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Abstract

Cognitive radios are expected to play a major role towards meeting the exploding traffic demand over wireless

systems. A cognitive radio node senses the environment, analyzes the outdoor parameters, and then makes decisions

for dynamic time-frequency-space resource allocation and management to improve the utilization of the radio

spectrum. For efficient real-time process, the cognitive radio is usually combined with artificial intelligence and

machine-learning techniques so that an adaptive and intelligent allocation is achieved. This paper firstly presents the

cognitive radio networks, resources, objectives, constraints, and challenges. Then, it introduces artificial intelligence

and machine-learning techniques and emphasizes the role of learning in cognitive radios. Then, a survey on the

state-of-the-art of machine-learning techniques in cognitive radios is presented. The literature survey is organized

based on different artificial intelligence techniques such as fuzzy logic, genetic algorithms, neural networks, game

theory, reinforcement learning, support vector machine, case-based reasoning, entropy, Bayesian, Markov model,

multi-agent systems, and artificial bee colony algorithm. This paper also discusses the cognitive radio implementation

and the learning challenges foreseen in cognitive radio applications.

Keywords: Cognitive radio; Artificial intelligence; Adaptive and flexible radio access techniques

1 Review

1.1 Introduction

According to Cisco Visual Networking Index, the global

IP traffic will reach 168 exabytes per month by 2019 [1],

and the number of devices will be three times the global

population. In addition, the resources in terms of power

and bandwidth are scarce. Therefore, novel solutions are

needed to minimize energy consumption and optimize

resource allocation. Cognitive radio (CR) was introduced

by Joseph Mitola III and Gerald Q. Maguire in 1999

for a flexible spectrum access [2]. Basically, they defined

cognitive radio as the integration of model-based reason-

ing with software radio technologies [3]. In 2005, Simon

Haykin had given a review of the cognitive radio concept

and had treated it as brain-empowered wireless communi-

cations [4]. Cognitive radio is a radio or system that senses

the environment, analyzes its transmission parameters,
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and then makes decisions for dynamic time-frequency-

space resource allocation andmanagement to improve the

utilization of the radio electromagnetic spectrum.

Generally, radio resource management aims at optimiz-

ing the utilization of various radio resources such that

the performance of the radio system is improved. For

instance, the authors in [5] proposed an optimal resource

(power and bandwidth) allocation in cognitive radio net-

works (CRNs), specifically in the scenario of spectrum

underlay, while taking into consideration the limitations of

interference temperature limits. The optimization formu-

lations provide optimal solutions for resources allocation

at, sometimes, the detriment of global convergence, com-

putation time, and complexity.

To reduce the complexity and achieve efficient real-

time resource allocation, cognitive radio networks need

to be equipped with learning and reasoning abilities. The

cognitive engine needs to coordinate the actions of the

CR by making use of machine-learning techniques. As

defined by Haykin in [4], “cognitive radio is an intelli-

gent wireless communication system that is aware of its
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environment and uses themethodology of understanding-

by-building to learn from the environment and adapt to

statistical variations in the input stimuli”. Therefore, a CR

is expected to be intelligent and capable of learning from

its experience by interacting with its RF environment.

Accordingly, learning is an indispensable component of

CR that can be provided using artificial intelligence and

machine-learning techniques.

In this paper, we firstly present the cognitive

radiosystem principle, its main resources, parameters, and

objectives. Then, we introduce the artificial intelli-

gence techniques, the learning cycle, the role, and the

importance of learning in cognitive radios. The paper

then discusses a literature survey on the state-of-the-art

achievements in cognitive radios that use learning tech-

niques. Several surveys were conducted to study the

application of learning techniques in cognitive radio tasks;

however, they still lack some components of a compre-

hensive study on cognitive radio systems. For instance, the

authors of [6] presented a brief survey on artificial intel-

ligence techniques; however, their work’s focus was on

CR application and testbed development and implemen-

tation. The authors in [7] presented a survey on different

learning techniques such as reinforcement learning, game

theory, neural networks, support vector machine, and

Markov model. They also discussed their strengths, weak-

nesses, and the challenges in applying these techniques

in CR tasks. In [8], the authors considered game the-

ory, reinforcement learning, and reasoning approaches

such as Bayesian networks, fuzzy logic, and case-based

reasoning. In contrast to the literature, we present a

comprehensive survey considering all the learning tech-

niques that were used in cognitive networks. The survey

is organized based on different artificial intelligence

approaches including the following: (a) fuzzy logic, (b)

genetic algorithms, (c) neural networks, (d) game theory,

(e) reinforcement learning, (f ) support vector machine,

(g) case-based reasoning, (h) decision tree, (i) entropy, (j)

Bayesian, (k) Markov model, (l) multi-agent systems, and

(m) artificial bee colony algorithm.

The main contributions of this paper are as follows: (1)

it provides a comprehensive study on learning approach

and presents their application in CR networks, evalua-

tion, strengths, complexity, limitations, and challenges; (2)

this paper also presents different cognitive radio tasks,

as well as the challenges that face cognitive radio imple-

mentations; (3) it evaluates the application of the learning

techniques to cognitive radio tasks; and (4) categorizes

learning approaches based on their implementations and

their application in performing major cognitive radio

tasks such as spectrum sensing and decision-making.

This paper is organized as follows: cognitive radio net-

works, resources, objectives, and challenges are presented

in Section 1.2. Learning in cognitive radios is presented

in Section 1.3. Artificial intelligence and its learning role

are introduced in Section 1.3.1. The literature survey

is presented in Section 1.3.2. Learning techniques chal-

lenges, strengths, weaknesses, and limitations are pre-

sented in Section 1.4.1. Discussion on applying learning

techniques in cognitive radio networks is presented in

Section 1.4.2. Finally, conclusions are drawn in Section 2.

1.2 Cognitive radio

Cognitive radio provides the radio system an intelligence

to maintain a highly reliable communication with efficient

utilization of the radio spectrum. In this section, we

present the cognitive radio cycle, tasks, and correspond-

ing challenges.

1.2.1 The cognitive cycle

As shown in Fig. 1, the wireless communications system is

formed by base stations and radio networks where some

are primary users (PUs) or networks that own the spec-

trum and others are secondary users (SUs) that may use

the spectrum when it is available and not occupied by

other networks. As shown in Fig. 2, the cognitive radio

network follows the cognitive cycle for best resource man-

agement and network performance. It starts by sensing

the environment, analyzing the outdoor parameters, and

then making decisions for dynamic resource allocation

and management to improve the utilization of the radio

electromagnetic spectrum [9]. These could be briefly

described as follows.

• Sensing the environment : In cognitive radio

networks, the primary network has the

priority to use the spectrum than the secondary

network. The secondary network may use the

available spectrum but without causing harmful

interference to the primary network. Therefore, it

needs to primarily quantify and sense its

surrounding environment parameters such as (1)

channel characteristics between base station and

users; (2) availability of spectrum and power; (3)

availability of spectrum holes points in frequency,

time, and space; (4) user and application

requirements; (5) power consumption; and

(6) local policies and other limitations [10].
• Analyzing the environment parameters : The sensed

environment parameters will be used as inputs for

resource management in all dimensions such as time,

frequency, and space. The main resource allocation

objectives in CR include but are also not limited to

(1) minimizing the bit error rate, (2) minimizing the

power consumption, (3) minimizing the interference,

(4) maximizing the throughput, (5) improving the

quality of service, (6) maximizing the spectrum

efficiency, and (7) maximizing the user quality of

experience. In practice, cognitive radio aims at
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Fig. 1Wireless communication network formed by cognitive radio networks

satisfying multiple objectives; however, the

combination of some objectives may create

conflicting solutions such as minimizing the power

consumption and bit error rate simultaneously.

Therefore, tradeoff solutions are needed to

guarantee a balance between the objective

functions [11].
• Making decisions for different decision variables : In

order to achieve the objectives mentioned before, the

CR network needs to make decisions concerning the

following important variables: (1) power control, (2)

frequency band allocation, (3) time slot allocation,

(4) adaptive modulation and coding, (5) frame size,

(6) symbol rate, (5) rate control, (6) antenna selection

and parameters, (7) scheduling, (8) handover, (9)

admission control, (10) congestion control, (11) load

control, (12) routing plan, and (13) base station

deployment [12]. The decision-making can be based

on optimization algorithms; however, in order to

reduce the complexity and achieve efficient real-time

resource allocation, cognitive radio networks use

machine learning and artificial intelligence.

