
Citation: Zhang, W.; Ye, G.; Liao, D.;

Chen, X.; Lu, C.; Nezamzadeh-Ejhieh,

A.; Khan, M.S.; Liu, J.; Pan, Y.; Dai, Z.

Recent Advances of Silver-Based

Coordination Polymers on

Antibacterial Applications. Molecules

2022, 27, 7166. https://doi.org/

10.3390/molecules27217166

Academic Editor: Tifeng Xia

Received: 23 September 2022

Accepted: 18 October 2022

Published: 23 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Recent Advances of Silver-Based Coordination Polymers on
Antibacterial Applications
Wenfeng Zhang 1,2,†, Gaomin Ye 1,2,†, Donghui Liao 1,2,†, Xuelin Chen 1 , Chengyu Lu 1,*,
Alireza Nezamzadeh-Ejhieh 3 , M. Shahnawaz Khan 4 , Jianqiang Liu 1, Ying Pan 1,2,* and Zhong Dai 1,*

1 Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy,
Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials,
Guangdong Medical University, Dongguan 523808, China

2 The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
3 Chemistry Department, Shahreza Branch, Islamic Azad University, Shahreza 311-86145, Iran
4 Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
* Correspondence: luchengyu@gdmu.edu.cn (C.L.); panying@gdmu.edu.cn (Y.P.);

daizhong@gdmu.edu.cn (Z.D.)
† These authors contributed equally to this work.

Abstract: With the continuous evolution of bacteria and the constant use of traditional antibiotics, the
emergence of drug-resistant bacteria and super viruses has attracted worldwide attention. Antimi-
crobial therapy has become the most popular and important research field at present. Coordination
Polymer (CP) and/or metal-organic framework (MOF) platforms have the advantages of a high
biocompatibility, biodegradability, and non-toxicity, have a great antibacterial potential and have
been widely used in antibacterial treatment. This paper reviewed the mechanism and antibacterial
effect of three typical MOFs (pure Ag-MOFs, hybrid Ag-MOFs, and Ag-containing-polymer @MOFs)
in silver-based coordination polymers. At the same time, the existing shortcomings and future views
are briefly discussed. The study on the antibacterial efficacy and mechanism of Ag-MOFs can provide
a better basis for its clinical application and, meanwhile, open up a novel strategy for the preparation
of more advanced Ag-contained materials with antibacterial characteristics.

Keywords: metal-organic frameworks; anti-bacterial effect; anti-bacterial mechanism; silver

1. Introduction

At present, people’s yearning for a better life makes people pay more and more
attention to disease and health. However, pathogenic bacteria have a high rate of morbidity
and mortality properties. Various antibiotics are used globally to treat infections resulting
from bacteria. This wide use results in the critical resistance of bacteria against the drugs
used, super viruses, and the lack of effective treatment methods. Therefore, searching for a
new treatment or antibacterial drugs has become the hottest topic [1].

Metal-organic frameworks (MOFs) are fascinating porous coordination polymers
(CPs), which are made up of organic ligands and metallic cations or metal-containing
nodes [2–21]. Owing to their high intermolecular pores, specific surface area, unsaturated
active metal sites, and structural and functional diversities [22–35], they have adopted
a critical interest in various fields, such as energy storage, ion exchange, sensors, drug
delivery/release, separation, molecular recognition, catalysis and theranostics [36–47].
Compared with some traditional materials such as porous zeolite materials, polymers,
and other materials [48–56], MOFs have a specific surface area and volume, a tunable
pore size, and a better biocompatibility [57–59], which make them an ideal candidate for
antimicrobial activity and cancer therapy, and so on [60–64]. In addition, MOF porosities
and compositions can be tweaked by carefully choosing organic components and metal
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ions to achieve precise physical and chemical features [39,65–69]; and nanoscale MOFs
have remarkable loading capacities, which are good for drug loading [39,40,70–76].

MOFs have both organic and inorganic components to provide anti-virus and ster-
ilization effects, which can save human health related to bacterial contamination [77–81].
Compared with other disinfectants and antibacterial agents, MOFs have critical advantages
due to their high durability, long-term persistence, critical efficacy, and thermal and optical
stabilities [81]. In synthesizing antibacterial MOFs, a polar-organic solvent, well-soluble
salts act as a metallic center source (Zn2+, Co2+, Cu2+, and Mo6+), and azo compounds act
as organic linkers. The metal cations can be easily tuned for the functional application
in the MOF synthesis. The metallic cations mentioned above commonly have a better
antibacterial activity and can be easily introduced into the frameworks [82].

However, the toxicity of those metal ions has a certain influence on the clinical applica-
tion. In recent years, the reports on silver-based drugs have also increased, authenticating
silver’s role in medical applications. The number of publications related to Ag has signifi-
cantly increased over the past decade, as shown in (Figure 1B).

Metallic silver has a lower cytotoxicity and immunological response [83], a better
stability, and antibacterial properties than other metals, therefore, they are used for drug
delivery, medical imaging, and molecular diagnostics [84]. Metallic silver with different
shapes and sizes showed great prospects in terms of bacterial infection [85]. Due to the high
affinity of Ag to extracellular and intracellular nitrogen and sulfur-containing biomolecules,
such as nucleic acids and proteins, common cell activities, such as cell division and res-
piration would be affected, which eventually causes bacteria death. Ag nanostructures
exhibit a size-dependent antibacterial efficiency. The smaller the Ag nanoparticle, the
higher the antibacterial efficiency [86]. Although antibacterial efficiency could be improved
by controlling the size and surface charges of the Ag nanomaterials, an unavoidable fact
is that they tend to aggregate due to their colloidal instability. This aggregation makes
silver nanomaterials less capable of entering the bacteria and also decreases the amount of
intercellular Ag+ [86].

The metal-organic frameworks (MOF) in which the target metal ions can be anchored
have attracted the attention of researchers. The metal center in Ag-MOFs, is encapsulated
by organic ligands and evenly dispersed throughout the framework [80], allowing the slow
and sustained release of metallic species (as cations of natural metal species) to diminish
the potential large toxicity caused by the release of the sudden metal ion. At the same time,
silver (Ag I)-based antibacterial agents have features of long-acting bacteria with a high
stability, a broad antibacterial spectrum, a low volatility, and a low tendency to induce
bacterial resistance [87,88]. The key developments of Ag-MOFs for their antibacterial
activities are depicted in (Figure 1A) [89–95].

Despite the wide industrial/medical applications of silver-contained chemicals, as far
as we know, no specific antibacterial mechanism of Ag-MOFs has been entirely clarified.
A lot of current studies show that Ag-MOFs have an obvious inhibitory effect on Gram-
positive and Gram-negative bacteria, Escherichia coli (E. coli) and Staphylococcus aureus
(S. aureus) [96–103]. The main mechanism of action is due to (1): the high electrical
conductivity of metallic silver, the generated static electricity has a strong affinity for
sulfur proteins, making silver ions adhere to the cell membrane; (2): the adhesion of silver
ions can enhance the permeability of the cytoplasmic membrane and lead to the destruction
of the cell membrane; (3): when silver ions enter the cells, they lead to the inactivation of
enzymes and the production of reactive oxygen species (ROS). ROS further promote the
cell membrane rupture and the DNA replication interruption [81,90,97].

