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Abstract: Ferroptosis is an iron−dependent form of regulated cell death. It has attracted more and
more research interests since it was found because of its potential physiological and pathological roles.
In recent years, many efforts have been made for the developments and applications of selective
fluorescence probes for real−time and in situ tracking of bioactive species during ferroptosis process,
which is necessary and significant to further study the modulation mechanisms and pathological
functions of ferroptosis. In this review, we will focus on summarizing the newly developed fluores-
cence probes that have been applied for ferroptosis imaging in the recent years, and comprehensively
discussing their design strategies, including the probes for iron, reactive oxygen species, biothiols
and intracellular microenvironmental factors.

Keywords: ferroptosis; fluorescence probe; iron; reactive oxygen species; biothiols;
intracellular microenvironment

1. Introduction

Ferroptosis is a newly found form of regulated cell death by Stockwell and co−workers
in 2012 [1], which is highly dependent on the participation of intracellular iron. More and
more research has shown that ferroptosis is closely related with many critical diseases,
such as neurodegeneration, cancer, ischaemic organ injuries and autoimmune diseases [2–5].
Meanwhile, the modulation of cancer cell ferroptosis also provides new strategy to preci-
sion antitumor drug design [6–10]. Ferroptosis is executed by the accumulation of lipid
peroxides to lethal levels. In ferroptosis, the lipid peroxidation of polyunsaturated fatty
acids can be induced by two different pathways [11,12]: one is blocking cystine uptake of
the cystine/glutamate antiporter system xc

− on cell membrane by ferroptosis inducer such
as erastin, to deplete intracellular biothiols, including cysteine (Cys) and its downstream
product glutathione (GSH), and finally cause the inactivation of the main lipid perox-
ides eliminator glutathione peroxidase 4 (GPX4) [1,13,14]; the other one is the covalent
inactivation of GPX4 by some specific GPX4 inhibitors (e.g., RSL3) [15]. It is clear that
iron, reactive oxygen species (ROS) and biothiols play crucial and highly related roles
in the development and redox regulation in ferroptosis (Figure 1). Therefore, efficient
detection methods that enable the real−time and in situ tracking of these bioactive species
are necessary and significant to further study the modulation mechanisms and pathological
functions of ferroptosis.
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Figure 1. A brief illustration for the roles of iron, reactive oxygen species and biothiols in the devel-
opment and redox regulation in ferroptosis. Abbreviations: Cys, cysteine; GSH, reduced glutathione; 
GSSG, oxidized glutathione; GPX4, glutathione peroxidase 4; ROS, reactive oxygen species; PUFA, 
polyunsaturated fatty acid; L−OOH, lipid peroxides; L−OH, lipid alcohols. 

Fluorescence probes have long been used for bioimaging due to their sensitive, 
high−resolution and noninvasive properties [16–18], for example, imaging of ROS [19–21], 
biothiols [22–24] and cell microenvironmental factors (e.g., viscosity and polarity) [25]. 
Commercially available probes, for instance, ROS responsive probe 2′,7′−dichlorodihy-
drofluorescein diacetate (H2DCFDA) and lipid peroxides responsive C11−BODIPY581/591 
are capable of the visualized analysis for ferroptosis [1,26,27]. However, these probes can 
only monitor the total amount of ROS or lipid peroxides, lack selectivity for a certain bio-
active species. Thus, in recent years, many efforts have been made for the developments 
and applications of selective fluorescence probes for ferroptosis. In this review, we will 
focus on summarizing the newly developed fluorescence probes that have been applied 
for ferroptosis imaging in the recent years, and comprehensively discussing their design 
strategies, including the probes for iron, reactive oxygen species, biothiols and intracellu-
lar microenvironmental factors. 

2. Fluorescence Probes for Iron and Its Related Bioactive Species 
As one of the central regulators for ferroptosis process, iron is indispensable for the 

accumulation of lipid peroxides. The import, export and storage of iron greatly impact the 
cell sensitivity for ferroptosis [11]. On one hand, the iron−participated Fenton reaction and 
Haber–Weiss reaction directly contribute to the cell ROS pool [28,29], including hydroxyl 
radical (•OH), superoxide (O2•−), hydroperoxyl radical (•OOH) and hydrogen peroxide 
(H2O2), which are the main initiators for lipid peroxidation process [30,31]. On the other 
hand, some iron−containing enzymes, such as lipoxygenase, are also essential promotors 
of lipid peroxidation [32]. Thus, the detection of intracellular iron during ferroptosis, es-
pecially distinguishing iron of different valence states, is significant for ferroptosis stud-
ies. 

2.1. Probes for Fe2+ and Heme 
Despite its importance for many life processes, fluorescence probes for selective de-
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Figure 1. A brief illustration for the roles of iron, reactive oxygen species and biothiols in the
development and redox regulation in ferroptosis. Abbreviations: Cys, cysteine; GSH, reduced
glutathione; GSSG, oxidized glutathione; GPX4, glutathione peroxidase 4; ROS, reactive oxygen
species; PUFA, polyunsaturated fatty acid; L−OOH, lipid peroxides; L−OH, lipid alcohols.

Fluorescence probes have long been used for bioimaging due to their sensitive,
high−resolution and noninvasive properties [16–18], for example, imaging of ROS [19–21],
biothiols [22–24] and cell microenvironmental factors (e.g., viscosity and polarity) [25]. Commer-
cially available probes, for instance, ROS responsive probe 2′,7′−dichlorodihydrofluorescein
diacetate (H2DCFDA) and lipid peroxides responsive C11−BODIPY581/591 are capable of
the visualized analysis for ferroptosis [1,26,27]. However, these probes can only monitor
the total amount of ROS or lipid peroxides, lack selectivity for a certain bioactive species.
Thus, in recent years, many efforts have been made for the developments and applications
of selective fluorescence probes for ferroptosis. In this review, we will focus on summariz-
ing the newly developed fluorescence probes that have been applied for ferroptosis imaging
in the recent years, and comprehensively discussing their design strategies, including the
probes for iron, reactive oxygen species, biothiols and intracellular microenvironmental factors.

2. Fluorescence Probes for Iron and Its Related Bioactive Species

As one of the central regulators for ferroptosis process, iron is indispensable for the
accumulation of lipid peroxides. The import, export and storage of iron greatly impact the
cell sensitivity for ferroptosis [11]. On one hand, the iron−participated Fenton reaction and
Haber–Weiss reaction directly contribute to the cell ROS pool [28,29], including hydroxyl
radical (•OH), superoxide (O2

•−), hydroperoxyl radical (•OOH) and hydrogen peroxide
(H2O2), which are the main initiators for lipid peroxidation process [30,31]. On the other
hand, some iron−containing enzymes, such as lipoxygenase, are also essential promotors
of lipid peroxidation [32]. Thus, the detection of intracellular iron during ferroptosis,
especially distinguishing iron of different valence states, is significant for ferroptosis studies.

