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Simple Summary: The histopathological image is widely considered as the gold standard for the
diagnosis and prognosis of human cancers. Recently, deep learning technology has been extremely
successful in the field of computer vision, which has also boosted considerable interest in digital
pathology analysis. The aim of our paper is to provide a comprehensive and up-to-date review
of the deep learning methods for digital H&E-stained pathology image analysis, including color
normalization, nuclei/tissue segmentation, and cancer diagnosis and prognosis. The experimental
results of the existing studies demonstrated that deep learning is a promising tool to assist clinicians
in the clinical management of human cancers.

Abstract: With the remarkable success of digital histopathology, we have witnessed a rapid expansion
of the use of computational methods for the analysis of digital pathology and biopsy image patches.
However, the unprecedented scale and heterogeneous patterns of histopathological images have
presented critical computational bottlenecks requiring new computational histopathology tools.
Recently, deep learning technology has been extremely successful in the field of computer vision,
which has also boosted considerable interest in digital pathology applications. Deep learning and its
extensions have opened several avenues to tackle many challenging histopathological image analysis
problems including color normalization, image segmentation, and the diagnosis/prognosis of human
cancers. In this paper, we provide a comprehensive up-to-date review of the deep learning methods
for digital H&E-stained pathology image analysis. Specifically, we first describe recent literature that
uses deep learning for color normalization, which is one essential research direction for H&E-stained
histopathological image analysis. Followed by the discussion of color normalization, we review
applications of the deep learning method for various H&E-stained image analysis tasks such as nuclei
and tissue segmentation. We also summarize several key clinical studies that use deep learning for
the diagnosis and prognosis of human cancers from H&E-stained histopathological images. Finally,
online resources and open research problems on pathological image analysis are also provided in this
review for the convenience of researchers who are interested in this exciting field.

Keywords: artificial intelligence; machine learning; digital pathology image analysis; color
normalization; segmentation; diagnosis and prognosis; a whole-slide pathological imaging (WSI)
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1. Introduction

Cancer is the second leading cause of mortality worldwide. It is reported that the
global cancer burden is expected to be 28.4 million cases in 2040 [1]. Thus, the effective
and efficient diagnosis of human cancer, especially at its early stage, is essential for global
cancer control. Recently, a wide variety of biomarkers have been utilized for the diagnosis
and prognosis of cancers, including radiomics images [2], histopathological images, and
genetic signatures, such as genetic mutations, gene expression, and protein markers [3].
Among these, the histopathology image is widely recognized as the “golden standard”
for analyzing human cancers since it can visually reflect the aggressiveness of human
cancers at the cell level [4]. Recently, with the remarkable success of digital histopathology,
whole-slide imaging (WSI) has become more advanced and has been frequently used for the
diagnosis and prognosis of human cancers, since it excels at characterizing the morphology
within the tissue at high resolution [5]. Hematoxylin and eosin (H&E) staining is the most
commonly used tissue staining method in the world. Generally, the research directions for
the analysis of H&E-stained WSI can be summarized into the components of color normal-
ization, segmentation, and cancer diagnosis/prognosis (shown in Figure 1). Specifically,
color normalization is used to preprocess the images to correct staining variations across
different images. WSI segmentation is used to segment the nuclei or tissues from the WSI.
Finally, the prediction models are designed for the diagnosis and prognosis of human can-
cers. However, due to the time-consuming inspection of WSI and the large inter-operator
variation among pathologists, there is an imperative need to develop machine learning
models to automatically analyze H&E-stained histopathological images in a more reliable
way [6].
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The machine learning-based methods for the analysis of H&E-stained histopatho-
logical images can be divided into two categories (i.e., the traditional machine learning
methods and deep learning methods). The traditional computational methods objectively
evaluate disease-related tissue changes by extracting handcrafted features such as textu-
ral [7] and morphological features [8], followed by designing classifiers such as support
vector machine (SVM) [9], random forest (RF) [10] and K-nearest neighbors (K-NN) [11]
for the downstream analysis tasks. For instance, Kruk et al. [12] first extracted morpho-
metric, textural, and statistical features from the WSI, and then used these features for
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nuclei classification by the combination of SVM and RF classifiers. Fuchs et al. [13] pro-
posed a computational pipeline to extract local binary patterns and color features from
images and then used these features to segment nuclei relying on a RF classification model.
Zeralla et al. [14] firstly extract the spatial feature from WSI, then the SVM classifier is
applied to accomplish the color normalization task. It has been proved that traditional
machine learning algorithms could achieve significantly superior classification performance
than their competitors if the sample size for model training is small [15], which is suitable
for analyzing rare cancer subtypes with a limited sample size [16]. Moreover, traditional
machine learning models are more understandable and explainable, and can be used to
help clinicians understand how the machine learning models make decisions.