Because of Ag-based MOFs’ excellent performance in antibacterial activity, we have
summarized a prospective review of the current developments of Ag-based MOFs (pure
Ag-MOFs, hybrid Ag-MOFs, and Ag-containing-polymer @MOFs, Figure 1C,D shows
the proportions and types of the three MOFs) for their antibacterial effect. We have
also explored the corresponding mechanism and the latest state of art developments in
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the antibacterial activities of Ag-MOFs. At the end of the manuscript, we envision the
challenges and outlook for developing antibacterial Ag-MOFs in future endeavors.
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2. Silver-Based MOFs

Pure Ag-MOFs refer to materials with a three-dimensional structure, prepared using
certain methods (in-situ growth, hydrothermal reaction, etc.) using silver as the metal
nodes and organic linkers. Mainly, MOFs are used as “reservoirs” of Ag cations to ensure
the controllable release of metal ions. The presence of silver can provide certain antibacte-
rial activities to the MOFs, which is higher than the commercial silver nanoparticles. The
MOF system can control the release rate of silver and avoid the toxicity caused by the
sudden release of silver. Based on pure Ag-MOFs, the antibacterial effect of MOFs can be
increased, or other synergies can be obtained by adding certain modifiers or loading an-
timicrobial agents. These polymer materials (such as chitosan, polyvinyl alcohol, graphene
oxide, etc.) have unique properties (i.e., anticoagulant, high biocompatibility, hydrophilic,
antibacterial, etc.). Their addition allows Ag-MOFs to have a more accurate antibacterial
activity than the pure Ag-MOFs, and can also improve the antibacterial effect.

Silver-containing polymer @ MOFs mean that on the other MOF structure load, the
silver and chemical materials obtain the antibacterial properties or have other special
performances. These MOFs usually have some characteristics, such as a high porosity, a
strong stability, a good biological activity, they prevent the Ag ions reunion and antibacterial
properties, etc., which can help Ag to have a greater antibacterial effect. At the same time,
the other MOFs, as the carrier of silver, not only have a certain antibacterial ability, but
also can improve the loading amount of silver, and thus improve the release amount
of the silver ions.
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2.1. Pure Ag-MOFs

The three-dimensional structure of the silver-MOFs, Ag6(m-O3PC6H4CO2)2, MOF-1
has been prepared through the hydrothermal reaction of Ag (NO3) and m-phosphonobenzoic
acid. The organic part is constituted by 3-phosphonobenzoic acid, which is a rigid organic
molecule and is classified as a hard base; hence, the silver-MOF-1, acts as a reservoir of
Ag+, which possesses an intermediate stability that exhibits the release of the Ag+ ions with
the consequent bactericidal effect, and can be utilized against the Gram-positive S. aureus
(minimum bactericidal concentration (MBC)) value, 50–70 µM) and the Gram-negative
strains of Pseudomonas aeruginosa (P. aeruginosa) (MBC value, 20–30 µM). Furthermore, it
was shown that MOF-1 did not exhibit a significant cytotoxicity [98].

Quaternized carboxylate ligands have a good water dispersibility and stability, and
they are used as ligands to prepare 3D Ag-MOF-2, [Ag2(Cedcp)]n, (H3CedcpBr denotes
N-(carboxyethyl)-(3,5-dicarboxyl)-pyridinium bromide), which showed a good stability
and solubility, and could release Ag+ better, resulting in the strong antibacterial activity
towards the Gram-negative and Gram-positive bacteria strains. The Ag-MOF-2 mainly
destroys the bacterial membrane through the synergistic effect of the ligand’s characteristic
aromatic ring and positively charged pyridine and the release of Ag+, resulting in bacterial
death. In addition, the MOF-2 showed little hemolytic activity on mouse erythrocytes and
exhibited an excellent in vitro biocompatibility [99].

The MOF-3 (Figure 2A) [Ag2(µ3-PTA)2(µ2-chdc)]n·5nH2O was prepared from 1,3,5-
triaza-7-phosphoadamantane (PTA) (Figure 2F) and flexible cyclohexanecarboxylic acid,
1,4-cyclohexanedicarboxylic (H2chdc). The 3D structure of the composite material granted
their water solubility, air stability, and coordination environment around the silver ion,
which was conducive to the release of the biologically active Ag+, thus exerting an ef-
fective antifungal activity against the Gram-positive S. aureus and the Gram-negative
E. coli and P. aeruginosa bacteria and yeast (Candida albicans (C. albicans)). Among them, it
had the strongest inhibitory effect on S. aureus and E. coli, reaching a minimum inhibitory
concentration (MIC) of about 10 and 7 µg mL−1 [100].
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The pure MOF-4 (Figure 2B) [Ag2(µ4-PTA)(µ4-mal)]n has been synthesized using PTA
as a main fundamental block and flexible aliphatic dicarboxylic acids (malonic (H2mal)
acids) as an ancillary ligand source. The silver(I) coordination polymers feature a solubility
in water and show critical antibacterial and antifungal activities towards the selected strains
of the Gram-negative MIC of E. coli and P. aeruginosa (6 and 7 µg mL−1, respectively) and
the Gram-positive MIC of S. aureus (8 µg mL−1) bacteria and yeast (the MIC of C. albicans is
30 µg mL−1). The mechanism relates to the coordination sphere around each silver atom
that controls the compounds’ antimicrobial efficiencies. A slow Ag+ ion releasing into the
solution would be expected in the presence of an organic ligand containing O and N atoms
as weaker donating centers. This can increase the replacement of organic ligands by the
biological moieties to release the Ag(I) cations [101].

The MOF-5, (Figure 2C) [Ag4(µ-PTA)2(µ3-PTA)2(µ4-pma) (H2O)2]n, was assembled
from Ag2O, PTA, and pyromellitic acid (H4pma), which possess a very complex ribbon-
pillared 3D metal-organic framework. MOF-5 acts as a potent antimicrobial agent against
the pathogenic strains of the standard Gram-negative E. coli, P. aeruginosa and the Gram-
positive S. aureus bacteria, as well as yeast (C. albicans). Meanwhile, this MOF also depicted
a critical antiviral activity towards the human adenovirus 36 (HAdV-36) and exhibited a
high cytotoxicity towards an abnormal epithelioid cervix carcinoma (HeLa) cell line [102].

Two bioactive Ag–organic frameworks [Ag(u3-PTA=S)] n(NO3) (MOFs-6) and [Ag4(u4-
PTA=S) (MOFs-7) (Figure 2D,E) (u5-PTA=S) (u2-SO4)2(H2O)2] n·2nH2O were easily assem-
bled through the 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTA=S), which can be used
as a multifunctional N, S-building block. The coordination modes of PTA=S with different
native topologies revealed a significant antibacterial activity against the Gram-negative
bacteria, and the MIC values obtained for the MOF-6 (4–5 µg mL−1) were preferentially
lower than those of MOF-7 (20 µg mL−1). The observed antibacterial activity of MOF-6 and
MOF-7 is due to the presence of bioactive silver nodes. The highest antimicrobial activity of
MOF-6 has been reported than that of the corresponding silver MOFs derived from PTA=O,
and stronger than other silver(I) salts AgNO3 (Figure 2) [103].

Two Ag-MOFs, Ag5(PYDC)2(OH) (MOF-8) and [Ag2(O-IPA)(H2O)·(H3O)] (MOF-9),
were synthesized using hydroxyl and pyridyl-contained aromatic-carboxylic acids as lig-
ands (HO-H2IPA = 5-hydroxyisophthalic acid and H2PYDC = pyridine-3, 5-dicarboxylic
acid). Utilizing the MOFs as a carrier, the Ag+ in both compounds diffuse to the bacterial
surface and release the Ag+ ions, and the ion channels are destroyed. The Ag+ ions may
interact with the thiol groups of protein, which can inactivate vital enzymes and disrupt
the bacterial membrane’s integrity and permeability. In addition, a functional group of
organic ligands in the MOFs can bond with the cations in the cell, such as Ca2+ and Mg2+.
The reaction-oxygen generated in the cell results in the modifications and fragmentation of
DNA. It showed a high antibacterial activity against the Gram-negative bacteria (E. coli)
and the Gram-positive bacteria (S. aureus). Furthermore, it has a good biocompatibility
with blood cells. The relevant data show that the MIC of the MOFs synthesized by this
method is 5–15 ppm for E. coli and 10–20 ppm for S. aureus, and MOF-8 and MOF-9 exhibit
diameters of the inhibition zones (ZOI) in 17.0 and 20.0 mm for E. coli. The diameters of the
inhibition zones against S. aureus for MOF-8 and MOF-9 are 14.0 and 16.0 mm, respectively,
and they are larger than the Ag-NPs [104].