Fig. 2 Learning process in cognitive radios
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1.2.2 Cognitive radio tasks and corresponding challenges

The major role of cognitive radio is to identify spectrum

holes across multiple dimensions such as time, frequency,

and space and accordingly adjust its transmission param-

eters such as modulation and coding, frequency and time

slot allocation, power control, and antenna parameters.

Therefore, the CR behaving as a secondary user needs

to dynamically reconfigure itself to avoid any noticeable

interference to the primary user by efficiently using its

(1) cognitive capability, (2) reconfigurable capability, and

(3) learning capability. However, these capabilities are

subjected to many challenges presented as follows.

Task 1—The cognitive capability can be achieved using

efficient situation awareness and spectrum-sensing tech-

niques. It includes location and geographical aware-

ness, RF environment, network topology, and operational

knowledge. The main challenges facing spectrum-sensing

techniques are the decision accuracy on spectrum avail-

ability, sensing duration, frequency and periodicity, uncer-

tainty in background noise power especially at low SNR

due to multi-path fading and shadowing, detection of

spread spectrum primary signals, and sensing with lim-

ited information about the environment. To improve the

spectrum-sensing performance, cooperative sensing and

geo-location technology were proposed. First, cooperative

detection showed collaborative communications gains;

however, it is still facing many challenges such as over-

head, developing efficient cooperation framework includ-

ing information sharing algorithms and networks, and

dynamic information exchange with minimum delay. Sec-

ond, combining geo-location technology with spectrum

sensing may reduce the complexity, power, and cost at

the CR device. The CR will be using database look-up for

location awareness as well as unused spectrum and chan-

nels. Geo-location technology also faces many challenges

such as updating the databases, efficient look-up tech-

niques and algorithms, accuracy, trust, and security of the

databases [13–15].

Task 2—After performing spectrum sensing and situa-

tion awareness, the CR network needs to use its recon-

figurable capability to dynamically adjust operational and

transmission parameters and policies to achieve the high-

est performance gain such as maximizing the utilization

of the spectrum and throughput, reducing the energy and

power consumption, and reducing the interference level

while meeting users’ quality of service (QoS) require-

ments such as rate, bit error rate, and delay. The main

reconfigurable parameters listed in Section 1.2 include

for instance (1) power control, (2) frequency band allo-

cation, (3) time slot allocation, (4) adaptive modulation

and coding, (5) frame size, (6) symbol rate, (5) rate con-

trol, (6) antenna selection and parameters, (7) scheduling,

(8) handover, (9) admission control, (10) congestion con-

trol, (11) load control, (12) routing plan, and (13) base

station deployment. The reconfigurable capability is based

on decision-making, which can be based on optimization

algorithms. The main challenge here concerns the com-

plexity and the convergence of these techniques within

a limited time. In order to reduce the complexity and

achieve efficient real-time resource allocation, cognitive

radio networks use machine learning and artificial intel-

ligence. This decision-making is based on models built

using the CR learning capability, which is based on the

environment information. However, the latter may not be

complete or accurate due to limited training data. In addi-

tion, the decision-making procedure needs to be dynamic

and fast [16]. Therefore, focusing future research contri-

butions on any of these two aspects is needed as they

are the bottleneck of the reconfiguration capability in CR

networks.

Task 3—The learning capability is used to build and

develop the learning model for decision-making. The

main challenge here is to enable the devices to learn from

past decisions and use this knowledge to improve their

performance. Some learning techniques may require pre-

vious knowledge of the system, predefined rules, policies

and architecture, and a large number of iterations which

may increase the delay and reduce the efficiency of the

system. Therefore, the choice of a learning technique for

performing specific CR task is considered a challenge as

well as the accuracy and efficiency of the techniques.

1.3 Learning in cognitive radio networks

Learning in cognitive radios has recently gained a lot of

interest in the literature. In this section, artificial intel-

ligence and machine learning are introduced as well as

a survey of the state-of-the-art achievements in applying

learning techniques in cognitive radio networks.

1.3.1 Introduction to artificial intelligence andmachine

learning

Artificial intelligence aims at making machines perform

tasks in a manner similar to an expert. The intelligent

machine will perceive its environment and take actions

to maximize its own utility. The central problems in arti-

ficial intelligence include deduction, reasoning, problem

solving, knowledge representation, and learning [17].

The major steps in machine learning in cognitive radios

are shown in Fig. 2 and can be presented as follows: (1)

sensing the radio frequency (RF) parameters such as chan-

nel quality, (2) observing the environment and analyzing

its feedback such as ACK responses, (3) learning, (4) keep-

ing the decisions and observations for updating the model

and obtaining better accuracy in future decision-making,

and finally (5) deciding on issues of resource management

and adjusting the transmission errors accordingly [7, 18].

In [6], Zhao et al. introduced the concepts of cognitive

radio from the perspectives of artificial intelligence and
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machine learning. Moreover, the authors presented the

possible applications and fundamental ideas that drive the

CR technology.

Artificial intelligence may be represented but not lim-

ited to the following learning techniques: fuzzy logic,

genetic algorithms, neural networks, game theory, rein-

forcement learning, support vector machine, case-based

reasoning, decision tree, entropy, Bayesian, Markov

model, multi-agent systems, and artificial bee colony algo-

rithm. However, the mentioned approaches are the main

techniques used and applied in CR networks.

1.3.2 Applying artificial intelligence techniques to CRs

In this section, a survey of the state-of-the-art research

considering learning in CRs is presented. They are

grouped based on artificial intelligence and learning tech-

niques for CR.

Fuzzy logic The fuzzy set theory was proposed by Lotfi

A. Zadeh in 1965 to solve and model uncertainty, ambigu-

ity, imprecisions, and vagueness using mathematical and

empirical models [19]. The variables in fuzzy logic are not

limited to only two values (True or False) as it is defined

in classical and crisp sets [8]. A fuzzy element has a

degree of membership or compatibility with the set and its

negation. Fuzzy logic provides the system with (1) approx-

imate reasoning by taking fuzzy variables as an input and

producing a decision by using sets of if-then rules, (2)

decision-making capability under uncertainty by predict-

ing consequences, (3) learning from old experience, and

(4) generalization to adapt to the new situations [20, 21].

In general, the inputs for the fuzzy inference system (FIS)

need to be fuzzified or categorized into levels or degrees

such as low, medium, and high. FIS using if-then rules will

allow determining the output of the system.

The authors in [22–24] and [25] applied fuzzy logic

theory in cognitive radio to solve the following objec-

tives: bandwidth allocation, interference and power man-

agement, spectrum availability assessment methods, and

resource allocation. In [22], the authors have proposed a

centralized fuzzy inference system that can allocate the

available bandwidth among cognitive users considering

traffic intensity, type, and quality of service priority. The

secondary users (SU) have to submit bandwidth requests

to the master SU which uses fuzzy logic to grant the SU

bandwidth access. First, the master SU assesses traffic

intensity of the SU queue and of the bandwidth alloca-

tion queue to determine the allowed access latency for

SUs. Second, combining the allowed access latency to

the traffic type and priority, the master will be able to

decide on the amount of bandwidth that may be allo-

cated to the required SU. Depending on the combination

of access latency and traffic priority, the bandwidth to be

allocated is characterized as very high, high, medium, low,

and very low.

In [23], Aryal et al. have presented an approach

for power management while reducing interference and

maintaining quality of service. Their algorithm considers

the number of users, mobility, spectrum efficiency, and

synchronization constraint. These inputs are categorized

as low, moderate, high, and very high. Fuzzy rules are then

used to determine the power adjustments as (1) remain

unchanged, (2) slightly increase, (3) moderately increase,

(4) highly increase, and (5) fully increase.

The authors in [24] used fuzzy logic to determine

the proper method for detecting available bandwidth.