Although much progress has been made, three common limitations have existed in the
traditional machine learning methods for H&E-stained histopathological image analysis.
First, the handcrafted features are extracted in an unsupervised way and are uncorrelated
with the following WSI analysis task [17]. Secondly, the extracted handcrafted features
can only learn the shallow representation of the input image, given the heterogenous
patterns of WSI, these shallow model-based feature extraction methods may be insufficient
to characterize the complex WSI [18]. Thirdly, most traditional machine learning algorithms
are designed for data that would be completely loaded into memory, which is difficult for
analyzing large amounts of WSI [19]. Recently, deep learning technology has been extremely
successful in the field of computer vision, which also boosts considerable interest in digital
H&E-stained pathology analysis [20–22]. In comparison with traditional machine learning
approaches, the deep learning algorithms go directly from the input to the desired output to
extract useful features for specific WSI analysis tasks, which can avoid the complex feature
extraction step. In addition, the heterogenous patterns of WSI can cause variance across
different samples, thereby causing the difficulties of handcrafted features with limited
generalization abilities [23]. The deep learning algorithms are capable of characterizing
such complex patterns when given amounts of WSI data for model training. Moreover,
given recent advances in the high-throughput tissue bank and archiving of digitized WSI,
the deep learning algorithms are much more scalable due to their ability to process massive
amounts of data and perform a lot of computations in a cost and time-effective manner [24].

In this paper, we systematically review the research directions and challenges of deep
learning methods for H&E-stained histopathological image analysis (shown in Figure 1).
Our paper is organized as follows. In Section 2, we will briefly introduce the concepts
and structure of the deep neural network. In Section 3, we will introduce the research
direction of color normalization for the H&E-stained histopathological image analysis. In
Section 4, we will summarize the literatures that applied the deep learning method for
various H&E image segmentation tasks such as nuclei and tissue segmentation. In Section 5,
we will review the clinical studies that apply H&E-stained histopathological images for
the diagnosis and prognosis of cancer based on H&E-stained histopathological images.
Finally, online resources and open research problems on H&E-stained histopathology image
analysis are also provided in Section 6.

2. Deep Neural Network

Deep learning is a new research direction in the field of machine learning based on
the deep neural network, which has greatly boosted the performance of natural image
analysis techniques, such as image classification [24], object detection [25], and semantic
segmentation [26].

A deep neural network is composed of multiple nonlinear modules which can be
regarded as a feature learning process from low to high levels. The convolutional neural
network (CNN) is the most widely used artificial neural network [27] (shown in Figure 2),
which can be regarded as a feature learning process from low to high level. Specifically,
the convolutional layers are used to learn local features (i.e., corners and edges from the
images). Different convolutional layers are interleaved with the pooling layers, which
are used to reduce the output from the convolutional layers. The last fully connected
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layers are used to combine the features, which are learned from the convolutional layers
together and by which we can obtain complex and high-level representation for the final
prediction task. We compare and summarize typical CNN (i.e., AlexNet [28], ZFNet [29],
VGGNet [30], GoogLeNet [31], ResNet [32], and SENet [33]) from the perspectives of
network structure, calculation speed, and classification performance in Table 1, where
the additional dropout layer is used to reduce the risk of overfitting [28], while the batch
normalization strategy [32] can help diminish the reliance of gradients on the scale of the
parameters or their underlying values. CNN takes raw images (or large patches) as input to
avoid the complex feature extraction step, which is highly invariant to translation, scaling,
inclination, and other forms of deformation. Histopathology images are characterized
by data complexity, making deep learning algorithms extremely suitable for each step
in pathological image analysis, including color normalization, histopathological image
segmentation, and the diagnosis and prognosis of human cancers. We will review them in
the following sections.
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Figure 2. The general architecture of a convolutional neural network.

Table 1. Comparison of convolution neural networks for computer vision.

Model AlexNet [28] ZFNet [29] VGGNet-19 [30] GoogLeNet [31] ResNet-152 [32] SENET [33]

Input size 227 × 227 224 × 224 224 × 224 224 × 224 224 × 224 224 × 224
Top-5 error(%) 15.3 11.2 7.50 6.67 3.57 97.75
Layer number 8 8 19 22 152 152

Convolution layer number 5 5 16 21 151 151
Kernel size 11, 5, 3 7, 5, 3 3 7, 1, 3, 5 7, 1, 3, 5 7, 1, 3, 5

Full connected layer
number 3 3 3 1 1 1

Model size 60 M 140 M 144 M 500 M 60 M 64 M
Calculation speed 727 M 1.6 G 20 G 2 G 11 G 21 G

