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Abstract

Radiotherapy and radiation oncology play a key role in the clinical management of patients suffering from

oncological diseases. In clinical routine, anatomic imaging such as contrast-enhanced CT and MRI are widely

available and are usually used to improve the target volume delineation for subsequent radiotherapy. Moreover,

these modalities are also used for treatment monitoring after radiotherapy. However, some diagnostic questions

cannot be sufficiently addressed by the mere use standard morphological imaging. Therefore, positron emission

tomography (PET) imaging gains increasing clinical significance in the management of oncological patients

undergoing radiotherapy, as PET allows the visualization and quantification of tumoral features on a molecular level

beyond the mere morphological extent shown by conventional imaging, such as tumor metabolism or receptor

expression. The tumor metabolism or receptor expression information derived from PET can be used as tool for

visualization of tumor extent, for assessing response during and after therapy, for prediction of patterns of failure

and for definition of the volume in need of dose-escalation. This review focuses on recent and current advances of

PET imaging within the field of clinical radiotherapy / radiation oncology in several oncological entities (neuro-

oncology, head & neck cancer, lung cancer, gastrointestinal tumors and prostate cancer) with particular emphasis

on radiotherapy planning, response assessment after radiotherapy and prognostication.
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Introduction

Radiotherapy plays a key role in the clinical management

of patients suffering from oncological diseases, as ap-

proximately half of cancer patients directly benefit from

individual radiotherapy during their disease course. In

this disease course, radiotherapy can be applied as sole

treatment or as a comprehensive treatment in combin-

ation with systemic treatments such as chemotherapy or

local treatments such as surgery [1]. This high clinical

significance for the treatment of oncological diseases is

reached and maintained by the fast technological

innovation and improvements that were introduced and

subsequently established in clinical routine over the last

decades [2], e.g. intensity-modulated radiation therapy

(IMRT) has evolved as a widely used clinical treatment

modality in many countries [3].

Anatomic imaging such as contrast-enhanced CT and

MRI are widely available and are usually used to delin-

eate the target volume for the subsequent radiotherapy.

However, in the clinical routine in radiation oncology,

diagnostic issues arise that cannot be sufficiently ad-

dressed by standard morphologic imaging. In particular,
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the delineation of viable tumor tissue can be challenging,

especially in patients with local pretreatment such as

surgery. Moreover, treatment response assessment with

conventional morphological imaging is partly unable to

correctly differentiate early relapse from radiation in-

duced changes or inflammation, e.g. in neuro-oncology

[4]. Therefore, positron emission tomography (PET) im-

aging gains increasing clinical significance in the man-

agement of oncological patients undergoing

radiotherapy, as PET allows the visualization and quanti-

fication of tumoral features on a molecular level beyond

the mere morphological extent on conventional imaging,

such as tumor metabolism or receptor expression. 18F-

FDG, a glucose analogue, is the most commonly applied

ligand for oncological PET imaging [5] due to its proven

utility and its generally increasing availability. Beyond

the visualization of glucose metabolism, other tumor

characteristics can be targeted and visualized by PET im-

aging. In this regard, e.g. PET with prostate-specific

membrane antigen (PSMA) ligands are of high clinical

and scientific interest for advanced imaging of patients

suffering from prostate cancer [6]. The tumor metabol-

ism or receptor expression information has allowed for

use as a tool for (a) visualization of tumor extent, for (b)

assessing response during and (c) after therapy, for (d)

prediction of patterns of failure and for (e) definition of

the volume in need of dose-escalation. Where, (e) some-

times has been referred to as “dose-painting” [7], al-

though the idea is older [8] and the practice of

escalation of the PET-avid volumes has been in long use

for the treatment of e.g. head neck cancer.

This review describes the recent advances of PET im-

aging within the field of clinical radiotherapy / radiation

oncology in several oncological diseases (neuro-oncol-

ogy, head & neck cancer, lung cancer, gastrointestinal

tumors and prostate cancer) with particular emphasis on

radiotherapy planning, but also on treatment response

evaluation and prognostication. Moreover, recent ad-

vances in PET imaging itself are reviewed with special

emphasis on the potential applicability on clinical set-

tings in radiotherapy / radiation oncology.

Neuro-oncology
PET is widely applied in the field of neuro-oncology as

complementary imaging modality in addition to MRI

[9]. Its use may be derived from the answers to several

key questions: 1) How to optimally define the radio-

therapeutic target volume or delineate the extent of dis-

ease before surgical resection, 2) is it possible to derive

prognostic value from molecular imaging, and 3) how to

distinguish treatment effect from true progression.