Four input parameters are considered for the selection of

the spectrum-sensing method: (1) required probability of

detection, (2) operational signal-to-noise ratio (SNR), (3)

available time for performing the detection, and (4) a pri-

ori information. The outputs are (1) energy detection, (2)

correlation detection, (3) feature detection, (4) matched

filtering, and (5) cooperative energy detection. The input

parameters are first fuzzified from measurable values to

fuzzy linguistic variables by using inputmembership func-

tions such as low, medium, or high. Based on the if-then

rules, the fuzzy values of the input parameters will then

specify the method for spectrum availability detection.

Qin et al. in [25] proposed the use of fuzzy inference

rules for resource management in a distributed hetero-

geneous wireless environment. The fuzzy convergence is

designed in two levels. First, the local convergence calcu-

lation is based on local parameters such as interference

power, bandwidth of a frequency band, and path loss

index. Second, the local convergence calculations col-

lected from all nodes will be aggregated to generate a

global control for each node. The aggregation weights are

identified using: the nodes control, the link state aggrega-

tion date, and the link states amount.

Genetic algorithms Genetic algorithms (GA) are orig-

inated in the work of Friedberg (1958), who attempted

to produce learning by mutating small FORTRAN pro-

grams. Therefore, bymaking an appropriate series of small

mutations to a machine code program, one can generate a

program with good performance for any particular simple

task [18]. Genetic algorithms simply search in the space,

with the goal of finding an element or solution that max-

imizes the fitness function by evolving a population of

solutions, or chromosomes, towards better solutions. The

chromosomes are represented as a string of binary digits.

This string grows as more parameters are used by the sys-

tem. The search is parallel instead of processing a single

solution because each element can be seen as a sepa-

rate search. A genetic algorithm-based engine can provide

awareness-processing, decision-making, and learning for

cognitive radios [26, 27].

The authors in [28] used genetic algorithms for enhanc-

ing the system performance by solving multi-objective
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problems that aim to minimize the bit error rate and

power and maximize the throughput. The authors have

encoded the operating variables for different numbers of

subcarriers into a chromosome, including the center fre-

quency, transmission power, and modulation type. They

presented several approaches such as population adapta-

tion, variable quantization, variable adaptation, andmulti-

objective genetic algorithms. Their results showed that

the information from the past states of the environment

from previous cognition cycles can be used to reduce the

convergence time of the GA and that genetic algorithms

can enhance the convergence of optimization problems.

In [29], the authors addressed spectrum optimization in

CRs using elitism in genetic algorithms. They used four

parameters for the chromosome structure representation:

frequency, power, bit error rate, and modulation scheme.

The solution has provided the most efficient performance

for the user’s quality of service, subjected to different con-

straints on the genes in the chromosome structure. Elitism

is used for the selection of the best chromosomes among

the population to be transferred to the next generation

before performing crossover and mutation. This prevents

the loss of the most likely solutions in the available pool of

solutions.

Hauris et al. used genetic algorithms in [30] for RF

parameter optimization in CR. The genes used are

modulation and coding schemes, antenna parameters,

transmit and receive antenna gains, receiver noise figure,

transmit power, data rate, coding gain, bandwidth, and

frequency. The fitness measure is calculated from the fol-

lowing key performance parameters: link Margin, C/I,

data rate, and spectral efficiency. The maximum fitness

measure and its associated chromosomes are tracked and

saved. The best member is then utilized as the optimal

solution for setting the RF parameters.

The authors of [31] presented cognitive radio resource

allocation based on a modified genetic algorithm named

niche adaptive genetic algorithm (NAGA). NAGA solved

the problem of fixed crossover and mutation probabilities

and adaptively adjusted them to achieve optimal perfor-

mance. The goal was to determine the assignment of the

subcarrier and modulation schemes to the users, in order

to maximize the total transfer speed of CR networks while

satisfyingminimum rate requirements, maximum allowed

bit error rate, and total power consumption limits.

Neural networks Neural networks were introduced by

Warren McCulloch and Walter Pitts in 1943 and were

inspired from the central nervous system. Similar to the

biological neural network, the artificial neural network

will be formed by nodes, also called neurons or processing

elements, which are connected together to form a net-

work. The artificial neural network gets information from

all neighboring neurons and gives an output depending on

its weight and activation functions. The adaptive weights

may represent the connection strengths between neu-

rons. To accomplish the learning process, the weights

need to be adjusted until the output of the network is

approximately equal to the desired output. Artificial neu-

ral networks have been used to make the cognitive radio

learn from the environment and take decisions, in order

to improve the quality of service of the communication

system [32, 33].

In [34], Xuezhi Tan et al. addressed the problem of

spectrum lack and inefficiency in the current commu-

nication networks by introducing a new solution using

artificial neural networks (ANNs) to replace the current

frequency allocation system. They presented theoretical

analysis about two different scenarios: the single-user

case scenario and the multi-user scenario with weighted

allocation. They focused on the Back Propagation The-

ory mainly formed by the idea of the exchange of

information going forward and error being transmitted

backward.

The authors in [35] tried to improve the performance of

spectrum sensing in CR networks based on a new ANN

solution. The authors installed ANN at every secondary

user to predict the sensing probabilities of these units.

Their idea was to create a new cooperative spectrum-

sensing system through the collaboration of the SUs

equipped with ANN capabilities and a fusion center

using the theory of the belief propagation network. The

results showed a global low false-alarm probability for the

CR network.

Yang et al. in [36] proposed a design of the cognitive

engine based on genetic algorithms and radial basis func-

tion network (RBF) in order to adjust the parameters of

the system so as to effectively adapt to the environment as

it changes. They utilized a decision-making table to train

the RBF learning model whereas they mainly made use

of the GA to adjust the operating parameters of the RBF

neural network such as the data rate, MAC window, and

transmitting power.

The authors in [37] presented a general review of

the main spectrum-sensing methods and then proposed

their own automatic modulation classification detection

method. The main idea of [37] is based on the fact that the

secondary user is not supposed to have a priori informa-

tion about the primary user’s signal type and not supposed

to address the issue of the hidden node. The authors devel-

oped the digital classifier using an ANN that allows the

user to detect all forms of primary radio signals whether

weak, strong, pre-known, or unknown.

Game theory The first known discussion of game the-

ory occurred in a letter written by James Waldegrave

in 1713. Game theory is used as a decision-making

technique where several players must make choices and
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consequently affect the interests of other players. Each

player decides on his actions based on the history of

actions selected by other players in previous rounds

of the game. In cognitive networks, the CR networks

are the players in the game. The actions are setting

the RF parameters such as transmit power and chan-

nel selection. These actions will be taken by CR net-

works based on observations represented by environ-

ment parameters such as channel availability, channel

quality, and interference. Therefore, each CR network

will learn from its past actions, observe the actions

of the other CR networks, and modify its actions

accordingly [38, 39].

Abdulghfoor et al. in [40] introduced the concepts of

modeling resource allocation in ad hoc cognitive radio

networks with game theory and compared between two

scenarios related to the presence or absence of coopera-

tion using game theory. They also outlined game theory

applications in other layers and future directions for using

game theory in CR. The authors showed that game the-

ory can be used to design efficient distributed algorithm

in ad hoc cognitive radio networks whereas its application

in the MAC layer proved to be most challenging.

The authors in [41] addressed spectrum sensing in CR

networks. They proposed a single framework for coop-

erative spectrum sensing of CR networks as well as for

self-organization of femtocells by relying on the data gen-

erated by the CR users to help in a better understanding

of the environment. They proposed the creation of a large

spectrum database that relies on macrocell and femto-

cell networks. The game theory approach provides mutual

benefits to the CR users, and each femtocell is considered

as a player in the game of spectrum sensing and spectrum

utilization. The results showed a lower false alarm proba-

bility and a tradeoff between the gain increase and the size

of the coalition as the time to generate the reports has a

negative effect on the matter.

In [42], Pandit et al. approached the problem of the fixed

spectrum allocation policy from an economic point of

view where they proposed a simulation model to improve

the bandwidth allocation between the primary and sec-

ondary users of a CR network. The authors developed

an algorithm that minimizes the cost of the bandwidth

utilization while maximizing the effectiveness of the SUs

in the CR network. The authors utilized game theory as

a utility to model the payoffs between the SUs and PU,

considered as players. In their approach, the PUs’ main

aim was to maximize their revenue whereas the SUs’ aim

was to improve their QoS satisfaction at an acceptable

cost.