Dropout
√ √ √ √ √ √

Batch Normalization × × × × √ √

3. Color Normalization

Color variations usually exist in WSI due to differences in raw materials and stain-
ing protocols across different pathology labs, interpatient variabilities, and slide scanner
variations. Intuitively, such color variance will affect the generalization performance of
deep learning models. Normalization of the color represented by WSI is thus an important
preprocessing task for digital pathology analysis [34]. Herein, we discuss literature on the
use of deep learning-based methods for color normalization in histopathological images
(Figure 3).
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In general, traditional color normalization methods (i.e., color matching and stain sep-
aration [42–44]) mainly rely on the predefined template image and cannot conduct the style
transformation between different image datasets. In principle, this style transformation
can be resolved by the deep learning-based methods due to their complicated network
structure [39,40,45]. For instance, Patli et al. [40] proposed a self-supervised, learning-based
lightweight neural network to estimate the color shift from the source stain to a predeter-
mined target stain in appearance. Bug et al. [45] used a pre-trained deep neural network
as a feature extractor steering a pixel-wise normalization pipeline, which can achieve ex-
cellent normalization results and ensure a consistent representation of color and texture.
Janowczyk et al. [41] presented a novel stain normalization algorithm based on sparse
autoencoder (StaNoSa) to standardize the color distribution of input images. The results
indicated that StaNoSa showed either comparable or superior results to its competitors.

Recently, with the rapid development of deep learning, generative adversarial network
(GAN) [36] is also widely used to normalize the patches without the guidance of the
template images but can still preserve the organization structure of the tissues. For example,
BenTaieb et al. [37] designed a discriminative image analysis model equipped with the
GAN component that transferred stains across datasets. However, its performance was
largely determined by the auxiliary tasks requiring extra labeling efforts. In order to
reduce the labeling efforts for experts, Zanjani et al. [46] proposed a novel unsupervised
generative model, which was trained in an end-to-end manner and could be instantly
applied to unseen images. Inspired by the cycle-GAN [47], which could be successfully
applied to image-style transformation, Shaban et al. [35] proposed a framework named
StainGAN, which could achieve better qualitative performance in normalizing different
images (Figure 4). In addition, other works [38,39] also considered the structural integrity
of the histopathological images and integrated semantic information at different layers
between a pre-trained semantic network and the stain color normalization network to
further improve the normalization performance.
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4. Pathology Image Segmentation

The segmentation task, which aims at assigning a class label to each pixel of an
image, is a common task in pathology image analysis [48]. The segmentation task on
histopathological images can be divided into two categories, nuclei segmentation, and
tissue segmentation. The nuclei segmentation task focuses on exploring the nuclei features,
such as morphological appearances in histopathological images, which are widely recog-
nized as the most frequently used biomarkers for cancer histology diagnosis. On the other
hand, the tissue segmentation task takes the histopathology image as input and segments
the tissues that are composed of a group of cells in the input image with certain characteris-
tics and structures (i.e., gland, tumor-infiltrating lymphocytes, etc.). These quantitatively
measured tissues are also a crucial indicator for the diagnosis and prognosis of human
cancers [49,50].

Due to the heterogenous patterns in WSI, the accurate segmentation of nuclei and
tissues in the histopathological images is with huge challenges. First, there are varia-
tions on nucleus/tissue sizes and shape, requiring a segmentation model with a strong
generalization ability. Second, nuclei/cells are often clustered into clumps so that they
might partially overlap or touch one another, which will lead to the under-segmentation of
histopathological images. Third, in some malignant cases, such as moderately and poorly
differentially adenocarcinomas, the structure of the tissues (such as the glands) are heavily
degenerated, making them difficult to discriminate [51,52].

In view of these challenges, numerous deep learning-based approaches have been
proposed to extract high-level features from WSI that can achieve enhanced segmentation
performance. Here, we first review the deep learning-based nuclei segmentation algorithm.
Then, we summarize the development of deep learning algorithms on tissue-level seg-
mentation tasks. We show the overview of papers using deep learning for nuclei/tissue
segmentation in Figure 5.
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4.1. Nuclei-Level Segmentation

Cellular object segmentation is a prerequisite step for the assessment of human can-
cers [65]. For example, the counting of mitoses is one of the most prognostic factors in
breast cancer requiring the assistance of nuclei segmentation [66]. In the diagnosis of
cervical cytology, nuclei segmentation is necessary to discover all types of cytological abnor-
malities [67]. The traditional nuclei segmentation algorithms are based on morphological
processing methods [8], clustering algorithms [68], level set methods [69], and their vari-
ants [70–72], whose performance are largely determined by the designed features requiring
the domain knowledge of experts. Recently, deep learning approaches have been widely
applied without the efforts of designing hand-crafted features [73].

