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Abstract: The design of photoinitiators activable under low-light intensity is an active research field,
supported by the recent energetic sobriety plans imposed by numerous countries in Europe. With
an aim to simplify the composition of the photocurable resins, Type I photoinitiators are actively
researched as these structures can act as monocomponent systems. In this field, a family of structures
has been under-investigated at present, namely, glyoxylates. Besides, the different works carried out
in three years have evidenced that glyoxylates and related structures can be versatile for the design of
Type I photoinitiators. In this review, an overview of the different glyoxylates and related structures
reported to date is provided.

Keywords: glyoxylate; methyl benzoyl formate; water-soluble; Type I photoinitiators; low-light
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1. Introduction

During the past decade, photopolymerization has witnessed intense research efforts,
supported by the development of more and more applications making use of photopoly-
merization, but also by the gradual abandonment of conventional UV curing using mercury
lamps in favor of more energy-efficient LED-triggered polymerization processes [1]. No-
tably, the recent development of light-emitting diodes (LEDs) that are cheap, compact,
lightweight, and energy-saving devices has discarded the historical UV irradiation setups
that are expensive and energy-consuming devices [2–9]. Parallel to this, UV photopoly-
merization is facing numerous criticisms such as safety concerns (eye and skin damage)
or the production of ozone during photopolymerization [10,11]. Intense efforts existing at
present to develop photoinitiating systems absorbing visible light are also supported by
the different applications using photopolymerization and 3D and 4D printing, dentistry,
adhesives, solvent-free paints, microelectronics, coatings and varnishes can be cited as
relevant examples [12–25].

Another point of interest concerns one of the most components of photocurable resins,
namely the chromophore that interacts with light and can generate radicals in the presence
of co-initiators and additives [10,11,26,27]. Indeed, photoinitiators can be divided into two
different categories. The first one concerns Type II photoinitiators. In this case, photoini-
tiators are not capable to initiate a polymerization alone and additives have to be used.
Notably, Type II photoinitiators are commonly combined with hydrogen/electron donors
so that after a photoinduced electron transfer followed by a hydrogen abstraction reaction,
initiating species can be generated. Parallel to this first mechanism, Type II photoinitiators
can also be combined with onium salts (sulfonium or iodonium salts) so that aryl radicals
can be formed after a photoinduced electron transfer. To render the system catalytic, a
sacrificial amine can be used, enabling to introduction of the photosensitizer in a catalytic
amount. Parallel to this first category, Type I photoinitiators can act as monocomponent
systems, greatly simplifying the composition of the photocurable resins. The generation of
initiating radicals is based on the homolytic cleavage of a selected bond (See Scheme 1).
As the main drawback of this approach, the photodecomposition of Type I photoinitiators
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results in the irreversible consumption of the molecule, so that the concentration of radicals
drastically decreases over time. However, concerning this last point, the irreversible con-
sumption of photoinitiators is also true for Type II photoinitiators when two-component
photoinitiating systems. This is notably the case for the amines/thioxanthone photoiniti-
ating systems where the thioxanthone is consumed during the electron/proton transfer
initiating step [28,29]. Among Type I photoinitiators that have been extensively stud-
ied, hexaaryl biimidazoles (HABIs), phosphine oxides, oxime esters, benzoin derivatives,
benzylketals, acyloximino esters, trichloromethyl-S-triazines, o-acyl-α-oximino ketones,
α-aminoalkylacetophenones, or hydroxyacetophenones can be cited as the most common
structures [30–32].
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Scheme 1. Radical generation with Type I and Type II photoinitiators. (* corresponds to the excited
state of PS).