The authors in [43] addressed spectrum management

in CR. They proposed spectrum trading—spectrum man-

agement without game theory (SMWG) and spectrum

competition—spectrum management with game theory

(SMG). Considering the SMWG first, the authors intro-

duced a competition factor to model the spectrum com-

petition between the different PUs. They also introduced a

new QoS level function that relates to the spectrum avail-

ability and variable according to SU requirements. In both

cases, they assumed that the tradeoff is between the PU’s

desire to maximize revenue and the SU’s desire to obtain

the desired QoS level. In the SMGmodel, they formulated

two games by relying on a Bertrand game with the Nash

equilibrium being the solution, and the other is using the

Stackelberg game having the same solution.

Reinforcement learning Reinforcement learning (RL)

plays a key role in the multi-agent domain, as it allows

the agents to discover the situation and take actions using

trial and error to maximize the cumulative reward as illus-

trated in Fig. 3. The basic reinforcement learning model

consists of (1) environment states, (2) actions, (3) rules for

transition between states, (4) immediate reward of transi-

tion rules, and (5) agent observation rules. In RL, an agent

needs to consider the immediate rewards and the conse-

quences of its actions to maximize the long-term system

performance [44, 45].

In [46], Yau tried to incorporate RL to correctly com-

plete the cognition cycle in centralized and static mobile

networks. The RL approach was applied at the level of the

SUs where they dynamically rank channels according to

PU utilization and packet error rate during data transmis-

sion to increase throughput of SUs and QoS levels while

reducing delays.

The authors in [47] considered routing in cognitive

networks. They proposed a new RL system that jointly

works on channel selection and routing for a multi-hop

CR network. The RL incorporated a system of errors and

rewards based on each decision, and hence, every agent

tried to maximize its own rewards. After trial and error,

the CR users of RL will reach an optimal state in their

decision-making where they maximize their spectrum

Fig. 3 The agent-environment interaction in reinforcement learning
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utilization performance. The authors also used the feed-

back obtained from the environment and modeled the

problem using the Markov decision process. The key

drivers of the channel selection can be represented by link

cost and transmission time. This method allows the users

to choose the best route available through continuous and

efficient determination of the next hop.

Zhou et al. in [48] addressed the problem of high-power

consumption generated due to overhead communication

between different CR users. They proposed a new power

control scheme relying on RL to eliminate the need for

information sharing on interference and power strategies

of each CR element. The CR users compete over repeated

rounds to maximize their own objective while taking into

consideration the interference constraints imposed by the

network.

In [49], the authors used reinforcement learning on

the secondary user node for spectrum sensing, PU sig-

nal detection, and transmission decisions in cognitive

radio networks. The SU will learn the behavior of the PU

transmissions to dynamically fill the spectrum holes.

Support vector machine Support vector machines

(SVM) are supervised learning models used for classifica-

tion and regression analysis. In the learning phase, SVM

uses the training data to come up with margins to separate

classes as shown in Fig. 4. A new entry or object is then

classified based on these margins and the compatibility or

distance between the object and the class [50, 51].

In [52], the authors used SVM to add a learning design

to the CR engine. The proposed model is based on bit

error rate (BER), SNR, data rate, and modulation mode.

For training data, three channel models are considered:

flat fading model, deep fading model, and no fading

model. Once the model is built, the data is tested taking

the BER, SNR, and data rate as inputs.

Dandan et al. in [53] used SVM for spectrum sensing

and real-time detection. The sample data was classified

as a primary user or not by training and testing on the

proposed SVM classificationmodel. The classes are deter-

mined based on the received signal as follows: if the

signal detected is formed by the signal and AWGN noise,

the class will be denoted as PU detected. When the sig-

nal is only AWGN noise, the class indicates no PU. The

parameters considered in this work included carrier, pulse

sequence, repeatability extension, and circulation prefix

processing.

The authors in [54] used SVM for medium access con-

trol (MAC) identification. The proposed SVM model

enables CR users to sense and identify the MAC pro-

tocol types of the existing transmissions and to adapt

their transmission parameters accordingly. The authors

used three different kernel functions for SVM: linear,

polynomial, and radial basis functions.

In [55], the authors proposed applying SVM to

eigenvalue-based spectrum sensing for multi-antenna

cognitive radios. They built their training model by

observing N samples and generating their covariance

matrix eigenvalues. The new data point is then classified

based on the annotated training data set and SVM kernel

to indicate the presence or absence of PU.

The authors in [56] used SVM to solve the problem of

beam-forming design in cognitive networks. They con-

sidered a CR network with relaying capabilities where

the cognitive base station shares the spectrum with the

primary network and can act as a relay to assist the

primary data transmission. First, they aimed to mini-

mize the total transmit power of the cognitive base sta-

tion, while maintaining QoS requirements and mutual

interference level as acceptable. SVM was used to solve

the optimization problem for the beam-forming weight

vectors.

Case-based reasoning Li D. Xu introduced the concept

of case-based reasoning (CBR) in [57] which relies on past

problems and solutions to solve current similar situations.

CBR systems build an information database about past

situations, problems, and their solutions and rewards as

shown in Fig. 5. New problems are then solved by find-

ing the most similar case in memory and inferring the

solution to the current situation [58].

Ken-Shin Huan et al. introduced a new space efficient

and multi-objective CBRmethod in [59] to solve the high-

storage space required by the traditional CBR methods.

The authors considered all possible cases in relation to

their objectives in order to develop their model as accu-

rately as possible. Their method relied on the divide-and-

conquer technique using unity functions.

Reddy in [60] designed an efficient spectrum allocation

using CBR and collaborative filtering approaches. They

used the case-base reasoning to identify a channel pre-

ferred by the secondary user. They then used automatic

collaborative priority filtering to assign a channel to the

highest prioritized user.

The authors in [61] used CBR for proper link man-

agement, network traffic balance, and system efficiency.

Each case contains the problem, a solution, and its corre-

sponding result to provide the CR with better information

utilization on the input, previous decisions, and their con-

sequences. They aimed to reduce access time by finding

similarities between cases and bucketing them.

In [62], the authors used CBR quantum genetic algo-

rithm to adjust and optimize CR parameters. Envi-

ronment change factor was used to measure similarity

between the current problem and the cases in the database

and initialize quantum bits to avoid the blindness of ini-

tial population search and speed up the optimization of

quantum genetic algorithm.
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Fig. 4 SVM classifier separates the training data into two classes by determining a linear line representing the greatest separation between both sides

Decision tree Decision tree learning uses a decision tree

to create a model that predicts the value of a target

class based on several input variables. A decision tree

has a similar structure as that of a flow chart, where

each node is an attribute, and the topmost node is the

root node as shown in Fig. 6. Each branch represents

the outcome of a test, and each leaf node holds a class

label [63].

In [64], the authors used decision tree learning to find

the optimal wideband spectrum-sensing order. The root

node is the start point, and the leaf node is the chan-

nel selected at every stage. At every node, one strat-

egy is selected based on certain rules to produce the

corresponding child node and construct a branch. At the

end leaves of the tree, the sensing order can be tracked

backward to the root.

The authors in [65] used decision tree for cogni-

tive routing so that the nodes can learn their envi-

ronment and adapt their parameters and decisions

accordingly. A sender will then use the decision tree

to select the most appropriate and reliable next hop

neighbor.

In [66], the authors used decision tree for video rout-

ing in CR mesh networks. They aimed to improve the

peak signal-to-noise ratio (PSNR) of the received video

by considering channel status, nodes supporting video

frame quality of service, effects of spectrum stability, and

bandwidth availability.

The authors in [67] addressed cooperative spectrum

sensing using distributed detection theory. CRs cooper-

ate to sense the spectrum and classify overlapping air

interfaces. The authors proposed the decomposition of a

Fig. 5 Case-based reasoning concept illustration
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Fig. 6 Decision tree chart where each node is an attribute and each leaf node holds a class label

M-ary subtest into a set of binary tests, represented in a

decision tree, to make the classification process simpler.