Generally, the deep learning-based nuclei segmentation algorithms can be divided into
two categories, the pixel-wise classification methods [64,74–76] and the fully convolutional
network (FCN)-based methods [60,61,77]. Pixel-wise classification methods convert the seg-
mentation task into the classification task, by which the label of each pixel is predicted from
raw pixel values in a square window centered on it [74]. For example, Cireşan et al. [64] first
densely sampled the squared windows from the WSI, followed by classifying the centered
pixels via utilizing the rich context information within the sampled windows. Moreover,
Zhou et al. [63] learned a bank of convolutional filters and a sparse linear regressor to
produce the likelihood for each pixel being nuclear or background regions. By considering
the windows of different sizes can extract helpful complementary information for the
nuclei segmentation, a multiscale convolutional network and graph-partitioning–based
method [62] were proposed for the task of nuclei segmentation. In addition, Xing et al. [78]
firstly learned a CNN model to generate a probability map of each image. According to
the probability map, each pixel is then assigned a probability belonging to the nucleus.
Finally, an iterative region merging algorithm was used to accomplish the segmentation
task. Nesma et al. [79] also presented an optimized pixel-based classification model by the
cooperation of region growing strategy that could successfully obtain nucleus and cyto-
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plasm segmentation results. Additionally, Liu et al. [75] proposed a panoptic segmentation
model which incorporates an auxiliary semantic segmentation branch with the instance
branch to integrate global and local features for nuclei segmentation.

Although the above pixel-wise classification methods have shown more promising
performance over the traditional segmentation algorithms, obvious limitations can also be
found. First, they are quite slow since the densely selected patches increase the calculation
burden for neural network training [80]. Second, the extracted patches cannot fully reveal
the rich context information within the whole input image for nuclei segmentation. Accord-
ingly, a more elegant architecture called “fully convolutional network” is proposed [81].
FCN can use the full image rather than the densely extracted patches as the input, which
can produce a more accurate and efficient nuclei segmentation result. In addition to FCN,
U-Net is another powerful nuclei segmentation tool [82]. In comparison with FCN, U-Net
uses skip connections between downsampling and upsampling paths that can stabilize
gradient updates for deep model training. Based on the U-Net structure, Zhao et al. [61]
proposed a Triple U-Net architecture for nuclei segmentation without the necessity of color
normalization and achieved state-of-the-art nuclei segmentation performance (Figure 6).
To split touching nuclei that are hard to segment, Yang et al. [60] used a hybrid network
consisting of U-Net and region proposal networks, followed by a watershed step to separate
them into individual ones. Amirreza et al. [59] proposed a two-stage U-Net–based model
for touching cell segmentation, where the first stage used the U-Net to separate nuclei from
the background while the second stage applied the U-Net to regress the distance map of
each nucleus for the final touching cell segmentation. To explicitly mimic how human
pathologists combine multi-scale information, Schmitz et al. [77] introduced a family of
multi-encoder FCN with deep fusion for nuclei segmentation. Other U-Net–based studies
include [51,58] proposed deep contour-aware networks that integrate multilevel contextual
features to accurately detect and segment nuclei from histopathological images, which
could also effectively improve the final segmentation performance.
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4.2. Tissue-Level Segmentation

Besides nuclei segmentation, computerized segmentation of specific tissues in his-
topathological images is another core operation to study the tumor biology system. For
instance, the segmentation of tumor-infiltrating lymphocytes and characterizing their spa-
tial correlation on WSI have become crucial in diagnosis, prognosis, and treatment response
prediction for different cancers [83]. Moreover, gland segmentation is one prerequisite step
for quantitatively measuring glandular formation, which is also an important indicator for
exploring the degree of differentiation [84,85].

The automatic segmentation of tissues in histology images has been explored by many
studies [86,87]. Traditional tissue segmentation methods usually relied on the extraction of
handcrafted features, the design of conventional classifiers [88]. Recently, deep learning
has become popular in computer vision and image-processing tasks due to its outstanding
performance, and some studies also applied deep learning methods for the segmentation
of different types of tissues from WSI [56,89,90]. Among the existing deep learning segmen-
tation algorithms, the U-Net-based neural network is still most widely used. For example,
Saltz et al. [57] applied the U-Net network to present mappings of tumor-infiltrating lym-
phocytes on H&E images from 13 TCGA (The Cancer Genome Atlas) tumor types. Based
on U-Net, Raza et al. [56] presented a minimal information loss dilated network for gland
instance segmentation in colon histology images. Chen et al. [89] presented a deep contour-
aware network by formulating an explicit contour loss function in the training process and
achieved the best performance during the 2015 MICCAI Gland Segmentation (Glas) on-site
challenge. Lu et al. [55] proposed BrcaSeg, a WSI processing pipeline that utilized deep
learning to perform automatic segmentation and quantification of epithelial and stromal
tissues for breast cancer WSI from TCGA. Besides the U-Net structure, Zhao [91] proposed
a deep neural network, SCAU-Net, with spatial and channel attention for gland segmenta-
tion. SCAU-Net could effectively capture the nonlinear relationship between spatial-wise
and channel-wise features, and achieve state-of-the-art gland segmentation performance.
Moreover, with the help of the DeeplabV3 model, Musulin [90] developed an enhanced
histopathology analysis tool that could accurately segment epithelial and stromal tissue for
oral squamous cell carcinoma. Considering that the boundary of the gland is difficult to
discriminate, Yan et al. [92] proposed a shape-aware adversarial deep learning framework,
which had better tolerance to boundary uncertainty and was more effective for boundary
detection. In addition, due to the fixed encoder-decoder structure, U-Net is not suitable for
processing texture WSIs, Wen et al. [93] utilized a Gabor-based module to extract texture
information at different scales and directions for tissue segmentation. Rojthoven et al. [94]
proposed HookNet, a semantic segmentation model combining context information in
WSIs via multiple branches of encoder-decoder CNN, for tissue segmentation.