2.1. Probes for Fe2+ and Heme

Despite its importance for many life processes, fluorescence probes for selective de-
tection of labile ferrous ion (Fe2+) within living cells remain limited. A main reason is the
fluorescence quenching property of Fe2+ ion, due to its unpaired electrons on d−orbit. Fe2+

would act as a fluorescence quencher by electron and/or energy transfer after chelating with
a fluorescence probe. Therefore, chelation−based Fe2+ probes often present fluorescence
turn−off response, which is undesirable for their applications in biological systems [33,34].
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In addition, the binding ability of Fe2+ is relatively weaker comparing to other metal
ions [35], which may cause poor selectivity for Fe2+.

To address these problems, Chang’s group [36] sought to design a reactivity−based
probe design strategy by which Fe2+ selectively reacts with a caged probe to release the
fluorophore rather than binding. The developed probe FIP−1 is inspired by the antimalarial
agents such as artemisinin that contains a Fe2+−cleavage endoperoxide moiety, as shown
in Figure 2A. Based on fluorescence resonance energy transfer (FRET), FIP−1 was designed
by connecting a 5−aminomethyl fluorescein (5−AMF, FRET donor) and a cyanine 3 (Cy3,
FRET acceptor) by an Fe2+−cleavable endoperoxide linker. FIP−1 itself showed two ab-
sorption peak at 495 and 545 nm, which is assigned to 5−AMF and Cy3, respectively.
Meanwhile, due to the FRET effect, it fluoresced at 515 and 556 nm. When exposed to
Fe2+, the cleavage of endoperoxide linker could block the FRET effect from 5−AMF to
Cy3, resulting in obvious fluorescence increase at 515 nm. FIP−1 showed no response to
other common metal ions, such as Fe3+, Cu2+, Mg2+, K+, Ca2+, Mn2+. However, Cu+ at
10 µM level could induce non−negligible fluorescence response. FIP−1 was then applied
to detect the changes in labile iron pools (i.e., free Fe2+ and Fe2+ weakly bound to cellular
ligands) during ferroptosis initiated by a newly reported ferroptosis inducer 35MEW28.
As seen in image b of Figure 2B, MD−AMB−231 cells treated with ferroptosis inducer
35MEW28 exhibited obviously increased level of the labile iron pool. The co−incubation of
cells with 35MEW28 and deferoxamine (DFO, a Fe2+ scavenger) did not result in a change
in labile iron pools compared to control group. However, the co−treatment with 35MEW28
and the lipophilic antioxidant Fer−1 does not alter the labile iron pools compared to cells
treated with 35MEW28 alone. These results suggest that cell ferroptosis process exhibited
increased labile Fe2+ levels.
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Figure 2. The FRET−based Fe2+ probe FIP−1 and its application in imaging of changes in labile iron
pools during 35MEW28−initiated ferroptosis of MD−AMB−231 cells. (A) Response mechanism of
FIP−1 to Fe2+. (B) Fluorescence imaging of FIP−1 in MDAMB−231 cells treated with (a) vehicle,
(b) 35MEW28, (c) 35MEW28 + DFO, and (d) 35MEW28 + Fer−1. (e–h) Bright field images of
(a–d). (i) Mean Green/FRET ratios of MDA−MB−231 cells. Statistical significance was assessed
by calculating p−values using one−way ANOVA with the Bonferroni correction in R, * p < 0.05.
Reprinted/adapted with permission from Ref. [36]. Copyright 2016, American Chemical Society.
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Another reactivity−based approach for Fe2+ selective probe is the Fe2+−triggered
deoxygenation of dialkylarylamine N−oxide. As depicted in Figure 3, fluorophore with a
dialkylarylamine N−oxide group is usually non−fluorescent as the photoinduced electron
transfer (PET, a non−radiative process) from the N−oxide group to fluorophore. However,
the selective deoxygenation of dialkylarylamine N−oxide moiety by Fe2+ can recover
the fluorescence of the connected fluorophore, which offers a universal design method
for functionalized Fe2+ probe by modifying varied fluorophore with dialkylarylamine
N−oxide group [37,38]. Based on this approach, Hirayama et al., reported a series of
organelle−targetable Fe2+ probe MtFluNox (mitochondria targeting) [39], Lyso−RhoNox
(lysosome targeting) [40], and ER−SiRhoNox (endoplasmic reticulum targeting) [41],
and applied them to monitor organelle Fe2+ level change in ferroptosis [42]. Through the
selective deoxygenation reaction with Fe2+, these probes presented significant fluorescence
turn−on at 535 nm (MtFluNox), 575 nm (Lyso−RhoNox) and 660 nm (ER−SiRhoNox)
with similar reaction rates. The reaction rate constants of MtFluNox, Lyso−RhoNox,
and ER−SiRhoNox with Fe2+ were tested to 2.1× 10−3 s−1, 2.2× 10−3 s−1, and 1.7× 10−3 s−1,
respectively. In addition, colocalization imaging showed high Pearson’s correlation value
of these probes with the corresponding commercial organelle−targetable dyes, for instance,
0.81 ± 0.03 for Ac−MtFluNox (acetylated form of MtFluNox, more cell−compatible) with
MitoTracker DeepRed, 0.80 ± 0.02 for Lyso−RhoNox with LysoTracker Green DND−26,
and 0.80 ± 0.02 for ER−SiRhoNox with ER−Tracker Green, implying their good
organelle−targeting ability. These properties enable the simultaneous multi−color imaging
of labile Fe2+ levels at each targeted organelle. With the fluorescence imaging of these
probes, the authors found that ferroptosis of HT−1080 cells induced by erastin showed
aberrant elevation of labile Fe2+ in the lysosomes and endoplasmic reticulum.
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Figure 3. Structures of organelle−targetable Fe2+ probe MtFluNox, Lyso−RhoNox, ER−SiRhoNox
and their general response mechanism to Fe2+ [42].

