. Abbas and N. M. Ahmed, *Sens. Actuators, B*, 2020, **305**, 127515.
- 198 Y. Yang, F. Teng, Y. Kan, L. Yang, W. Gu, J. Xu, Y. Zhao, X. Du and M. Ren, *CrystEngComm*, 2016, 18, 3064–3078.
- 199 V. Balasubramani, J. Chandrasekaran, V. Manikandan, T. K. Le, R. Marnadu and P. Vivek, *J. Solid State Chem.*, 2021, **301**, 122289.
- 200 V. Balasubramani, J. Chandrasekaran, V. Manikandan, T. K. Le, R. Marnadu and P. Vivek, *Surf. Interfaces*, 2021, 25, 101297.
- 201 G. Wu, K. Du, C. Xia, X. Kun, J. Shen, B. Zhou and J. Wang, *Thin Solid Films*, 2005, **485**, 284–289.
- 202 A. Qadir, T. K. Le, M. Malik, K. A. Amedome Min-Dianey,
 I. Saeed, Y. Yu, J. R. Choi and P. V. Pham, *RSC Adv.*, 2021,
 11, 23860–23880.

- 203 Z. Tong, S. Liu, X. Li, Y. Ding, J. Zhao and Y. Li, *Electrochim. Acta*, 2016, 222, 194–202.
- 204 M. Lee, W. G. Hong, H. Y. Jeong, S. K. Balasingam, Z. Lee,
 S. J. Chang, B. H. Kim and Y. Jun, *Nanoscale*, 2014, 6, 11066–11071.
- 205 B. R. Koo, J. W. Bae and H. J. Ahn, *Ceram. Int.*, 2019, 45, 12325–12330.
- 206 C. Glynn, D. Creedon, H. Geaney, E. Armstrong, T. Collins, M. A. Morris and C. O'Dwyer, *Sci. Rep.*, 2015, 5, 1–15.
- 207 R. Narayanan, A. Dewan and D. Chakraborty, *RSC Adv.*, 2018, **8**, 8596–8606.
- 208 S. Hassab, D. E. Shen, A. M. Österholm, M. Da Rocha, G. Song, Y. Alesanco, A. Viñuales, A. Rougier, J. R. Reynolds and J. Padilla, *Sol. Energy Mater. Sol. Cells*, 2018, 185, 54–60.
- 209 N. A. Chernova, M. Roppolo, A. C. Dillon and M. S. Whittingham, *J. Mater. Chem.*, 2009, **19**, 2526–2552.
- 210 M. S. Whittingham, J. Electrochem. Soc., 1976, 123, 315-320.
- 211 D. W. Murphy, P. A. Christian, F. J. Disalvo and J. V. Waszczak, *Inorg. Chem.*, 1979, **18**, 2800–2803.
- 212 M. Muñoz-Castro, F. Berkemeier, G. Schmitz, A. Buchheit and H. D. Wiemhöfer, *J. Appl. Phys.*, 2016, **120**, 135106.
- 213 G. A. Horrocks, M. F. Likely, J. M. Velazquez and S. Banerjee, *J. Mater. Chem. A*, 2013, **1**, 15265–15277.
- 214 C. Costa, C. Pinheiro, I. Henriques and C. A. T. Laia, ACS Appl. Mater. Interfaces, 2012, 4, 5266–5275.
- 215 I. Mjejri and A. Rougier, J. Mater. Chem. C, 2020, 8, 3631–3638.
- 216 I. Mjejri, M. Gaudon, G. Song, C. Labrugère and A. Rougier, *ACS Appl. Energy Mater.*, 2018, **1**, 2721–2729.
- 217 W. Zhang, H. Li, M. Al-Hussein and A. Y. Elezzabi, *Adv. Opt. Mater.*, 2020, **8**, 1901224.
- 218 H. Liu, X. Liang, T. Jiang, Y. Zhang, S. Liu, X. Wang, X. Fan, X. Huai, Y. Fu, Z. Geng and D. Zhang, *Electrochim. Acta*, 2022, **404**, 139784.