When considering the wide field of primary CNS tu-

mors, the entity of glioma is reported on by the PET task

force of the Response Assessment in Neuro-Oncology

(RANO) working group [10]. This task force clearly de-

rives evidence from published studies with validated

PET findings (either by histopathology or clinical course)

in the setting of diagnosis, biopsy, surgery, radiotherapy

and response assessment, and shows superiority of

amino acid PET such as 18F-FET or 11C-MET PET [11]

over 18F-FDG PET [10, 12]. Specifically, 18F-FET has

been shown to predict prognosis [13, 14], to enable im-

proved target delineation [15–17] to assess treatment re-

sponse [10]. Recurrence pattern analyses have

substantiated the role of amino acid PET in identifying

aggressive parts and the potential of targeting these re-

gions [18–21]. In a recent study, the combination of 18F-

FET-PET and T1w MRI was shown to carry the most in-

formation for prediction of patterns of failure following

chemo-radiation therapy of glioblastoma patients [22].

In the US, 18F-DOPA is a widely used tracer and it was

shown to provide additional clinical information [23],

which could also be validated histopathologically [24]. A

variety of data exists on other tracers as described in

Table 1 [28]. One potential target of interest for brain

tumor imaging is the 18 kDa translocator protein

(TSPO), as known in neurodegenerative research, with

remarkable overexpression in glioblastoma patients,

whereas further studies have to further elucidate the

contribution of neuro-inflammatory component within

the signal obtained in TSPO PET [29–31]. In this regard,

the potential influence of this new modality on radio-

therapy approaches has to be validated. In sum, espe-

cially amino acid tracers are applied for radiotherapy

planning in clinical routine of glioma patients [9, 15, 20],

but also for the differentiation of viable tumor and re-

current / progressive disease after initial radiotherapy [4,

32, 33], as recently emphasized by the PET RANO group

[10].

In analogy to primary brain tumors, brain metastases

can also be visualized by PET [34]. Although its value

for imaging prior to radiotherapy remains unclear, PET

imaging, especially with radiolabeled amino acids, has

evolved as complementary imaging tool for the differen-

tiation of true progression from pseudoprogression, e.g.

after radiotherapy [16, 35–37], see Fig. 1. Therefore, the

use of PET in brain metastases was also recently recom-

mended by the PET RANO group [34].

Compared to glioma and brain metastases, meningi-

oma as extraaxial tumor is even more common. Beyond

MRI, PET ligands targeting the somatostatin receptor

(SSR) such as 68Ga-DOTATOC and 68Ga-DOTATATE

are used in clinical routine [38, 39] and have been estab-

lished for surgical guidance [40] or target volume defin-

ition [41, 42] due to the high expression of SSR in

meningioma tissue. Specifically, this imaging modality is

of help in meningiomas at the skull base, where extrafor-

aminal extension or osseous infiltration may be expected
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[43] or in case of suspected residual or recurrent tissue

after initial therapy [40]. Some other reports on amino

acid PET are available as well, however, in the light of

SSR-ligands, these tracers are not widely used in clinical

routine for meningioma imaging [44]. Beyond in CNS

lymphoma [45], 18F-FDG PET is not recommended by

the PET RANO group for most primary brain tumors

[10, 34, 46], mainly due to high background activity of

the normal brain.

Head and neck cancer

Head and neck cancers (HNC) consist of a wide range of

tumor entities such as squamous cell cancer, salivary tu-

mors or nasopharyngeal carcinomas. Diagnosis and

treatment of the group of HNC is a complex and multi-

disciplinary approach. PET/CT provides insights into

tumor biology and tissue metabolism and has an unpre-

cedented accuracy in unmasking nodal metastases or

tumor extensions. At the current state, most of the avail-

able data for PET imaging in HNC is validated for head

and neck squamous cell cancer. PET/CT facilitates con-

touring for (chemo-) radiotherapy (CRT) and it signifi-

cantly influences dose painting in radiation planning. In

about 25% of patients with disease of unknown primary,

location is revealed by 18F-FDG-PET/CT [47–52].

Since HNC represents a very heterogeneous disease,

there is great interest in finding prognostic markers for

risk stratification. For primary staging, the use of PET/

CT leads to a change of about 10% in every TNM cat-

egory and similarly, a major change in treatment strategy

in about 10% of patients [53]. This is crucial, knowing

that survival decreases by 40–50% in patients with

Table 1 Different tumors and tracers in neuro-oncology for different indications: target delineation (TD), prognostication (P),

distinguishing between progressive disease and pseudoprogression (TR)

Tumor entity Tracers Indication Comment

Glioma 18F-FET TD/P/TR Valuable as longer halftime compared to 11C-MET, high diagnostic accuracy with histopathological
validation; ongoing trials to confirm clinical benefit, e. g. GLIAA [25]

18F-DOPA TD/P/TR Studies on prognostic relevance and histopathological validation available, e.g. [24, 26], mainly used in the
US

11C-MET TD/P Studies on prognostic relevance and histopathological validation available. Aiding in target delineation.

