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Abstract: Green hydrogen is being considered as a next-generation sustainable energy source. It is
created electrochemically by water splitting with renewable electricity such as wind, geothermal,
solar, and hydropower. The development of electrocatalysts is crucial for the practical production of
green hydrogen in order to achieve highly efficient water-splitting systems. Due to its advantages of
being environmentally friendly, economically advantageous, and scalable for practical application,
electrodeposition is widely used to prepare electrocatalysts. There are still some restrictions on
the ability to create highly effective electrocatalysts using electrodeposition owing to the extremely
complicated variables required to deposit uniform and large numbers of catalytic active sites. In this
review article, we focus on recent advancements in the field of electrodeposition for water splitting,
as well as a number of strategies to address current issues. The highly catalytic electrodeposited
catalyst systems, including nanostructured layered double hydroxides (LDHs), single-atom catalysts
(SACs), high-entropy alloys (HEAs), and core-shell structures, are intensively discussed. Lastly,
we offer solutions to current problems and the potential of electrodeposition in upcoming water-
splitting electrocatalysts.

Keywords: water splitting; electrodeposition; electrocatalysts; layered double hydroxides; single-
atom catalysts

1. Introduction

Environmental pollution problems are increasing due to the unsustainable exploita-
tion and use of fossil fuel [1–4]. The world is turning toward sustainable energy, with
renewable energy being the most in demand [5–9]. Among renewable energy sources,
hydrogen energy is rapidly gaining popularity due to its high calorific value and the fact
that it returns to water after burning, making it a clean energy source [10–17]. However,
several bottlenecks need to be addressed before hydrogen can be utilized as a sustainable
fuel [1,18–21]. Hydrogen cannot be used in its natural state and requires fuel cell technology,
which still needs further development [16,17,22–27]. Additionally, the commonly used
method to produce hydrogen, steam reforming of fossil fuels, can emit large amounts of
carbon dioxide. To overcome these challenges, the development of carbon dioxide capture,
storage, reduction, and utilization technologies is necessary to complete the carbon neutral-
ization process [28,29]. These technologies will not only reduce carbon dioxide emissions
but also improve the efficiency of hydrogen production and storage [30]. As such, they
play a critical role in the transition toward a sustainable energy future [31,32].
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There are ongoing research and development efforts aimed at improving the efficiency
of hydrogen production through water electrolysis, as well as reducing the cost of the
production process. The hydrogen evolution reaction (HER) and oxygen evolution reaction
(OER) are two important surface reactions in water electrolysis. The mechanism of these
reactions depends on the pH level of the electrolyte. The reactions of hydrogen and oxygen
evolution in an acidic medium follow the below mechanisms.

H+ + e− → Had,

H+ + e− + Had = H2,

2Had → H2,

H2O (l) + ∗ → ∗OH + H+ + e−,

∗OH→ ∗O + H+ + e−,

H2O (l) + ∗O→ ∗OOH + H+ + e−,

∗OOH→ ∗ + O2 (g) + H+ + e−,

where ∗ represents the active sites of the catalyst, (g) refers to the gas phase, and ∗OH, ∗O,
and ∗OOH represent the species adsorbed on the active site [33]. The HER mechanism
involves the reduction of hydrogen ions (H+) to form hydrogen gas (H2) at the cathode. The
OER mechanism, on the other hand, involves the oxidation of water (H2O) to form oxygen
gas (O2) at the anode. The reactions of hydrogen and oxygen evolution in an alkaline
medium follow the below mechanisms.

H2O + e− → OH− + Had, (1)

H2O + e− + Had → OH− + H2, (2)

∗ + OH− → ∗OH + e−, (3)

∗OH + OH− → ∗O + H2O (l) + e−, (4)

∗O + OH− → ∗OOH + e−, (5)

∗OOH + OH− → ∗ + O2 (g) + H2O (l) + e−. (6)

The HER mechanism involves the reduction of water (H2O) to form hydroxide ions
(OH−) and hydrogen gas (H2) at the cathode. The OER mechanism involves the oxidation
of hydroxide ions (OH−) to form oxygen gas (O2) and water (H2O) at the anode.

By combining water electrolysis and renewable energy, it is possible to produce “green
hydrogen” without carbon emission [34,35]. The further development of new materials and
advanced technologies, such as high-temperature electrolysis and photovoltaic electrolysis
systems, has the potential to significantly increase efficiency and reduce the cost of hydrogen
production [36–38]. The commercialization of these technologies would further enhance
the competitiveness of hydrogen energy compared to other renewable energy sources and
make it a more attractive option for large-scale energy production [39–45]. The transition to
a hydrogen-based energy system is a complex and challenging process, but it holds great
potential for mitigating the environmental pollution problems caused by the use of fossil
fuels [10,41–43]. While there are still some technical and economic hurdles to overcome, the
continued development and deployment of new technologies and innovative solutions are
likely to soon lead to the wider adoption of hydrogen energy as a sustainable fuel [46–53].

Additionally, the choice of electrolyte plays a crucial role in the efficiency of electrolysis,
as well as the stability of the electrolyte in the long term. Proton exchange membrane (PEM)
electrolysis uses a thin polymer membrane as the electrolyte and is most suitable for high-
pressure, high-volume hydrogen production, but it shows relatively low stability due to the
harsh acidic operation. Alkaline-based water electrolysis uses a high-pH (basic) solution as
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the electrolyte, which is typically made of potassium hydroxide. This method is widely
used in industrial applications due to its high efficiency and reliability [54–56]. In particular,
anion exchange membrane (AEM) water electrolysis is considered more environmentally
friendly than other methods, originating from its lower cell voltage drop and increased
electrical conductivity. Furthermore, the AEM also operates under low-temperature and
low-pressure conditions, reducing the need for cooling and compression systems, which
results in a low carbon footprint. Despite these advantages, AEM technology is still in its
early stages of development and requires further research for commercialization [57,58].