The MOF-10, [AgL]n·nH2O, (L=4-Cyanobenzoate) exhibits a good antibacterial perfor-
mance against the S. mutans (UA159), F. nucleatum (ATCC 10953, Fn), and P. gingivalis oral
bacteria. The bactericidal ability is enhanced as the concentration of the metal ions increases.
Compared with the traditional antibacterial materials, such as silver nitrate (AgNO3), the
MOF-10 dispenses better slow-release bactericidal properties. The sterilization property of
the MOF containing the Ag+ ions is better than that of the MOF with Zn2+ ions [105].

The metal nodes of the Ag+ ions and the linkers made of redox-active naphthalenedi-
imide (NDI) derivatives could act as excellent radical-doped Ag-MOF antibacterial mate-
rials, such as, the two reported MOFs, such as MOF-11 Ag (NDI-1)0.5(H2O) and MOF-12
Ag7(NDI-2)1.5(CH3S)4(DMSO)3(DMSO). Because of the synergistic antibacterial effects of
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the Ag+ ions and the reactive organic radicals, those MOFs displayed a broad-spectrum
antimicrobial activity against the multi-drug-resistant bacteria; the reported inhibiting rate
was more than 98.74%. The colony inhibition ratio (IR) of the MOF-11 and MOF-12 against
the Gram-negative and Gram-positive strains is about 100% and 99.90%, respectively, which
is higher than AgNO3 (IR value: 89.29–94.92%) [106].

The Ag-MOFs types, the antibacterial activity against the different bacteria, and their
experimental conditions have been tabulated in Table 1. The pure Ag-MOFs were prepared
using silver ions as a metal center and the relevant organic systems; the organic ligands
effectively wrap the active sites of the Ag metal ions in the framework. The organic ligand
is evenly distributed across the overall material, enabling a sustained release of the metal
ions to avoid the toxicity caused by a burst release of the metal ions. The Ag-MOFs showed
a high antibacterial activity against the Gram-positive and Gram-negative bacteria.

The MOFs-3, 4, 5, 6, and 7, constructed by the linkers 1,3,5-triaza-7-phosphaadamantane
(PTA) or 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTA=S), which possess the feature
of water-solubility and air-stability, endow the Ag-MOFs with a better bioavailability, and
physiological media by achieving the lowest MIC values and a very high ZOI. As a com-
patible polymer of the MOFs, PTA can synthesize three-dimensional topology structures
and slowly release the Ag+ ions into the solution due to the O and N-donor ligands ex-
erting only a weak binding affinity for the silver, increasing the probability of the organic
ligand replacement by the biological moieties. Moreover, the Ag-O and Ag-N bonds have a
better biocompatibility than the Ag-S and Ag-P bonds [94,107,108]. These characteristics
are favorable for the Ag-MOFs to release their silver ions, and then, with their breaking
ability to balance the ions and disrupting the integrity of the cell membrane, with the cell
internalization of the Ag+ ions, they interact with the fragmentation of DNA. At the same
time, the structural changes, such as a 3D network, can give the MOFs a higher stability
and be more conducive to the Ag+ ion antibacterial activity. The 3D structure can also act
as a depository for the Ag+ cation, ensuring the Ag’s slow and continuous release.

The strong antibacterial activity of the Ag-MOFs is correlated to the donor site of the
weak ligand, their binding force, and the synergistic effect of the ligand. The presence of the
organic ligands can increase the stability of the silver ions and thus enhance the antibacterial
activity. The MOFs-11 and 12 have a very high and significant effect on the inhibition of
the Gram-positive and Gram-negative bacteria, and the inhibition rate (IR) is more than
99.5%. The organic ligand naphthalenediimid (NDI)) of MOF-11 and MOF-12 have stable
radical-doped coordination compounds that produce organic radicals by unconventional
lone pair-Π interactions and generate the synergistic antibacterial effects of the Ag+ ions
and the reactive organic radicals [109].

The released silver ions are known as the main reason for the antibacterial activity of
the pure Ag-MOFs. The main purpose is to release the silver ions from the MOF structure,
whether it is the weak binding force between the ligand and silver metal or the synergistic
antibacterial action with silver, which is conducive to a series of reactions of Ag+ ions on
the bacterial membrane and changes the surrounding environment of the cells, and then
destroy the ion channels. More importantly, the silver ions react with the thiol groups and
the intracellular substances, failing the cell transcription and replication, which ultimately
ends with the death of the bacteria.

2.2. Hybrid Ag-MOFs

Huang et al. designed a novel platelet membrane-camouflaged material PLT@ Ag-
MOF-Vanc (MOF-13). The MOF-13 can release silver ions and drugs through the pH
regulation, avoiding a premature drug release in the circulatory system. The MOF-13
showed an obvious inhibitory effect on MRSA, the MIC of MOF-13 was 0.5 µg mL−1, and
the effect was better than with the Ag-MOF-Vanc and vancomycin alone. The antibacterial
mechanism may be related to the synergistic reaction of physics and chemistry, which
includes targeting MRSA via PLTm; the intracellular bacterial metabolism interfering effect;



Molecules 2022, 27, 7166 7 of 27

the catalytic effect in the ROS production; the damaging of the cell membrane integrity;
and the inhibiting effect on the formation of a biofilm [110,111] (Figure 3).
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Using silver acetate as the metal source and 2-aminoterephthalic acid as the organic
linker, a new MOF-14 with a higher antibacterial effect, namely Ag-MOF@TFN (thin-film
nanocomposite) was synthesized. The MOF-14 can completely inactivate and degrade
E. coli and S. aureus, and attributed to the mortality rates of approximately more than
90% of materials embedded within the polyamide matrix and forwarding osmosis mem-
branes, to improve their antifouling and antibacterial properties. While the most probable
antibacterial mechanism is related to the release of the Ag+, other possible antibacterial
mechanisms proposed for the Ag-MOFs’ biocidal properties are (i) direct attachment to the
bacterial cells, infiltration, and the physical destruction of the cell membrane and (ii) the
indirect generation of the reactive oxygen species which trigger damage to the bacteria cell
structure [112].

In an article, S. Fatemeh Seyedpour et al. reported a new antifouling TFC (thin-film
composite) polyamide membrane by surface anchoring via the in-situ assembly of the
silver-based MOFs. The MOF-15 (Ag-MOFs @TFC) have antibacterial properties against
gram-negative bacteria (P.aeruginosa strains), and a bacterial mortality rate (MR) of approxi-
mately 100% was attained. The antibacterial mechanism of the Ag-MOFs includes several
pathways; (i) direct adherence of the Ag ions to the bacterial cells and permeating into
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them, (ii) the release of Ag+ from the dissolved Ag NPs and then penetration to the bacteria
inside, and (iii) the indirect production of reactive oxygen species by the Ag NPs and Ag+.
In other words, MOFs can be a reservoir of metal ions, such as silver (Ag+), and the chronic
depletion of the metal ions by the destruction of the framework can create a sustainable
antibacterial activity [113].