TSPO
ligands

None Investigational, no histopathological validation studies (ongoing)

Meningioma 68Ga-
DOTATOC

TD Aiding in target delineation or surgical approach, especially when located at the skull base

68Ga-
DOTATATE

TD SUV cutoff histologically validated, no relevant data available on response

Brain
metastasis

18F-FET TR Differentiation pseudoprogression/radiation necrosis vs. tumor recurrence

CNS
lymphoma

18F-FDG None Tumor metabolism, response assessment [27]

Fig. 1 A 54 years-old female patient with extensive edema on T2 MRI (a) and new contrast enhancing lesions at the temporal and occipital lobe

(b) after undergoing stereotactic radiosurgery for brain metastases from malignant melanoma at both sites. MRI findings were suggestive for

tumor recurrence, whereas only a faint uptake on 18F-FET PET (c) and fused PET/MRI (d) was seen in both lesions, a finding typical for radiation

necrosis. Radiation necrosis was subsequently confirmed by histopathology
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positive lymph nodes [48, 49]. Moreover, first data sug-

gests that the use of PET/CT for radiation planning

could significantly improve the local tumor control, re-

gional control and even survival [54]. The maximal stan-

dardized value (SUVmax) of the primary tumor and total

lesion glycolysis (TLG) of the largest node on 18F-FDG-

PET are PET derived parameters that can be used as

predictors of therapeutic failure and vice versa [55, 56].

Due to the progress of artificial intelligence and deep

learning, radiomics is increasingly becoming the focus of

research [57, 58]. Here, radiomic texture parameters

such as homogeneity and the sphericity described by

Fujima et al. showed high association with the individual

clinical course [57]. Moreover, e.g. low-intensity long-

run emphasis (LILRE) performed before therapy was

stated as a significant predictor of local control after

CRT [59]. For a patient example please see Fig. 2.

Signatures similar to radiomics build derived from 18F-

FDG-PET and contrast-enhanced CT could even predict

hypoxic areas of HNC [60], which is an important find-

ing, as tumoral hypoxia is highly associated with an ag-

gressive tumor phenotype that alters gene expression to

promote survival in a hostile environment, which unfor-

tunately causes a certain degree of therapeutic resistance

[61]. Therefore, the identification of radiation-resistant

tumor subvolumes may allow for intensified or hypoxia-

modified treatment as well as stratification of patients

[62]. Since the first application of hypoxia imaging with

PET-ligands in 1981, various tracers like 18F-FETNIM,
18F-HX4 and 18F-FMISO have been evaluated in cancer

patients for detecting hypoxic hot spots [61]. Radiation

dose escalation up to 77Gy to hypoxic areas detected by

hypoxia-specific PET led to better local control without

added toxicity, even, when hypoxia imaging used as im-

aging modality for response assessment during therapy,

persistent tumoral hypoxia predicts poorer outcome [61,

63–67]. On the other hand, when comparing different

tracers intra-individually, it could be shown that the

detected hypoxic areas are often already covered by
18F-FDG-avid areas or are in close proximity. Hence,

hypoxic areas are mostly included, if radiotherapy is

escalated to 18F-FDG-avid (sub-) volumes. However,

this might lead to larger irradiated volumes and, as a

consequence, potentially might result in a higher rate

of side effects [68–70]. In sum, hypoxia imaging al-

lows additional insights in molecular states of several

tumor entities; however, the real clinical impact of

this imaging modality remains to be elucidated fur-

ther. Therefore, additional randomized controlled tri-

als have to evaluate the effects of hypoxia imaging on

the patient outcome.

Beyond imaging glucose consumption and hypoxia,

PET ligands targeting the somatostatin receptor (SSR)

such as 68Ga-DOTATATE can be used for imaging of

undifferentiated nasopharyngeal cancer (NPC). Usually,

SSR-ligands are used for imaging neuroendocrine tu-

mors and meningioma [38, 71]. In NPC patients, SSR

PET provides a high target-to-background contrast,

which might be of particular help when infiltration at

the skull base might be present [72–74]. In clinical rou-

tine of HNC patients, however, 18F-FDG-PET/CT plays

the key role among these ligands.

Fig. 2 Patient with HPV-positive squamous cell carcinoma of the right tonsil (T1 cN3 M0), who underwent 18F-FDG-PET/CT for staging prior to

radiotherapy and subsequent inclusion of PET-positive tumor masses and lymph nodes in radiotherapy planning

Unterrainer et al. Radiation Oncology           (2020) 15:88 Page 4 of 15



Comprehensive response assessment after initial

therapy is important as salvage surgery or neck dis-

section might still be a curative option in these pa-

tients. Most problems occur while distinguishing

between an incomplete response or inflammatory

changes after CRT on conventional imaging. This

could be improved by integrating the treatment plan

into PET/CT imaging improving and the diagnostic

accuracy for response assessment [75]. Moreover, sev-

eral studies have evaluated the potential use of early

treatment response assessment with PET/CT 4 weeks

after CRT initiation [76]. In this setting, TLG of the

primary tumor is described as prognostic factor for

clinical outcome. The intra-therapy reduction of SUV-

max of the primary tumor was also associated with the

locoregional control (LRC) and OS confirming this

approach for early response assessment [77, 78]. Of

note, PET/CT scans 1 week after CRT show no prog-

nostic value, whereas, by contrast, SUVmax of the pri-

mary tumor 12 weeks after finalizing therapy [79].