Entropy In 1948, Claude E. Shannon introduced entropy

in his paper “A Mathematical Theory of Communica-

tion” [68]. Entropy is a measure of the uncertainty in a

random variable. It is also defined as a logarithmic mea-

sure of the rate of transfer of information in a particular

message.

Zhao in [69] proposed (1) an entropy detector based

on spectrum power density that provides better detection

with lower computational complexity and (2) a two-stage

entropy detection scheme to improve the performance of

the entropy detector based on spectrum power density at

low SNR.

In [70–72], entropy was used for spectrum sensing. The

authors in [70] addressed spectrum sensing in a maritime

environment where ships are far from land. The com-

munication ship-to-ship/ship-to-shore and ship-to-ship

ad hoc network in deep sea have been realized with the

support of satellite communication links.

The authors in [71] aimed to increase the spectrum-

sensing performance and reliability in a cooperative

wideband-sensing environment. They applied entropy

estimation in each subchannel with multiple suspicious-

CR-user elimination. Soft decision fusion methods:

weighted gain combining and equal gain combining were

used to improve the reliability of cooperative sensing.

In addition, the generalized extreme studentized deviate

(GESD) test was used to detect outliers and eliminate sus-

picious cognitive users. The authors extended their work

in [72]; they performed hardware-in-the-loop simulation

of the developed algorithm in a field programmable gate

array (FPGA). The cooperative wideband spectrum sens-

ing was based on entropy estimation and exclusion of

suspicious CR users using GESD test and sigma limit test.

Bayesian approach Bayesian networks are graphic prob-

abilistic models that rely on the interaction between the

different nodes to achieve learning for and from every

node involved in the process. The Bayesian networks

(BNs) have a role in the decision-making process if com-

bined with utilities in order to form influence diagrams

[73, 74].

Yuqing Huang et al. in [75] proposed a CR learning

interference and decision-making engine based on

Bayesian networks. The authors made use of the junction

tree algorithm to model interference using probabilistic

models obtained from the BNs. The authors developed

their CR model to adapt their radio parameters to ensure

QoS of the users.

In [76], the authors addressed multi-channel sensing

and access in distributed networks, with and without

constraint on the number of channels that SUs are able to

sense and access. They proposed a cooperative approach

for estimating the channel state and used Bayesian learn-

ing to solve multi-channel sensing problem.

The authors in [77] presented a Bayesian approach

for spectrum sensing to maximize the spectrum uti-

lization in CRNs. They aimed to detect known-order

multi-phase shift keying (MPSK)-modulated primary sig-

nals over AWGN channels based on Bayesian decision

rule.

Zhou et al. in [78] proposed a cooperative spectrum-

sensing scheme based on Bayesian reputation model

in CRNs where malicious secondary users may occur.

They suggested the use of SUs’ reputation degrees to

reflect their service quality. These reputation degrees are

updated based on Bayesian reputation model to distin-

guish the trustworthiness of the reports from SUs and

track the behaviors of malicious SUs.

In [79], the authors exploited sparsity in coope-

rative spectrum sensing. Sparsity occurs as follows: (a)

in frequency domain when primary users occupy a small

part of the system bandwidth and (b) in space domain

when the number of users is small and their locations

occupy a small fraction of the area. In their proposed

model, the authors used the theory of Bayesian hierarchi-

cal prior modeling in the framework of sparse Bayesian

learning.
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Markov model The Markov model is used to model ran-

dom process changing from one state to another over

time. The random process is memoryless where future

states depend only on the present state [80, 81]. InMarkov

models, the states are visible to the observer; however, in

the hiddenMarkovmodel (HMM), some states are hidden

or not explicitly visible [82].

The authors in [83] used HMM for blind source separa-

tion to identify spectrum holes. Using the hidden Markov

model, a CR engine will predict the primary user’s next

sensing frame.

In [84], Pham et al. addressed spectrum handoff in cog-

nitive radio networks based on the hiddenMarkov model.

Spectrum handoff occurs when a SU needs to switch to

a new idle channel due to a continuous data transmis-

sion when a PU needs the current channel. Therefore,

the secondary user needs to study the behavior of the

primary user and predict its future behaviors to per-

form spectrum handoff and ensure a continuous trans-

mission.

Li et al. in [85] used theMarkov model for modeling and

analyzing the competitive spectrum access among cog-

nitive radio networks. The cognitive network is formed

by multiple dissimilar SUs and channels. They proposed

decomposing the complex Markov model into a bank of

separated Markov chains for each user. They focused on

evaluating the SU throughput under uncertain spectrum

access strategies.

The authors in [86] used the Markov decision pro-

cess for dynamic spectrum access in cognitive networks.

They used the HMM to model a wireless channel and

predict the channel state. They decided on spectrum sens-

ing, channel selection, modulation and coding schemes,

transmitting power, and link layer frame size to minimize

energy consumption.

Multi-agent systems Jacques Ferber introduced multi-

agent systems (MAS) as a smart entity aware of their

surroundings, capable of skillfully acting and commu-

nicating independently. MAS contain the environment,

objects, agents, and the different relations between these

entities. MAS have their applications found mainly in

problem solving and in the creation of a virtual world

[87, 88].

In [89], Emna Trigui et al. introduced a novel approach

to address the spectrum handoff within the CR domain.

Their approach allows CR terminals to always switch to

the spectrum band that offers the best conditions by

using multi-agent system negotiation. They considered

the mobile CR terminal and primary users as agents when

they negotiate on prices and bandwidth trying to maxi-

mize their own profits.

The authors in [90] addressed the issue of real-time CR

resource management by relying on multi-agent systems.

They considered the scenario of a user stepping into a

zone with bad QoS. The authors used several learning

algorithms such as K-NN and decision trees in order to

classify data.

In [91], the author addressed the issue of resource man-

agement and proposed a negotiation model to reduce the

overhead present by relying on a novel spectrum access

scheme that eliminates negotiation. The author relied on

game and multi-agent Q-learning in order to create his

model.

Mir et al. in [92] used a multi-agent system for dynamic

spectrum sharing in cognitive radio networks. They

proposed a cognitive radio network where agents are

deployed over each primary and secondary user device.

Accordingly, when the SU needs spectrum, its agent will

cooperate and communicate with PU agents for spectrum

sharing.

Artificial bee colony The artificial bee colony (ABC)

concept was introduced by Dervis Karaboga in 2005,

motivated by the intelligent behavior of honey bees. In

[93], ABC is defined as a heuristic approach that has the

advantages of memory, multi-characters, local search, and

a solution improvement mechanism. In the ABC model,

the colony consists of three groups of bees: employed

bees, onlookers, and scouts. The objective is to determine

the locations of the best sources of food. The employed

bees will look for food sources; if the nectar amount of a

new source is higher than that of the one in their mem-

ory, they will memorize the new position and forget the

previous one. The position of a food source represents

a possible solution to the optimization problem, and the

nectar amount of the source corresponds to the quality or

fitness of the solution [94, 95].

In [96], Sultan et al. applied the artificial bee colony opti-

mization to the problem of relay selection and transmit

power allocation in CR networks. The authors aimed at

maximizing the SNR at the secondary destination while

keeping the level of interference low. In the ABC model,

the fitness function can be represented by SNR, and the

interference threshold level is the main constraint. The

authors defined the role of employed bees to search for

solutions by comparing the neighboring food sources with

the one they memorized and updating their memory with

the best solution that improves the fitness function and

satisfies the constraints.

The authors in [97] used ABC for multiple relay selec-

tion in a cooperative cognitive relay network. Their aim is

to find the optimal SNR, considered as the fitness value,

and the best relay to cooperate, considered as the best

food source.

The authors in [98] and [99] used ABC for spec-

trum allocation in cognitive radio networks. In [98],

Ghasemi et al. aimed to optimize spectrum utilization
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while maintaining fairness. The position of a food source

represented a possible solution of the optimization prob-

lem, and the amount of a food source corresponded to the

quality of the solution.

In [99], the authors addressed channel allocation and

fairness among devices. They aimed to maximize the

utility function that considered the total reward, the

interference constraint, and the conflict-free channel

assignment.

Pradhan in [100] studied the performance of ABC in

CR parameter adaptation. The control parameters con-

sidered were the transmit power and the type of modu-

lation (BPSK, QPSK, and QAM). The author compared

the performance of ABC with the performance of genetic

algorithm and particle swarm optimization in terms of

fitness convergence characteristic, optimal fitness, and

computation time.