- 219 A. Branco, J. Belchior, L. C. Branco and F. Pina, *RSC Adv.*, 2013, **3**, 25627–25630.
- 220 Z. Y. Li, X. Z. Lin and Q. H. Wu, Chin. J. Chem. Phys., 2009, 22, 241–245.
- M. J. Walker, A. Jarry, N. Pronin, J. Ballard, G. W. Rubloff,
 L. J. Brillson and L. J. Brillson, *J. Mater. Chem. A*, 2020, 8, 11800–11810.
- 222 A. Jarry, M. Walker, S. Theodoru, L. J. Brillson and G. W. Rubloff, *Chem. Mater.*, 2020, **32**, 7226–7236.
- 223 R. Basu, A. K. Prasad, S. Dhara and A. Das, *J. Phys. Chem. C*, 2016, **120**, 26539–26543.
- 224 R. J. Colton, PhD thesis, University of Pittsburgh, Pittsburgh, 1978.
- 225 R. J. Colton, A. M. Guzman and J. W. Rabalais, *Acc. Chem. Res.*, 1978, **11**, 170–176.
- 226 R. J. Colton, A. M. Guzman and J. W. Rabalais, *J. Appl. Phys.*, 1978, **49**, 409-416.
- 227 P. G. Dickens, S. J. French, A. T. Hight and M. F. Pye, *Mater. Res. Bull.*, 1979, **14**, 1295–1299.
- 228 S. Sato and Y. Seino, *Electronics and Communications in Japan (Part I: Communications)*, 1982, **65**, 104–111.

- 229 R. D. Rauh and S. F. Cogan, *Solid State Ionics*, 1988, **28–30**, 1707–1714.
- 230 T. Yoshino, N. Baba and Y. Kouda, *Jpn. J. Appl. Phys.*, 1987, **26**, 782–783.
- 231 P. V. Ashrit, K. Benaissa, G. Bader, F. E. Girouard and V. Van Truong, *Solid State Ionics*, 1993, **59**, 47–57.
- 232 S. F. Cogan, N. M. Nguyen, S. J. Perrotti and R. D. Rauh, *J. Appl. Phys.*, 1989, **66**, 1333–1337.
- 233 D. Wruck, S. Ramamur and M. Rubin, *Thin Solid Films*, 1989, **182**, 79–86.
- 234 K. Nagase, Y. Shimizu, N. Miura and N. Yamazoe, *Appl. Phys. Lett.*, 1994, **64**, 1059–1061.
- 235 Z. S. Guan, J. N. Yao, Y. A. Yang and B. H. Loo, *J. Electroanal. Chem.*, 1998, 443, 175–179.
- 236 Z. Wang, J. Chen and X. Hu, *Thin Solid Films*, 2000, 375, 238–241.
- 237 K. Nagase, Y. Shimizu, N. Miura and N. Yamazoe, *Appl. Phys. Lett.*, 1992, **60**, 802–804.
- 238 K. Nagase, Y. Shimizu, N. Miura and N. Yamazoe, *Appl. Phys. Lett.*, 1992, **61**, 243–245.
- 239 S. F. Cogan, N. M. Nguyen, S. J. Perrotti and R. D. Rauh, *Opt. Mater.*, 1989, **1016**, 57.
- 240 H. H. Afify, M. E. Hassan, A. M. Badr and H. A. Elsheikh, Int. J. Thin Film Sci. Technol., 2018, 7, 1–5.
- 241 C. E. Patil, N. L. Tarwal, P. S. Shinde, H. P. Deshmukh and P. S. Patil, *J. Phys. D: Appl. Phys.*, 2009, **42**, 025404–025410.
- 242 S. Zhang, S. Chen, Y. Luo, B. Yan, Y. Gu, F. Yang and Y. Cao, *J. Alloys Compd.*, 2020, **842**, 155882.