The catalyst plays a crucial role in reducing the overpotential and increasing the
efficiency of the water electrolysis process. Currently, noble metal catalysts, such as Pt-
based catalysts for hydrogen generation reactions and Ir-, Ru-based catalysts for oxygen
generation reactions, are the best-performing materials [59–61]. These metals have unique
electronic structures that allow for rapid oxidation-reduction reactions. However, the
high cost of these metals has limited their practical use in large-scale hydrogen produc-
tion [62–64]. To overcome this limitation, researchers have been actively seeking alternative
catalysts that are more cost-effective, earth-abundant, and environmentally friendly [65–69].
Several transition metal compounds and alloys, such as iron, nickel, and cobalt, have shown
promising results as water electrolysis catalysts [70–82]. In addition, the development of
composite catalysts and hybrid catalysts has opened up new possibilities for enhancing
the efficiency and stability of water electrolysis [83–91]. There are various methods of
synthesizing those catalysts, including chemical vapor deposition, hydrothermal, corrosion,
and electrodeposition [92,93]. Compared to other methods, electrodeposition offers a range
of advantages. Electrodeposition allows for precise control over the shape and size of the
materials, making it ideal for obtaining catalysts with specific dimensions and properties.
Moreover, it can be utilized to synthesize a variety of materials including metals, oxides,
sulfides, and phosphides. Furthermore, electrodeposition is environmentally friendly
and economical, as it allows for the reuse of the electrolyte and results in stable catalysts
without the need for additional treatments [94–96]. Interestingly, the unique structures
and morphology such as nanowires, nanotubes, nanoparticles, and nanosheets achieved
by electrodeposition enable tailoring the surface area, electronic properties, and surface
reactivity, all of which affect the performance of catalysts. In addition, the atomic structure
of electrodeposited catalysts can be elaborately modified to boost the activity of catalytic
sites. To further elaborate, electrodeposition is being explored as a method to increase
production for industrial applications. Recently, a research paper reported the successful
electrodeposition of an electrocatalyst onto a substrate that was 136 cm2 in size [97]. This is
a noticeable figure even in previous research; on this basis, nanostructure design is actively
used in the research field of electrocatalysts to obtain excellent performance.

Moreover, the use of electrodeposition for water-splitting catalysts can be a promising
candidate for the development of cost-effective and efficient water-splitting catalysts for
industrial-scale hydrogen products [98,99]. Recently, layered double hydroxides, single-
atom catalysts, and high-entropy alloys have attracted significant attention in the field
of electrocatalysis due to their extraordinary catalytic activity derived from a unique
atomic structure [100]. Using various techniques in electrochemical deposition such as
galvanostatic, potentiostatic, pulsed, and cyclic voltammetry modes, they can be uniformly
synthesized, and their catalytic activity can be boosted. Further research is needed to
optimize these alternative catalysts and to make water electrolysis a more practical and
economically viable method for hydrogen production. In this review, we highlight the
recent development and several strategies in the field of electrodeposition for water splitting
to overcome the current challenges.

2. Mechanism and Mode of Electrodeposition
2.1. Various Modes in Electrodeposition

For electrochemical energy technologies, electrodeposition is a promising way to
synthesize nanostructured electrocatalysts. The method can grow components in a short
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time with facile control of a uniform nanoscale morphology by applying potential or
current [101,102]. Furthermore, the chemical stability between deposited catalysts and
substrate can be realized due to electrochemical chemisorption, resulting in an excellent
water-splitting performance with high stability [101]. Herein, we introduce the electricity
input approach of electrodeposition and the strategies to form nanostructured catalysts.

2.1.1. Galvanostatic and Potentiostatic Modes

For electrodeposition, electricity is applied in the form of current density or potential.
Galvanostatic mode is performed by controlling the number of charges inputted with a
constant current density without reference to an electrode [103]. In this mode, the current
density can be directly controlled to determine the number of nucleation and deposited
amounts [104]. In contrast, the potentiostatic mode is a method of depositing materials
using a constant input potential. Applying a constant potential typically results in the
deposition of a single, pure phase [103]. Since the potential difference between the counter
electrode and working electrode is an important factor, potentiostatic mode is usually
performed in a three-electrode system with a reference electrode. The applied potential
is determined by the redox potential of the element to be deposited. When the applied
potential is negative relative to the equilibrium potential, it is referred to as underpotential
deposition. The deposition rate, amount, shape, and composition of the catalysts can
be determined by the applied potential or current density; hence, it must be carefully
controlled. Furthermore, resistance in the electrolyte and the distance between electrodes
can also play important roles when controlling the potential or current density.

2.1.2. Pulsed Mode

The morphology of a nanostructured electrocatalyst can be easily tuned by controlling
the applied electricity. The pulse setting can be modulated using specific frequencies
with different input potentials or current densities. For instance, by applying a pulse
group including cathodic and anodic current signals with specific frequency to substrates,
elements can be grown and etched away when using a negative redox potential metal
source. Nucleation grows anisotropically and vertically from the substrate, making it
possible to assemble a nanoarray structure in a single step through electrodeposition. In
this way, active sites can be increased, and catalytic performance can be enhanced by
controlling the growth behavior of crystal nucleation using pulsed mode. Additionally, the
pulsed mode, widely used in catalyst synthesis, can reduce diffusion resistance and control
the microstructure and multicomponent composition [104].

2.1.3. Cyclic Voltammetry (CV) Mode

Recently, CV (cyclic voltammetry) mode has been studied for depositing nanostruc-
tured and atomic-scale catalysts. In CV mode, a dynamic potential is applied, and the
corresponding current density is measured [104,105]. Generally, when a low current density
is measured, the electrolyte resistance increases due to a small amount of charge, making
it difficult to deposit a uniform coating and resulting in a slow deposition rate [106,107].
Despite these challenges, some studies have attempted to electrochemically deposit various
components, including nanostructures and heteroatom doping, as well as atomic-scale
elements [108].

2.2. Various Modes in Electrodeposition

As discussed in the previous section, electrodeposition is an effective way of synthe-
sizing electrocatalysts due to the ease in controlling the morphology, deposition amount,
nanostructures, and atomic deposition. Liu et al. used linear sweep voltammetry (LSV)
for the electrochemical activation and modification of WO3@Cu foam (WO3@CF) with Pt,
as shown in Figure 1a [109]. They synthesized WO3 nanosheet arrays on CF through a
solvothermal method and modified the heterostructure catalysts using LSV mode and a Pt
counter-electrode. The Pt clusters preferentially deposited on dissolved Cu sites rather than
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WO3 due to the small lattice mismatch between Pt and Cu in the acidic electrolyte (0.5 M
H2SO4). They observed excellent Pt mass activity in optimized Pt-WO3@CF catalysts for
the hydrogen evolution reaction (HER). High-entropy alloys are considered promising as
electrocatalysts due to their cost-effectiveness and the synergistic effects of each element,
as demonstrated by Chang et al. [110]. In their study, they used metal precursors of Fe,
Co, Ni, Mn, and W in an electrolyte and performed electrodeposition using pulsed current
mode for the synthesis of a bifunctional electrocatalyst for water splitting. FeCoNiMnW
high-entropy alloys with heterostructure were uniformly and well dispersed on a carbon
paper substrate. Through this simple pulsed electrodeposition method, the high-entropy
alloy showed enhanced catalytic activity. Another strategy using single-atom catalysts
has been the focus of intense study due to their high mass catalytic activity and low mass
loading of noble metal. Furthermore, noble or transition metals at the atomic scale provide
numerous active sites and great surface area compared to even nanoparticles. Zhang et al.
reported the synthesis of Ir single-atom catalysts (SACs) on a nanosheet substrate using
electrochemical deposition as a universal route [111]. They used linear sweep voltammetry
(LSV) to deposit the precious metal on the prepared substrate both cathodically and anodi-
cally. The electrolyte contained a minimum amount of noble metal precursor, which was
efficiently utilized for water splitting. Electrodeposition is an effective method to design
nanostructured catalysts for electrochemical water splitting. In the next sections, we inves-
tigate previous strategies for enhancing catalytic activity using various electrodeposition
modes and introduce different nanostructures.
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3. Electrocatalysts Prepared by Electrodeposition for Water Splitting
3.1. Layered Double Hydroxides (LDHs)