Unnecessary salvage neck dissections can be avoided

by response assessment with PET/CT after 12 weeks

for node assessment. This was partly validated with

correlation to histological specimens [48, 80–82]. De-

tection of relapse is crucial in the post-treatment

care. High false-negative values on conventional im-

aging can lead to delay the treatment of residual dis-

ease and therefore cause worsening in clinical

outcome. Hence, 18F-FDG PET/CT with its high diag-

nostic accuracy is indispensable during follow-up [83].

The sensitivity and specificity for the detection of re-

currences seems to be the highest between 4 and 6

months after therapy [84–86]. Altogether with the dif-

ferent tracers, high sensitivity and specificity, PET/CT

is increasingly finding its way into clinical routine of

staging, treatment planning and follow-up of head

and neck cancer.

Lung cancer
Lung cancer remains the leading cause of cancer inci-

dence and death worldwide, with 2.1 million new lung

cancer cases and 1.8 million deaths predicted in 2018,

corresponding to a fifth of cancer deaths. Non-small cell

lung cancer (NSCLC) represents 80–90% of lung can-

cers, while small cell lung cancer (SCLC) shows a de-

creasing incidence in many countries over the past two

decades [87, 88].

PET with 18F-FDG is widely used for staging patients

with NSCLC [89, 90]. In the PLUS trial, a large multi-

center study, patients received either PET/CT staging or

only conventional diagnostic CT. Here, the additional

use of PET imaging to complete the staging prevented

unnecessary surgery in a fifth of patients [91]. Beyond

unnecessary surgery, superior mediastinal staging on

PET vs. CT was confirmed in a large meta-analysis [92].

Overall, the combined information of hybrid imaging

with PET/CT has been shown to have greater staging ac-

curacy than both imaging modalities alone [93–97]. Re-

cently, a number of studies have characterized the

diagnostic value of PET/MRI demonstrating an equiva-

lently high diagnostic performance in T and N staging of

NSCLC [98–100]. For an example, see Fig. 3.

With regard to radiation treatment planning, 18F-FDG

PET/CT has proven utility in accurate target volume de-

lineation (TVD) [5]. On 18F-FDG PET-CT, delineation

of the metabolic tumor volume (MTV) with exclusion of

abnormalities e.g. tumor-associated atelectasis or infil-

trates improves inter- and intra-reader reproducibility

[101, 102]. Thus, combined PET/CT acquisition is the

standard method of acquiring 18F-FDG PET images for

the purposes of baseline staging and for radiation treat-

ment planning [103]. A large systematic review and

meta-analysis confirmed that 18F-FDG PET/CT for radi-

ation treatment planning in lung cancer has a significant

influence on the target definition. Approximately 40% of

Fig. 3 A patient with newly diagnosed NSCLC (cT2b N3 M1b) and 18F-FDG PET/CT for staging (a) and inclusion in radiotherapy planning (b)
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patients had a significant change in target definition and

20% of patients were no longer eligible for curative in-

tent (chemo)radiotherapy [104].

In 2015, the International Atomic Energy Agency

(IAEA) provided a consensus report on PET/CT imaging

for TVD in curative intent radiotherapy for NSCLC –

herein, extensive recommendations are provided for

PET and CT image visualization and interpretation,

tumor delineation and using planning CT with and with-

out breathing motion compensation [105].

Furthermore, regarding assessment of treatment re-

sponse, a secondary analysis of patients with pretreat-

ment and post-induction PET/CT enrolled to the

ESPATUE study - a phase 3 study of surgery vs. defini-

tive concurrent CRT boost in patients with resectable

stage IIIA[N2] and selected IIIB NSCLC after induction

chemotherapy consisting of 3 cycles of cisplatin/pacli-

taxel and concurrent CRT (1.5 Gy twice-daily plus con-

current cisplatin/vinorelbine) was performed. The

percentage of maximum standardized uptake value

(%SUVmax) remaining in the primary tumor after induc-

tion chemotherapy (%SUVremaining) was predictive of

survival and freedom from extracranial progression

[106]. This parameter can be used for treatment stratifi-

cation after induction chemotherapy or for evaluation of

adjuvant novel systemic treatment options e.g. immuno-

oncology (IO) therapies for high-risk patients. In the

practice changing PACIFIC trial, which randomized

stage III NSCLC patients to consolidation durvalumab

vs. placebo every two weeks for up to 12months follow-

ing platinum-based concurrent CRT, data on inclusion

of 18F-FDG PET/CT in up-front staging and delivery of

radiation therapy (pre- vs. post-treatment) is not avail-

able and would be of high interest [107, 108]. Currently

a number of phase 2 studies are assessing the potential

of PD-L1-directed PET imaging e.g. 89Zr-durvalumab or
89Zr-pembrolizumab to determine SUV of radiolabeled