1.4 Discussion: challenges and evaluations

Firstly, this section presents the learning techniques

evaluated against each other within a CR context. In

addition, the challenges facing these learning techniques,

strengths, and limitations are presented.

1.4.1 Learning techniques evaluation: strengths,

limitations, and challenges

Learning techniques may have many advantages; how-

ever, their implementation may face many challenges.

The strengths and limitations as well as implementation

challenges of the previously mentioned learning tech-

niques are presented in this subsection and summarized

in Table 1.

• Neural networks Inspired from the biological

nervous system, the artificial neural network is used

to accomplish the learning process, identify new

patterns, perform classifications, and improve the

decision-making process. ANNs are based on

empirical risk minimization. They provide an

adaptation ability to minor changes of the

environment and confidence information about the

decision made. ANNs have the ability to describe a

multitude of functions and are conceptually scalable.

They are not sequential or deterministic; however,

they process in parallel which permits solutions to

problems where multiple constraints must be

satisfied simultaneously. In addition, the neural

network will have the ability to work on forward

propagation mode as an analytical tool on other

data once the network is trained to a satisfactory

level. The output of a forward propagation run is the

predicted model for the data which can then be used

for further analysis and interpretation. Neural

networks can be constructed by only a few samples,

thus reducing the complexity of the solution. ANNs

can be combined with CBR and GA in the training

phase.

ANNs are categorized under supervised learning

which requires prior knowledge of the environment

and training data. Neural networks may face slow

training depending on the network size. In addition,

it is possible to overtrain a neural network, which

means that the network has been trained exactly to

respond to only one type of input. The network will

be then memorizing all input situations instead of

learning. ANN will then face overfitting when the

developed model is not general. ANNs may also face

difficulty with infinite recursion and structured

representations. Neural networks provide multiple

solutions associated with local minima and for this

reason may not be robust over different samples.

Since artificial neural networks require training data

labels, the outcome accuracy and algorithm

performance are highly related to the data used for

training the model. Therefore, the main challenge is

to collect the training data and make sure to use clean

and task-relevant data in the training phase. The

second challenge is to deal with the data and the

choice of initial parameters and attributes that can be

nonlinear, complex, and numerous which may lead to

slow training performance.
• Support vector machines are supervised learning

models used for classification, regression analysis, and

outlier detection. They provide high performance in

many real-world problems due to their generalization

ability and robustness against noise and outliers. The

basic idea of SVMs is detecting the soft boundary of a

given set of samples so as to classify new points as

belonging to that set or not. A good separation is

achieved by the hyperplane that has the largest

distance to the nearest training data points of any

class, since in general the larger the margin the lower

the generalization error of the classifier. SVMs map

the input features into a high-dimensional feature

space in which they become separable. This mapping

from the input vector space to the feature space is a

nonlinear mapping achieved by using kernel

functions. SVM can accommodate high dimensional

spaces and can still be effective in cases where the

number of dimensions is greater than the number of

samples. SVMs produce very efficient classifiers with

high prediction accuracy and less overfitting even if

training examples contain errors. SVMs deliver a

unique solution, since the optimality problem is

convex, which is considered an advantage compared

to Neural Networks, which provide multiple solutions

associated with local minima. SVMs are versatile,

different Kernel functions can be specified for the
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Table 1 Learning techniques applications in CR, strengths and limitations

Learning technique Spectrum sensing (SS) Decision-making Strengths Limitations and challenges

Adaptation ability to minor changes Require training data labels

Neural networks × × Construction using few examples, Poor generalization

thus reducing the complexity Overfitting

Support Generalization ability Requires training data labels

vector × × Robustness against noise and outliers and previous knowledge of the system

machine Complex with large problems

Multi-objective optimization Require prior knowledge of the system

Genetic algorithms × Dynamically configure the CR Suitable fitness function

based on environment changes High complexity with large problems

Game theory Related to the capabilities of the × Reduces the complexity of adaptation Requires prior knowledge of the system

spectrum-sensing technique used Solutions for multi-agent systems and labeled training data

Reinforcement × × Learning autonomously using feedback Needs learning phase of the policies

learning Self-adaptation progressively in real time

Fuzzy logic Related to the capabilities of the × Simplicity, decisions are Needs rules derivation

spectrum-sensing technique used directly inferred from rules Accuracy is based on these rules

Entropy approach × × Statistical model Requires prior knowledge of the system

Related to the capabilities of the Simplicity Requires prior knowledge of the system

Decision tree spectrum-sensing technique used × Decision using tree branches May suffer overfitting

Requires labeled training data

Artificial × Parallel search for solutions Requires prior knowledge of the system

bee colony Requires a fitness function

Bayesian × × Probabilistic models Requires prior knowledge of the system

May face computational complexity

Markov model × × Statistical models Requires prior knowledge of the system

Scalable May face computational complexity

Case- Find acceptable solution based Complex search in large databases

based × on the existing case found Requires predefined and relevant cases

reasoning in the case database Mistakes propagation

decision function. Common kernels are provided,

but it is also possible to specify custom kernels.

SVM may provide high performance in small

problems, however, its complexity increases in large

problems. If the number of features is much greater

than the number of samples, the method is likely to

give poor performance. Support vector machines are

powerful tools, but their computation and storage

requirements increase rapidly with the number of

training vectors. The core of an SVM is a quadratic

programming problem, separating support vectors

from the rest of the training data. They do not

directly provide probability estimates, these are

calculated using an expensive five-fold

cross-validation. Therefore, SVMs are considered

computationally expensive, they run slow with long

training time.

By introducing the kernel, SVMs gain flexibility in the

choice of the functional margins form, however, the

kernel function can be any of the following: linear,

polynomial, sigmoid, Gaussian, radial basis function

or custom kernels as a python function or by

pre-computing the Gram matrix. Choosing the

appropriate and convenient Kernel function may be

challenging since it would affect the algorithm

performance, efficiency and accuracy. In addition,

the size of the kernel cache has a strong impact on

run times for larger problems. Support vector

machine algorithms require labeled training data and

previous knowledge of the system which may be also

challenging due to the diversity of the features

affecting the decisions. SVMs are not scale invariant,

so it is highly recommended to scale the data for

efficient system performance.
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• Genetics algorithms are a randomized heuristic

search strategy where the population is composed of

candidate solutions obtained and emerged via

mutation and crossover. GA solve multi-objective

optimization problem and dynamically configure the

CR in response to the changing wireless environment.

They aim to optimize nonlinear systems with a large

number of variables by providing multiple solutions

having fitness scores measuring how close a candidate

is to being a solution. Genetic algorithms search in

parallel from a population. Therefore, it has the ability

to avoid being trapped in a local optimal solution like

traditional methods, which search from a single point.

GAs are then faster and consume lower memory than

searching a very large space. In addition, GA are

simple and easy since the values of the fitness

objective function are used for optimization

purposes.

Optimization based on fitness function cannot assure

constant optimization response times which limits

the genetic algorithm’s use in real-time applications.

In addition, GA may not converge to a global

optimum specially when the populations have a lot of

subjects and performance metrics. The algorithm

may get stuck on local maxima and may not provide

optimal and complete solutions. The algorithm

performance highly depends on the fitness function

which may generate bad chromosome blocks in spite

of the fact that only good chromosome blocks cross

over. GAs are considered slow since evaluation of the

fitness is computationally intensive. The main

challenge is that GAs require prior knowledge-based

learning and derived fitness functions; thus, new rules

are formulated on the basis of training examples

and/or patterns observed in previous iterations of the

search. Setting up the problem and selecting the

parameters to express the fitness function are critical

to bias the next generation towards better genes.

Determining chromosomal representation of

parameters, domain, and range are also challenging

since they are dependent on the studied

problem.
• Game theory reduces the complexity of adaptation

algorithms in large cognitive networks. It provides

solutions for decentralized multi-agent systems,

similar to the players in a game, under partial

observability assumptions. Games can be either

cooperative or competitive. In cooperative games, all

players are concerned about all the overall benefits,

and they are not very worried about their own

personal benefit. However, in competitive games,

every user is mainly concerned about his personal

payoff, and therefore, all its decisions are made

competitively. Game theory primary applications are

in linear programming, statistical decision-making,

and operations research.