Interestingly, based on the above−mentioned N−oxide deoxygenation strategy, Hi-
rayama et al. [43] further reported a selective fluorescence probe H−FluNox for intracellular
labile heme (i.e., complex of Fe2+ and protoporphyrin IX, an essential protein cofactor),
as well as its applications in ferroptosis process. The design of H−FluNox was inspired
by the biomimetic reaction of cytochrome P450 with tetramesitylporphyrin iron complex
and perbenzoic acid derivatives (Figure 4A) [44], in which the cleavage of O−O bond was
accelerated by the electron−withdrawing aryl group. Therefore, an electron−withdrawing
4,4−difluoropiperidine N−oxide recognition group was introduced to facilitate the de-
oxygenation reaction of N−oxide group by labile heme (Figure 4B). At the same time,
the relative slow reaction rate of the probe toward labile Fe2+ could limit the response
to Fe2+ and enable a selective response to labile heme. When hemin (1 µM) was added
to H−FluNox (0.2 µM) in the presence of 100 µM GSH, a rapid fluorescence increase at
535 nm was observed and reached 230−fold within 10 min. By contrast, the addition of
Fe2+ (10 µM) resulted in only a less 10−fold fluorescence increase even after incubation for
30 min. Besides, Fe3+ and hemin (in the absence of GSH) would not affect the detection of
Fe3+. The high selectivity of H−FluNox to labile heme enables the discrimination of labile
heme from other intracellular iron related bioactive species in living cells. Fluorescence
imaging with the Ac−H−FluNox (acetylated form of H−FluNox, more cell−compatible)
could monitor the changes in the intracellular labile heme levels with the exogenous acti-
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vation or inhibition, such as nitric oxide−induced labile heme release and accumulation
of heme by inhibition of its exporter. Finally, imaging with Ac−H−FluNox demonstrated
that the labile heme level was upregulated upon the induction of ferroptosis by erastin in
HT−1080 cells.
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H−FluNox and its fluorescence turn−on response mechanism with Fe2+. Reprinted/adapted with
permission from Ref. [43]. Copyright 2022, American Chemical Society.

Similarly, Xing et al. [45] reported another selective reaction−based probe COU−LIP−1
by the Fe2+−triggered N−O bond cleavage and applied it for monitoring intracellular
labile Fe2+ pools (Figure 5). COU−LIP−1 was designed by utilizing coumarin 343 as
the fluorophore and 3−nitrophenylazanyl ester as both the recognition group and the
fluorescence quenching group. In the absence of Fe2+, as the PET process from coumarin
343 to 3−nitrophenylazanyl ester group, the fluorescence of COU−LIP−1 was efficiently
quenched. However, after COU−LIP−1 reacting with Fe2+, the Fe2+−induced reductive
cleavage of the N–O bond could release the fluorescent coumarin 343 fluorophore, resulting
in a significant fluorescence intensity increase at 488 nm. Selectivity studies showed that
COU−LIP−1 is selective for Fe2+ over various metal ions (such as Mn2+, Fe3+, Cu2+, Co2+,
Cu+), ROS (such as •OH, H2O2, OCl−) and reductive species (such as Na2S, ascorbic
acid, Cys, GSH). COU−LIP−1 was then applied for the study of labile Fe2+ level changes
in erastin−induced ferroptosis via confocal fluorescence imaging and cytometry analy-
sis. The results showed a time−dependent fluorescence intensity increase in HT−1080
cells treated with erastin to induce ferroptosis, suggesting the increase in labile Fe2+ level.
COU−LIP−1 was also employed for monitoring labile Fe2+ level changes in different
activated states of the RAW 264.7 macrophages. Significant higher labile Fe2+ level was
observed in M1 macrophages (activated by lipopolysaccharides) than M0 macrophages
(untreated RAW 264.7 cells) and M2 macrophages (activated with IL−4). Interestingly,
when subjected to erastin−induced ferroptosis, M0 and M1 macrophages displayed oppo-
site labile Fe2+ level changes. Labile Fe2+ level showed time−dependent increases in M0
macrophages but decrease in M1 macrophages upon the erastin treatment.
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2.2. Probes for Fe3+

In general, there are three basic response modes for fluorescence probe [17]: turn−off
response, that is, fluorescence of the probe gets quenched in response to the analytes;
by contrast, turn−on response, namely, fluorescence of the probe increases in the presence
of analytes, which provides a higher signal−to−noise ratio than the turn−off response.
Compared to the above two response modes, which involve monitoring fluorescence inten-
sity change at one wavelength, ratiometric response, which involves detecting the ratio of
fluorescence intensities at two wavelengths, has many advantages, such as eliminating the
interferences from sample matrix, excitation source laser intensity fluctuation, microenvi-
ronment around probes, and concentration errors of probes [17,46]. Therefore, a ratiometric
probe is more suitable for an accurate quantitative analysis.

In 2019, Lin’s group [47] developed a ratiometric Fe3+ probe P1 by connecting two rho-
damine Schiff base and a polysiloxane moiety by imine−linker (Figure 6). The polysiloxane
moiety of P1 showed blue emission at 490 nm, which could be quenched in the presence of
Fe3+. However, in response to Fe3+, the rhodamine lactam moiety could get ring−opening
to produce fluorescence increase at 589 nm, which favors the ratiometric detection of Fe3+

with fluorescence intensity ratio change. P1 is selective for Fe3+ over other metal ions,
including Fe2+, Co2+, Cu2+. On the other hand, this polymer probe is difficult to permeate
the cell membrane, due to its large molecular weight. Thus, P1 could only stain dead
cells (e.g., apoptotic cells and ferroptotic cells) because of the destructive membrane, while
live ones did not show any fluorescence. Therefore, in the apoptotic cells, P1 presented
its inherent blue fluorescence, whereas in the case of ferroptosis, as the level of Fe3+ in-
creased, P1 presented red fluorescence of rhodamine. Thus, P1 could be used as an effective
chemical tool for selectively targeting apoptosis cancer cells and real−time imaging of
ferroptosis process.
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Another ratiometric Fe3+ probe DRhFe was developed and applied in tracking of endogenous
Fe3+ in ferroptosis by He’s group (Figure 7) [48]. DRhFe was developed by linking rhodamine
spirolactam and dansylamide through an Fe3+ ionophore N2−hydroxyethyldiethylenetriamine.
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Free DRhFe showed inherent fluorescence of dansylamide at 483 nm. Upon reacting with
Fe3+, Fe3+ chelation could facilitate the transformation of rhodamine spirolactam into
spiroring−open form, accompanied by the arising of a new absorption peak at 561 nm
and fluorescence emission peak at 576 nm, corresponding to the formation of rhodamine
B. At the same time, as the overlap of rhodamine’s absorption band (500−600 nm) and
dansylamide’s emission band (440−560 nm), intramolecular FRET between dansylamide
(FRET donor) and rhodamine (FRET acceptor) could result in emission shift from 483
to 576 nm. DRhFe is also sensitive and selective for Fe3+, with limit of detection de-
termined to be 0.13 µM. The addition of various metal ions, such as Fe2+, Co2+, Ni2+,
Cu2+, did not produce notable response even at a 20 equiv concentration level. Notably,
the response of DRhFe to Fe3+ is reversible. In the presence of transition−metal chelator
N,N,N′,N′−tetrakis(2−pyridylmethyl) ethylenediamine (TPEN), Fe3+ could be deprived
from the DRhBFe/Fe complex to recover the fluorescence of DRhFe. Colocalization of
DRhFe with commercially available dyes for organelle verified the subcellular distribution
of this probe in endoplasmic reticulum and lysosome. Finally, DRhFe was applied to moni-
tor labile Fe3+ fluctuations in cells undergoing ferroptosis. A pretreatment of HeLa cells
with ferroptosis inducer erastin for 8 h resulted in a 2.1−fold fluorescence ratio increase
relative to control, revealing the enhanced intracellular labile Fe3+ levels during ferroptosis.
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3. Fluorescence Probes for ROS