The reactivity of photoinitiators and the light penetration that can be achieved within
the photocurable resin is also strongly related to the wavelength used for photoinitiation.
Indeed, as shown in Figure 1, light penetration can vary from a few hundreds of microm-
eters up to a few centimeters, depending on the fact that photopolymerization is mostly
carried out in the wavelength range between 350 nm and 800 nm [33]. By polymerizing at
longer wavelengths, a higher light penetration can be obtained within the photocurable
resin. Access to filled samples is also possible [34].
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However, by polymerizing at long wavelengths, photons are also less energetic
than UV photons so this issue can only be addressed by developing photoinitiating sys-
tems facilely producing initiating species in unfavorable low energetic conditions. This
is the reason why after approximately two decades, a wide range of structures have
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been examined, as exemplified by benzophenones [35–42], thioxanthones [43–58], cam-
phorquinones [59,60], curcumin [61–64], chromones and flavones [65–67], acridine-1,8-
diones [68–70], pyrenes [71–79], anthracenes [80], carbazoles [81–96], benzylidene ke-
tones [97–104], cyclohexanones [105–108], chalcones [20,109–124], cyanines [125–131], push-
pull dyes [3,4,132–146], bodipy [43,147–151], coumarins [152–165], naphthalimides [166–184],
iodonium salts [43,166,185–193], perylenes [194–197], diketopyrrolopyrroles [198], and
quinoxalines [199–212], to cite a few. However, in the aforementioned list, if only purely
organic dyes have been cited, metal complexes (iridium [213,214], ruthenium [215], cop-
per [216–218], iron [219], zinc [220]) or purely inorganic structures (perovskites [221],
metal–organic frameworks [222], metal particles [223], quantum dots [224]) can also be
cited as photoinitiators of polymerization. By investigating these different structures,
water-soluble [225], photobleachable [226] photoinitiators, or photoinitiators activable with
sunlight [7,227,228] have been identified. Besides, during the last five years, a significant
effort has been devoted to developing Type I photoinitiators greatly simplifying the compo-
sition of the photocurable resins. Indeed, efficient multicomponent photoinitiating systems
are difficult to prepare and the lack of stability by undesired reactions between the different
additives constitutes the major drawback of this approach. With the aim of developing Type
I photoinitiators, a family of photocleavable dyes has only been scarcely investigated in the
literature, namely glyoxylates. These structures that are also sometimes named keto esters
can easily cleave between the two carbonyl groups, producing initiating radicals. If methyl
benzoylformate (MBF) is a commercially available UV photoinitiator, this scaffold has not
been a source of inspiration for photopolymerists for the design of new photoinitiators and
only a few derivatives of this structure have been reported in the literature.

In this review, an overview of the different glyoxylates and related structures reported
to date is provided. This family of dyes is of crucial interest for the future development of
photoinitiators of photopolymerization.

2. Glyoxylates and Related Structures
2.1. Glyoxylate Derivatives

In 2021, a series of glyoxylate derivatives have been proposed by Sun and coworkers,
bearing electron-donating or electron-accepting groups (See Figure 2) [229]. By means
of this specific substitution, photopolymerization experiments could be carried out at
405 nm. In this series of dyes, dimethyl 1,4-dibenzoylformate (DM-BD-F) proved to be
the most efficient photoinitiator during the free radical polymerization (FRP) of acrylates
(tri (propylene glycol)diacrylate (TPGDA) or trimethylolpropane triacrylate (TMPTA)),
resulting from its unique ability to produce twice more radicals than the nine other struc-
tures. To determine the real performance of the different glyoxylate derivatives, phenylbis
(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO), and dibenzoyl (DB) were used as refer-
ence photoinitiators.

Due to the weak absorption of the different dyes at 405 nm, deep layer photocuring
could also be obtained and a polymer thickness of 6.5 cm could be polymerized within
30 s. Parallel to this, due to the weak absorption of glyoxylate derivatives at 385, 395, and
405 nm, almost colorless coatings could be produced. From the absorption viewpoint,
major differences could be found between the different dyes in acetonitrile (See Table 1 and
Figure 3).