The Ag-MOFs (Aand Gram-negative bacteria, respectively, and the maximum diameter
of the inhibition zone of S. aureus and E. coli is 12.1 and 9.7 mm, respectively. The MOF-16
has an anticoagulation effect and a good biocompatibility because of the presence of PVA
and CS. The MOF-16 can release Ag+ to strongly attract the enzyme protein in bacteria
and quickly bind together to destroy the bacterial cell membrane. The Ag+ can also form a
reactive oxygen species (ROS) that further attacks the cell membranes [114].

The MOF-17 (Ag-MOF−CQDs) were synthesized by the nanocomposites and
g5(PYDC)2(OH)) (PYDC=Pyridine-3, 5-Dicarboxylic Acid) was synthesized under the mod-
ified hydrothermal, and then the polyvinyl alcohol (PVA) hydrogel modified the Ag-MOFs
as the inner layer of the membrane, and polyvinyl alcohol/chitosan (PVA/CS) were com-
bined as the outer layer of the membrane to attain the hybrid material PVA/Ag-MOFs @CS
(MOF-16). The outer layer of the double-layered dressing a has good biocompatibility, while
the inner layer has a high antibacterial activity and avoids direct contact with cells. The
MOF-16 possessed an antimicrobial activity against S. aureus and E. coli, which represent
the Gram-positive hybrid materials of Ag-1,3,5-benzenetricarboxylic with S- and N-carbon
quantum dots (CQDs). The MOF-17 possessed a great antibacterial activity against the
representative Gram-positive (Bacillus subtilis (B. subtilis)) and the Gram-negative (E. coli)
bacterial strains. The composite formation fostered a synergistic effect that enhanced their
antibacterial activity, compared to their new components. The ZOI of E. coli and B. subtilis
is 11–15 nm, and 9.5–13.5 nm, respectively. In addition to the release of metallic silver, the
bactericidal activity was linked mainly to the surface charge of the CQDs. These materi-
als interacted with the surface of the bacterial cells through electrostatic forces and thus
disrupted the integrity of the cell membrane, leading to bacterial death [115].

Another MOF with the formula {[Ag6(µ3-HMNA)4(µ3-MNA)2]2−·[(Et3 NH)+]2
·(DMSO)2·(H2O)} (AGMNA) (2-thio-nicotinic acid (H2MNA)), was incorporated in the
polymer hydrogel using, p-hydroxyethyl-methacrylate (pHEMA), attaining the MOF-18
(pHEMA@AGMNA-1). The MOF-18 possessed the antibacterial capacity against the Gram-
negative and Gram-positive bacterial strains. A silver-MOF (AGMNA) enhanced the
antibacterial performance more than that of pH EMA. The antimicrobial properties of the
silver-containing compounds are due to (i) their interactions with the bacterial cell wall,
(ii) their interactions with DNA, enzymes, and membrane protein, and (iii) the generation
of the reactive oxygen species [116].

The MOF-21, CS/SS/Ag @MOFs-GO, is a silver (Ag)-based metal-organic framework
(Ag-MOF) that is embellished with graphene-oxide (GO), whose biocidal activity is higher
than those of the Ag-MOFs and the GO nanomaterials. The Ag @MOF–GO impregnated
into sericin/chitosan (SS/CS) hydrogels are successfully synthesized through a green
strategy. These materials have special properties in improving the cell adhesion, antibacte-
rial activity, biocompatibility, water retention, and antioxidants. The MOFs possess dual
antibacterial effects, which contain GO and Ag-MOFs. The Ag@ MOF-GO continuously
released the Ag+ to the surrounding environment, which caused an interaction between
the Ag+ and the thiol group protein to destroy the integrity of the bacterial membrane. The
interaction between the O-containing functional groups of CS/SS/Ag @MOFs-GO and
the bacterial lipopolysaccharide promoted the interaction between the Ag+ and bacteria
to destroy the bacterial cells. In addition, the GO’s antibacterial properties originate from
the physical and chemical interaction between the GO and bacterial cell membranes. The
sharp edges of the GO damage the bacterial cell membranes [117]; the oxidative stress of
the GO damages E. coli cells [118]; the GO can generate superoxide anions to damage the
bacteria’s cellular membrane [119,120] (Figure 4).



Molecules 2022, 27, 7166 9 of 27
Molecules 2022, 27, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 4. the design of chitosan/silk sericin (CS/SS) hydrogels incorporated with silver nanoparticles 
@ organic frameworks/graphene oxide (Ag @MOF-GO). Reproduced with permission from [120]. 

Table 1 reports all of the relevant data obtained from antibacterial tests, in the case of 
the hybrid Ag-MOFs 13–23, with their antibacterial effect and the mechanism related to 
each MOF. Table 1 shows that the hybrid silver material had an excellent antibacterial 
activity against the Gram-negative and Gram-positive bacteria strains, with a preferen-
tially greater activity in the case of the Gram-negative strain. This is due to their cell-wall 
structural differences with the thick peptidoglycan layer protecting the plasma of the 
membrane. as the MOFs-14, 15, and MOF-19 were modified by the TFC membrane to form 
the nanocomposite film, to improve the antibacterial properties, the water penetration, 
and the salt selectivity of the film. Those materials possessing superior antibacterial prop-
erties were probably related to the release of the Ag+ into the solution and the destruction 
of the framework, the Ag+ interacting with lipotropic acid, and the hydroxyl groups of the 
peptidoglycan membranes. 

The antibacterial effect of hybrid the Ag-MOFs not only comes from the release of Ag 
but also has a certain relationship with the hybrid material. The Ag-MOFs have multiple 
effects by transferring some material with other effects (such as targeting, increasing sta-
bility, biocompatibility, and antibacterial effects) onto MOFs. In the MOF-17, the GO has 
a certain antibacterial ability, and incorporating it with the Ag-MOFs can significantly 
achieve the antibacterial effect. In addition, we can not only modify some materials on 
Ag-MOFs but we can load some antibacterial drugs on the MOF to increase its antibacte-
rial spectrum for a better antibacterial effect. The MOFs-13 and 24 both have a good anti-
bacterial effect on the traditional Gram-positive and Gram-negative bacteria and have a 
certain therapeutic effect on MRSA and other drug-resistant bacteria. The mechanism may 
be related to the release of the Ag ions, damage to the cell membrane integrity, interfering 
with the intracellular metabolism of the bacteria, and inhibiting the biofilm formation. 
Their antibacterial ability comes from the release of silver ions and the action of the anti-
bacterial drugs themselves, which provides a greater practical value for the clinical appli-
cation. 
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Table 1 reports all of the relevant data obtained from antibacterial tests, in the case
of the hybrid Ag-MOFs 13–23, with their antibacterial effect and the mechanism related
to each MOF. Table 1 shows that the hybrid silver material had an excellent antibacterial
activity against the Gram-negative and Gram-positive bacteria strains, with a preferentially
greater activity in the case of the Gram-negative strain. This is due to their cell-wall
structural differences with the thick peptidoglycan layer protecting the plasma of the
membrane. as the MOFs-14, 15, and MOF-19 were modified by the TFC membrane to form
the nanocomposite film, to improve the antibacterial properties, the water penetration, and
the salt selectivity of the film. Those materials possessing superior antibacterial properties
were probably related to the release of the Ag+ into the solution and the destruction of
the framework, the Ag+ interacting with lipotropic acid, and the hydroxyl groups of the
peptidoglycan membranes.