IO uptake in tumor lesions, correlate between tumor up-

take and PD-L1 expression as determined by immuno-

histochemistry and potentially predict response rate

(NCT03829007), (NCT03853187), (NCT02760225).

However, the role of PET/CT in SCLC remains uncer-

tain, although international guidelines recommend its

use [109]. Evidence has largely been based on small

retrospective and non-randomized prospective studies,

which have shown improvement in staging accuracy as

well as providing additional prognostic information

[110–113]. An unplanned post-hoc analysis of patients

staged with additional 18F-FDG PET/CT (309/540 pa-

tients) in the CONVERT study – a multicenter phase 3

study, which randomized patients with limited stage

SCLC to twice daily (45 Gy in 30 fractions or once-daily

(66 Gy in 33 fractions) platinum-based CRT, survival

outcomes (OS, PFS) were not significant. However,

patients staged with 18F-FDG PET/CT had smaller gross

tumor volumes and received lower radiation doses to

normal tissue (lung, heart, and esophagus). Caution

should be taken, when interpreting these data as inher-

ent confounders cannot be excluded. Importantly, the

analysis does not address the role of 18F-FDG PET/CT

for TVD in particular [114].

Furthermore, there are some drawbacks vis-à-vis re-

sponse assessment on PET e.g. acquisition time, PET pa-

rameters (SUV, total lesion glycolysis (TLG) and MTV)

and cut-offs. The lack of an undisputed, univocal param-

eter remains a challenge. Nevertheless, a current system-

atic review addressed the role of interim 18F-FDG PET/

CT during.

CRT for early prediction of clinical outcome in

NSCLC and showed that early identification of meta-

bolic tumor response was a predictor of response and

prognosis in NSCLC patients [115]. Kong et al. con-

ducted a phase II trial in 42 inoperable stage II-III

NSCLC patients, delivering individualized conformal

CRT (39 pts./93%) or RT alone (3 pts./7%) to a fixed risk

of radiation-induced lung toxicity (grade > 2) and adap-

tively escalating the dose to the residual tumor defined

on mid-treatment FDG-PET after an equivalent dose in

2 Gy per fraction (EQD2) of 50 Gy up to a physical total

dose of 86 Gy (EQD2 of 92 Gy [alpha / beta = 10 for

tumor]) in 30 daily fractions and showed favorable LRC

[116]. The RTOG 1106 trial is a follow-up ongoing clin-

ical study from the same group validating this finding in

a randomized manner (NCT01507428).

Moreover, residual metabolic tumor volume after de-

finitive treatment could further determine prognosis:

Ohri et al. reported that 30-month cumulative incidence

rates of local progression were 32 and 5% for lesions

with residual MTV > 25 cm3 vs. < 25 cm3, respectively

[117]. Roengvoraphoj et al. demonstrated that pre-

treatment primary tumor (PT)-MTV < 63 cm3, post-

treatment PT-MV < 25 cm3 and ≥ 15% reduction in mid-

to post-PT-MV significantly improved OS [118]. In a

follow-up analysis, the same group analyzed the prog-

nostic value of a post-treatment PET/CT and demon-

strated that PT-MTV reduction of at least 80%

(complete and major metabolic response) improved pa-

tient outcome [119].37

Prostate cancer
PET/CT PSMA-ligands labeled with 68Ga or 18F is in-

creasingly used in prostate cancer screening worldwide,

as it provides an excellent target-to-background ratio

leading to an improved detection rate [120]. PSMA is

highly specific for prostatic tumoral tissue, even if PSMA

expression in ganglia, sarcoidosis or benign bone dis-

eases may lead to incidentally false-positive findings

[121, 122]. A significant benefit in lymph node staging
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has been observed for PSMA PET/CT compared to

standard of care imaging: A recent meta-analysis with

histopathology as standard of reference and reported

combined sensitivities and specificities of 80 and 97% at

lesion level and 86 and 86% at patient level, either at ini-

tial staging and/or at biochemical recurrence [123–125].

However, PSMA PET/CT may still underestimate the

true extent of nodal involvement, especially with regards

to small lymph node metastases < 3 mm [126, 127].