Interestingly, compared to the parent methyl benzoyl formate (MBF), all deriva-
tives exhibited a redshifted absorption, except for TF-MBF exhibiting the strong electron-
withdrawing group. Logically, the most redshifted absorptions were found for all dyes
comprising an electron-donating group inducing an efficient intramolecular charge transfer
(ICT) through a push-pull effect. Thus, N-MBF and S-MBF both exhibited the most red-
shifted absorptions located at 356 and 326 nm respectively, together with the highest molar
extinction coefficients (43,800 M−1·cm−1 and 29,660 M−1·cm−1 respectively). Compared
to BAPO, N-MBF exhibited higher molar extinction coefficients at all wavelengths later
used for photopolymerization. Photolysis experiments revealed the occurrence of a de-
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carboxylation reaction using bromocresol green as the pH indicator. Consistent with the
mechanism established in the literature, a decarboxylation reaction occurring subsequent
to the photocleavage was proposed, as shown in Scheme 2.
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Table 1. Molar extinction coefficients (M−1·cm−1) of the different glyoxylate derivatives in acetoni-
trile, at the maximum absorption and different wavelengths used for photopolymerization.

Photoinitiator λmax (nm) εmax ε385 ε395 ε405 ε455

BAPO - - 1100 1020 770 0
MBF 255 17,430 30 10 10 0

F-MBF 257 16,760 30 20 10 0
S-MBF 326 29,660 590 260 110 0
C-MBF 266 19,630 60 40 30 10
O-MBF 290 19,830 120 90 70 40
N-MBF 356 43,800 12,180 6660 3600 80
Cl-MBF 265 21,420 60 40 30 0
TF-MBF 246 32,800 110 80 50 10

DM-BD-F 273 18,440 280 220 160 50
DF-MBF 256 25,350 110 90 70 20
DC-MBF 269 20,690 100 40 30 10
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By theoretical calculations, the bond dissociation energy (BDE) of the different deriva-
tives could be determined, and values ranging between 108.40 kJ/mol for TF-MBF and
150.94 kJ/mol for N-MBF were calculated (See Table 2). Parallel to this, the ∆H of all MBFs
was determined as being negative, meaning that the cleavage reaction was energetically
favorable [230].

Table 2. Bond dissociation energies (kJ/mol) were determined for different glyoxylates.

Photoinitiator BDE

MBF 138.98
F-MBF 137.92
S-MBF 148.85
C-MBF 138.30
O-MBF 145.18
N-MBF 150.94
Cl-MBF 140.55
TF-MBF 108.40

DM-BD-F 118.83
DF-MBF 134.76
DC-MBF 140.28
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Examination of their photoinitiating abilities during the FRP of TPGDA revealed
F-MBF to furnish a higher monomer conversion than BAPO (See Figure 4 and Table 3).
Excellent monomer conversions could also be obtained with the other MBFs, except S-
MBF and O-MBF for which conversions lower than 40% could be determined. The low
reactivity of these derivatives was confirmed during the FRP of TMPTA. However, contrary
to what was observed in TPGDA, none of the MBFs could outperform BAPO. Thus, if a
TMPTA conversion of 59.4% could be obtained with BAPO, the best conversion with MBFs
was obtained with O-MBF, peaking at 49.6%. The lower monomer conversion obtained
with TMPTA compared to TPGDA was assigned to the higher viscosity of TMPTA and
its trifunctionality.
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Table 3. TPGDA and TMPTA conversions after 120 s upon irradiation at 405 nm.