- 243 A. K. Surca, G. Dražić and M. Mihelčič, *Sol. Energy Mater. Sol. Cells*, 2019, **196**, 185–199.
- 244 C. Wang, X. Zhang, S. Liu, H. Zhang, Q. Wang, C. Zhang, J. Gao, L. Liang and H. Cao, ACS Appl. Energy Mater., 2022, 5, 88–97.
- 245 Y. Qi, K. Qin, Y. Zou, L. Lin, Z. Jian and W. Chen, *Appl. Surf. Sci.*, 2020, **514**, 145950.
- 246 M. R. J. Scherer, L. Li, P. M. S. Cunha, O. A. Scherman and U. Steiner, *Adv. Mater.*, 2012, 24, 1217–1221.
- 247 S. Beke, S. Giorgio, L. Korösi, L. Nánai and W. Marine, *Thin Solid Films*, 2008, **516**, 4659–4664.
- 248 I. Mjejri, M. Gaudon and A. Rougier, *Sol. Energy Mater. Sol. Cells*, 2019, **198**, 19–25.
- 249 Z. Tong, H. Yang, L. Na, H. Qu, X. Zhang, J. Zhao and Y. Li, J. Mater. Chem. C, 2015, 3, 3159–3166.
- 250 D. Ge, L. Yang, Z. Tong, Y. Ding, W. Xin, J. Zhao and Y. Li, *Electrochim. Acta*, 2013, **104**, 191–197.
- 251 D. Wei, M. R. J. Scherer, C. Bower, P. Andrew, T. Ryhänen and U. Steiner, *Nano Lett.*, 2012, **12**, 1857–1862.
- 252 M. R. J. Scherer and U. Steiner, *Electrochromic Materials and Devices*, 2015, pp. 311–336.
- 253 Y. S. Hsiao, C. W. Chang-Jian, W. L. Syu, S. C. Yen, J. H. Huang, H. C. Weng, C. Z. Lu and S. C. Hsu, *Appl. Surf. Sci.*, 2021, **542**, 148498.
- 254 Y. M. Li and T. Kudo, *Sol. Energy Mater. Sol. Cells*, 1995, **39**, 179–190.
- 255 C. E. Patil, P. R. Jadhav, N. L. Tarwal, H. P. Deshmukh, M. M. Karanjkar and P. S. Patil, *Mater. Chem. Phys.*, 2011, **126**, 711–716.

- 256 U. Tritschler, F. Beck, H. Schlaad and H. Cölfen, *J. Mater. Chem. C*, 2015, **3**, 950–954.
- 257 S. Kim and M. Taya, *Sol. Energy Mater. Sol. Cells*, 2012, **107**, 225–229.
- 258 S. Kim, M. Taya and C. Xu, *J. Electrochem. Soc.*, 2009, **156**, E40.
- 259 B. N. Reddy, R. Mukkabla, M. Deepa and P. Ghosal, *RSC Adv.*, 2015, **5**, 31422–31433.
- 260 S. Jiang, Z. Li, S. Huang, S. Lu, Y. Yu, G. Mou, J. Xu, Q. Zhu,
 X. Tan, X. Zhu and G. S. Zakharova, *J. Electrochem. Soc.*,
 2014, 161, H684–H688.
- 261 M. Zhi, W. Huang, Q. Shi, B. Peng and K. Ran, *J. Electrochem. Soc.*, 2016, **163**, H891–H895.
- 262 G. F. Zhao, W. Q. Wang, X. L. Wang, X. H. Xia, C. D. Gu and J. P. Tu, *J. Mater. Chem. C*, 2019, 7, 5702–5709.
- 263 Y. Liu, C. Jia, Z. Wan, X. Weng, J. Xie and L. Deng, Sol. Energy Mater. Sol. Cells, 2015, 132, 467–475.
- 264 R. K. Jain, A. Khanna, Y. K. Gautam and B. P. Singh, *Appl. Surf. Sci.*, 2021, **536**, 147804.