Hence, PSMA PET/CT at the current state may prob-

ably not yet allow a perfect node-based therapeutic ap-

proach alone, e.g. stereotactic body radiotherapy (SBRT)

in comparison to elective nodal radiotherapy (ENRT)

[128] or limited salvage lymph node dissection (SLND)

compared to super-extended SLND [129]. For detection

of bone metastases, PSMA PET/CT outperformed planar

bone scans in two large analyses [130, 131]. Only few in-

stitutions have the possibility to perform PSMA PET/

MRI and head to head comparisons between PSMA

PET/MRIs and PET/CT are scarce. Overall, there seems

to be a very low discordance between the two imaging

techniques including PET-positive lymph nodes of nor-

mal size [132].

One further unique characteristic of PSMA PET/CT is

its high detection rate of metastases even at low pre-

PET PSA levels, e.g. at PSA level < 0.2 ng/ml in 33% and

at 0.2–0.49 ng/ml in 45% of the patients, which partly

explains the high impact of PSMA PET/CT on the indi-

vidual patient management, particularly, in patients with

biochemical recurrence or persistence [123, 133, 134].

So far, high-level evidence on the benefit of an earlier

detection of node or distant metastases is missing and

randomized controlled trials evaluating the management

and outcome of patients with PSMA PET-positive dis-

ease are currently under way. Thus, up to now there are

no clear recommendations in the European or NCCN

guidelines on application of PSMA PET/CT at initial

staging and only a weak recommendation for patients

with persistent or recurrent PSA [135]. Nevertheless,

particularly in the postoperative setting in persistent or

recurrent disease prior to radiotherapy, evidence is accu-

mulating: recently, a single-arm prospective trial on 635

patients with biochemically recurrent prostate cancer re-

ported a high detection rate of 75% and a substantial

inter-reader reproducibility for PSMA PET/CT [136].

From a prospective survey, it is known that information

from PSMA PET/CT lead to management changes in

more than 50% of prostate cancer patients with bio-

chemical recurrence [137]. With special regard to radio-

therapy, the specific impact of PSMA PET/CT on

salvage radiotherapy was investigated in patients with a

PSA recurrence of < 1.0 ng/ml after radical prostatec-

tomy: In this analysis, patients had a median PSA of

0.48 ng/ml and the PSMA PET/CT result was compared

to standard of care Radiation Therapy Oncology Group

(RTOG) clinical target volume (CTV) of both the pros-

tate bed and the pelvic lymph nodes. Overall, 132 of 270

included patients had PSMA PET-positive lesions and

52 patients had at least one lesion not covered by con-

sensus CTVs [138]. These findings have led to a ran-

domized imaging trial of salvage radiotherapy with or

without PSMA PET/CT (NCT03582774) investigating

its potential benefit on clinical outcome in a prospective

setting [139]. So far, few retrospective studies reported

patient outcome after PSMA PET/CT-based salvage

radiotherapy. The mean PSA response rate in these

studies was 74% (range, 60–83%) after a mean follow-up

time of 19 months [140–144], for an example see Fig. 4.

Overall, one might expect that PSMA PET/CT improves

salvage radiotherapy and thereby potentially outcome in

numerous ways: Firstly, visualizing macroscopic recur-

rence allows for dose-escalation. Secondly, CTVs can be

expanded to areas not normally treated by consensus

CTV. Thirdly, macroscopic recurrence might lead to

Fig. 4 A 68-years old male patient with newly diagnosed anal cancer Stage IIIC (cT4 cN1 cM0) and 18F-FDG PET/CT with 18F-FDG avid primary

tumor and inguinal lymph node (a). 18F-FDG PET/CT was then used for radiotherapy planning with boost to the right inguinal lymph nodes and

primary tumor (b)
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early application of androgen deprivation therapy con-

current with radiotherapy and finally, salvage radiother-

apy might be abandoned in case of overt metastatic

disease. Regarding primary prostate cancer, current re-

search is focusing on the identification and accurate

contouring of the intraprostatic tumor volume based on

PSMA PET/CT in order to allow for focal radiation

therapy with dose escalation to the PSMA PET-positive

lesions within the prostatic gland [145, 146]. For intra-

prostatic boosting, PSMA PET/CT may even replace

multiparametric MRI (mpMRI): In a prospective valid-

ation study, an increased consensus of PSMA PET/CT

with histopathologic correlation was observed for intra-

prostatic gross tumor volume delineation compared to

mpMRI. Additionally, mpMRI contours significantly

underestimated tumor volume [147]. Also, analysis of

radiomic features gain access into the evaluation of pros-

tate cancer patents [148]. In recent years, treatment of

oligometastatic prostate cancer has sparked new interest

since the STAMPEDE trial reported a significant overall

survival benefit by prostate radiotherapy and life-long

ADT in patients with low metastatic burden [149] and

the STOMP trial an ADT-free longer survival by

metastasis-directed therapy vs. surveillance [150]. This

has led to various studies all incorporating PSMA PET/

CT as diagnostic imaging like the PEACE V trial

(NCT03569241) or the “Prostate Cancer Subclinical

Metastatic Ablative MR-guided Radiotherapy” study

(NCT03160794).