Photoinitiator TPGDA TMPTA

BAPO 82.8 59.4
MBF 81.6 47.7

F-MBF 85.1 49.3
S-MBF 41.6 38.2
C-MBF 80.4 47.7
O-MBF 79.4 49.6
N-MBF 36.5 42.0
Cl-MBF 76.5 47.3
TF-MBF 75.6 49.3

DM-BD-F 79.1 46.8
DF-MBF 80.7 46.2
DC-MBF 78.3 47.7

Noticeably, DM-BD-F could maintain an excellent monomer conversion with the
two monomers, resulting from its unique ability to produce double radicals compared
to the other MBFs. Overall, the following trend could be established: if the presence of
electron-accepting groups could improve the monomer conversion, the opposite situation
was found for the electron-donating groups. Indeed, in this series of dyes, N-MBF and
S-MBF exhibiting the highest molar extinction coefficients also demonstrated the lowest
photoinitiating abilities, evidencing that absorption was not the only parameter governing
the photoreactivity. Determination of the enthalpy of the reaction revealed ∆H to be nega-
tive for all MBFs. Besides, if the cleavage reaction was determined as being energetically
favorable, the photoinitiating capability is also strongly related to the values of ∆H. Thus,
if DM-BD-F and TF-MBF exhibited ∆H values of −127.89 and −111.46 kJ/mol respectively,
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these values were only reduced to −68.87 and −72.57 kJ/mol for S-MBF and N-MBF
respectively, explaining their lower photoinitiating abilities.

Finally, examination of the depth of cure for TPGDA after 30 s of irradiation at 405 nm
with the different systems revealed F-MBF TF-MBF, and DM-BD-F to furnish a curing depth
of 5.0, 6.3, and 6.5 cm respectively, greatly higher than that of BAPO (1.0 cm) (See Figure 5).
Noticeably, good photobleaching could be obtained during photopolymerization so that
colorless polymers could be obtained with all MBFs.
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2.2. Cinnamoyl Formate Derivatives

In 2022, the same group examined a new family of dyes derived from methyl ben-
zoylformate (MBF), namely ethyl cinnamoyl formates (ECFs) [231]. Four structures were
investigated, two of them bearing an electron-donating group (S-ECF and O-ECF) and one
structure with an electron-accepting group (F-ECF) (See Scheme 3). The different dyes could
be prepared by a two-step synthesis consisting first of a Claisen Schmidt condensation
followed in the second step by an esterification reaction. F-ECF, S-ECF, and O-ECF could
be prepared with reaction yields of 60, 55, and 59% for the two steps respectively.
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Examination of their absorption properties in acetonitrile revealed the shift of the
absorptions to be comparable to that observed for the previous MBFs. Thus, the introduc-
tion of electron-donating groups redshifted the absorption (S-ECF and O-ECF) whereas
the opposite effect was found in the presence of electron-accepting groups (F-ECF) (See
Figure 6 and Table 4). The most redshifted absorption was found for S-ECF, peaking at
362 nm. Irrespective of the substitution pattern, almost similar molar extinction coefficients
could be found for the different dyes.
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Table 4. Molar extinction coefficients of ECFs in acetonitrile at the maximum absorption, 405 nm, and
455 nm.

Photoinitiator λmax
(nm)

εmax
(M−1·cm−1)

ε405nm
(M−1·cm−1)

ε455nm
(M−1·cm−1)

ECF 309 21,550 130 0
F-ECF 309 18,890 130 0
O-ECF 342 22,000 1730 10
S-ECF 362 22,930 7060 80

ITX 256 41,050 610 0

Photolysis experiments carried out in acetonitrile revealed the different ECFs to be
unable to generate radicals alone. Upon addition of ethyl dimethylaminobenzoate (EDB),
a fast photolysis process could be evidenced and the formation of α-aminoalkyl radicals
was confirmed by electron spin resonance (EPR) experiments. Overall, the mechanism of
radical generation proposed in Scheme 4 was suggested. The initiation mechanism is that
of a type II photoinitiator. Thus, upon photoexcitation, a photoinduced electron transfer
between EDB and ECFs can occur, generating EDB radical cations and ECF radical anions.
In the second step, a hydrogen abstraction reaction can occur, generating α-aminoalkyl
radicals on EDB and constituting the initiating species. It has to be noticed that the
different radicals formed during photolysis have been identified by electron spin resonance
(ESR) experiments.
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Polymerization tests carried out at 405 nm and 455 nm during the FRP of TPGDA
revealed O-ECF to outperform the reference photoinitiator 2-isopropylthioxanthone (ITX)
during the 20 first seconds of irradiation (See Figure 7 and Table 5). After 240 s of irradi-
ation, all ECFs could furnish monomer conversions comparable to that of ITX at 405 nm.
Noticeably, no significant difference in monomer conversions could be observed between
ECFs substituted with electron-donating or electron-accepting groups. At 455 nm, a higher
variation of the monomer conversion was found, attributable to differences in absorption
at this specific wavelength.
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Table 5. TPGDA conversions after 240 s upon irradiation at 405 and 455 nm.