An important feature of ferroptosis is the aberrant accumulation of intracellular ROS,
which then play critical roles in the production of lipid peroxides [30,31]. Besides the
commercially available ROS fluorescence probes, such as H2DCF−DA for the total ROS,
selective ROS fluorescence probes for •OH, H2O2, hypochlorite (OCl−) and peroxynitrite
(ONOO−) have been developed and applied in ferroptosis.

3.1. Probes for •OH

Usually, •OH reacts with other reactants via three type of reactions, electrophilic
hydroxylation of aromatic compounds, hydrogen atom abstraction, or monoelectronic
oxidation [49]. The design of •OH−selective probe also mainly depends on these reactions.

As one of the most reactive forms of ROS, •OH is capable of initiating lipid peroxida-
tion because of its strong hydrogen abstraction ability [50]. Moreover, the primarily sources
of •OH in biosystems are Fenton reaction and Haber–Weiss reaction [28,29], both of which
are highly dependent on the participation of iron, similar to ferroptosis. Therefore, it is
presumed that ferroptosis is featured by increased •OH level. However, in the previous
studies, due to the lack of selectivity for •OH, the commonly used ROS probe H2DCF−DA
failed to reveal how the •OH levels vary during ferroptosis. Therefore, Li et al. [51] reported
a selective •OH probe H−V (Figure 8), and applied it to reveal the •OH level changing
behavior in ferroptosis for the first time. H−V was designed based on the unique aromatic
hydroxylation ability of •OH, which is more selective for •OH than those based on oxida-
tion reactions. The symmetric structure with two small π−conjugations of H−V gave rise
to its short absorption and emission wavelengths. Upon reacting to •OH, the hydroxylation
by •OH at 4−position of the middle benzene could form a phenol intermediate, which
then undergoes deprotonation, electron rearrangement and π−conjugation extension to
eventually form a near infrared (NIR) fluorescent product with emission at 652 nm. On the
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other hand, the “molecular rotor” feature of H−V resulted in its viscosity−dependent
fluorescence increase (see the detail mechanisms in Section 5.2 below), enables the detection
of microenvironmental viscosity at 520 nm, which is separated from the •OH detection
channel. H−V is selective for •OH and viscosity, unaffected by other ROS (e.g., OCl−,
ONOO−, H2O2, O2

•− even at 10 equiv concentration level) and environmental factors
(e.g., polarity and pH). With the fluorescence imaging of H−V, ferroptosis of HT−1080
cells treated with erastin or RSL3 was found to be accompanied by significant •OH gen-
eration, cytoplasmic viscosity increase, and accelerated lipid droplet formation. Notably,
the generated •OH is probably the main cause of lipid peroxidation, which thus leads to
the increase in cytoplasmic viscosity and the accelerated formation of lipid droplet. These
features of ferroptosis were also seen in another ferroptosis−susceptible cell line, 786−O
cells, suggesting they are not cell−line selective.
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by •OH to form a larger π−conjugation and produce obvious spectra red shift to 650 nm, 
achieving a low−background NIR fluorescence detection of •OH to improve sensitivity. 
Sequentially, through a series of reactions such as nucleophilic substitution, structure re-
arrangement and Michael addition [55], the chloride atom and polymethine chain of the 
former product can react with Cys to produce fluorescence response at 453 nm. This 
unique π−conjugation extension and shortening of Coum−HCy enabled the sequential de-
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Figure 8. The •OH and viscosity dual−functional fluorescence probe H−V and its application in
imaging of changes in •OH level and cytoplasmic viscosity during erastin−initiated ferroptosis of
HT−1080 cells. (A) Response mechanism of H−V to •OH and viscosity. (B) Fluorescence images
of HT−1080 cells under different conditions. (a) Cells only. (b–e) Cells pretreated with erastin for
(b) 0 h, (c) 4 h, (d) 6 h, or (e) 8 h and then incubated with H−V for imaging. (f–h) Cells pretreated
with erastin in the presence of ferroptosis inhibitor (f) DFO, (g) Fer−1, or (h) Lip−1 for 8 h and then
incubated H−V for imaging. Green channel and red channel reflected the changes in cytoplasmic
viscosity and •OH level, respectively. Reprinted/adapted with permission from Ref. [51]. Copyright
2019, American Chemical Society.