The antibacterial effect of hybrid the Ag-MOFs not only comes from the release of Ag
but also has a certain relationship with the hybrid material. The Ag-MOFs have multiple
effects by transferring some material with other effects (such as targeting, increasing
stability, biocompatibility, and antibacterial effects) onto MOFs. In the MOF-17, the GO
has a certain antibacterial ability, and incorporating it with the Ag-MOFs can significantly
achieve the antibacterial effect. In addition, we can not only modify some materials on
Ag-MOFs but we can load some antibacterial drugs on the MOF to increase its antibacterial
spectrum for a better antibacterial effect. The MOFs-13 and 24 both have a good antibacterial
effect on the traditional Gram-positive and Gram-negative bacteria and have a certain
therapeutic effect on MRSA and other drug-resistant bacteria. The mechanism may be
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related to the release of the Ag ions, damage to the cell membrane integrity, interfering with
the intracellular metabolism of the bacteria, and inhibiting the biofilm formation. Their
antibacterial ability comes from the release of silver ions and the action of the antibacterial
drugs themselves, which provides a greater practical value for the clinical application.

Simultaneously, the Ag-based material would release the Ag+ and diffuse into the in-
terior cytoplasm of the cells to interact with lipotropic acid, the hydroxyl groups of the pep-
tidoglycan membranes, and the phosphate groups of phospholipid membranes [121,122].
Meanwhile, the probable interaction of the Ag(I) ions with DNA and the thiol groups of
proteins may damage enzymes and disrupt the integrity and permeability of the bacteria
and the catalytic production of ROS [123].

Table 1. Antibacterial silver-based MOFs and their composition on the bacterial strain and antibacte-
rial mechanism.

No. Composition Organic Ligands Bacterial
Strain Test Value Antibacterial

Mechanism Ref.

Pure Ag-MOFs

1 Ag6(m-O3PC6H4CO2)2
m-Phosphonobenzoic

acid
S. aureus

P. aeruginosa
MBC = 50–70 µM
MBC = 20–30 µM

The consequent release
of silver ions. [98]

2 [Ag2(Cedcp)]n

N-(carboxyethyl)-(3,5-
dicarboxyl)-
Pyridinium

bromide

E. coli
S. aureus

MIC >37.84 µM
MIC = 37.84 µM

1: The synergistic effect
of the aromatic ring

and pyridine.
2:The release of Ag+.

[99]

3 [Ag2(µ3-PTA)2(µ2-
chdc)]n·5nH2O

1,3,5-triaza-7-
Phosphaadamantane

S. aureus
E. coli

P. aeruginosa

MIC = 10 µg mL−1

MIC = 7 µg mL−1

MIC = 6 µg mL−1
The release of Ag+. [100]

4 [Ag2(µ4-PTA)(µ4-mal)]n
1,3,5-triaza-7-

Phosphaadamantane

E. coli
P. aeruginosa

S. aureus

MIC = 7 µg mL−1

MIC = 6 µg mL−1

MIC = 8 µg mL−1

The weak binding
tendency of O and N

donor atoms toward the
center helps the slow

release of Ag(I).

[101]

5
[Ag4(µ-PTA)2(µ3-

PTA)2(µ4-
pma)(H2O)2]n·6nH2O

1,3,5-triaza-7-
Phosphaadamantane

E. coli
P. aeruginosa

S. aureus

MIC = 5 µg mL−1

MIC = 5 µg mL−1

MIC = 8 µg mL−1

Bond strengthens
between Ag(I) and the

ligand donor atoms and
the Ag+ release.

[102]

6 [Ag(u3-PTA=S)] n(NO3)
n·nH2O

1,3,5-triaza-7-
Phosphaadamantane-

7-sulfide

E. coli
P. aeruginosa

MIC = 4 µg mL−1

MIC = 5 µg mL−1 Presence of silver nodes. [103]

7
[Ag4(u4-PTA=S)(u5-

PTA=S)(u2-
SO4)2(H2O)2]n·2nH2O

1,3,5-triaza-7-
Phosphaadamantane-

7-sulfide

E. coli
S. aureus

MIC = 20 µg mL−1

MIC = 40 µg mL−1 Presence of silver nodes. [103]

8 Ag5(PYDC)2(OH) Pyridine-3,
5-dicarboxylic acid

E. coli
S. aureus

MIC = 10–15 ppm
MIC = 15–20 ppm

1: The Ag+ interacts
with bacteria.

2: The damage to the
cell membrane.

[104]

9 [Ag2(O-IPA)
(H2O)·(H 3O)]

5-Hydroxyisophthalic
acid E. coli MIC = 5 µg mL−1

ZOI = 11.12 mm

Fastest Ag+ release rate
and highest equilibrium

concentration.
[104]

10 [AgL]n·nH2O 4-Cyanobenzoate
S. mutans

F. nucleatum
P. gingivalis

GIB = 5.29 ppm
GIB = 5.29 ppm
GIB = 5.29 ppm

Sustained-release of Ag+. [105]

11 Ag (NDI-1)0.5(H2O) Naphthalenediimide E. coli
S. aureus

IR = 100%
IR = 99.52%

The synergistic reaction
of the organic radical
and the silver cation.

[106]

12 Ag7(NDI-2)1.5(CH3S)4
(DMSO)3(DMSO) Naphthalenediimide E. coli

S. aureus
IR = 99.96%
IR = 100%

The synergistic reaction
of the organic radical
and the silver cation.

[106]
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Table 1. Cont.

No. Composition Organic Ligands Bacterial
Strain Test Value Antibacterial

Mechanism Ref.

Hybrid Ag-MOFs

13 PLT@ Ag-MOF-Vanc 2-Methylimidazole MRSA MIC = 0.5 µg mL−1

1: Interfering with the
intracellular metabolism

of bacteria.
2: Catalytic production

of the ROS.
3: Damage to the cell
membrane integrity.

[111]

14 Ag-MOF @TFN 2-Aminoterephthalic
acid E. coli MR = 90–96% The release of Ag+. [112]

15 Ag-MOF/TFC 2-Aminoterephthalic
acid P. aeruginosa MR ~100% The release

of Ag+. [113]

16 PVA/Ag-MOF @CS S. aureus
E. coli

ZOI = 12.1 mm
ZOI = 9.7 mm The release of Ag+. [114]

17 CQDs @Ag-MOF
1,3,5-

Benzenetricarboxylic
acid

E. coli MIC= 4 µg mL−1

1: Nanocomposite
interactions with the cell

membrane.
2: Degradation of the
composite material.

3: The release of Ag+.

[115]

18
{[Ag6(µ3-HMNA)4(µ3-

MNA)2]2−·[(Et3NH)+]2
·(DMSO)2·(H2O)}

2-Thio-nicotinic acid
P. aeruginosa
S. epidermidis

S. aureus

ZOI = 14.0± 1.1 mm
ZOI = 11.3± 1.3 mm
ZOI = 11.8± 1.8 mm

[116]

19 GO−Ag-MOF
TFN

1,3,5-
Benzenetricarboxylic E. coli ER: 95%

The synergistic effect of
the release of Ag + and

the GO.
[117]

20 GO-Ag-MOF 1,3,5-
Benzenetricarboxylic

E. coli
B. subtilis

MIC = 50 ppm
MIC = 50 ppm

The ROS of the GO
damages the bacteria.
The release of Ag+.

[117]

21 CS/SS/Ag- MOF–GO 1,3,5-
Benzenetricarboxylic

S. aureus
E. coli

Synergistic effect of the
composite GO and the

continuously
released Ag.

[121]

22 P-CS @Ag-MOF Pyridine-3,
5-dicarboxylic acid

S. aureus
E. Coli

ZOI = 7.82 mm
ZOI = 4.32 mm

1: The disruption of cells.
2: Ag(I)interaction with

thiol proteins.
3: The combination

between the bacterial cell
cations and the
organic linkers.