- 265 W. He, Y. Liu, Z. Wan and C. Jia, *RSC Adv.*, 2016, 6, 68997–69006.
- 266 A. Kim, G. Kalita and J. H. Kim, *Nanomaterials*, 2021, **11**, 3213.
- 267 J.-L. Wang, J.-W. Liu, S.-Z. Sheng, Z. He, J. Gao and S.-H. Yu, *Nano Lett.*, 2021, **21**, 9203–9209.
- 268 P. Kounavis, M. Vomvas, M. Mytilineou, M. Roilos and L. Murawski, J. Phys. C-Solid State Phys., 1988, 21, 967–973.
- 269 F. Coustier, J. Hill, B. B. Owens, S. Passerini and W. H. Smyrl, *J. Electrochem. Soc.*, 1999, **146**, 1355–1360.
- 270 H. Kim, T. K. Le, M. Kang, J. K. Lee, S. D. Park and S. W. Kim, *Ceram. Int.*, 2021, 47, 8834–8839.
- 271 S. Iwanaga, M. Marciniak, R. B. Darling and F. S. Ohuchi, *J. Appl. Phys.*, 2007, **101**, 123709.
- 272 M. Li, D. Weng, Y. Wei, J. Zheng and C. Xu, *Electrochim. Acta*, 2017, **248**, 206–214.
- 273 J. W. Bae, B. R. Koo and H. J. Ahn, *Ceram. Int.*, 2019, 45, 7137–7142.
- 274 Y. Wei, J. Zhou, J. Zheng and C. Xu, *Electrochim. Acta*, 2015, **166**, 277–284.
- 275 G. Salek, B. Bellanger, I. Mjejri, M. Gaudon and A. Rougier, *Inorg. Chem.*, 2016, 55, 9838–9847.
- 276 Y. Lu, L. Liu, D. Mandler and P. S. Lee, *J. Mater. Chem. C*, 2013, **1**, 7380–7386.
- 277 C. O. Avellaneda and L. O. S. Bulhões, *Sol. Energy Mater. Sol. Cells*, 2006, **90**, 444–451.
- 278 A. Jin, W. Chen, Q. Zhu and Z. Jian, *Electrochim. Acta*, 2010, 55, 6408–6414.
- 279 X. Zhang, W. Li, X. Chen, Y. Zhao, L. Wang, M. Chen, Z. Li and Y. Li, *Chem. Commun.*, 2020, **56**, 10062–10065.
- 280 S. Oukassi, C. Giroud-Garampon, C. Dubarry, C. Ducros and R. Salot, *Sol. Energy Mater. Sol. Cells*, 2016, 145, 2–7.
- 281 H. Park, D. S. Kim, S. Y. Hong, C. Kim, J. Y. Yun, S. Y. Oh, S. W. Jin, Y. R. Jeong, G. T. Kim and J. S. Ha, *Nanoscale*, 2017, 9, 7631–7640.
- 282 P. Yang, P. Sun and W. Mai, *Mater. Today*, 2016, **19**, 394-402.

- 283 L. Wang, M. Guo, J. Zhan, X. Jiao, D. Chen and T. Wang, J. Mater. Chem. A, 2020, 8, 17098–17105.
- 284 P. Zhang, F. Zhu, F. Wang, J. Wang, R. Dong, X. Zhuang,
 O. G. Schmidt and X. Feng, *Adv. Mater.*, 2017, 29, 1–7.
- 285 C. O'Dwyer, Adv. Mater., 2016, 28, 5681-5688.
- 286 B. D. Boruah, B. Wen, S. Nagane, X. Zhang, S. D. Stranks,
 A. Boies and M. De Volder, ACS Energy Lett., 2020, 5, 3132–3139.
- 287 C. Seo, H. Cheong and S. H. Lee, Sol. Energy Mater. Sol. Cells, 2008, 92, 190–193.
- 288 Y. K. Ho, C. C. Chang, D. H. Wei, C. L. Dong, C. L. Chen, J. L. Chen, W. L. Jang, C. C. Hsu, T. S. Chan, K. Kumar, C. L. Chang and M. K. Wu, *Thin Solid Films*, 2013, 544, 461–465.