Recently, the study of layered double hydroxides (LDHs) as OER catalysts has gained
popularity due to their porous morphology and favorable adsorption energy at the sur-
face, which is derived from their unique atomic structure [112–124]. LDHs are a class
of anionic clay with a layered structure defined as the atomic formula [M1−x

2 + Mx
3 +

(OH)2](An−)x/n·mH2O, where M2+ and M3+ are divalent and trivalent metal cations, and
An− represents a charge-balancing anion. Li et al. [125] synthesized a heterostructure
of CoNiP and NiFe LDHs via a two-step electrodeposition method, which is shown in
Figure 2a. The CoNiP nanoparticles with around 100 nm were deposited at a constant
potential of −1.6 V (vs. Ag/AgCl) for 800 s using a solution containing NiSO4, CoSO4,
NaH2PO2, NaCl, H3BO3, and sodium citrate, with boric acid serving as a buffering agent
and sodium citrate as complexes. The NiFe LDHs were deposited at a constant potential of
−1.0 V (vs. SCE) for 120 s using a solution containing Ni(NO3)2·6H2O and Fe(SO4)2·7H2O.
Figure 2b shows the vertically aligned NiFe LDH nanosheets grown on the surface of
electrodeposited CoNiP nanoparticles stacked on the nickel foam. In this image, the
agglomeration of the LDH nanosheets can be observed. The LDH nanosheets tend to ag-
glomerate due to strong interlayer van der Waals forces, resulting in decreased surface area
and performance. Therefore, it is required to obtain uniformly dispersed LDH nanosheets
using surfactants and pH control agents [126]. High-resolution transmission electron mi-
croscope (HR-TEM) images showed that the amorphous NiFe LDH nanosheets adequately
covered the low-crystalline CoNiP nanoparticles, and only a small microcrystalline region
can be found, as displayed in Figure 2c. Additionally, the uniform distribution and coex-
istence of Ni, Fe, O, Co, and P elements can be observed in the TEM elemental mapping
images. The HER and OER performance of the as-synthesized CoNiP@NiFe LDH was eval-
uated by electrochemical measurements, as shown in Figure 2d,e. The CoNiP@NiFe LDHs
only required a low overpotential of 68 mV to achieve a current density of 10 mA/cm2,
comparable to that of CoNiP (80 mV) and NiFe LDH (283 mV). Furthermore, the Tafel
slope, determined from the kinetics of HER, of CoNiP@NiFe LDH was calculated to be
32 mV/dec, also comparable to that of CoNiP (41 mV/dec) and NiFe LDH (142 mV/dec),
indicating that the CoNiP@NiFe LDH followed fast HER kinetics, i.e., a Volmer–Tafel
mechanism. According to the electrochemical impedance spectra (EIS), a significantly low
charge transport resistance could be found in CoNiP@NiFe LDH (0.15 Ω), confirming the
favorable reaction kinetics and better charge transfer efficiency of CoNiP@NiFe LDH. For
the OER, the CoNiP@NiFe LDH also exhibited remarkable OER performance with a low
overpotential of 255 mV at 50 mA/cm2. The overpotential of as-prepared CoNiP and
NiFe LDH was 370 mV and 280 mV at 50 mA/cm2, respectively, indicating that the NiFe
LDH played a key role in the catalytic activity of the OER process and synergistic effect
between NiFe LDH and CoNiP in OER process. The prepared CoNiP@NiFe LDH catalysts
showed excellent stability in alkaline medium over 20 h with an increased overpotential of
7 mV for HER and over 12 h with a slightly increased overpotential of 1.8 mV for OER. A
DFT calculation was carried out to identify the synergistic effect of the heterostructures.
In the case of HER, the CoNiP@NiFe LDHs (∆H* = −0.62 eV) had a considerably lower
hydrogen adsorption Gibbs free energy than the CoNiP and NiFe LDHs (∆H* = −0.75 eV
for CoNiP and ∆H* = −0.87 eV for NiFe LDHs), as shown in Figure 2f. For OER, in NiFe
LDHs, as shown in Figure 2g, the rate-determining step was O* OOH* (∆GOOH* = 2.79 eV).
However, that of CoNiP@NiFe was the formation of oxygen (∆GO2 = 2.01 eV), indicating
that an easier adsorption of OOH* intermediates could be found in CoNiP@NiFe LDHs,
originating from the electronic coupling between CoNiP and NiFe LDHs. This result shows
that the heterostructure required a lower overpotential and had higher catalytic activity in
OER reactions.
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Figure 2. (a) The illustration for the preparation of CoNiP@NiFe LDH heterostructure directly on NF
substrates through a two-step electrodeposition method. (b) Field-emission scanning electron micro-
scope (FE-SEM) image of CoNiP@NiFe LDHs. (c) High-resolution transmission electron microscope
(HR-TEM) image of CoNiP@NiFe LDHs. Polarization curves with 85% iR correction for (d) HER and
(e) OER. (f) Gibbs free energy diagram vs. reaction coordinate of the HER with the c-CoNiP (001),
c-NiFe LDHs (001), and c-CoNiP@NiFe LDHs. (g) Gibbs free energy diagram vs. reaction coordinate
of the OER with the NiFe LDHs and c-CoNiP@NiFe LDHs. Reprinted (adapted) from [125], copyright
(2023) Elsevier Ltd.