Photoinitiators ITX O-ECF S-ECF F-ECF ECF

Conversion at 405 nm 92.3 91.1 86.9 89.9 88.5

Conversion at 455 nm 91.8 89.3 87.2 88.4 89.7

Here again, a good photobleaching of the resins could be evidenced, especially with
S-ECF which is the dye exhibiting the most redshifted absorption of the series (See Figure 8).
This result is remarkable considering that an opposite situation was found for ITX. Indeed,
as shown in Figure 8, yellowing of the sample could be demonstrated after polymerization,
despites the lack of color for the initial solution. By nuclear magnetic resonance (NMR),
the authors demonstrated the photobleaching to originate from the suppression of the
π-conjugated system, with the disappearance of the central double bond, therefore sup-
pressing the electronic delocalization. Notably, the addition of EDB radicals on the central
double bond was confirmed by mass spectrometry.

Considering the excellent photobleaching, the authors also investigated deep-layer
polymerization. Using the two-component S-ECF/EDB system, a depth of cure of 7 cm
could be determined upon irradiation at 455 nm for 20 min. A low extractability of 0.086%
of S-ECF was determined, lower than that of ITX (0.97%). The low extractability of S-ECF is
directly related to the photobleaching mechanism, demonstrating that EDB radicals could
add on the cinnamoyl system, enabling covalently linking the photoinitiator to the polymer
network. However, it could be as well any radicals on the growing polymer chain that can
add to the cinnamoyl system, enabling covalently linking the photoinitiator to the polymer
network. Low cytotoxicity was also determined for S-ECF. Notably, a cell viability of 98%
could be determined for the samples prepared with 20 µg/mL of S-ECF. By increasing
the photoinitiator content up to 20 µg/mL, the cell viability was only reduced to 90%,
evidencing the good cytocompatibility of S-ECF.
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2.3. Silyl Glyoxylates

In 2017, Lalevée and coworkers proposed a new family of glyoxylate, namely silyl
glyoxylates (See Figure 9) [232,233]. Tert-butyl (tert-butyldimethylsilyl)glyoxylate (DKSi),
ethyl(tert-butyldimethyl)silyl glyoxylate (Et-DKSi), and benzyl (tert-butyldimethyl)silyl
glyoxylate (Bn-DKSi) were examined as monocomponent photoinitiating systems or in
combination with additives (See Figure 10) for the FRP of a dental resin, namely a Bis-
GMA/TEGDMA (70/30 w/w) blend (where BisGMA and TEGDMA stand for bisphenol
A-glycidyl methacrylate and triethylene glycol dimethacrylate respectively) or urethane
dimethacrylate (UDMA).
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Examination of the absorption properties of DKSi in toluene revealed the absorp-
tion maximum to be located at 425 nm, therefore blueshifted compared to that of cam-
phorquinone (CQ) (465 nm). Besides, compared to the previous MBF, a significant en-
hancement of the molar extinction coefficient could be evidenced at 405 nm (See Figure 11).
By theoretical calculations, the redshift of the absorption maximum was determined as
originating from a strong participation of the d orbital of the Si atom to the highest occu-
pied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO),
decreasing the HOMO-LUMO gap compared to that of the previous MBF (4.19 eV for DKSi
vs 4.71 eV for MBF). A good overlap between the emission of the LED emitting at 477 nm
and DKSi and camphorquinone was thus found.
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Figure 11. UV-visible absorption spectra of (1) DKSi in toluene, (2) CQ, and (3) MBF in acetonitrile.
Reproduced with permission of Ref. [232]. Copyright 2017. The American Chemical Society.