One of the most basic limitations of game theory is

that each player must know the cost functions of the

other players. Game theory can use Bayesian analysis

to reason about the cost based on observations of

actions chosen by the player. In addition, in the case

of nonzero-sum games, multiple Nash equilibria may

exist. Game theory is also limited by the number of

players in the game, since the analysis of the gaming

strategies turns out to be increasingly complicated.

Therefore, game theory requires prior knowledge of

the system as well as labeled training data. The

players require knowledge of different parameters

such as SINR, power, and price from base stations,

which is impractical in many situations.
• Reinforcement learning can be used by agents to

learn autonomously using the feedback of the actions.

RL is used with multi-agent systems to solve

classification and decision-making tasks.

Reinforcement learning uses rewards to learn a

successful agent function. The system can achieve

self-adaptation progressively in real time. RL agents

learn to interact with an environment and have the

goal to optimize the cumulative reward.

The main limitation of RL is that the actions of the

agents and reward function should be defined based

on the system and task requirements. A feedback is

needed to make decisions.

Using RL, the system engine needs to perform a

learning phase to acquire the optimal and suboptimal

policy. In dynamic environments, it would be

challenging, sometimes even impossible, to provide

the agents with the correct actions associated with

the current situation.
• Fuzzy logic is flexible, provides intuitive

knowledge-base design with easy computation, and

simple implementation and interpretation. Fuzzy

logic is used as an application to systems that are

difficult to model with unclear quality boundaries.

Instead of using complicated mathematical

formulations, fuzzy logic uses human-understandable

fuzzy sets and inference rules to obtain the solution

that satisfies the desired system objectives. Therefore,

the main advantage of fuzzy logic is its low

complexity and its suitability for real-time

applications such as cognitive radio applications.

Using fuzzy logic, solutions can be obtained given

imprecise, noisy, and incomplete input information.

There may be some disadvantages to fuzzy logic; for

example, stability, accuracy, and optimality of the

system are not guaranteed. In addition, increasing the

dimensionality may result in inefficient and memory

intensive settings for most functions. Fuzzy logic
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highly depends on the fuzzy inference rules which

may be tuned manually, and settings can be made by

trial and errors.

The derivation of rules is challenging. These rules

need to be relevant and rely on relevant features.

Moreover, they should be updated when needed.

Therefore, the accuracy of the fuzzy logic system

depends on the completeness and accuracy of the

rules. The system may return inappropriate decisions

if the rules are not convenient and accurate.
• Entropy is a measure of the uncertainty in a random

variable which quantifies the expected value of the

information contained in a message. The information

entropy can therefore be seen as a numerical measure

which describes how uninformative a particular

probability distribution is. Independently of any

Bayesian considerations, the problem considered as a

constrained optimization problem has the entropy

function as the objective function. Entropy can be

combined with reinforcement learning and the

Markov model.

Although entropy is often used as a characterization

of the information content of a data source, this

information content is not absolute: it depends

crucially on the probabilistic model. In addition, it

requires prior knowledge of the system (mainly prior

knowledge of the model-describing parameters to be

learned).
• Decision tree learning uses a decision tree to create a

model that predicts the value of a target variable

based on several input variables. The decision tree is

simple to understand and to interpret by

visualization. The decision can be directly made

based on the tree branches. The cost of using the tree

for prediction and decision-making is logarithmic in

the number of data points used to train the tree.

Decision tree learning can handle different types of

data such as numerical and categorical data and

multi-output problems. Each path of the decision tree

contains the elements of the paths and the assigned

risk factor which is the estimated likelihood of

occurrence of the terminal event in the path.

Decision trees depict future decision points and

possible chance events. They add to the confidence

and accuracy of the decisions.

A decision tree needs labeled training data and does

not support missing values. The decision tree may

face overfitting which will make the system model

loose its learning aspect. The model is highly related

to the input training data which may make the

system unstable because small variations in the data

might result in a completely different tree being

generated. In addition, the problem of learning an

optimal decision tree may be

nondeterministic-polynomial (NP) time

NP-complete which may require heuristic algorithms

to obtain solutions. Such algorithms may not

guarantee global optimal solutions for decision trees.

The main challenge is that the decision tree requires

labeled training data and prior knowledge of the

system. The selection of training data is critical. On

one hand, decision trees may suffer overfitting when

all cases are taken into consideration for building the

tree, on the other hand, decision trees may be biased

if some classes dominate in the training data set.

Therefore, a balanced labeled data set is required

prior to fitting with the decision tree without any

missing values.
• Artificial bee colony algorithm finds the optimal

position of a food source representing a possible

solution to the optimization problem. ABC searches

in parallel over several constructive computational

threads based on local problem data and a dynamic

memory structure containing information on the

quality of the previously obtained results. The ABC

algorithm provides uni-modal and multi-modal

numerical optimization.

However, the artificial bee colony is considered as a

NP-hard problem with high dimensionality. ABC is

very effective in solving small- to medium-sized

generalized assignment problems. Its efficiency

depends on the size of the solution space, number of

variables and constraints used in the problem

modeling, and the structure of the solution space

such as convexity. In addition, ABC needs prior

knowledge of the system.
• Bayesian approach is based on probabilistic learning.

It provides exact inferences which do not rely on large

sample approximations with simple interpretations.

Bayesian inference estimates a full probability model

and allows prior knowledge and results to be used in

the current model. Bayesian inference has a statistical

decision to facilitate decision-making, it includes

uncertainty in the probability model, yielding more

realistic predictions. The Bayesian approach does not

face overfitting since it uses observed data only.

The Bayesian approach is only useful when prior

knowledge is reliable and distribution for all

parameters is known. It may also face computational

complexity since it involves high-dimensional

integrals.
• Markov model chain generates sequences of

observation symbols by making transitions from state

to state in time or space with fixed probabilities. The

Markov chain contains a finite number of states and

corresponding transition probabilities. The current

state of the system depends on previous events and

their successive structure to determine the process.
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For instance, a first-order Markov chain takes

account of only a single step in the process, but it can

be extended so that the probabilities associated with

each transition depend on multiple events earlier

than the immediately preceding one. Markov models

are relatively easy to derive and infer from successive

data. The Markov model is scalable and can model

complex statistical models. It can be used for

classification and prediction based on experiences. It

does not require deep insight into the mechanisms of

dynamic change. The basic transition matrix

summarizes the essential parameters of dynamic

change.

However, the Markov model is computationally

complex. It is expensive, both in terms of memory

and time. The Markov model requires good training

sequence. In some cases, the data available will be

insufficient to estimate reliable transition

probabilities, especially for rare transitions. In

addition, the Markov model is a successional model

where the performance efficiency depends on

predictions of system behavior over time.

The construction of Markov models requires

accurate data information to determine the transfer

probabilities and state conditions.
• Case-based reasoning is capable of solving problems

based on predefined cases. CBR is used to determine

an acceptable solution based on the existing case

found in the case database. CBR allows learning

without knowledge on how rules and cases are

created. The system will learn from previous and new

situations and update its database accordingly which

makes development and maintenance easier. CBR can

be used when a domain model is difficult to generate,

complex and has multiple-variable situations.

CBR faces many limitations. It can only be used when

records of initial and previously successful solutions

exist. It can take a large storage space for all the cases

and may face a large processing time to find similar

cases in the database. CBR relies on previous cases

which might include irrelevant patterns. Therefore,

CBR needs appropriate training before deployment

since incorrectly solved cases may lead to mistake

propagation. In addition, populating and searching a

large database can be time consuming and difficult

which highlight the need of fast and efficient

case-selection algorithms. Removing irrelevant

patterns may reduce the case retrieval time and lead

to higher efficiency.
• Multi-agent systems are suitable for multi-player

decision problems. They provide negotiation,

learning, and cooperative-based approaches between

agents which can be in our case cognitive radio users.

MAS are quick, reliable, and flexible. They can

accommodate multiple user networks; however, large

networks may cause high cost and complexity. MAS

can be combined with RL and game theory that also

provide solutions using interactions between users

for enhancing the performance of the system.