4: The release of the ROS.

[122]

23 P-CS @Ag- MOF Pyridine-3,
5-dicarboxylic acid

S. aureus
E. Coli

ZOI = 4.45 mm
ZOI = 3.76 mm

1: The disruption of cells.
2: Ag(I) interaction with

thiol proteins.
3: The combination

between the bacterial cell
cations and the
organic linkers.

4: The release of the ROS.

[122]

Silver-containing polymer @MOFs

24 SD@Ag@CD-MOF Cyclodextrin E. coli
S. aureus

MIC = 4 µg mL−1

MIC = 4 µg mL−1

The synergistic activity
of the releasing Ag+ ions

and SD.
[124]
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Table 1. Cont.

No. Composition Organic Ligands Bacterial
Strain Test Value Antibacterial

Mechanism Ref.

25 Ag-Phy@ZIF-8@HA 2-Methylimidazole S. aureus
E. Coli

MIC = 0.13 µg mL−1

MIC = 0.25 µg mL−1
The synergistic activity
of ZIF-8, Ag +, and Phy. [125]

26 Ag-GOD@ ZIF-HA 2-Methylimidazole E. Coli
S. aureus

MIC = 39.7 µg mL−1

MIC = 79.3 µg mL−1
Synergetic effect of the

release of Ag+ and GOD. [126]

27 Ag-NPs@Ni-MOFs Di-topic carboxylate E. Coli
P. aeruginosa

MIC = 0.025 ìg/mL
MIC = 0.025 ìg/mL

Synergetic effect of the
release of Ag+ and

Ni-MOF.
[81]

28 Poly Cu-MOF@ Ag Poly(terephthalic acid) E. coli
S. aureus

MIC = 2–5 µg mL−1

MIC = 10 µg mL−1

1: Release of Ag+

and Cu2+.
2: Generation of the ROS.

[127]

29 Ag-MIL-101(Cr) Ditopic terephthalic
acid

E. coli
P. aerugi-
nosaand
S. aureus

MIC = 1ug mL−1

MIC = 1ug mL−1

MIC = 1ug mL−1

The release of
smaller-sized Ag+ ions. [128]

30 Ag@MOF-5
1,4-Benzenedicar-

boxylic
acid

E. Coli
S. aureus

ZOI = 16.05 mm
ZOI = 14.62 mm

1: Silver ions hinder the
bacterial DNA

replication.
2: Nano-silver destroys

the cell membrane.
3: Produces the ROS of

[129]

31 Ag@Mg-MOF-PVDF Sebacic acid S. aureus ZOI = 10 mm the release of Ag+. [130]

32 Ag/Zn-MOF 2-Aminoterephthalic
acid

E. coli
S. aureus

ZOI= 11 mm
ZOI= 12 mm

1: Slow release of the
silver ions.

2: Ag+ interacts with the
S, O, and N atoms.

[131]

33 GS5-CL-Ag@CD-MOF Cyclodextrin E. Coli
S. aureus

MIC = 16 µg mL−1

MIC = 64 µg mL−1 The Ag NPs released. [127]

34 MN-MOF-GO-Ag Gallic acid
S. aureus

E. coli
P. aeruginosa

The synergistic reaction
of the GO and Ag. [128]

2.3. Silver-Containing Polymer @ MOF

A preferential antibacterial activity of the insoluble silver sulfadiazine has been reached
due to the co-delivery of the superfine Ag NPs with solubilized sulfadiazine (SD) using the
carrier cyclodextrin metal-organic frameworks (CD-MOFs). The MOF-24 (SD/Ag@ CD-
MOF) critically strengthens the antibacterial effect, which can increase the release of Ag+

and SD together to produce a synergistic antibacterial action. The hydrophilic CD-MOF
can easily dissolve within exudates in the wound region to release the drug and prevent
the aggregation of the nano-silver particles, which can enhance the antibacterial effect. The
MIC of the MOF-24 against E. coli and S. aureus is 4 and 6 µg·mL−1 and the MBC are 8 and
64 µg·mL−1, respectively [126].

The MOF-25 Ag-Phy @ZIF-8@HA is a pH-responsive antimicrobial composite nano-
material prepared by encapsulating the Ag NPs in the ZIF-8, accompanied by the em-
bedding of physcion (Phy). It has an excellent antimicrobial ability against E. coli and
S. aureus (Figure 5C,D). The ZIF-8 possesses the special feature that the Zn2+ ion is a ben-
eficial element for humans and the ligands dimethylimidazole is also a good bacterial
inhibitor. The ZIF-8 can be disintegrated slowly in a different environment, which is
good for releasing drugs and other materials. The antibacterial mechanism was due to
the efficient synergistic effect of the ZIF-8, silver, Phy, and the bacterial growth secretes
hyaluronidase, which breaks down HA, causing the surrounding environment to become
acidified (Figure 5B). The pH response is triggered to cause the crack in the nanomaterial to
release the Ag NPs and Phy, which further releases the Ag+ ions and destroys the bacterial
membrane’s ionic channel and permeability [132].
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Figure 5. (A): Schematic of the Ag-Phy@ZIF-8@HA nanocomposite’s preparation and boosted
antibacterial application. (B): Possible antibacterial mechanism of the Ag-Phy@ZIF-8@HA.
(C): Antibacterial circles of E. coli and S. aureus after they are cocultured with ZIF-8@HA, Ag@ZIF-
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Negative control, pH 7.4 PBS, green circles. (D): SEM images of E. coli and S. aureus bacteria strains
treated with different nanocomposites, scale bar: 1 µm. Reproduced with permission from [132].

The MOF-26, GOD/Ag @ZIF-HA, the controlled encapsulation of a large-size single
Ag nano-cube (50 nm) in the zeolitic imidazolate frameworks (ZIFs), accompanied by the
embedding of glucose oxidase (GOD), and hyaluronic acid (HA), were coated into the
MOF. The obtained MOF-26 could act as an Ag nano-factory to generate ultrasmall Ag NPs,
which is good for releasing the Ag ions. Specifically, the GOD-induced generated H2O2
in glycolysis continuously decomposed silver into Ag+ and ultrasmall Ag NPs, where
the biocompatible ZIF-8 acted as the porous support for Ag+ and the Ag NP formation.
The HA possesses a good biocompatibility and target ability that is good for the MOFs
to achieve the antibacterial effect. The MOF-26 could completely suppress the growth of
the two model bacteria strains at low concentrations (E. coli for 5 µg mL−1, S. aureus for
10 µg mL−1). The mechanism of MOF-26 may be related to the particle size of the Ag, the
small particle size allowed into the cells and released abundant Ag+, which caused the
cell death in terms of oxidative stress, the mitochondrial membrane, and the cell cycle
progression [133] (Figure 6).

The Ag @Ni-MOF-27 was prepared by loading silver onto the Ni-MOF. Despite the
good antibacterial affinity of the Ni-MOF nanosheets, the MOF-27 exhibited an obvious an-
tibacterial activity against the four microbes (B. subtilis, E. coli, P. aeruginosa, and C. albicans)
after 48 h of incubation. It is due to the synergistic effect of the Ni-MOF and Ag cations.
The chelation could reduce the polarity of the nickel ions and increase the lipophilicity of
the nickel atom, which was beneficial to enhancing the membrane penetration of the MOFs.
Meanwhile, the MOFs can act as a reservoir for the metal cations. The released cations can
change the microbes’ ionic nature and destroy the ion channels. The released Ag(I) ions can
interact with the thiol groups in proteins [134] and can inactivate the respiratory enzymes
and disrupt the bacterial membrane integrity and the permeability [124]. Moreover, the
metallic Ag can induce oxidative stress on the microbes and damage the membrane [81].
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E. coli and S. aureus bacteria treated with different nanocomposites at the same Ag concentration
(2-fold MIC value and SEM image E. coli and S. aureus bacteria strains treated with different nanocom-
posites. Reproduced with permission from [133].