Yamauchi and colleagues conducted a study on NiFe and W-doped NiFe LDHs that
were obtained by combining electrodeposition and chemical corrosion [127]. To create
the NiFeWx-LDHs, a cathodic current was applied to a solution of Ni(NO3)2·6H2O and
Fe(NO3)3·9H2O for 1 h. The resulting NiFe LDHs were then immersed in a WCl6 solution
for 3 h to introduce oxygen vacancies, which converted the NiFe LDHs into NiFeW LDHs,
as depicted in Figure 3a. Scanning electron microscope (SEM) measurements showed
changes in surface morphology, including the presence of nanopores, which could increase
the contact area between the electrolytes and catalysts, resulting in faster desorption of OER
products. A TEM image showed that the NiFeW3-LDHs had a nanosheet structure con-
sisting of polycrystalline regions with good lattice fringes and amorphous phases, which
were confirmed by SAED patterns, as displayed in Figure 3b. The authors studied the
electronic interactions in NiFeW3-LDHs by analyzing the valence electron structures of the
metal ions. They found that partial electron transfer from Ni2+ to Fe3+ occurred due to the
π-donation from the O2− to d-orbitals of Fe3+ and electron–electron repulsion between O2−

and d-orbitals of Ni2+. Then, W6+ obtained electrons from the electron-rich Fe3+, leading to
enhanced delocalization among Ni, Fe, and W cations [122]. The modified charge configu-
ration optimized the bonding strength of the cations, as Ni2+ and Fe3+ were weakly bonded
to oxygen-adsorbed species, while W6+ was strongly bonded [128]. In Figure 3c, the LSV
curves of NiFe LDHs and NiFeWx-LDHs are provided to investigate the electrochemical
catalytic performance with 90% iR correction. The overpotential of NiFeW3-LDHs was
256 mV to achieve a current density of 100 mA/cm2, which was smaller than that of NiFe
LDHs, NiFeW1-LDHs, and NiFeW5-LDHs. For the Tafel slope, as illustrated in Figure 3d, a
small value of 36.44 mV/dec could be calculated for NiFeW3 LDHs, indicating a good high-
current electrocatalytic performance. The lower Tafel slope value indicated faster reaction
kinetics, which could lead to higher efficiency and improved performance of water-splitting
devices such as electrolyzers or photoelectrochemical cells [129]. These outperformances
mainly originated from the porous and rough surface of NiFeWx-LDH, which increased
the contact area between electrolytes and catalysts. In Figure 3e, the LSV curves of the
NiFeW3-LDHs obtained at various temperatures were presented to calculate the activation
energy (Ea). The activation energy of NiFeW3-LDHs was 24.66 kJ/mol, which was smaller
than that of NiFe LDHs, implying that W doping significantly reduced the energy barrier
of the OER. From the chronopotentiometry and cycle test for 120 h at 10 mA/cm2 and
5000 cycles, the NiFeW3-LDH retained its initial catalytic performance without significant
changes. The nanopore structure could be maintained even after 5000 CV cycles and
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long-term operation. This concept provides a route for utilizing the oxygen vacancies via
foreign element doping to improve the performance of OER electrocatalysts.
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3.2. Single-Atom Catalysts

Single-atom catalysts (SACs), which are catalysts made up of isolated metal atoms
dispersed on a support material, have received a lot of attention due to their unique
properties and high catalytic activity. Some of the advantages of SACs include high activity
due to their high surface area-to-volume ratios, precise control over reaction selectivity, and
durability in harsh industrial conditions [130,131]. However, the synthesis of SACs can be
challenging, their scalability is limited, and they can be more expensive than traditional
catalysts [132,133]. To overcome these limitations, researchers are exploring new synthetic
methods to produce SACs at a lower cost and on a larger scale, investigating new support
materials and alternative metal species, and using advanced characterization techniques to
better understand the structure–activity relationships of SACs.

Yin et al. reported an efficient strategy to synthesize Ir single-atom catalysts (Ir-SACs)
at NiCo2O4 (Ir-NiCo2O4) nanosheets (NSs) on carbon cloth (CC) as a substrate using a
co-electrodeposition method and oxidation process, as shown in Figure 4a (structural char-
acterization) [134]. The precursor solutions consisted of nickel(II) nitrate, cobalt(II) nitrate,
and chloroiridic acid, and a constant potential of −1.0 V was applied to the working elec-
trode for 15 min. After the electrodeposition, they conducted annealing in air conditioning
for Ir-SA coupling with oxygen vacancy. The Ir atoms could locate the oxygen vacancy
site, especially near the Co sites, resulting in boosting the OER performance due to the
activation of electron transfer. The tight Ir-O bonding played a role in inhibiting deactiva-
tion of the catalytic active site due to the supersaturation of O and H at the Co sites. The
well-orientated spinel structure of NiCo2O4 [111] unit cells and the extensively dispersed Ir
SAs, marked by a yellow circle, were observed in high-angle annular dark-field scanning
transmission electron microscope (HAADF-STEM) images (Figure 4b,c, respectively). To
elucidate the effect of Ir-SACs on NiCo2O4 NSs, electrochemical analysis was performed by
measuring LSV, turnover frequency (TOF), EIS, and chronoamperometry in acidic medium
(0.5 M H2SO4). Ir-NiCo2O4 NS exhibited the lowest overpotential of 240 mV vs. RHE at
10 mA/cm2 and the best Tafel slope of 60 mV/dec among the prepared catalysts, as shown
in Figure 4d. To compare the OER performance using Ir SAs on oxide-based nanosheets,
they utilized various transition metal oxide nanosheets as a substrate. Among the various



Materials 2023, 16, 3044 9 of 24

oxide nanosheets, as shown in Figure 4e, the Ir-NiCo2O4 NSs showed the best catalytic
performance due to the enhanced electron transfer properties and the enhanced content
of oxygen in the Ir-NiCo2O4 crystal structure. In addition to experimental results, they
compared recently reported OER catalysts, as displayed in Figure 4f. The synthesized
Ir-NiCo2O4 NSs showed relatively good OER performance and enhanced stability in acidic
medium over 70 h, maintaining their initial properties without any degradation of compo-
sition, morphology, or electronic structure in further investigation after OER measurement.
The enhanced stability even in acidic medium originated from the increased oxygen content
from the surface reconstruction of Ir-Ox. This proposed strategy suggests that the improve-
ment of catalytic performance in energy conversion reactions can be achieved by a simple
preparation method to prepare SACs on transition metal oxide-based electrocatalysts.
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ning transmission electron microscope (HAADF-STEM) image of Ir-NiCo2O4 NSs and (c) HAADF-
STEM image of Ir-NiCo2O4 NSs (Ir-SAs marked by yellow circles). (d) LSV curves of commercial
IrO2, NiCo2O4, and Ir-NiCo2O4 NSs in acidic medium (0.5 M H2SO4). The inset in (d) shows the
corresponding Tafel plots. (e) LSV curves of Ir SAs on different oxides substrate for the OER in
0.5 M H2SO4. (f) Compared overpotential at j = 10 mA/cm2 and stability of Ir-NiCo2O4 NSs with
previously reported OER catalysts in acid media. Reprinted (adapted) from [134], copyright (2023)
American Chemical Society.