Although much progress has been achieved, the superior performance of previous
deep neural network-based methods mainly depends on the substantial number of training
images with pixel-wise annotation, which are difficult to obtain due to the requirements of
tremendous labeling efforts for experts. In order to reduce the overall labelling cost, several
weakly supervised tissue segmentation algorithms have also been proposed [53,95,96]. For
instance, Mahapatra [95] proposed a deep active learning framework that could actively
select valuable samples from the unlabeled data for annotation, which significantly reduced
the annotation efforts while still achieving comparable gland segmentation performance.
Lai et al. [96] proposed a semi-supervised active learning framework with a region-based
selection criterion. This framework iteratively selects regions for annotation queries to
quickly expand the diversity and volume of the labeled set. Besides, Xie et al. [54] proposed
a pairwise relation-based semi-supervised model for gland segmentation on histology
images, which could produce considerable improvement in learning accuracy with limited
labeled images and amounts of unlabeled images. Other studies include [53] having pro-
posed a multiscale conditional GAN for epithelial region segmentation that could be used to
compensate for the lack of labeled data in the training dataset. Moreover, Gupta et al. [97]
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introduced the idea of ‘image enrichment’ whereby the information content of images
based on GAN is increased in order to enhance segmentation accuracy.

5. Cancer Diagnosis and Prognosis

Cancer is an aggressive disease with a low median survival rate. Ironically, the treat-
ment process is long and very costly due to its high recurrence and mortality rates. Accurate
early diagnosis and prognosis prediction of cancer is essential to enhance the patient’s sur-
vival rate [98,99]. It is now widely recognized that histopathological images are regarded
as golden standards for the diagnosis and prognosis of human cancers [100,101]. Previous
studies on histopathology image classification and prediction mainly focused on manual
feature design. For instance, Cheng et al. [16] extracted a 150-dimensional handcrafted
feature to describe each WSI, followed by the traditional classifiers to distinguish different
types of renal cell carcinoma. Yu et al. [102] extracted 9879 quantitative features from each
image tile and used regularized machine-learning methods to select the top features and to
distinguish shorter-term survivors from longer-term survivors with adenocarcinoma or
squamous cell carcinoma. Recently, with the success of deep learning in various computer
vision tasks, training end-to-end deep learning models for various histopathological image
analysis tasks without manually extracting features has drawn much attention [103–105].

Generally, the main challenge for applying deep learning algorithms for WSI classi-
fication and prediction is the large size of the WSI (e.g., 100,000 × 100,000 pixels), and it
is impossible to directly feed these large images into the deep neural network for model
training [106,107]. To address this challenge, there are two main lines of approaches, the
patch-based and WSI-based methods (which are summarized in Figure 7).

Cancers 2022, 14, x 10 of 20 
 

 

learning accuracy with limited labeled images and amounts of unlabeled images. Other 
studies include [53] having proposed a multiscale conditional GAN for epithelial region 
segmentation that could be used to compensate for the lack of labeled data in the training 
dataset. Moreover, Gupta et al. [97] introduced the idea of ‘image enrichment’ whereby 
the information content of images based on GAN is increased in order to enhance seg-
mentation accuracy. 

5. Cancer Diagnosis and Prognosis 
Cancer is an aggressive disease with a low median survival rate. Ironically, the treat-

ment process is long and very costly due to its high recurrence and mortality rates. Accu-
rate early diagnosis and prognosis prediction of cancer is essential to enhance the patient’s 
survival rate [98,99]. It is now widely recognized that histopathological images are re-
garded as golden standards for the diagnosis and prognosis of human cancers [100]. Pre-
vious studies on histopathology image classification and prediction mainly focused on 
manual feature design. For instance, Cheng et al. [101] extracted a 150-dimensional hand-
crafted feature to describe each WSI, followed by the traditional classifiers to distinguish 
different types of renal cell carcinoma. Yu et al. [102] extracted 9879 quantitative features 
from each image tile and used regularized machine-learning methods to select the top 
features and to distinguish shorter-term survivors from longer-term survivors with ade-
nocarcinoma or squamous cell carcinoma. Recently, with the success of deep learning in 
various computer vision tasks, training end-to-end deep learning models for various his-
topathological image analysis tasks without manually extracting features has drawn 
much attention [103–105]. 

Generally, the main challenge for applying deep learning algorithms for WSI classi-
fication and prediction is the large size of the WSI (e.g., 100,000 × 100,000 pixels), and it is 
impossible to directly feed these large images into the deep neural network for model 
training [106,107]. To address this challenge, there are two main lines of approaches, the 
patch-based and WSI-based methods (which are summarized in Figure 7). 