The copper-based polymer-MOF-28, poly Cu-MOF @Ag, is an efficient scaffold loading
silver nanoparticle, which was used as a preferential antibacterial agent. The MOF-28
hybrid contains lower copper nodes and a higher Ag, showing the amount of Ag+ and
Cu2+ ions to enhance the biocompatibility. The MOF-28 can efficiently kill E. coli (MIC
value 10 µg mL−1) and S. aureus (MIC value 10 µg mL−1) via damaging the cell integrity
by the produced ROS and the disruption of the membrane of the bacteria. The release of
the Ag+ ions in the presence of the bacterial cells could be increased because the Ag NPs
can interact with the sulfur-containing proteins of the cell walls (Figure 7) [125].

The MOF-29, Ag-MIL-101 (Cr), was prepared by containing the silver nanoparticles on
the MIL-101(Cr). The MOF-29 have an obvious antibacterial phenomenon against both the
Gram-negative (E. coli and P. aeruginosaand) and Gram-positive (S. aureus) bacteria strains,
and the MIC of the MOF-29 to E. coli, P. aeruginosaand, and S. aureus is 1 mg L−1. The
MIL-101 are a porous organic-inorganic hybrid with a high surface area and a well-defined
pore structure. The MOFs can be used to stabilize the Ag metal in an adjustable size. Hence,
the antibacterial mechanism may be related to the particle size, the uniform distribution,
and the absence of aggregation of the Ag metal. Because of the presence of the MIL-101, the
Ag ions are more stable in their structure and can be better released in the application [126].
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MOF-5 was prepared using the hydrothermal method, and the Ag@MOF-5 (MOF-30)
nanoplates were obtained to improve the Ag nanoparticles’ antibacterial and dispersion
activities. The antibacterial activity of the MOF-5 has been limited because of the location
of the Zn2+ ion in the MOF-5 skeleton. However, MOF-30 showed a better antibacterial
activity against E. coli (ZOI = 16.05 mm) and S. aureus (ZOI = 14.63 mm), which is due to
the addition of the silver nanoparticles that make it easier for the metal ions to diffuse into
the bacteria, destroy the bacterial membranes and inhibit the cell division [123,134].

These γ-cyclodextrin metal-organic frameworks (CD-MOFs) possess a good water
solubility and biocompatibility, which can act as a template to prepare the Ag@CD-MOFs.
These types of materials can achieve a dual function in reducing the particle size and
enhancing the stability. Meanwhile, the small silver particles are easily dispersed in the
aqueous media and exhibit an effective bacterial inhibition. The GRGDS peptide was
modified on the surface of the Ag@ CD-MOFs to generate the MOF-33) (GS5-CL-Ag-@CD-
MOFs) to enhance the hemostasis to promote the wound recovery and cooperate with the
antibacterial effect [127]. The MOF-33 has an obvious antibacterial effect against E. coli. The
MIC of E. coli is 16 µg mL−1. The antibacterial mechanism of the MOF-33 is the synergistic
effect of the CD-MOFs, Ag, and the GRGDS peptide, which means the smaller Ag particle
is released from the Ag@ CD-MOF, which might reach immediate contact with the bacterial
surface after the dissolution of the CD-MOF template that can increase their bactericidal
activity. The peptide is beneficial to wound recovery (Figure 8) [127].
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Figure 8. The schematic diagram of the CD-MOF template that guided the synthesis of the Ag NPs
by solution impregnation, followed by reduction, cross-linking, and the GRGDS surface modification.
Reproduced with permission from [127].

The Mg-based MN-MOF-GO-Ag (MOF-34) was prepared, and the graphene oxide-
silver nanocomposites (GO-Ag)-loaded poly (γ-glutamic acid) (γ-PGA) hydrogel was used
as the backing layer of the microneedle (MN) patch. Meanwhile, the γ-PGA hydrogel
loaded with the Mg-MOF was fabricated into the MN tips to achieve the controlled and
long-termed release in the dermis. The Mg-MOFs have a lower cytotoxicity than the Cu.
The gallic acid of MOF-34 can scavenge the overproduced intracellular reactive oxygen
species. The GO-Ag can inhibit the foreign body accumulation and accelerate the healing
process (Figure 9) [128].

In Table 1, we have tabulated relevant data from the antibacterial activity with the
silver-containing polymers @ MOFs 24–34. We have also explored their composition and
the antibacterial mechanism of each MOF with other parameters. The silver or silver-
containing compounds are loaded into other MOFs to form silver-containing polymers that
exploit better the antibacterial properties. The antibacterial mechanism associated with such
MOFs is possibly due to the synergistic action of releasing the Ag+ ions and compounds.
The metallic silver ions are released from the frame system and adhere to the bacterial
membrane; the Ag accumulation in the cell membrane affects its permeability [134].

The MOFs-24, 25, 27 and 29 exhibit a great antibacterial activity for the Gram-positive
and Gram-negative bacterial strains, those compounds all use the MOFs as a repository,
constantly releasing silver ions and the destruction of the framework and then penetrating
the bacteria inside and the indirect production of the ROS by the Ag+. At the same
time, these silver-containing polymers have an attractive antibacterial activity, due to the
synergistic effect of the MOFs and the silver cations.
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The MOF-27 contains the Ni atom, which is a chelation reducing the polarity of the
nickel ions. Moreover, the free organic moieties of the MOFs can bind with Ca(II) and Mg(II)
of the microbial cells and the Ag ions, interacting with the thiol groups of proteins, inducing
oxidative stress on the microbes and damaging the membrane [134,135]. The ZIF-8 and
MIL-101 in MOFs-25 and 29 have a higher porosity, which is good for encapsulating silver
and can release silver slowly to achieve the long-term antibacterial effect. The MIL-101
can control the particle size of the silver and make the silver ions fully dispersed, which
is conducive to the greater antibacterial effect of the silver in the treatment process. The
Zn2+ ions can exert an antimicrobial activity against the bacterial strains, which is related to
their ability to disrupt the cell membrane by the electrostatic interaction (zinc ions) or the
generation of the reactive oxygen species (ROS) (zinc oxide), but also to bind to proteins
and DNA, inactivating their functions and to modify the expression of several genes.
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In the MOFs-25 and 26, other compounds also provide excellent conditions for the
antibacterial effects, in addition to the zinc and silver metal ions. The HA possesses good
hydrophilic and biodegradable properties, enhancing the bacterial-targeted drug release
and reducing many side effects from the antibiotic drugs. The GO also plays a role in the
antibacterial, synergistic effect of both the physical and chemical aspects. For example, the
GO edge causes cell damage, which can directly interact with the cells and lead to the loss
of integrity of the cell membrane; the production of the ROS and the transfer of charge; the
dissociation of the oxygen-containing groups of the GO, which causes a decrease in the pH
of the bacterial microenvironment.