Zhang et al. reported a facile method to synthesize Ir SAs on Co0.8Fe0.2Se2 for overall
water splitting using simple linear sweep voltammetry (LSV) [111]. Cathodically and
anodically deposited Ir SAs for HER and OER, respectively, were conducted by LSV in
KOH electrolyte containing 100 µM IrCl3. For the electrodeposition, the as-prepared
MnO2, MnS2, Co0.8Fe0.2Se2, and nitrogen-doped carbon (N-C) substrate was used as the
working electrode and the Ag/AgCl electrode was used as the reference electrode. For the
counter-electrode, a graphite rod was used. Each substrate was soaked into an electrolyte
bath, and a potential from 0.10 V to −0.40 V was applied for cathodic deposition with
10 scanning cycles. In the case of anodic deposition, the potential from 1.1 V to 1.8 V
was applied for three scanning cycles using LSV mode. Then, Ir cation (IrCl3+) and Ir
anion (Ir(OH)6−) complexes could be deposited by scanning cycles; as a result, Ir-SAs
were deposited on the substrate as illustrated in Figure 5a,b. For the deposition of Ir
SAs, the Ir4+ precursor was reduced under the negative electric field and cooperated with
OH− in the KOH solution under a positive electric field. Figure 5c,d demonstrates Ir mass
loading as a function of 50–300 µM Ir precursor concentration in the 1 M KOH electrolyte for
cathodic and anodic deposition scanning cycles. From the HAADF-STEM measurement, the
uniformly deposited Ir-SAs, indicated by yellow circles, were observed in the synthesized
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C- and A-Ir1/Co0.8Fe0.2Se2 catalysts, as shown in Figure 5e,f. The dispersed metal with
atomic scales could be anchored at defective or strong metal support interactions. It is
important that the mass loading is controlled below the supersaturated level unless the
mass loading above the supersaturated level leads to nuclearization into a cluster. They
conducted electrochemical overall water-splitting measurements. The overpotential of
the cathodically deposited Ir SAs on Co0.8Fe0.2Se2@Ni foam catalyst (C-Ir1/Co0.8Fe0.2Se2
catalyst) was 8 mV at 10 mA/cm2 for hydrogen evolution, and the overpotential of the
anodically deposited Ir SAs on Co0.8Fe0.2Se2@Ni foam catalyst (A-Ir1/Co0.8Fe0.2Se2) was
230 mV at 10 mA/cm2 for oxygen evolution, as displayed in Figure 5g,h. According to
the experimental results, Ir1/Co0.8Fe0.2Se2 catalyst exhibited outstanding catalytic activity
for overall water splitting in alkaline medium. They also discussed that the Co0.8Fe0.2Se2
substrate exhibited excellent catalytic activity for overall water splitting when anchored
with Ir single atoms due to its excellent charge transfer and strong Ir metal single atom–
Co0.8Fe0.2Se2 support interaction. Furthermore, the synthesized Ir SAs on Co0.8Fe0.2Se2@Ni
foam catalyst showed long-term stability over 100 h in alkaline medium (1 M KOH),
ascribed to the distinct deposition method.
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Figure 5. Schematic of (a) cathodic and (b) anodic deposition of Ir SACs. Differences in Ir mass
loadings according to the concentration of IrCl3 for (c) cathodic and (d) anodic deposition. HR-TEM
images of (e) cathodically and (f) anodically deposited Ir SAs on Co0.8Fe0.2Se2 support. Polarization
curves of (g) cathodically deposited SACs for HER and (h) anodically deposited SACs for OER on
various substrates. The Ir SAs on Co0.8Fe0.2Se2 support showed the best catalytic performance in both
HER and OER (loading of cathodically and anodically deposited Ir SAs on Co0.8Fe0.2Se2: 2 wt.% and
1.2 wt.%, respectively). Reprinted (adapted) from [111], copyright (2023) Springer Nature Limited.

Wang et al. reported Ru single-atom catalysts (Ru SACs, by electrodeposition) incor-
porated with MoS2 nanosheets (NSs, by hydrothermal) on carbon cloth [135]. Although Pt
shows the best catalytic performance for the HER because of its high adsorption efficiency
of H+ originating from its unique electronic structure, it is too expensive to commercialize.
Therefore, recently, atomic-scale noble metal catalysts have been intensively studied to
reduce the usage of noble metal catalysts or to replace noble metal catalysts with non-
noble catalysts. Ru is relatively inexpensive compared to Pt and has a similar electronic
structure, indicating that it is not only suitable for replacing Pt but also widely used as
SACs in HER [136,137]. First, they synthesized MoS2 nanosheets on a carbon cloth (MoS2
NSs/CC) array using a hydrothermal method with sodium molybdate and thiourea pre-
cursor dissolved in deionized water. After the hydrothermal method, the electrodeposition
of Ru SACs was conducted using MoS2 NSs/CC as a deposition substrate, as displayed in
Figure 6a. The deposition potential from −0.5 V to 0.4 V with a sweep rate of 20 mV/s was
applied to MoS2 NSs/CC substrate in RuCl3 and H2SO4 electrolyte for 20 cycles; then, the
Ru precursor formed SAs on MoS2 NSs/CC. Figure 6b shows the morphology of electrode-
posited MoS2 NSs/CC substrate with vertically and densely aligned nanosheet structures.
The MoS2 (100) and (002) planes were observed in HR-TEM images with d-spacings of
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0.274 and 0.65 nm, and the electrochemically deposited Ru atoms were dispersed at the
atomic scale in the synthesized Ru-MoS2/CC [137,138], marked by black circles in Figure 6c.
They measured electrochemical HER performance in both alkaline and acidic electrolytes
to reveal the overall water-splitting catalytic activity of the Ru-MoS2/CC electrode. In
alkaline medium (1 M KOH), the overpotential of Ru-MoS2/CC was 41 and 11371 mV at
10 and 100 mA/cm2, respectively, and a Tafel slope of 114 mV/dec could be obtained, as
shown in Figure 6d,e. Furthermore, the efficient HER catalytic activity in acidic (0.5 M
H2SO4) and neutral (1 M PBS) media was confirmed with a low overpotential of 61 mV
and 114 mV at 10 mA/cm2, respectively. They conducted the chronopotentiometry of HER
using Ru-MoS2/CC and Pt/C/CC electrocatalysts at 10 mA/cm2 to test the electrochemical
stability, as depicted in Figure 6f. The Ru-MoS2/CC electrode retained its initial catalytic
performance after 20 h, whereas that of Pt/C/CC decreased gradually. According to further
XPS, SEM, and HR-TEM analysis, there was no significant structural degradation and disso-
lution of Ru SAs. The results strongly indicate that these approaches to electrodeposit SAs
could be promising to improve the catalytic HER performance of Ru-MoS2 electrocatalyst.
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Figure 6. (a) The fabrication process of Ru-MoS2/carbon cloth array catalyst. (b) SEM images of
Ru-MoS2/CC nanosheet. (c) HR-TEM images of Ru-MoS2/CC (single Ru atoms are marked by
black circles). (d) Polarization HER curves of bare CC, MoS2/CC, and Ru-MoS2/CC (Ru loading:
46 µg/cm2) in 1.0 M KOH solution. (e) Tafel plots of MoS2/CC and Ru-MoS2/CC. (f) Chronopo-
tentiometry analysis of long-term stability for Ru-MoS2/CC and Pt/C/CC at 10 mA/cm2 for 20 h.
Reprinted (adapted) from [135], copyright (2023) Elsevier B.V.