 
Figure 7. Overview of papers using deep learning for diagnosis and prognosis of the disease in 
histopathology images [108–116]. 

5.1. Patch-Level Methods 
In connection with the large size of WSI, the patch-based methods required the 

pathologist to select the region of interests from WSI that are representative, then the se-
lected regions were split into patches with a significantly smaller size for deep model 
training [108,109,117]. For instance, Zhu et al. [108] developed a deep CNN for survival 

Commented [M12]: The directions of Figure 5 and 
Figure 7 are inconsistent, please confirm if the 
format needs to be unified. 

Figure 7. Overview of papers using deep learning for diagnosis and prognosis of the disease in
histopathology images [108–116].

5.1. Patch-Level Methods

In connection with the large size of WSI, the patch-based methods required the pathol-
ogist to select the region of interests from WSI that are representative, then the selected
regions were split into patches with a significantly smaller size for deep model train-
ing [108,109,117]. For instance, Zhu et al. [108] developed a deep CNN for survival analysis
(DeepConvSurv) with the pathological patches derived from the WSI. They demonstrated
that the end-to-end learning algorithm, DeepConvSurv, outperformed the standard Cox
proportional hazard model. Cheng et al. [109] applied a deep autoencoder to aggregate the
extracted patches into different groups and then learn topological features from the clusters
to characterize cell distributions of different cell types for survival prediction.



Cancers 2022, 14, 1199 11 of 20

By considering that training a model from scratch requires a very large dataset and
takes a long time to train. Some patch-based methods also adopted the transfer learn-
ing model (TL) to speed up the training procedure, as well as improve the classification
performance. TL provides an effective solution for feasibly and fast customized accurate
models by transferring and fine-tuning the learned knowledge of pre-trained models over
large datasets. For instance, Xu et al. [117] exploited CNN activation features to achieve
region-level classification results. Specifically, they first over-segmented each preselected
region into a set of overlapping patches. A TL strategy was then explored by pretraining
CNN with ImageNet. Finally, an SVM classifier was adopted for classification. Similarly,
Källénet et al. [110] extracted features from the divided patches via the pre-trained OverFeat
network. The RF classifier was applied to discriminate the subtypes in prostatic adenocar-
cinoma. Moreover, in [111], the pre-trained VGG-16 network was first applied to extract
descriptors from the preselected patches. Then, the feature representation of WSI was
computed by the average pooling of the feature representations of its associated patches.

5.2. WSI-Level Methods

Although much progress has been achieved, the abovementioned patch-level pre-
diction methods still have several inherent drawbacks. First, the patch-based methods
required labor-sensitive patch-level annotation, which would increase the workload for the
pathologist [118]. Second, most of the existing patch-based methods usually assumed that
the diagnosis or survival information with each randomly selected patch was the same as
its corresponding WSI, which neglected the fact that WSI usually had large heterogenous
patterns and thus the patch-level label would not always match the WSI-level label [119].

In view of these challenges, building diagnosis/prognosis models only relying on
WSI-level annotation has been widely investigated [112,119,120]. Among the WSI-based
methods, the multi-instance learning (MIL) framework was a simple but most effective
tool. For example, Shao et al. [112] considered the ordinal characteristic of the survival
process by adding a ranking-based regularization term on the Cox model and used the
average pooling strategies to aggregate the instance-level results to the WSI-level prediction
results (Figure 8). Similarly, Iizuka et al. [120] first trained a CNN model using millions of
tiles extracted from the WSI. Then, a max-pooling strategy combined with the recurrent
neural network was adopted to fuse the patch-level results into WSI-level prediction
results. However, by considering the simple decision fusion approaches (e.g., average
pooling and max pooling) were insufficiently robust to make the right WSI-level prediction,
Yao et al. [113] proposed an attention-guided deep multiple instance learning network
(DeepAttnMISL) for survival prediction from WSI. In comparison with the traditional
pooling strategies, attention-based aggregation is more flexible and adaptive for survival
prediction. In addition, Chikontwe et al. [114] presented a novel MIL framework for
histopathology slide classification. The proposed framework could be applied for both
instance and bag level learning with a center loss that minimized intraclass distances in the
embedding space. The experimental results also suggested that the proposed method could
achieve overall improved performance over recent state-of-the-art methods. Moreover,
Wang et al. [119] first extracted the spatial contextual features from each patch. Then,
a globally holistic region descriptor was calculated after aggregating the features from
multiple representative instances for WSI-level classification.
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Although CNN-based MIL frameworks have shown impressive performance in the
field of histopathology analysis, they are unable to capture complex neighborhood in-
formation as they analyze local areas determined by the convolutional kernel to extract
interaction information between objects. Recently, some researchers have also applied the
graph convolutional network (GCN) to analyze histopathological images for the diagnosis
and prognosis of human cancers [115,121], which are becoming increasingly useful for
medical diagnosis and prognosis. For instance, Chen et al. [115] presented a context-aware
graph convolutional network that hierarchically aggregates instance-level histology fea-
tures to model local- and global-level topological structures in the tumor microenvironment.
Li et al. [121] proposed to model WSI as a graph and then develop a graph convolutional
neural network with attention learning that better serves the survival prediction by render-
ing the optimal graph representations of WSIs. Moreover, the study in [122] presented a
patch relevance-enhanced graph convolutional network (RGCN) to explicitly model the
correlations of different patches in WSI, which can approximately estimate the diagnosis-
related regions in WSI. Extensive experiments on real lung and brain carcinoma WSIs have
demonstrated their effectiveness since GCNs can better exploit and preserve neighboring
relations compared with CNN-based models. Besides, some researchers have noticed the
relation between genes and images. Chen et al. [116] presented a multimodal co-attention
transformer (MCAT) framework that learns an interpretable, dense co-attention mapping
between WSI and genomic features formulated in an embedding space.