Due to the crucial and highly related roles of •OH and Cys in the development and
redox regulation in ferroptosis, our group [52] developed a fluorescence probe Coum−HCy
for the dual−functional detection of •OH and Cys (Figure 9). Coum−HCy is composed of
a coumarin fluorophore and a commonly used recognition site hydrocyanine moiety for
•OH [53,54]. When reacting with •OH, Coum−HCy gets hydrogen abstracted by •OH to
form a larger π−conjugation and produce obvious spectra red shift to 650 nm, achieving a
low−background NIR fluorescence detection of •OH to improve sensitivity. Sequentially,
through a series of reactions such as nucleophilic substitution, structure rearrangement and
Michael addition [55], the chloride atom and polymethine chain of the former product can
react with Cys to produce fluorescence response at 453 nm. This unique π−conjugation
extension and shortening of Coum−HCy enabled the sequential detection of •OH and
Cys in two separated fluorescence channels without spectral interference. Coum−HCy is
selective for •OH and Cys, unaffected from other common ROS (including O2

•−, OCl−,
ONOO−, 1O2, and H2O2) and biothiols (including GSH, Hcy and NAC). Coum−HCy was
applied for the in situ monitoring of •OH and Cys level change during ferroptosis initiated
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by erastin or RSL3, respectively. In consistent with the previous reports, •OH was found
to be significantly generated in both the erastin−initiated and RSL3−initiated ferroptosis
process. On the other hand, during erastin−initiated ferroptosis, the intracellular Cys
level obviously decreases due to the block of cystine (Cys precursor) uptake by erastin,
whereas during the different initiating mechanism of ferroptosis by RSL3, the Cys level
remains unaffected during RSL3−initiated ferroptosis. The dual−functional detection of
•OH and Cys by Coum−HCy through such a sequential response would streamline the
detection processes and provide more accurate information about •OH and Cys, and thus
it is expected to be applied in more ferroptosis−related studies.
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3.2. Probes for H2O2

H2O2 is a relative stable and mild ROS. Boronate ester is one of the most commonly
used recognition group for H2O2 [56,57]. In response to H2O2, aromatic boronate ester can
be oxidized to its corresponding phenol product, which usually results in the fluorescence
of the connected fluorophore increase or alteration. In recent years, several boronate
ester−based probes have been developed and applied for imaging of H2O2 in ferroptosis.
However, it should be noted that boronate ester is not very selective for H2O2. In some
reported probes, boronate ester is also used as the recognition site for other ROS such as
ONOO− and OCl−, due to their faster oxidation rates than H2O2 [58–61].

In 2020, Li [62] developed a boronate ester−based probe HP for detection of H2O2
in ferroptosis (Figure 10A). HP was designed by connecting boronate ester and a di-
cyanoisophorone fluorophore, and showed obvious fluorescence increase in response to
H2O2. It is sensitive and selective to H2O2, with a limit of detection to be 0.77 µM and
no interference from some common bioactive species, for example, OCl−, Cys, Fe2+, Fe3+,
GSH and H2S. HP has been used to image the change in intracellular H2O2 level reg-
ulated by the H2O2 inducer or activator, and visualize the significant H2O2 release in
HepG2 cells incubated with ferroptosis inducer erastin for 12 h, revealing it as a feature of
ferroptosis process.

Some organic fluorophores have a unique excited−state intramolecular proton−transfer
(ESIPT) process, i.e., proton transfer from hydroxyl (−OH) or amino (−NH2) to the close
carbonyl group or nitrogen atom of heterocycle under photoexcitation, and possess many
advantages, such as large Stokes shifts, environmental sensitivity and dual fluorescence
emission [63,64]. Taking advantage of the ESIPT fluorescence turn−on mechanism, Zhou’s
group [65] reported a boronate ester−based probe BTFMB (Figure 10B). It is constructed
by using an ESIPT fluorophore 2−(2′−hydroxyphenyl) benzothiazole. After reacting
with H2O2, BTFMB displayed an obvious fluorescence increase at 542 nm with excita-
tion at 380 nm (Stokes shift 162 nm). BTFMB was also applied for monitoring the H2O2
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level increase during the erastin−induced ferroptosis process in HepG2 cells. However,
ONOO− could produce comparable response with H2O2, which would disturb the detec-
tion of H2O2.
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Biotin is a widely used cancer cell−targeting group as the overexpression of bi-
otin receptors in many types of cancer cells. By being modified with a biotin group,
a tumor−targeting two−photon H2O2 probe BT−HP (Figure 10C) was developed by
Kong’s [66] group with 1,8−naphthalimide as fluorophore. BT−HP is selective for H2O2
over other ROS including OCl− and ONOO−. BT−HP was capable of depth−penetration
imaging of H2O2 in cancer cells and tumor tissues by two−photon microscope. BT−HP
was further applied to detect H2O2 in cancer cells during the ferroptosis process.

3.3. Probe for OCl−

OCl− is the product of H2O2 and chloride ions through the enzymatic reaction by
myeloperoxidase (MPO). It plays important roles in many diseases, such as epilepsy,
and thus might be a promising biomarker for the early diagnosis of epilepsy and a potential
therapeutic target for epilepsy. Qian’s group [67] developed a two−photon fluorescence
probe HCP for OCl− (Figure 11), and applied it for monitor the OCl− level change in
the kainic acid−induced cell ferroptosis and epileptic model of mice. HCP was designed
by a Schiff base functionalized 6−(dimethylamino)quinolone−2−carbaldehyde with a
diaminomaleonitrile. HCP itself displayed a weak yellow fluorescence, which was re-
sulted from the diminished push–pull electron effect of quinolone fluorophore by the
conjugated electron−acceptor diaminomaleonitrile group. By contrast, in the presence of
OCl−, the chlorination of quinolone fluorophore to form HCP−Cl would lead to alteration
of the intermolecular electronic effect and achieving an enhanced fluorescence response at
495 nm. HCP was capable of fast (within 5 s), selective (over other ROS including •OH,
O2
•−, H2O2 and ONOO−) and sensitive (limit of detection to be 104 nM) detection of

OCl−. HCP was used to directly visualize the endogenous OCl− overproduction both
in living cells and in vivo, such as in human neuroblastoma SH−SY5Y cells treated with
lipopolysaccharide or MPO + H2O2 + Cl−, kainic acid−induced SH−SY5Y cell ferroptosis
and epileptic model of mice. In addition, taking advantage of the fluorescence imaging
of HCP, the authors have constructed a high−throughput screening approach to rapidly
screen the potential antiepileptic agents from a mass of natural products, and identified
that the flavonoid compound apigenin can relieve the MPO−mediated oxidative stress and
inhibit the ferroptosis of neuronal cells and is a potential antiepileptic agent.
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3.4. Probe for ONOO−

ONOO− is the product of O2
•− and nitric oxide (NO) and one of the most cytotoxic