3.3. High-Entropy Alloys

Metal alloying is one of the promising strategies for synthesizing water-splitting
catalysts, due to their synergistic effect on each component [139–145]. In particular, high-
entropy alloys (HEAs) represent a fascinating method for increasing catalytic activity [146].
A strong synergistic effect is gained when the alloy component is widely contacted and
closely interacted, resulting in an HEA with four or more components, which is a suitable
candidate for water-splitting catalysts. In a recent report, Chang et al. studied a facile
strategy to synthesize HEA-FeCoNiMnW (H-FeCoNiMnW) and its application to water
splitting in an acidic medium [110]. They also demonstrated overall water splitting using
HEA-FeCoNiMnW electrocatalysts as both the cathode and the anode.

They used carbon paper (CP) as a substrate for improving electrical conductivity and
selected metal precursors with high catalytic performance to adsorb and desorb water-
splitting intermediates. FeCl3, NiCl2·6H2O, MnCl2·4H2O, CoCl2·6H2O, Na2WO4·2H2O,
and C6H5Na3O7·2H2O were used to compose the electrolyte, and the pH value was set to
9.8 using NH4OH. The electrodeposition was conducted in pulse mode (current density
of 8 A/cm2; 20% duty for 3000 cycles) with a bath temperature of 53 ◦C, as illustrated
in Figure 7a. From the HR-TEM image in Figure 7b, an interlayer distance of 0.212 nm
could be observed, consistent with the d-spacing of the face-centered cubic (111) plane
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of HEA-FeCoNiMnW. From the measurement of ICP-OES, the atomic ratio of all five
elements could be calculated as 18.4%, 18.1%, 26.4%, 13.4%, and 23.7% for Fe, Co, Ni,
Mn, and W, respectively. The broad characteristic (111) diffraction peak was found in
XRD spectra, originating from the small grain size and large lattice strains of HEA crys-
tals [147]. From Vegard’s rule, the lattice constant should be 0.369 nm, which is consistent
with the calculated values of 0.367 nm and 0.36 nm from the HR-TEM image and XRD
pattern, respectively. To investigate the catalytic performance of HEA in water splitting,
electrochemical characterization was conducted in 0.5 M H2SO4, and H-FeCoNiMnW was
compared to other medium-entropy alloy catalysts (M-FeCoNiMn and M-FeCoNiW), Pt/C
for HER, and IrO2 for OER (see Figure 7e,f). H-FeCoNiMnW showed a low overpotential
of 15, 73, and 165 mV at 10, 100, and 500 mA/cm2, respectively. For the MEA, a slightly
increased overpotential could be found in M-FeCoNiMn (193, 307, and 416 mV for η10,
η100, and η500) and M-FeCoNiW (32, 138, and 226 mV for η10, η100, and η500), due to the
different catalytic activity of each element. When W was included in the FeCoNi alloy,
the catalytic performance could be enhanced compared to Mn. In the case of Mn, the
insertion of Mn into FeCoNiW alloy could boost the HER catalytic activity. The OER
catalytic performance was investigated using IrO2, H-FeCoNiMnW, M-FeCoNiMn, and
M-FeCoNiW with overpotentials of 332, 512, 608, and 595 mV at 10 mA/cm2, respectively.
Furthermore, the Tafel slope of H-FeCoNiMnW was calculated to be 145 mV/dec, showing
faster kinetics compared to MEAs with 161 mV/dec and 172 mV/dec, indicating that the
HEA electrode was more efficient in electrochemical water splitting. The incorporation
of Mn and W elements into FeCoNi helped to improve the catalytic activity. The overall
water-splitting performance was investigated using H-FeCoNiMnW electrodes as both the
cathode and the anode. The cell voltage required to achieve a current density of 10 mA/cm2

was 1.76 V, as shown in Figure 7g. A 10% increment in cell voltage was found in the H-
FeCoNiMnW||H-FeCoNiMnW coupled electrode after 6 days of operation. This study is
the first demonstration of the synthesis of high-entropy alloys based on a volcano plot with
nonprecious metal precursors applied to water splitting in acidic medium. It provides a
novel strategy to prepare efficient electrocatalysts in practical water splitting.