6. Open Resources and Future Work
6.1. Open Resources

A collection of high-quality labeled datasets is an important prerequisite for deep
model training. We show the benchmark datasets in terms of different tasks in Table 2.
Specifically, to carry out color normalization tasks, NIA Lymphoma 2009, UCSB, CAME-
LYON16, and CAMELYON17 datasets were most widely used. As for nuclei/tissue segmen-
tation tasks, MoNuSeg 2018, TNBC 2018, GLAS 2015, and CRAG 2019 projects provided
essential information for the convenience of deep model training. Finally, the datasets
of ACDC-LungHP 2019, CRCHisto 2016, and CoNSeP 2019 collected the WSI and their
corresponding diagnosis/prognosis information for numerous cancers patients. As can
be seen from Table 3, QuPath [123], PMA.start, Orbit [124], and CellProfiler [125] are
open, powerful, flexible, extensible software platforms for bioimage analysis, which can
conduct each step for pathological image analysis. Openslide [126] is a Python package
that can provide a simple interface to read WSI, and ASAP is an open-source WSI viewer
which focuses on fast and fluid image viewing with an easy-to-use interface for making
annotations based on Openslide. In addition, ImageJ [127] is also a famous open-source
medical imaging viewer which can add powerful plug-ins to use many image analysis
algorithms. A plugin for ImageJ, named SlideJ, can seamlessly extend the application of
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image analysis algorithms implemented in ImageJ for single microscopic field images to a
WSI analysis. Finally, The Cytomine software [128] is an open-source web platform that can
foster collaborative analysis of very large images and allows for semi-automatic processing
of large image collections via machine learning algorithms.

Table 2. Summary of publicly available databases in computational histopathology.

ID Cancer Types Images/Cases Link

Color normalization

NIA Lymphoma 2009 lymphoma 375 https://www.nia.nih.gov (accessed on 17 January 2022)

UCSB Breast 58 http://iridl.ldeo.columbia.edu/SOURCES/.UCSB/
(accessed on 17 January 2022)

CAMELYON16 2016 Breast 400 https://camelyon16.grand-challenge.org/
(accessed on 17 January 2022)

CAMELYON17 2017 Breast 1000 https://camelyon17.grand-challenge.org/
(accessed on 17 January 2022)

Pathology image segmentation

Nuclei segmentation

MoNuSeg 2018 Multi-tissue 44 https://monuseg.grand-challenge.org/Home/
(accessed on 17 January 2022)

TNBC 2018 Breast 50 https://github.com/PeterJackNaylor/DRFNS
(accessed on 17 January 2022)

Gland segmentation

GLAS 2015 Colon 165 https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/
(accessed on 17 January 2022)

CRAG 2019 Colon 213 https://warwick.ac.uk/fac/cross_fac/tia/data/mildnet/
(accessed on 17 January 2022)

Diagnosis and prognosis

Diagnosis

ICPR 2014 Breast 2112 https://mitos-atypia-14.grand-challenge.org/
(accessed on 17 January 2022)

BreakHis 2016 Breast 82 https://mitos-atypia-14.grand-challenge.org/
(accessed on 17 January 2022)

HER2 Scoring 2016 Breast 86 https://warwick.ac.uk/fac/sci/dcs/research/tia/her2contest/
(accessed on 17 January 2022)

BACH 2018 Breast 500
https://web.inf.ufpr.br/vri/databases/breast-cancer-
histopathological-database-breakhis/
(accessed on 17 January 2022)

Prognosis

CRCHisto 2016 Colon 100 https://warwick.ac.uk/fac/cross_fac/tia/data/
crchistolabelednucleihe/ (accessed on 17 January 2022)

NCT-CRC-HE-100k 2019 Colon 100,000 https://zenodo.org/record/1214456#.YeV8MnpByUl
(accessed on 17 January 2022)

ACDC-LungHP 2019 Lung 200 https://acdc-lunghp.grand-challenge.org/
(accessed on 17 January 2022)

CoNSeP 2019 Colon 41 https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/
(accessed on 17 January 2022)