ROS. The overproduction of ONOO− is suggested to be one of the predominant execu-
tioner of regulated cell death. Tang’s group [68] develop a two−photon fluorescence probe
NATP (Figure 12) for ONOO− and applied it to study the connections between ONOO−

overproduction and ferroptosis of neuronal cells. NATP was designed by functionalizing
naphthalimide fluorophore with a oxindole as recognition site for ONOO−. After treatment
with ONOO−, the decyclization of oxindole could obtain a primary aniline product, accom-
panied by obvious fluorescence increase. NATP was then employed to image the neuronal
PC12 cells, revealing up−regulated ONOO− level in PC12 cells upon Aβ peptide treatment.
Further studies by incubating PC12 cells with Aβ peptide in the presence of ferroptosis
inhibitor Fer−1 or deferiprone, or by examining the expression level of GPX4 through
Western blot analysis revealed Aβ peptide can induce cell death via the ferroptotic pathway.
Additionally, NATP was used to establish a high−throughput fluorescence−based screen-
ing method to screen the potential neuroprotective natural products. Most importantly,
NATP has good blood–brain barrier penetrability and is capable of in situ visualizing the
cerebral ONOO overproduction in Alzheimer’s disease mice.
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4. Fluorescence Probes for Biothiols

Biothiols, including Cys and GSH, are the major reductive regulators of ferroptosis
process. The initiation of ferroptosis involves in dysfunction of intracellular biothiols [11],
such as inhibition of the system xc

− on cell membrane to block the import of cystine and
deplete biothiols, or inhibition GPX4 activity to prevent the scavenging of lipid peroxides
by GSH. Therefore, the selective and in situ detection of Cys and GSH by fluorescence
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probes are of great significance to the studies of ferroptosis. In addition, fluorescence
probes for the downstream products of Cys and GSH, such as hydrogen sulfide (H2S) and
hydrogen polysulfide (H2Sn), have also been reported to applied in ferroptosis.

4.1. Probe for Cys

Qian’s group [69] developed a fluorescence probe CP2 for monitoring the Cys level
change in living cells and in vivo mediated by system xc

− (Figure 13). CP2 was con-
structed by modifying a dicyanoisophorone fluorophore with an acrylate group, which
acted as recognizing site for cysteine and could effectively quench the fluorescence of
dicyanoisophorone fluorophore. CP2 can specifically recognize Cys and give a fluorescence
turn−on response at 568 nm, unaffected by other common biothiols including GSH, Hcy
and H2S. With the dynamic tracking of Cys level in living cells by CP2, the decrease in
intracellular Cys level upon blocking system xc

− activity to induce ferroptotic cell death
by erastin was revealed. Notably, with the imaging of CP2, cancer cells were observed to
have relatively higher level of endogenous Cys, which could be also effectively regulated
by the inhibition of system xc

−. Moreover, the block of system xc
− to induce ferroptosis

by erastin could be synergized with the cysteine biosynthesis inhibitor to improve anti-
cancer efficacy (especially against lung cancer cells) and overcome the cisplatin resistance
of cisplatin−resistant lung cancer A549R cells, which might bring a new approach for
treating drug−resistant carcinoma. Furthermore, in vivo imaging of Cys by CP2 in ze-
brafishes upon erastin−induced ferroptosis verified its potential capability for live−animal
Cys visualization.
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4.2. Probe for GSH

Real−time dynamic monitoring of GSH concentration changes remains many ob-
stacles, such as reaction reversibility, kinetics of the sensing reaction as well as the high
concentration of intracellular GSH. Making use of the inherent reversibility of Michael
addition reaction, in 2017, Jiang et al. [70] reported a reversible reaction−based fluorescence
probe, RealThiol (RT), that can quantitatively monitor the real−time GSH dynamics in
living cells (Figure 14A). RT was designed based on its Michael addition reaction with GSH,
which is inherently reversible with an appropriate dissociation constant Kd (mM range,
comparable to the physiological GSH concentration). Furthermore, the cyano group at the
α position of the Michael acceptor is favorable to accelerate the response reaction, which
enables the real−time monitoring of GSH level change. In addition, a four−membered
azetidine ring was induced to improve the spectroscopic properties of the probe; two car-
boxylic acid groups were induced to improve the aqueous solubility and avoid the binding
of probe with hydrophobic cellular constituents. RT and its GSH adduct RT−GSH showed
different fluorescence at 487 and 562 nm with excitation at 405 and 488 nm, respectively,
which allowed ratiometric imaging of GSH quantification independent of the probe concen-
tration. In reaction kinetics studies, RT showed fast kinetics in both forward and reverse
reactions, with a second−order reaction rate constant 7.5 M−1 s−1 between RT and GSH,
and a first−order dissociation reaction rate constant 20.3 × 10−3 s−1 for RT−GSH, which
is thus capable of real−time dynamic monitoring of GSH level increase and decrease in a
minute−level time resolution (Figure 14B). With RT, GSH level changes during ferroptosis
had been visualized. The results showed that despite significant morphology changes,
GSH levels do not immediately decrease after erastin treatment over 3 min time span
(Figure 14C).
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Figure 14. (A) The reversible response mechanism of RT to GSH. (B) Dynamic and reversible
monitoring of GSH level changes by RT. (C) Ratiometric imaging of dynamic GSH changes during
ferroptosis induced by erastin in HT−1080 cells. Reprinted/adapted with permission from Ref. [70].
Copyright 2017, The Authors.

4.3. Probe for H2S

Probes for reducing substances (such as H2S) usually consume reducing substances,
instigating a redox imbalance, which further aggravates the progression of ferroptosis.
Therefore, Hu’s group [71] developed an H2S−triggered and H2S−releasing NIR fluo-
rescence probe (HL−H2S) for the high−fidelity in situ imaging of ferroptosis (Figure 15).
When HL−H2S responded to H2S, the reduction of azido group to amine could trig-
ger 1,6−elimination to release the NIR fluorescent HL−NH2, as well as carbonyl sulfide
(O=C=S), which was then catalyzed by carbonic anhydrase to form H2S. Thus, the detection
of H2S in ferroptosis would avoid the consumption of H2S. Additionally, the rotatable
vinyl bond of the released fluorophore HL−NH2 enabled its fluorescence increase re-
sponse to viscosity, which contributed the accurate detection of the ferroptosis process
because cell viscosity increases during ferroptosis. Furthermore, using erastin as an in-
ducer for ferroptosis, the observed trends for ferroptosis biomarkers, such as Fe2+, MDA,
and GSH, indicated that the introduction of the HL−H2S did not exacerbate ferroptosis.
HL−H2S was finally applied to image H2S decrease in ferroptosis during oxygen glucose
deprivation/re−oxygenation in PC12 cells and middle cerebral artery occlusion model
in mice.
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4.4. Probe for H2Sn