Han et al. generated β-NiOOH in amorphous high-entropy electrocatalysts for
OER [148]. They mixed electrolytes using NiCl2, FeCl2, CoCl2, MnCl2, AlCl3, LiClO4,
and ethylenediamine (EDA) in DMSO as precursors. Binary NiFe was chosen as the
starting material; then, Co, Mn, and Al were doped to examine the relationship between
the composition and OER performance. The high-entropy NiFeCoMnAl oxide could be
prepared by electrodeposition with a potential of −2.8 V (vs. SCE) for 30 min. To create
the nanoscale porous structure, the electrodeposited sample was soaked in 1.0 M KOH
solution for 1 h to etch the Al element, as shown in Figure 8a. The increase in active surface
areas and the creation of a synergistic effect for OER activity could be expected. Since
the electrodeposition provided a strong binding between the catalyst and substrate with
improved surface area, the electrodeposited catalysts could show high OER performance
and excellent stability. A dense and uniform covered catalyst layer could be found in
electrodeposited NiFeCoMnAl oxides on the surface of carbon fibers, as shown in the SEM
images (Figure 9b). After the etching of Al elements by KOH, the nanoporous NiFeCoMnAl
oxide nanosheet structure was observed by TEM images, as shown in Figure 8c,d. An
amorphous structure was confirmed by the lack of significant Bragg reflection of the fresh
sample in XRD spectra or lack of clear lattice fringes with diffuse rings in SAED patterns
from the TEM analysis. The EDS mapping showed that the elements (Ni, Fe, Co, Mn, and
Al) were homogeneously dispersed in the catalyst, as illustrated in Figure 9e. There was
no structural degradation and obvious atomic aggregation in NiFeCoMnAl oxides after
chemical etching, consistent with the EDS element mapping images. The electrochemical
measurements of NiFeCoMnAl were carried out with a three-electrode system and com-
pared to NiFe, NiFeAl, NiFeCoAl, RuO2, and bare CP. In addition, the authors annealed
NiFeCoMnAl in air at 400 ◦C and measured OER performance. As displayed in Figure 8f,
the overpotential at 10 mA/cm2 before and after annealing NiFeCoMnAl was 190 mV and
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220 mV in 1 M KOH, respectively. The fabricated NiFeCoMnAl showed a low value of the
Tafel slope (47.62 mV/dec) and long-term stability of over 50 h at 10 mA/cm2 without sig-
nificant degradation, as shown in Figure 8f. The turnover frequency data showed that the
NiFeCoMnAl catalysts (0.526 mol O2/s at η = 350 mV) had a much higher O2 production
capability compared to NiFeCo (0.170 mol O2/s at η = 350 mV) and NiFeMn (0.138 mol
O2/s at η = 300 mV). Operando Raman measurements showed that the active sites in
NiFeCoMnAl oxide were Ni sites, and the high-valence Mn played a role in supporting the
formation of β-NiOOH in an electron-rich environment. The results of density functional
theory (DFT) calculations suggested that the self-constructed β-NiOOH synthesized by
inflicting potential could improve OER activity [149,150]. Amorphous NiFeCoMnAl could
maintain 98.6% of its initial potential even after 50 h at a current density of 10 mA/cm2. The
authors also conducted a cyclic LSV test over 1000 cycles, revealing no obvious changes in
morphology and component distribution, which indicated that the fabricated NiFeCoMnAl
was an excellent OER electrocatalyst in an alkaline environment. Several factors contribute
to enhanced OER activity and high stability:
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Figure 7. (a) Schematic illustration of the synthesis of H-FeCoNiMnW using pulsed mode electrode-
position. (b) HR-TEM image of electrodeposited H-FeCoNiMnW powder. (c) Atomic composition
of H-FeCoNiMnW according to ICP-OES measurement. (d) XRD pattern of the synthesized H-
FeCoNiMnW. (e) Electrocatalytic water-splitting performance of H-FeCoNiMnW, M-FeCoNiMn, and
M-FeCoNiW in acidic medium (0.5 M H2SO4) (e) for HER and (f) for OER (H-FeCoNiMnW loading:
8 mg/cm2). (g) Overall water-splitting demonstration using H-FeCoNiMnW as both the cathode
and the anode at 10 mA/cm2 (cell voltage: 1.76 V). Reprinted (adapted) from [110], copyright (2023)
Elsevier B.V.

1. The self-construction of β-NiOOH intermediates, which can act as catalytic active
sites, resulting in the lowering of the overpotential for the OER.

2. Enhanced electrical conductivity, which can facilitate the improved charge trans-
port resistance.

3. The increased number of active sites from abundant defects via dealloying of Al. The
study provided insight into the relationship between catalytic activity and elements
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and the design of multicomponent transition metal-based high-entropy catalysts
for OER.
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Figure 8. (a) Schematic illustration of the synthetic procedures for nanoporous NiFeCoMnAl oxide
grown on carbon paper. (b) SEM and (c,d) TEM images of NiFeCoMnAl after soaking in 1.0 M
KOH. (e) EDS elemental mapping of Ni, Fe, Co, Mn, Al, and O for etched NiFeCoMnAl. (f) LSV
polarization curves and (g) Tafel plots of catalysts. (h) Stability of Ni-FeCoMnAl (NiFeCoMnAl
loading: 0.35 mg/cm2). Reprinted (adapted) from [148], copyright (2023) Elsevier B.V.

3.4. Core–Shell Structure

The enhancement of catalytic activity and improved stability using a nonprecious
metal-based catalyst is the ultimate goal to realize highly efficient overall water split-
ting [43]. To seek effective bifunctional catalysts for simultaneously catalyzing HER and
OER, there have recently neem tremendous efforts in finding a new type of electrocata-
lyst. The interface-engineered core–shell architectures consisting of two or more active
catalysts are among the recent research themes to overcome the limitations of current
electrocatalysts [151,152]. Improved charge transfer and increased opportunities for tun-
ing the adsorption–desorption energy in water-splitting intermediates are expected in
nanointerface core–shell structured electrocatalysts.
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Figure 9. (a) SEM images and (b) HR-TEM image of CoFe@NiFe-200/NF architecture. (c) XRD
patterns of CoFe-LDH, NiFe-LDH, and CoFe@NiFe-200. (d) TEM, (e) magnified TEM, and (f) ele-
mental mapping images of CoFe@NiFe-200 architecture. (The symbol of red and black represents
NiFe-LDH and CoFe-LDH, respectively). (g) Steady-state polarization curves of CoFe-LDH/NF,
CoFe@NiFe-50/NF, CoFe@NiFe-100/NF, CoFe@NiFe-200/NF, NiFe-300/NF, NiFe-LDH/NF, and
NF in 1.0 M KOH for HER and OER. Overpotential comparison of synthesized catalysts (h) for HER
and (i) for OER at a current density of 10 mA/cm2. Reprinted (adapted) from [153], copyright (2023)
Elsevier B.V.
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Yang et al. reported integrated 3D hierarchical CoFe-LDHs coupled with NiFe-
LDH NS core–shell architectures as efficient overall water-splitting catalysts, as shown in
Figure 9a [153]. To overcome the low electrical conductivity and water dissociation activity
of CoFe-based LDHs, NiFe LDHs were adopted for a synergistic effect and to increase
the active surface area. First, they synthesized the CoFe-LDHs on the Ni foam using the
hydrothermal method and conducted electrodeposition of NiFe-LDHs by applying a po-
tential of −1.0 V for 50 s, 100 s, 200 s, and 300 s. By controlling the deposition time, the
loading amount of the NiFe-LDHs nanosheet shell could be modulated. A proper loading
amount of NiFe-LDHs was important to expose the maximum interface or to optimize
electronic interaction for the improvement of electrocatalytic activity in both HER and OER.
The hierarchical interface and lattice fringes of the (012) plane of CoFe-LDH and NiFe-LDH
could be found in TEM analysis, as displayed in Figure 9b. In the XRD patterns (Figure 9c),
all the diffraction peaks in CoFe@NiFe LDHs could be assigned to the CoFe-LDHs and
NiFe-LDHs without impurity phases. As shown in the HR-TEM images, the nanosheets
with a thickness of about 6 nm were anchored to the smooth nanosheet of CoFe-LDH, form-
ing core–shell architectures, as displayed in Figure 9d,e. The Co, Fe, and Ni elements were
well distributed in the elemental mapping image (Figure 9f), indicating that the NiFe-LDHs
were uniformly grown on the surface of CoFe-LHD, forming a core–shell structure.