Moreover, in analogy to neuroendocrine tumors,

where radioligands labeled with the beta-emitters such

as 177Lu-DOTATATE are approved and successfully

used in clinical routine [151], PSMA-ligands labeled with
177Lu can also be used for radioligand therapy [152]. In

several countries, PSMA-ligands show to be a valuable

treatment option in patients with metastasized,

castration-resistant prostate cancer, so that several trials

such as the “VISION” trial (NCT03511664) are on their

way.

Overall, the use of PSMA PET/CT prior to radiother-

apy of primary or postoperative prostate cancer warrants

further high-level research to find its rightful place in

the current guidelines. Nevertheless, the available evi-

dence already suggests that PSMA PET/CT will become

an even more decisive tool in the guidance and treat-

ment of prostate cancer patients than it nowadays

already is.

Gastrointestinal oncology
Radiation oncology is a crucial part of the treatment in

several gastrointestinal tumors. Particularly in curative

intended treatment of esophageal carcinoma, rectal can-

cer, and anal cancer radiotherapy (RT) is a key treatment

modality. The impact of 18F-FDG PET/CT on staging of

patients with gastrointestinal malignancies, radiation

treatment planning, and response assessment is well

established.

Esophageal cancer

In curative treatment of patients with locally advanced

esophageal cancer chemoradiation (CRT) is either per-

formed as neoadjuvant treatment before surgery or as

definitive treatment in case of unresectable tumor. Neo-

adjuvant treatment is performed in patients who are fit

to undergo major surgery. However, patients with thor-

acic squamous cell carcinoma of the esophagus who

show good response to CRT might have a similar out-

come with definitive CRT compared to surgery [153].

Several studies have gathered evidence that 18F-FDG

PET/CT has a high prognostic value in patients under-

going CRT for esophageal cancer [154, 155] and can

therefore be useful to guide treatment decisions.

RT planning in patients with esophageal cancer is

challenging since the primary tumor is often poorly vis-

ible on standard morphological imaging with CT alone.

Given the submucosal spread of the tumor, diagnostic

modalities such as barium swallow, gastroesophagoscopy

or MRI are frequently used to further determine the

exact tumor extend. While the additional effect of 18F-

FDG PET/CT on primary tumor volume delineation

seems limited with different studies reporting conflicting

results either with benefit [156] or no benefit [157] of

PET/CT over conventional imaging alone. In contrast,

the effect on metabolic imaging on the identification of

involved nodes has been shown [157, 158]. 18F-FDG

PET/CT has a high specificity and sensitivity in detect-

ing involved nodes in esophageal cancer and should

therefore be considered for pre-treatment imaging in pa-

tients with esophageal cancer [159].

Pancreatic cancer

RCT or stereotactic radiotherapy [160] can be offered to

patients as part of multidisciplinary treatment in locally

advanced pancreatic cancer (LAPC) either as neoadju-

vant or as definitive treatment. The pancreas is localized

in close proximity to highly radiation sensitive organs

such as the duodenum and small bowel that need to be

spared [161]. Large safety margins to account for in-

ternal movement and positioning uncertainties are

therefore obsolete and precise tumor delineation re-

mains the main challenge in treatment planning of

LAPC. While malignancies of the pancreas can be im-

aged using different PET tracer such as 18F-FDG and
18F-fluorothymidine (FLT) [162] the value of metabolic

imaging for delineating GTV in pancreatic cancer re-

mains debatable. Due to a long acquisition phase

encompassing several breathing cycles misregistration
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between PET and CT occur and can lead to uncertain-

ties in determining the actual tumor extend [163].

Concerning patient management pre-therapeutic 18F-

FDG PET/CT has a prognostic value as initial low SUV-

max showed an association with better median survival

after SBRT in one study with 55 LAPC patients [164].

Accordingly another study with 33 patients reported that

high metabolic tumor volume (MTV) and total lesion

glycolysis (TLG) prior to induction gemcitabine and

SBRT were associated with inferior overall survival

[165]. A histopathological correlation in patients with

borderline resectable pancreatic carcinoma and LAPC

undergoing multimodality neoadjuvant treatment

showed both post-neoadjuvant CA19–9 and post-

neoadjuvant therapy SUVmax significantly correlating

with tumor regression grade [166].