H2Sn (n > 1), the oxidized product of H2S and ROS, is an important member of bio-
thiols, and plays crucial roles in regulating the activities of ion channels, transcription
factors, protein kinases, and tumor suppressors. To develop a detection method that is
capable of in situ monitoring of H2Sn to study its molecular mechanisms in the process
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of ferroptosis, Qian’s group [72] reported a two−photon NIR fluorescence probe PSP for
H2Sn (Figure 16). PSP was designed by utilized an dicyanoisophorone−derived naph-
thalene as fluorophore and the 2−fluoro−5−nitrobenzoate as the responsive group for
H2Sn. The probe itself exhibited almost no fluorescence because of quenching effect of the
2−fluoro−5−nitrobenzoate group. Upon addition of H2Sn, the 2−fluoro−5−nitrobenzoate
group was selectively deprotected to release the fluorophore with NIR emission at 640 nm
and good two−photon cross−section. Furthermore, with the in situ and dynamic imaging
of PSP during ferroptotic cell death of HeLa cells induced by erastin, the up−regulated
H2Sn level was revealed as a feature of ferroptosis, which might be promoted by the
overproduction of ROS during ferroptosis.
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5. Fluorescence Probes for Cell Microenvironmental Factors

Cell microenvironmental factors, such as viscosity and polarity, play vital roles in many
cell physiological and pathological processes. For example, viscosity affects the diffusion of
biological active species and transportation of signals [73]; polarity can reflect the interaction
activity between enzymes and proteins [74]. Probes for tracking cell microenvironmental
viscosity and polarity during ferroptosis have also attracted many research interests in
recent years.

5.1. Probe for Polarity

In general, the fluorescence of a fluorophore with a donor (D)−π−acceptor (A) struc-
ture is usually sensitive to its ambient environment polarity. With the increase in envi-
ronmental polarity, fluorescence of the fluorophore will become weak and shift to longer
emission wavelength due to the dissipation of the excited state energy resulting from the
enhanced dipole–dipole interaction between the fluorophores and solvent molecules [75].

Liu’s group [76] reported a lipid droplets (LDs) and nucleus dual−targeted ratio-
metric fluorescence probe CQPP for monitoring polarity changes in the cellular microen-
vironment. As shown in Figure 17A, CQPP has a typical polarity−susceptible D−π−A
molecular structure. It was designed by the integration of coumarin unit (donor) and the
cationic quinolinium (acceptor) with further extended 1−(pyridin−4−yl)piperazine group,
to mimic Nile Red (a commercial LDs dye) and Hoechst 33,342 (a commercial nucleus dye).
CQPP presented a red shift of fluorescence emission with the increase in the environment
polarity (Figure 17B). Profiting from the LDs/nucleus dual−targetable and ratiometric
responsive properties, CQPP was applied to monitor polarity changes in LDs using nucleus
imaging as a reference during ferroptosis. As shown in Figure 17C, in the control group,
compared to the cytoplasm, LDs displayed significantly lower polarities, with a polarity
increasing gradient from its core (red color) to the surface (blue color). However, in the
erastin−induced ferroptosis group, the fluorescence in green channel in LDs is gradually
decreased, and slightly increased in red channel of the cytoplasm, indicating the increase
in LDs polarity during ferroptosis. Similarly, LDs polarity increase was also observed
in RSL3−induced ferroptosis as well as gradual homogeneity of polarity between LDs
and cytoplasm (Figure 17D). Besides, CQPP was also capable of monitoring LDs polarity
increase in ferroptosis by fluorescence lifetime imaging.
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of CQPP. (B) Emission spectra of CQPP in 1,4−dioxane (low polarity) and DMSO (high polarity).
(C) Imaging of polarity changes in erastin−induced ferroptosis. (D) Imaging of polarity changes
in RSL3−induced ferroptosis. Reprinted/adapted with permission from Ref. [76]. Copyright 2021,
Wiley−VCH GmbH.

Ye’s group [77] developed a LDs targeting dual−functional fluorescence probe TPA−SO2
for monitoring polarity change and SO2 level during ferroptosis (Figure 18). In TPA−SO2,
a triphenylamine group was introduced as LDs targeting group. At the same time, a C=C
double bond served as recognition site for SO2. As a result, TPA−SO2 presented strong
red fluorescence at 610 nm in low polarity medium, accompanied by fluorescence decrease
and red shift with the increase in polarity. On the other hand, in the presence of SO2,
as the Michael addition reaction between TPA−SO2 and SO2, TPA−SO2 showed obvious
fluorescence increase at 437 nm, which enabled the independent detection of polarity and
SO2 in two separate channels. TPA−SO2 was applied for imaging of polarity change
and SO2 level in HeLa cells during ferroptosis, which revealed increased concentration of
endogenous SO2 and polarity.
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5.2. Probes for Viscosity

In general, the fluorophores sensitive to environmental viscosity share similar molec-
ular rotor structure, in which an electron donor and an electron acceptor are connected
by a rotatable bond (e.g., vinyl bond) to form a D−π−A structure [78,79]. Under low
viscosity environment, the free rotation of the rotatable bond can efficiently weaken the
fluorescence or shorten the fluorescence lifetime of the fluorophore through a nonradiative
deactivation process called twisted intramolecular charge transfer (TICT) [80]. However,
with the increase in environmental viscosity, the rotation is inhibited, which can thus result
in enhanced fluorescence signals or longer fluorescence lifetime.

Lipid droplets (LDs), is the main storage organelle for lipids, including neutral lipids,
unsaturated lipids and lipid peroxides with different viscosities. Due to the significant
lipid peroxidation during ferroptosis, the targeting detection of viscosity changes in LDs
is not only usable for monitoring ferroptosis process, but also important for deep study
of the biological roles of LDs during ferroptosis. Therefore, Lin’s group [81] reported a
LDs targetable probe BDHT for monitoring LDs viscosity change in ferroptosis (Figure 19).
BDHT has a typical molecular rotor and D−π−A structure, and thus it is sensitive for
viscosity changes. UV−vis absorption and fluorescence spectra tests were firstly conducted
to study the response of BDHT to viscosity. In the low viscous methanol solution, BDHT
showed an absorption peak at 502 nm, which gradually shifted to 529 nm with solvent
viscosity increase by the addition of viscous glycerol to methanol, accompanied by de-
creased absorbance. On the other hand, BDHT showed a 21−fold increase in emission
intensity at 723 nm under excitation at 620 nm, with fluorescence quantum yields increasing
from 0.12% (in methanol) to 10.9% (in glycerol). BDHT is selective for viscosity change,
unaffected by other environmental factors, such as pH and polarity. BDHT was finally
used for specific detection of LDs viscosity changes in ferroptosis. HeLa cells, 4T1 cells,
A545 cells, or HepG2 cells treated with ferroptosis inducer erastin or RSL3 all presented
time−dependent fluorescence increase in BDHT, indicating the gradually increase in LDs
viscosity during ferroptosis in different type of cell lines.
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Figure 19. BDHT and its application in ferroptosis. (A) NIR fluorescence increase mechanism of
BDHT with the increase in viscosity. (B) Imaging of LDs viscosity increase in erastin−induced
ferroptosis of HeLa cells. Reprinted/adapted with permission from Ref. [81]. Copyright 2021,
American Chemical Society.