The authors investigated the electrochemical catalytic performance of HER and OER,
and examined the overall water-splitting performance by coupling their catalysts, as
displayed in Figure 9g. In HER, the CoFe@NiFe-200 sample showed the highest catalytic
HER performance with a low overpotential of 240 mV at 10 mA/cm2 and a Tafel slope of
88.88 mV/dec. The outstanding HER kinetics could be attributed to the synergistic effect
between CoFe and NiFe LDHs, which was comparable to the previously reported catalysts.
Furthermore, the CoFe@NiFe-200 sample exhibited remarkable catalytic performance
in OER with a low overpotential of 190 mV at 10 mA/cm2 and a small Tafel slope of
45.71 mV/dec, originating from the low charge transport resistance and an enlarged number
of active sites. The summarized water-splitting performance can be seen in Figure 9h,i.
The enhanced stability without significant degradation was confirmed by conducting
a cyclic test over 1000 cycles in both HER and OER. To investigate the overall water-
splitting performance, they fabricated a two-electrode system by assembling CoFe@NiFe-
200 catalysts for the cathode and anode. Outstanding performance with a low cell voltage
of 1.59 V at 10 mA/cm2 was observed, and the initial current density was maintained after
24 h. This work paved the way to design highly efficient electrocatalysts using core–shell
structures for bifunctional water splitting, as well as strategies for the synergistic effect of
interfacing materials for improved catalytic activity.

Lee’s group demonstrated CuNi@Ni(ON) core–shell heterostructures uniformly dis-
persed on 3D porous CNTs-Gr for alkaline HER and OER using an electrodeposition
method [154]. They conducted 8 CV cycles in the potential range of −0.5 to −1.0 V vs.
Ag/AgCl with a scan rate of 5 mV/s in the solution of 1.0 mM Cu(Co2CH3)2 and 40 mM
Ni(NO3)2 6H2O, resulting in the formation of CuNi@Ni core–shell nanoparticles. Then,
a partial nitridation treatment was carried out in a quenching furnace at 400 ◦C for 2 h
under an atmosphere of Ar (100 sccm) and NH3 (50 sccm). The resultant CuNi@Ni(ON)
heterostructures on CNTs-Gr exhibited dual functionality in promoting both HER and OER.
This was attributed to alterations in the electronic structure of the surface, the type and
number of electroactive sites, and charge conductivity. Moreover, the 3D porous and highly
conductive CNTs-Gr substrate enhanced the stabilization of the active materials, facilitated
hetero-charge transfer, and accelerated mass transfer. In OER, CuNi@Ni(ON)/CNTs-Gr
showed the highest performance with an overpotential of 410 mV to achieve a current
density of 100 mA/cm2 and Tafel slope of 257 mV/dec. In HER, it also exhibited the
highest catalytic activity with an overpotential of 42.1 mV at 10 mA/cm2 and Tafel slope
of 61 mV/dec. Utilizing CuNi@Ni(ON)/CNTs-Gr electrodes in an alkaline electrolyzer
requires only a low cell operating voltage of approximately 1.51 V to achieve a current
density of 10 mA/cm2.
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4. Conclusions and Perspectives

In conclusion, we introduced several strategies to improve the catalytic activity in
water splitting, with a focus on the electrodeposition method, as summarized in Figure 10.
This method has several advantages, including the ability to control the morphology, com-
position, and phases of the electrocatalyst, increase the number of active sites and surface
area, directly deposit the electrocatalyst on the porous electrode, and facilitate large-scale
synthesis. However, there are still several challenges that need to be addressed to make
this method more convincing and versatile. One of the challenges is the unclear generation
mechanism of nanostructures and heterointerfaces. To better understand the fundamental
principles of electrodeposited catalysts, in situ and real-time monitoring techniques are
needed. By combining advanced characterization techniques, such as in situ microscopy
and operando X-ray analysis, with theoretical calculations, researchers can gain a deeper un-
derstanding of the relationship between materials and reaction mechanisms [155]. Another
challenge is the need for the optimization of heterostructured electrocatalysts. Adopting
new catalyst systems, such as high-entropy alloys, single-atom catalysts, and core–shell-
like heterostructures can improve catalytic activity in water splitting due to their unique
chemical and physical properties. However, to achieve industrialization, it is necessary
to overcome the complex electrodeposition process parameters and establish a complete
database of experimental parameters that can be applied to large-scale experiments [156].
For industrialization of the electrodeposition method, specialized equipment may be re-
quired for upscaling the electrodeposition process to an industrial scale. This may involve
modifications to the existing infrastructure, such as the use of high-capacity power supplies
and large-scale electrochemical reactors [34]. Developing a new, optimized catalyst system
is one of the promising ways to utilize the electrochemical method for large-scale synthesis
of water-splitting electrocatalysts. Lastly, the complexity of the synthesis process is a major
challenge in finding the optimal conditions for electrodeposition. Machine learning has
emerged as a promising solution to this problem, as it can help reduce time and material
waste, as well as increase the chance of developing high-performance catalysts. By combin-
ing experimental results with machine learning, researchers can effectively design efficient
and stable electrocatalysts [157].
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We strongly believe that electrodeposition is the most promising way to prepare
efficient water-splitting electrocatalysts for industrialization. Further theoretical and exper-
imental studies combined with machine learning will likely open up new opportunities for
the development of improved commercial water-splitting processes [122]. The challenges
that need to be addressed, such as the unclear generation mechanism of nanostructures,
the need for heterostructured electrocatalysts, and the complexity of the synthesis process,
can be overcome using advanced techniques and cutting-edge technology.
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