During the FRP of the BisGMA/TEGDMA blend, the ability of DKSi to act as a
monocomponent system was demonstrated in laminate. After 80 s of irradiation, a conver-
sion of 40% could be determined. Upon the addition of EDB, the conversion drastically
increased and a conversion of 68% was obtained. Under air and due to strong oxygen
inhibition in thin films, DKSi alone was almost unable to initiate the FRP of the resin. Con-
versely, the three-component DKSi/EDB/DPI (2/1.4/1.6% w/w/w) system could furnish
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a monomer conversion of 33%, which could be improved by using the four-component
DKSi/EDB/DPI/CQ (2/1.4/1.6/1% w/w/w/w) system (38%) (See Figure 12). Improve-
ment of the monomer conversion obtained with the four-component system compared to
the three-component system can be assigned to improved light absorption properties due
to the concomitant presence of DKSi and CQ, both contributing to light absorption.
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Figure 12. Polymerization profiles determined for a BisGMA/TEGDMA blend upon irradiation at
477 nm (I = 300 mW/cm2) in thin films using (A) In laminate: (1) DKSi (5wt%); (2) DKSi/EDB (5%/2%
w/w). (B) Under air: (1) DKSi (2wt%); (2) DKSi/EDB (2/1.4% w/w); (3) DKSi/EDB/DPI (2/1.4/1.6%
w/w/w); (4) DKSi/EDB/DPI/CQ (2/1.4/1.6/1% w/w/w/w). Reproduced with permission of
Ref. [232]. Copyright 2017. The American Chemical Society.

Investigation of the FRP of UDMA revealed the monomer conversion to increase with
the photoinitiator content. Besides, by varying the content from 0.5 to 5 wt%, an optimum
concentration at 2 wt% could be determined (See Figure 13).
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For dental applications, photobleaching is an important property. Good bleaching abil-
ity could be demonstrated with the two-component DKSi/EDB combination (see Figure 14).
Interestingly, after nine months of storage, no modification of the color of the polymer film
was detected for the samples prepared with the DKSI/EDB system. A different situation
was found for the reference CQ/EDB combination for which a yellowing of the sample
could be observed.
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Excellent monomer conversions could also be obtained using 4-diphenylphosphinobenzoic
aid acid as the additive. The choice of this additive was notably motivated by its ability
to efficiently overcome oxygen inhibition by converting the non-reactive peroxyl ROO•
radicals as initiating species RO• [234]. Investigation of the substituent effects with Et-DKSi
and Bn-DKSi revealed the absorption spectra not to be modified except for the molar
extinction coefficients (see Figure 15). When tested as monocomponent systems for the
FRP of UDMA (1 wt%), the order of monomer conversions perfectly fit with the order of
the molar extinction coefficients, evidencing that the reactivity was governed by the molar
extinction coefficients and not by the substitution pattern of silyl glyoxylates. By ESR, the
formation of radicals in the close vicinity of Si was detected under an inert atmosphere
(radical A). A different situation was found under air. No silyl radicals were detected
anymore due to the fast reaction with oxygen, producing peroxyl radicals. Formation of
t-BuOO• was also detected under air, resulting from a decarboxylation reaction of radical
B and subsequent reaction with oxygen (See Scheme 5).
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EPR experiments enabled confirming the chemical structures of the radicals formed
upon irradiation (See Scheme 5). In the case of radical B, the occurrence of a decarboxylation
reaction was also demonstrated, enabling generating carbon-centered radicals.