- 289 G. Rizzo, A. Arena, A. Bonavita, N. Donato, G. Neri and G. Saitta, *Thin Solid Films*, 2010, **518**, 7124–7127.
- 290 W. L. Jang, Y. M. Lu, C. L. Chen, Y. R. Lu, C. L. Dong,
 P. H. Hsieh, W. S. Hwang, J. L. Chen, J. M. Chen,
 T. S. Chan, J. F. Lee and W. C. Chou, *Phys. Chem. Chem. Phys.*, 2014, 16, 4699–4708.
- 291 V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf and G. Walze, *Sol. Energy Mater. Sol. Cells*, 2004, **84**, 305–314.
- 292 H. Nakagawa, N. Yamamoto, S. Okazaki, T. Chinzei and S. Asakura, *Sens. Actuators, B*, 2003, **93**, 468–474.
- 293 R. Baetens, B. P. Jelle and A. Gustavsen, *Sol. Energy Mater. Sol. Cells*, 2010, **94**, 87–105.
- 294 L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen and N. S. Xu, *J. Phys. Chem. C*, 2010, **114**, 15504–15509.
- 295 C. L. Chen, C. L. Dong, Y. K. Ho, C. C. Chang, D. H. Wei, T. C. Chan, J. L. Chen, W. L. Jang, C. C. Hsu, K. Kumar and M. K. Wu, *Europhys. Lett.*, 2013, **101**, 17006.
- 296 W. Jin, S. Yan, L. An, W. Chen, S. Yang, C. Zhao and Y. Dai, *Sens. Actuators, B*, 2015, **206**, 284–290.
- 297 D. Wang, K. Gu, Q. Zhao, C. Zhai, T. Yang, Q. Lu, J. Zhang and M. Zhang, *New J. Chem.*, 2018, **42**, 14188–14193.
- 298 P. Liu, S.-H. Lee, H. M. Cheong, C. E. Tracy, J. R. Pitts and R. D. Smith, *J. Electrochem. Soc.*, 2002, **149**, H76.
- 299 Y. R. Lu, T. Z. Wu, H. W. Chang, J. L. Chen, C. L. Chen, D. H. Wei, J. M. Chen, W. C. Chou and C. L. Dong, *Phys. Chem. Chem. Phys.*, 2017, **19**, 14224–14229.
- W. L. Jang, Y. M. Lu, Y. R. Lu, C. L. Chen, C. L. Dong,
 W. C. Chou, J. L. Chen, T. S. Chan, J. F. Lee, C. W. Pao and
 W. S. Hwang, *Thin Solid Films*, 2013, 544, 448–451.
- 301 C. C. Chang, J. Y. Luo, T. K. Chen, K. W. Yeh, T. W. Huang, C. H. Hsu, W. H. Chao, C. T. Ke, P. C. Hsu, M. J. Wang and M. K. Wu, *Thin Solid Films*, 2010, **519**, 1552–1557.
- 302 M. Ranjbar, S. M. Mahdavi and A. Iraji Zad, Sol. Energy Mater. Sol. Cells, 2008, 92, 878–883.
- 303 C. Imawan, H. Steffes, F. Solzbacher and E. Obermeier, *Sens. Actuators, B*, 2001, 77, 346–351.
- 304 N. J. K. J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker and D. G. de Groot, *Nature*, 1996, **380**, 231–234.
- 305 W. Lohstroh, R. J. Westerwaal, B. Noheda, S. Enache, I. A. M. E. Giebels, B. Dam and R. Griessen, *Phys. Rev. Lett.*, 2004, 93, 2–5.

- 306 K. Yoshimura, C. Langhammer and B. Dam, *MRS Bull.*, 2013, **38**, 495–503.
- 307 H. Miyazaki, T. Matsuura and T. Ota, *RSC Adv.*, 2017, 7, 2388–2391.