Multiple

TCIA Multi-cancer - https://www.cancerimagingarchive.net/
(accessed on 17 January 2022)

https://www.nia.nih.gov
http://iridl.ldeo.columbia.edu/SOURCES/.UCSB/
https://camelyon16.grand-challenge.org/
https://camelyon17.grand-challenge.org/
https://monuseg.grand-challenge.org/Home/
https://github.com/PeterJackNaylor/DRFNS
https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/
https://warwick.ac.uk/fac/cross_fac/tia/data/mildnet/
https://mitos-atypia-14.grand-challenge.org/
https://mitos-atypia-14.grand-challenge.org/
https://warwick.ac.uk/fac/sci/dcs/research/tia/her2contest/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://warwick.ac.uk/fac/cross_fac/tia/data/crchistolabelednucleihe/
https://warwick.ac.uk/fac/cross_fac/tia/data/crchistolabelednucleihe/
https://zenodo.org/record/1214456#.YeV8MnpByUl
https://acdc-lunghp.grand-challenge.org/
https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/
https://www.cancerimagingarchive.net/
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Table 3. Summary of publicly available tools in computational histopathology.

Tool Name Language View Color
Normalization Segmentation Diagnosis

/Prognosis Link Reference

Qupath Java
√ √ √ √ https://qupath.github.io/

(accessed on 17 January 2022) [123]

Cytomine Java, web
√ × √ √ https://cytomine.be/

(accessed on 17 January 2022) [128]

Orbit
Java, Scala,
Python, R,
and SQL

√ √ √ √ https://www.orbit.bio/
(accessed on 17 January 2022) [124]

ASAP Python
√ × × ×

https://computationalpathologygroup.
github.io/ASAP/

(accessed on 17 January 2022)
\

Openslide C, Java
√ √ √ √ https://openslide.org/demo/

(accessed on 17 January 2022) [126]

ImageJ Java
√ √ √ √ https://imagej.net/plugins/slidej

(accessed on 17 January 2022) [127]

PMA.start Web
√ √ √ √ https://free.pathomation.com/

(accessed on 17 January 2022) \

CellProfiler Python
√ √ √ √ https://cellprofiler.org/

(accessed on 17 January 2022) [125]

6.2. Future Work

We primarily reviewed the recently developed deep learning algorithms employed for
the analysis of histopathological images. Although tremendous efforts have been made, sev-
eral issues should be addressed in future studies. First, most color normalization algorithms
are designed to match the H&E-stained images derived from different sources. However, it
is still challenging to accomplish the color transformation task from H&E-stained images
to other immunohistochemistry-stained images due to the large variance between them.
Applying the normalization step to match the image with different stains that can facilitate
a chromatic distinction among different tissue constituents needs more study [129]. Second,
although the deep learning algorithms have shown their advantages for the segmentation of
nuclei and specific tissues from the histopathological image, the generation of an adequate
volume of high-quality labels still needs tremendous annotation efforts from the pathologist.
While the existing weakly supervised learning algorithms, such as active learning and
semi-supervised learning methods, can reduce the annotation workload on pathologists to
some extent, a design for a scalable crowdsourcing approach [130] that benefits from the
participation of non-pathologists to reduce pathologist effort and enables minimal-effort
collection of segmentation boundaries is needed. Third, most of the WSI-level diagnosis or
prognosis models are calculated in a black box, so that no human can understand which
part in the WSI mostly affects the final prediction. To make our model more explainable, it
is desirable to design a deep learning model that can identify discriminant patches from
the WSI that triggers the clinical results. Finally, imaging genomics [131], as an emerging
research field, has also created new opportunities for the diagnosis and prognosis of human
cancers. How to effectively combine the imaging and genomic data [132] to help better
understand prognostic and, hopefully, therapeutic aspects of various human cancers is
another interesting and prospective research direction in the future.

7. Conclusions

We have reviewed the advanced deep learning algorithms for the computational
analysis of H&E-stained histopathological images. We presented some recent findings
on the state-of-the-art deep learning techniques on different H&E-stained pathological
image analysis tasks, such as color normalization, nuclei/tissue segmentation, and the
diagnosis and prognosis of human cancers. We also provided online resources and outlined
open research problems on digital H&E-stained pathology image analysis. Deep learning
is a powerful tool, providing reliable support for diagnostic assessment and treatment

https://qupath.github.io/
https://cytomine.be/
https://www.orbit.bio/
https://computationalpathologygroup.github.io/ASAP/
https://computationalpathologygroup.github.io/ASAP/
https://openslide.org/demo/
https://imagej.net/plugins/slidej
https://free.pathomation.com/
https://cellprofiler.org/
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decisions. Last but not least, we also provided open research problems for future studies
including removing the stain variation between H/E and IHC stained images, reducing the
human annotation efforts for tissue/nuclei segmentation, designing the explainable deep
neural network for identifying discriminant and meaningful patches from the image, and
integrating histopathological images with genomic data for clinical outcome prediction.
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