2.4. Water-Soluble Benzoylformic Acid Derivatives

The water solubility of photoinitiators is a property that is actively researched with the
aim of developing greener polymerization processes [57,96,225,235–239]. Indeed, polymer-
ization in water becomes possible. This point was examined with a series of benzoylformic
acid derivatives by the group of Sun and coworkers (See Figure 16) [240].
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Figure 16. Chemical structures of CC-BFA, TF-BFA, and BFA. Reproduced with permission of
Ref. [240]. Copyright 2022. Elsevier.

From the synthetic viewpoint, TF-BFA and CC-TFA could be prepared in one step, by
oxidation of the acetyl groups with selenium oxide, and obtained reaction yields of 80 and
62%, respectively. As observed for MBFs and ECFs, the presence of the electron-accepting
CF3 group blueshifted the absorption compared with the parent structure BFA (244 nm
for TF-CFA vs. 253 nm for BFA). Conversely, a redshift of the absorption was found for
CC-BFA at 262 nm. Interestingly, a significant increase of the molar extinction coefficient
was found, peaking at 18,480 M−1·cm−1 contrarily to 8640 M−1·cm−1 for BFA and TF-BFA
(See Figure 17).

Macromol 2023, 3, FOR PEER REVIEW 15 
 

 

 
Figure 17. UV-visible absorption spectra of different benzoylformic acids in acetonitrile. Repro-
duced with permission of Ref. [240]. Copyright 2022. Elsevier. 

By theoretical calculations, the BDE of the different dyes could be determined and 
values of 154.8, 158.6, and 151.9 kJ/mol could be determined for BFA, TF-BFA, and CC-
BFA, evidencing that the BDE was only slightly modified by the substitution pattern of 
benzoylformic acids. Polymerization experiments done at 405 nm for TPGDA and TMPTA 
revealed CC-TFA to outperform BFA and TF-BFA during the FRP of TPGDA. A conver-
sion of 83.4% could be obtained after 120 s contrarily to 64.6 and 66.6% for BFA and TF-
BFA (See Figure 18). This is directly related to the ability of CC-TFA to produce twice 
more radicals. Noticeably, during the FRP of TMPTA, similar conversions could be ob-
tained with the three derivatives (around 53%) and this result was assigned to the higher 
viscosity of TMPTA and the trifunctional character of the monomer speeding up the ge-
lation process and adversely the double bond conversion. However, these monomer con-
versions remain lower than those previously obtained with DM-BD-F, with conversions 
of 79.1 and 46.8 being respectively obtained during the FRP of TPGDA and TMPTA.  

 
Figure 18. Photopolymerization profiles of (a) TPGDA and (b) TMPTA in laminate using BFAs 
(1.10−4 mol/g monomer) upon irradiation at 405 nm with a LED. Reproduced with the permission of 
Ref. [240]. Copyright 2022. Elsevier. 

A similar trend was determined during the FRP of a water-soluble monomer, namely 
PEG diacrylate (PEGDA). Upon irradiation at 405 nm and by performing the polymeriza-
tion experiments in water, a conversion of ca. 80% could be obtained within 180 s (see 
Figure 19). Besides, a slower polymerization rate could be evidenced for CC-BFA, result-
ing from its poor water solubility.  

Figure 17. UV-visible absorption spectra of different benzoylformic acids in acetonitrile. Reproduced
with permission of Ref. [240]. Copyright 2022. Elsevier.