3. Molecular Docking

Molecular docking can be used to predict the affinity and binding orientation of
the drugs to their biotargets, such as proteins. In the article of Maryam Aghaee et al., the
molecular docking experiment was used to prove that the Ag MOF has a certain effect on the
antibacterial activity. The silver (I) metal-organic coordination polymer [Ag2 L]n (H2 L=1,4-
phenyl-enedipropionic acid) was fabricated using a sono-chemical technique [129]. [Ag2 L]n
is appropriately coordinated against the Gram-positive and Gram-negative bacteria, which
means that it has an obvious antibacterial effect on both kinds of bacteria. The MIC of
[Ag2 L]n against E. coli and S. aureus, is ranged 0.06–0.125, 0.25 (ug/mL), respectively.
The result of the molecular docking implies a favorable ligand-protein interaction energy
at the binding cavity of the E. coli and S. aureus proteins. Both the Gram-positive and
Gram-negative bacteria have potential ligand binding cavities, as shown in (Figure 10),
which indicates that the active site in the MOF can realize the ligand-protein interaction in
the ligand binding cavities of the two bacteria.
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In the article by Azizolla Beheshti et al., the binding mode and the intermolecular
interactions of the bbit and the cationic moiety of the asymmetric unit of the polymer
{[Ag(u2-bbit)](BF4)}n (polymer 1) (bbit=1,1′-(butane-1,4-diyl)bis(3-methylimidazoline-2-
thione) ) with HSA (Human serum albumin), was investigated by the molecular docking
method [135]. As shown in the (Figure 11A), multiple C atoms in the bbit interact with
multiple amino acids in the HSA by the hydrophobic interactions and the hydrogen
bonding interactions, making the coordination polymer more stable. It is also indicated in
Veysel T. Yilmaz’s opinions, that the interaction between the complexes and HSA is mainly
dominated by the hydrophobic and electrostatic interactions. From the docked structures
presented in (Figure 11B), the Ag coordination polymers bind reasonably well to DNA
through the partial intercalation favored in the grooves of the DNA rich in G/C bases [97].
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Figure 11. (A): The hydrogen bond (violet) and the hydrophobic interactions (green) between
the cationic moiety of the asymmetric unit of polymer 1 and HSA. (B): Molecular docked
structures of [Ag2(barb)2(u-dppp)2] with DNA (barb = 5,5-diethylbarbiturate), (dppm = 1,1-
bis(diphenylphosphino)methane). Reproduced with permission from [104,135].

The molecular docking simulation experiment further shows that the antibacterial
effect of the Ag-MOFs are not only to combine with the potential coordination cavity of
the bacteria itself, but also to effectively combine with DNA to produce an interaction
to achieve the best antibacterial effect. We can further study the specific antibacterial
mechanism of the Ag MOF through the relevant ligand groups or active sites displayed by
the molecular docking. As far as we know, antibacterial silver mainly refers to the high
conductivity of the silver ions, which can attach to the cell membrane and damage the
integrity of the membrane, causing the leakage of substances inside the membrane, DNA
replication damage, etc.

4. Conclusions and Challenges

The most severe threat to the public’s health is a pathogenic bacterial infection. At one
time, the use of antibiotics allowed us to fight all kinds of bacterial infections effectively.
However, the lack of understanding of antibiotics and people without knowing about the
development of “bacterial resistance” led to the emergence of the current “superbugs”.
Over the last few decades, numerous efforts have been invested in solving these problems,
and various antibacterial materials have been developed. In this perspective, we have
focused on the antibacterial effect and mechanism of the Ag-MOFs and the Ag-containing
polymer @MOF material as new anti-infective materials. The persistent antibacterial activity
with an obvious antibacterial effect, a high stability, a low cost, and a low toxicity are the
necessary characteristics of the Ag-MOFs in practical application.

On the antibacterial side, the Ag-MOFs express a superior antibacterial efficiency
against the Gram-positive and Gram-negative bacteria strains, with a greater effect on
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the Gram-negative bacteria. This is due to their cell wall structural differences with the
thick peptidoglycan layer protecting the plasma membrane [136–138]. It was found that,
by comparing of the evidence from the literature, on Ag-MOFs with different assembly
structures, that the antibacterial properties of the Ag-MOFs are mainly related to (i) the
release of the Ag+ ions, (ii) the accumulation of the Ag+ on the bacterial membranes
destroying the integrity of ion channels and membranes, (iii) the Ag+ ions react with the
thiol groups of protein, DNA, enzymes, etc., (iv) the ROS production can also lead to
bacterial death, (v) the synergistic reaction between the organic linkers and the MOFs
(Ag-based or other metals).

The Ag-based MOFs with the special skeleton of the three-dimensional structure
enhance the stability of the silver materials, which is more conducive to the release of
the Ag cation, to reduce the harm of silver metal to human beings and the environment;
silver has good antibacterial properties, and its antibacterial and antimicrobial spectrum
can be amplified by combining with the MOFs. Compared with the silver compounds
or silver nanomaterials alone, the Ag-MOF greatly improves the antibacterial effect; at
the same time, the silver has been adopted as an antimicrobial material and disinfectant
that is relatively free of adverse effects. However, in practical application, the defects of
silver-based materials cannot be ignored. Firstly, the external condition in the synthetic
process is difficult to control, the temperature, brightness, and reaction time all affect the
yield and quality of the Ag-MOF; a large number of expensive silver reagents can be wasted
during the reaction, resulting in a high cost of the synthesis method; in addition, reductants
such as borohydride, dimethylformamide, and thiol can produce many by-products, which
not only increase the cost of materials and subsequent treatment but also damage the
ecological safety and threaten human health [86].

Although Ag-MOFs have made a breakthrough in the antibacterial field, in recent
years, further research is needed to explore their antibacterial mechanism and related
applications based on the Ag-MOF materials, to apply them in clinical practice. Based on
the recent report which we have discussed in this literature review, we reasonably proposed
some improved strategies to meet our expectations: (1) Materials that are hybridized with
silver should be subjected to toxicological tests, (2) To study the pathway by which silver
ions bind to the thiol proteins and destroy the related channels, (3) The Ag-MOFs can better
control the release of the Ag+ or the drug, (4) Achieve an antibacterial concentration while
reducing the toxicity to normal cells.
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Abbreviations

MOF Metal-Organic Frameworks
ROS Reactive Oxygen Species
ZOI Zone Of Inhibition
CP Coordination Polymers
MIC Minimum Inhibitory Concentration
MBC Minimum Bactericidal Concentration
GIB Generation Inhibition Rate
SR Survive Rate
MR Mortality Rate
ER Extirpation Rates
IH Inhibition Halo
IR Inhibition Rate
GI Generation Inhibition
HO-H2IPA 5-Hydroxyisophthalic Acid
H2PYDC Pyridine-3, 5-Dicarboxylic Acid
L 4-Cyanobenzoate
PTA 1,3,5-Triaza-7-Phosphaadamantane
PTA=S 1,3,5-Triaza-7-Phosphaadamantane-7-Sulfide
TFC Thin-Film Composite
GO Graphene Oxide
TFN Thin-Film Nanocomposite
SD Solubilized Sulfadiazine
CD-MOF Cyclodextrin Metal-Organic Frameworks
GOD Glucose Oxidase
MIL Materials Of Institute Lavoisier
CQD Carbon Quantum Dots
CS/SS Chitosan/Silk Sericin
PVA Polyvinyl Alcohol
P-CS P-Coumaric Acid Modified Chitosan
PLT Platelets
HEMA Hydroxyethyl-Methacrylate
H2 MNA 2-Thio-Nicotinic Acid
Et3 N 3-Ethylene-Amine
DMSO Dimethylsulfoxide
Phy Physcion
NDI Naphthalenediimide
chdc 1,4-Cyclohexanedicarboxylic
mal Malonic
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98. Jaros, S.W.; Król, J.; Bażanów, B.; Poradowski, D.; Chrószcz, A.; Nesterov, D.S.; Kirillov, A.M.; Smoleński, P. Antiviral, antibacterial,
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