- 308 A. Gavrilyuk, Chromic Materials, Phenomena and their Technological Applications, 2009.
- 309 S. Nishio and M. Kakihana, *Chem. Mater.*, 2002, 14, 3730-3733.
- 310 Z. Liu, G. Fang, Y. Wang, Y. Bai and K. L. Yao, *J. Phys. D: Appl. Phys.*, 2000, **33**, 2327–2332.
- 311 M. Kang, E. Oh, I. Kim, S. W. Kim, J. W. Ryu and Y. G. Kim, *Curr. Appl. Phys.*, 2012, **12**, 489–493.
- 312 Q. J. Wang, H. Wang, Z. H. Zhou, J. Zuo and C. L. Zhang, *Nanoscale*, 2020, **12**, 21368–21375.
- 313 S. Krishnakumar and C. Menon, *Phys. Status Solidi A*, 1996, **153**, 439.
- 314 A. Gavrilyuk and T. Lanskaya, *Tech. Phys. Lett.*, 1994, 20, 219–221.
- 315 F. Xie, W. C. H. Choy, C. Wang, X. Li, S. Zhang and J. Hou, *Adv. Mater.*, 2013, **25**, 2051–2055.
- 316 M. Batzill, Energy Environ. Sci., 2011, 4, 3275-3286.
- 317 A. Ganguly, O. Anjaneyulu, K. Ojha and A. K. Ganguli, *CrystEngComm*, 2015, **17**, 8978–9001.
- 318 A. Gavrilyuk, U. Tritthart and W. Gey, *Phys. Chem. Chem. Phys.*, 2011, **13**, 9490–9497.
- 319 Y. Wang, L. Pan, Y. Li and A. I. Gavrilyuk, *Appl. Surf. Sci.*, 2014, **314**, 384–391.
- 320 T. Tai Chow, C. Li and Z. Lin, *Sol. Energy Mater. Sol. Cells*, 2010, **94**, 212–220.
- 321 A. Gavrilyuk, Sov. Tech. Phys. Lett., 1984, 10, 6.
- 322 Y. Iida and Y. Kanno, Jpn. J. Appl. Phys., 2008, 47, 667-670.
- 323 J. Gomez-Hermoso-de-Mendoza, H. S. Barud, J. Gutierrez and A. Tercjak, *Carbohydr. Polym.*, 2019, 208, 50–58.
- 324 Z. Yang, C. Ko and S. Ramanathan, *Annu. Rev. Mater. Res.*, 2011, **41**, 337–367.
- 325 R. Basu and S. Dhara, J. Appl. Phys., 2018, 123, 161550.
- 326 A. Pérez-Pacheco, D. R. Acosta-Najarro, R. Castañeda-Guzmán, H. Cruz-Manjarrez, L. Rodriguez-Fernandez, J. C. Pineda-Santamaría and M. Aguilar-Franco, *J. Appl. Phys.*, 2013, **113**, 184307.
- 327 R. P. Blum, H. Niehus, C. Hucho, R. Fortrie, M. V. Ganduglia-Pirovano, J. Sauer, S. Shaikhutdinov and H. J. Freund, *Phys. Rev. Lett.*, 2007, **99**, 226103.
- 328 A. Pergament, G. Stefanovich and V. Andreeev, *Appl. Phys. Lett.*, 2013, **102**, 2–3.
- 329 C. Rubin, Aita, Appl. Phys. Lett., 2014, 104, 2008-2010.
- 330 M. Nazemiyan and Y. S. Jalili, AIP Adv., 2013, 3, 112103.
- 331 M. Gaudon, P. Deniard, L. Voisin, G. Lacombe, F. Darnat,
 A. Demourgues, J. L. Perillon and S. Jobic, *Dyes Pigm.*, 2012,
 95, 344–350.
- 332 S. Kumar, F. Maury and N. Bahlawane, *Mater. Res. Soc. Symp. Proc.*, 2005, **2**, 1–5.