Macromol 2023, 3 163

By theoretical calculations, the BDE of the different dyes could be determined and
values of 154.8, 158.6, and 151.9 kJ/mol could be determined for BFA, TF-BFA, and CC-
BFA, evidencing that the BDE was only slightly modified by the substitution pattern of
benzoylformic acids. Polymerization experiments done at 405 nm for TPGDA and TMPTA
revealed CC-TFA to outperform BFA and TF-BFA during the FRP of TPGDA. A conversion
of 83.4% could be obtained after 120 s contrarily to 64.6 and 66.6% for BFA and TF-BFA
(See Figure 18). This is directly related to the ability of CC-TFA to produce twice more
radicals. Noticeably, during the FRP of TMPTA, similar conversions could be obtained with
the three derivatives (around 53%) and this result was assigned to the higher viscosity of
TMPTA and the trifunctional character of the monomer speeding up the gelation process
and adversely the double bond conversion. However, these monomer conversions remain
lower than those previously obtained with DM-BD-F, with conversions of 79.1 and 46.8
being respectively obtained during the FRP of TPGDA and TMPTA.
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Figure 18. Photopolymerization profiles of (a) TPGDA and (b) TMPTA in laminate using BFAs
(1.10−4 mol/g monomer) upon irradiation at 405 nm with a LED. Reproduced with the permission of
Ref. [240]. Copyright 2022. Elsevier.

A similar trend was determined during the FRP of a water-soluble monomer, namely
PEG diacrylate (PEGDA). Upon irradiation at 405 nm and by performing the polymerization
experiments in water, a conversion of ca. 80% could be obtained within 180 s (see Figure 19).
Besides, a slower polymerization rate could be evidenced for CC-BFA, resulting from its
poor water solubility.
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Copyright 2022. Elsevier.
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Water solubility tests revealed the water solubility of BFA and TF-BFA to be between
10 and 5 wt%. Conversely, this value was reduced to only 0.5 wt% for CC-TFA, despites
the present of two carboxylic acid groups. This counter-intuitive result was assigned to the
absence of dipole moment in CC-TFA, affecting its solubility in high polar media. Finally,
an investigation of the curing depth in PEGDA revealed BFA and TF-BFA to give a similar
curing depth (6.3 cm and 6.7 cm respectively). This value is higher than that obtained with
BAPO (only 1 cm). Additionally, colorless polymers could be obtained, which is highly
worthwhile for future applications of these structures.

2.5. Cytotoxicity of Glyoxylates

If polymerization efficiency is an important parameter governing the choice of pho-
toinitiators, their toxicity is another major issue as it drastically impacts the scope of
applications of polymers. Indeed, for biomedical applications or food packaging, the use
of photoinitiators exhibiting low toxicity is required. This point was examined with a
series of seven benchmark photoinitiators including methyl benzoylformate (MBF) (see
Figure 20) [241].
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Cytotoxicity tests carried out on four different tissue types of cells at concentrations
ranging between 1 and 50 µM revealed phenylbis(acyl)phosphine oxide (BAPO), 2-benzyl-2-
(dimethylamino)-4′-morpholinobutyrophenone (369), 4,4′-bis(diethylamino)benzophenone
(EMK), diphenyl (2,4,6-trimethylbenzoyl)phosphine oxide (TPO), and 2-isopropylthioxanthone
(ITX) to be more toxic than ethyl (2,4,6-trimethylbenzoyl)phenylphosphinate (TPOL) and
methyl benzoylformate (MBF). In this series of photoinitiators, the most toxic structure was
identified as BAPO, which is extensively used in industry. In the case of TPOL and MBF,
the less toxic structure was identified as being TPOL. These different results can help for
future developments of new photoinitiators in light of the low cytotoxicity of MBF.

3. Conclusions

To conclude, glyoxylates and related structures have only been scarcely investigated
in the literature. The different results obtained with these structures are promising. As the
first point, low cytotoxicity should be highlighted, which constitutes a clear advantage for
future applications of polymers. Water-soluble dyes could also be prepared, enabling the
polymerization in water. Furthermore, to keep a good solubility in water, the molecule
should exhibit a dipole moment to facilitate its dissolution. Glyoxylates and related struc-
tures can also operate as mono-component systems, greatly simplifying the composition
of the photocurable resins. Excellent depths of cure and colorless coatings could also
be obtained, evidencing the interest in these structures. At present, absorption of these
structures remains strongly UV-centered. Future works will certainly consist of redshifting
their absorption towards the visible range to further improve the depth of cure as well as
the polymerization kinetics.
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