More recently, Lin’s group [82] developed an endoplasmic reticulum targeting dual
−functional fluorescence probe DSPI−3 for monitoring viscosity and pH change (Figure 20).
In DSPI−3, the rotatable cyanine dye acts as viscosity response moiety, naphthalimide dye
serves as pH response moiety. With the increase in environmental viscosity, the restriction
of C=C bond rotation could result in fluorescence increase at 620 nm. On the other hand,
with the decrease in pH value, protonation of the piperazine group connected with naph-
thalimide dye would cut down the PET effect from piperazine to naphthalimide, achieving
a fluorescence increase at 528 nm. With the fluorescence imaging of DSPI−3, acidification
and viscosity increase in endoplasmic reticulum during ferroptosis process induced by
erastin were found. In addition, when cells co−cultured with dithiothreitol and erastin,
endoplasmic reticulum pH value considerably decreased at the early stage, but slightly
increased in the later stage; meanwhile, endoplasmic reticulum viscosity enhanced slowly
at the early stage, and declined in the later stage, demonstrating that dithiothreitol can
accelerate ferroptosis via inducing endoplasmic reticulum stress.
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NAD(P)H, the reduced nicotinamide adenine dinucleotide and its phosphorylated
form, are important coenzymes, participate in many cellular metabolic processes in living
cells. Recently, it is reported NAD(P)H participate in several antioxidant processes to
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modulate ferroptosis. Therefore, tracking of intracellular NAD(P)H level during ferroptosis
is important. Wei et al. [83] reported a mitochondrial targeting dual−functional probe
3Q−2 (Figure 21). It was capable of detecting mitochondrial viscosity and NAD(P)H level in
two different fluorescence channels. Firstly, due to its molecular rotor and positive charged
structure, 3Q−2 was able to target mitochondria and showed fluorescence enhancement
at 550 nm upon viscosity increase. In addition, the quinolinium of 3Q−2 is a commonly
used recognition group for NAD(P)H. In the presence of NAD(P)H, the reduction of
quinolinium to the electron−rich enamine moiety could produce a product with D−π−A
structure, and the strong intermolecular charge transfer (ICT) effect from enamine to the
electron−withdrawing malononitrile group could result in a NIR turn−on emission at
670 nm with large Stokes shift, enabling the independent detection of NAD(P)H in a
separated signal channel from viscosity. With the imaging of 3Q−2, the authors found that
the levels of intracellular NAD(P)H and mitochondrial viscosity in HT−1080 cells were
significantly increased by treatment with erastin or RSL3, but with a weaker trend in the
case of RSL3 compared to cells induced by erastin.
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Yin et al. [84] reported another mitochondria−targeted probe MN−V for detection
of mitochondrial viscosity changes in ferroptosis process (Figure 22). In MN−V, benzoin-
dolium acted as both electron acceptor and mitochondria−targeting group as its positive
charge. MN−V had two absorption maximum at 687 nm and 730 nm, respectively. In the
non−viscous PBS, its fluorescence emission peak can hardly be detected. However, with
the increase in viscosity (glycerol ratio increase in the glycerol–PBS mixtures) from 1.2 cP
to 980 cP, the emission peak at 795 nm of the probe increased 37 times. MN−V had good
mitochondria−targeting ability (Pearson’s coefficient 0.93 with commercially available
mitochondrial dye). MN−V was finally used for imaging of the mitochondrial viscosity
increase in HeLa cells during ferroptosis.
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In addition, by modified a BODIPY fluorophore with an endoplasmic reticulum tar-
getable sulfonamide group via click reaction, Xiao’s group [85] reported a viscosity sensitive
probe L−Vis−1 for tracking endoplasmic reticulum viscosity changes in endoplasmic retic-
ulum (Figure 23). L−Vis−1 showed 26−fold fluorescence enhancement at 515 nm with
viscosity increase from 1.8 cP to 950 cP (glycerol ratio of the glycerol–methanol mixtures
from 10% to 99%). Moreover, the increased viscosity also resulted in longer fluorescence
lifetime of L−Vis−1, enabling quantitative detection of microviscosity via fluorescence
lifetime model. With fluorescence imaging and fluorescence lifetime imaging of L−Vis−1,
apparent local viscosity increases in endoplasmic reticulum were observed during the
ferroptosis process induced by erastin and artesunate for the first time.
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6. Conclusions

In this review, we have summarized and discussed a series of fluorescence probes for
the selective analysis of iron, ROS, biothiols as well as intracellular microenvironmental
factors in ferroptosis. Taking advantage of these probes, many interesting and important
changes of bioactive species levels and intracellular microenvironmental factors during fer-
roptosis have been revealed, such as an increase in •OH, labile heme level and LDs polarity,
and a decrease in H2S level, which provide critical evidence for understanding ferroptosis.
However, there still remain some problems or difficulties in the current developments and
applications of fluorescence probes for monitoring the ferroptosis process. Firstly, the com-
plicacy of intracellular physiological species and ferroptosis regulation mechanisms makes
it is difficult to illustrate the exact roles of the analyte in the development of ferroptosis and
related diseases with a single fluorescence probe. Secondly, the commonly used commer-
cially available probe C11−BODIPY581/591 for lipid peroxides can only monitor the total
amount of lipid peroxides, and it lacks selectivity for a certain lipid peroxide. Therefore,
selective probes for lipid peroxides are in urgent need of development. Some possible
study trends are listed below. 1. Development of a probe for independent analysis of
multi−analyte to simplify the detection procedures and provide more accurate information
to indicate the possible mutual correlation of these analytes. 2. Comprehensive comparison
of the differences in bioactive species level change between ferroptosis and other regulated
cell death. 3. Applications in ferroptosis at animal level with specific disease models. It is
believed that more important features and pathogenic roles of ferroptosis will be found
with the development of new tailored fluorescence probes. We hope that this review will
help the ongoing development and application of fluorescence probes in ferroptosis.
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