1.4.2 Applying learning in cognitive radio

The various cognitive radio network tasks need differ-

ent learning techniques to learn and adapt to any change

in the environment. In addition, a CR may not have any

prior knowledge of the operating RF environment such

as noise, interference, and traffic. Therefore, the most

suitable learning technique depends on (1) the available

information, (2) network characteristics, and (3) the CR

task and problem to address.

Supervised vs. unsupervised learning The availability

of information affects the choice of learning techniques.

In this scope, we differentiate between supervised and

unsupervised learning techniques.

Supervised learning is used when training data is labeled

and the CR has prior information about the environment.

For instance, if the CR knows some signal characteris-

tics, supervised training algorithms may help in achieving

better signal detection and system performance. Super-

vised learning techniques such as decision tree, neural

networks, support vector machine, and CBR may differ in

their strengths, limitations, challenges, and applications in

cognitive radio networks.

The ANN algorithm is based on empirical risk mini-

mization. It provides real-time solutions which allow fast

responses to changing radio environment. For instance,

ANN can be used at the secondary user end in cognitive

radios to act dynamically whenever there is PU activity

detected over the channel to avoid collision. ANNs can

be constructed by only a few examples, thus reducing the

complexity of the solution, and can perform classifica-

tion and assist in solution adaptation process. ANNs can

be used in spectrum sensing and adapting radio param-

eters in CR. SVM algorithms are based on structural

risk minimization. They provide superior performance

compared to ANNs, especially for small training exam-

ples, since they avoid the problem of overfitting. The

SVM classifier is embedded in a CR terminal of the sec-

ondary network and can be used for spectrum sensing

and decision-making.CBR generally provides good or rea-

sonable solutions; however, optimal solutions cannot be

found. A CR can use a CBR to determine acceptable

actions for the current environment based on the exist-

ing cases in the database. In general, the database may

not include all possible situations a CR may encounter;

therefore, a CR needs to learn new cases, generate new

actions, and update the case database. Decision tree is

simple to understand and to interpret since trees can be
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visualized. Unlike other methods, decision trees can pro-

cess categorical and numerical data even without data

normalization.

In contrast with the supervised approaches, unsuper-

vised algorithms do not require labeled training data

such as game theory, reinforcement learning, genetic

algorithms, Markov model, ABC, entropy, and Bayesian

approaches. Unsupervised learning is used when some RF

components are unknown to the CR network which will

have the opportunity to perform autonomously without

having any prior knowledge.

Game theory, RL, and Markov model can be used in

case of multi-agent interaction for decision-making and

sensing and learning the environment. However, other

techniques are used as a single-agent learning process.

Single-agent and multi-agent systems and network char-

acteristics are discussed further in the next subsection.

Game theory presents a suitable platform for modeling

rational behavior among cognitive radio users. Game the-

ory can be applied to power control, resource allocation,

spectrummanagement, and routing algorithms. The deci-

sions made by the agents define an outcome for the game

in a way to maximize utility based on payoff matrix; the

best prediction for the outcome of a game is the equilib-

rium of the game. Unlike in the game theoretical setting,

in reinforcement learning, agents are not assumed to have

full access to the payoff matrix. The agents are taken to be

players in a normal form game, which is played repeatedly,

in order to improve their strategy over time. Reinforce-

ment learning allows agents to learn from their past states

in order to better perform their following actions and

moves. For instance, using RL, each SU senses the spec-

trum, perceives its current transmission parameters, and

takes necessary actions when a PU appears. Penalty val-

ues are enforced when the SUs interfere with PUs, which

improve the SU learning and the overall spectrum usage.

Markov model can be used in case the problem considers

network states and situations. This model can be used to

identify the sequences of observations. For instance, CR

will be able to observe, recognize, and classify received

stimuli. Note that RL and Markov models can be used for

single-agent and multi-agent systems.

When states or candidate solutions have a large num-

ber of successors, searching spaces with traditional search

methods would be difficult. Genetic algorithms are then

used to improve the model-training efficiency. Fuzzy logic

approaches do not model the interaction between SUs

and PUs for spectrum access. This modeling can be effi-

ciently performed using Markov chains. Fuzzy logic can

be used in decision-making to select the best suited SU

for spectrum access, multi-hop routing, and detecting

unauthorized users. Fuzzy logic approaches use a straight-

forward inference method based on predefined rules.

Therefore, if the considered problem relies on rules with

high uncertainty, fuzzy logic is recommended. However,

when specific cases are considered, case-based reasoning

is advised. Unlike Bayesian networks, fuzzy logic handles

feedback loops. The Bayesian approach provides a sta-

tistical decision to facilitate decision-making. It includes

uncertainty in the probability model, yielding more real-

istic predictions. Independently of any Bayesian consid-

erations, the constrained optimization problem may have

entropy function as the objective function. Entropy is a

measure of the uncertainty in a random variable which

quantifies the expected value of the information contained

in a message. It can be combined with reinforcement

learning and Markov model.

Single-agent vs. multi-agent The learning technique

depends also on the system characteristics such as

single-agent, multi-agent, centralized, and decentralized

systems [7].

In single-agent systems, an agent makes decisions with-

out interactions with other agents in the network. Based

on the network characteristics and available information,

the user will learn the system, make actions, and recon-

figure parameters accordingly. All the abovementioned

techniques can be used in single-agent systems except

game theory wheremultiple usersmust interact to achieve

performance gains.

In multi-agent systems, the users may interact, negoti-

ate, and cooperate to provide more effective communi-

cation between network entities. Using MAS in cognitive

radio networks will allow the users to manage their own

spectrum dynamically and in a decentralized manner. The

agents will perceive their environment and react accord-

ingly. For instance, using MAS, the interaction between

agents can be cooperative where all agents are con-

cerned about system benefits and performance without

considering their own benefits. For instance, coopera-

tive game theory is considered to avoid interference by

reducing the transmission power of SUs. However, in

competitive games, the agents make decisions compet-

itively to maximize their individual gains. The associ-

ation of MAS and the CR can provide more effective

communication between network entities and can lead

to a better exploitation of unused spectrum and opti-

mal resource management while reducing the risk of

interference.

Matching learning and CR tasks In general, the CR

tasks can be divided into two main categories: (1) cog-

nitive capability for spectrum sensing and (2) recon-

figurable capability for decision-making and resource

management.

Performing spectrum sensing with supervised training

data can be performed by using classification techniques

such as neural networks and SVM. Some tasks related to
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spectrum sensing such as choosing a spectrum-sensing

technique and spectrum-sensing order can be done using

fuzzy logic, game theory, and decision tree, respectively

[24, 41, 64]. In addition, Markov and entropy approaches

can be used for spectrum sensing [101].

For decision-making, several learning techniques can

be used such as decision tree, ABC, fuzzy logic, genetic

algorithms, case-based reasoning, game theory, reinforce-

ment learning, entropy, and Markov approaches. The use

of these techniques may differ based on the system char-

acteristics. For instance, game theory is used in decen-

tralized multi-agent systems while reinforcement learning

can be used in centralized and single-agent systems. Neu-

ral networks and SVM can be also used for some appli-

cations in decision-making, for instance, in [37], neural

networks are used to adjust the parameters of the system

so as to effectively adapt to the environment as it changes,

and in [52], the SVM technique builds a model for deter-

mining themodulation scheme using the following inputs:

bit error rate, SNR, and data rate. We remind the reader

that the learning techniques and their applications in CR

are summarized in Table 1.

Therefore, determining the most suitable learning tech-

nique for each task in general may not be feasible. How-

ever, the choice of learning technique will depend on the

main problem objective and type, available information,

and network characteristics.

2 Conclusions

This paper presented a survey on the applications of

machine-learning techniques to cognitive radio networks.

It introduced recent advances on cognitive radio networks

and artificial intelligence and emphasized the role of

learning in cognitive radios. The literature review of

the state-of-the-art achievements in applying machine-

learning techniques to CR is presented and catego-

rized under the following major artificial intelligence

techniques. This paper presented CR tasks and challenges

with the necessary evaluation and challenges of the learn-

ing technique’s application in cognitive radio networks.

Finally, the paper provided different points of view and

forms different angles on the application of learning in CR

networks.
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