Rectal cancer

Neoadjuvant RT or CRT before total mesorectal excision

(TME) is well established in the treatment of locally ad-

vanced rectal cancer (LARC). It has been proven that

pathological complete response (pCR) after CRT corre-

lates with improved long-term outcome [167]. More-

over, a correlation between applied radiation dose and

pCR was found [168, 169]. Therefore, to further improve

response to neoadjuvant treatment while sparing normal

tissue focal dose escalation on macroscopic tumor seems

worthwhile [170]. Commonly, CT-based radiation treat-

ment planning is complemented by MRI information for

better soft tissue contrast. In a prospective study, gross

tumor volume delineation on MRI and 18F-FDG PET/

CT was compared in 77 patients [171]. The authors con-

cluded that 18F-FDG PET/CT added important informa-

tion for the delineation process with PET-based GTV

been smaller than MRI-based GTV but larger GTV vol-

umes when both MRI and PET information was used. A

comparison of tumor extend in pathological specimens

even showed a better correlation to tumor extend mea-

sured on 18F-FDG PET/CT than on CT or MRI [172]

underlining the importance of including metabolic im-

aging in the initial treatment planning.

In up to 20% of patients with LARC pCR can be

achieved after neoadjuvant CRT [173]. This high rate of

pathological response fuels efforts to provide organ-

preserving treatment to patients with good clinical re-

sponse [174] thus emphasizing the need for valid treat-

ment assessment. So far, post-treatment 18F-FDG PET/

CT has been evaluated extensively in retrospective stud-

ies with promising results [175–178]. However, at this

stage, further validation is needed.

Anal cancer

Squamous cell carcinoma of the anus (SCCA) is a rare

disease accounting for approximately 1–2% of gastro-

intestinal tumors only [179]. CRT is the treatment of

choice for curative intended organ-preserving treatment

with surgery reserved for salvage. The majority of SCCA

is highly 18F-FDG-avid [180] and multiple studies have

described a change in tumor staging in up to 20% of

cases with the use of 18F-FDG PET/CT [181, 182].

Concerning radiation treatment planning metabolic

imaging can be useful to guide target definition of elect-

ive lymph nodes regions and boost to primary tumor,

see Fig. 5. A recent meta-analysis reported a change in

target volume delineation with the use of 18F-FDG PET/

CT in almost 25% of patients [183] compared to treat-

ment planning based on conventional imaging. More

specifically, 18F-FDG PET/CT contributes to identifying

involved lymph nodes that need to be included into the

radiation field. A recent study evaluated the distribution

of involved lymph nodes on PET/CT and correlated

their findings with three established delineation guide-

lines. The authors reported detection of involved lymph

nodes outside the borders of standardized clinical target

Fig. 5 A 69-years old patient with biochemical recurrence of prostate cancer (pT2c pN0 R0 Gleason score 9, preoperative PSA 11.7 ng/ml) and

evidence of PET-positive lymph node metastases (a) and radiotherapy-plan with dose-escalation to the PET-positive lymph nodes (b)
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volumes (CTV) recommended by the respective delinea-

tion guidelines of 10–29% [184]. The impact on 18F-

FDG PET/CT on delineation of primary tumor gross

tumor volume (GTV) has been described by Krengli

et al. They reported that metabolic imaging had a

greater influence on GTV definition than on CTV delin-

eation [185]. Attempts to identify 18F-FDG-avid sub-

volumes for further dose escalations within the primary

tumor have been made [186] however, this approach

needs further research. Utilization of metabolic imaging

as biomarker for the prediction of treatment outcome in

anal cancer has been evaluated intensively. Several retro-

spective and prospective studies have reported on the

value of 18F-FDG PET and PET/CT for early detection

of tumor recurrence as well as the predictive value of

different parameters in pre- and posttreatment 18F-FDG

PET/CT for response assessment [187–190] with prom-

ising results.

Summary

PET imaging is increasingly used in the clinical manage-

ment of patients undergoing radiotherapy. Especially,

this is the case for a broad variety of cancer entities, as

presented in the current manuscript. Moreover, PET im-

aging is increasingly included in randomized trials fo-

cused on radiotherapy, where parameters from PET are

used as imaging biomarkers. Hence, in radiation oncol-

ogy practice, imaging biomarkers derived from PET

comprise valuable additional information beyond stand-

ard morphologic imaging for tumor staging, radiother-

apy planning, but also - after undergoing radiotherapy -

for treatment monitoring and the differentiation of

tumor relapse from inflammatory or radiation induced

changes. So far, 18F-FDG is the most widely used tracer

as described above; however, there is a strong trend to-

wards radioligands, which target more specific tumor

features rather than only glucose metabolism, e.g.

PSMA-targeted ligands for prostate cancer imaging or

SSR-directed ligands for meningioma imaging. Along

with anticipated technical innovations such as whole

body PET, methodological innovations such as the appli-

cation of PET-derived radiomics and deep learning

methods will further improve tumor characterization,

identification and, hence, the clinical workup of patients

undergoing radiotherapy.
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