- 333 W. Zhang, H. Li, E. Hopmann and A. Y. Elezzabi, *Nanophotonics*, 2020, **10**, 825–850.
- 334 A. Cannavale, P. Cossari, G. E. Eperon, S. Colella, F. Fiorito,
 G. Gigli, H. J. Snaith and A. Listorti, *Energy Environ. Sci.*, 2016, 9, 2682–2719.
- 335 W. Zhong, J. Huang, S. Liang, J. Liu, Y. Li, G. Cai, Y. Jiang and J. Liu, *ACS Energy Lett.*, 2020, 5, 31–38.
- 336 C. K. Christensen, D. R. Sørensen, J. Hvam and D. B. Ravnsbæk, *Chem. Mater.*, 2019, **31**, 512–520.
- 337 S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. Zuo, M. Balasubramanian, V. B. Prakapenka, C. S. Johnson and T. Rajh, ACS Nano, 2012, 6, 530–538.
- 338 R. Baddour-Hadjean, A. Marzouk and J. P. Pereira-Ramos, *J. Raman Spectrosc.*, 2012, 43, 153–160.
- J. M. Coccíantelli, M. Ménétrier, C. Delmas, J. P. Doumerc, M. Pouchard and P. Hagenmuller, *Solid State Ionics*, 1992, 50, 99–105.
- 340 X. Rocquefelte, F. Boucher, P. Gressier and G. Ouvrard, *Chem. Mater.*, 2003, **15**, 1812–1819.
- 341 C. Leger, S. Bach, P. Soudan and J.-P. Pereira-Ramos, *J. Electrochem. Soc.*, 2005, **152**, A236.
- 342 Y. A. González-Rivera, E. Cervantes-Juárez, L. Aquino-Meneses, R. Lozada-Morales, S. Jiménez-Sandoval, E. Rubio-Rosas, R. Agustín-Serrano, C. De La Cerna, E. Reyes-Cervantes, O. Zelaya Angel, S. A. Tomas, F. Rodriguez-Melgarejo and M. Palomino-Ovando, J. Lumin., 2014, 155, 119–124.
- 343 A. Carolin Amala, R. Vignesh, G. V. Geetha and R. Sivakumar, *Phys. Status Solidi A*, 2021, **218**, 1–12.
- 344 N. S. Kumar, M. S. Raman, J. Chandrasekaran, R. Priya, M. Chavali and R. Suresh, *Mater. Sci. Semicond. Process.*, 2016, 41, 497–507.
- 345 M. Firdous, F. K. Butt, S. Zaman, J. Ahmad, M. U. Hassan Farooq, M. Safdar, S. Hussain, M. J. M. Zapata, H. Maqsood and C. Cao, *Ceram. Int.*, 2020, 46, 16135–16141.
- 346 D. Porwal, A. C. M. Esther, I. N. Reddy, N. Sridhara,
 N. P. Yadav, D. Rangappa, P. Bera, C. Anandan,
 A. K. Sharma and A. Dey, *RSC Adv.*, 2015, 5, 35737–35745.
- 347 M. Liberatore, F. Decker, A. Šurca Vuk, B. Orel and G. Dražič, Sol. Energy Mater. Sol. Cells, 2006, 90, 434–443.
- 348 J. Wu, D. Qiu, H. Zhang, H. Cao, W. Wang, Z. Liu, T. Tian, L. Liang, J. Gao and F. Zhuge, *J. Electrochem. Soc.*, 2018, 165, D183–D189.
- 349 S. Zanarini, F. Di Lupo, A. Bedini, S. Vankova, N. Garino, C. Francia and S. Bodoardo, *J. Mater. Chem. C*, 2014, 2, 8854–8857.
- 350 M. Panagopoulou, D. Vernardou, E. Koudoumas, D. Tsoukalas and Y. S. Raptis, *Electrochim. Acta*, 2017, 232, 54–63.
- 351 H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo and Y. Gao, *ACS Appl. Mater. Interfaces*, 2016, **8**, 7884–7890.