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Abstract: Microplastics and nanoplastics (MPs/NPs) are posing emerging potential threats to global
ecosystems and human health. Recently, the individual effects of MPs/NPs and combined effects of
MPs/NPs-coexisting pollutants on soil–terrestrial plant systems have attracted increasing attention.
Based on the latest research progress, this review firstly summarized the sources of MPs/NPs and the
interaction between MPs/NPs and coexisting pollutants in soil environment, and then systematically
induced their multilevel impacts on soil properties and terrestrial plants. Soil and agroecosystem are
major long-term sinks of primary and secondary MPs/NPs, with extensive sources. MPs/NPs exhibit
universal adsorption capacities and can further serve as the vectors for varied heavy metal, organic
and biological contaminants. Generally, MPs/NPs and the combination with coexisting contaminants
may affect soil physical, chemical and microbiological properties, soil structure and functions, while
the specific impacts and degree depend on MP/NP characteristics including polymer type, size,
shape, concentration and degradability. Increasing evidence confirmed the uptake and translocation
of MPs/NPs in terrestrial plants and proved their influence on growth performance, metabolism and
physiological toxicity, as well as cytotoxicity and genotoxicity. The specific effects vary as a function
of MP/NPs properties, plant species and environmental conditions. The joint effects of MPs/NPs
and coexisting pollutants are complex, and synergistic, antagonism and neutralization effects have
been reported at different circumstances. Further comprehensive and in-depth studies are urgently
needed to fulfill the current knowledge gaps, especially the deficiency in the inherent mechanisms.

Keywords: micro(nano)plastics; coexisting pollutants; soil; terrestrial plants; multilevel effects

1. Introduction

Microplastics (MPs) are emerging pollutants and are gaining worldwide concern due
to their ubiquity detection and environmental risks [1]. Nanoplastics (NPs), plastic particles
smaller than 100 nm or 1000 nm, tend to be separately distinguished from MPs with respect
to their smaller size, unique characteristics, as well as their different environmental fate
and behaviors [2,3]. Research studies on MPs/NPs and coexisting pollution have become
the frontier hotspots in marine science, environmental science, pedology and botany [4–7].

Soil and agroecosystem are major long-term sink of MPs/NPs with extensive sources [8,9].
MPs/NPs can have adverse effects on agroecosystems via multiple pathways [10–12].
MPs/NPs and the combination with coexisting contaminants can not only influence soil
properties, structure and function [13–15], but also can directly and indirectly affect the
growth performance and physiological/biochemical process of soil biology, and even
trigger physiological toxicity and genotoxicity [16–18].

Sustainability 2023, 15, 4504. https://doi.org/10.3390/su15054504 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15054504
https://doi.org/10.3390/su15054504
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4698-010X
https://doi.org/10.3390/su15054504
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15054504?type=check_update&version=2


Sustainability 2023, 15, 4504 2 of 23

Plants are basic living parts of terrestrial ecosystems, and a good understanding of the
transport and accumulation of MPs/NPs in soil–plant systems is vital for the accurate pre-
diction of their threats to the food chain and human health. Recently, impact and ecotoxicity
of MPs/NPs on terrestrial plants are gaining increasing interest and become one of the most
important research directions. A growing body of literature has reported that kinds of grain
crops, vegetables, fruits, as well as a model plant (Arabidopsis thaliana L.) showed varying
degrees of response to MP/NP exposure, depending on plant species, MPs/NPs properties
and specific experimental conditions [12,16,19–22]. However overall, the relevant research
is still in its infancy. It is hard to unify conclusions about their effects on soil-terrestrial
plants, and the involved mechanisms are especially far from being understood. It is thus
necessary and imperative to track the research direction, summarize and digest the latest
research progress for promoting the understanding of MPs/NPs’ threat, and create the
foundation of future proposals. To date, several excellent reviews have been published,
concentrating on the source, occurrence, fate and ecological risks of MPs/NPs pollution in
soil and the terrestrial environment [23–25]. Nevertheless, comprehensive reviews aimed
at the effects of MPs/NPs, especially the combined effects of MPs/NPs and coexisting
contaminants on soil–terrestrial plants systems, are still insufficient [12,16,17,26–28].

This work aims to provide a critical review on the effects of MPs/NPs and coexisting
pollutants on soil–plant systems based on the current knowledge. It firstly outlines the
sources of MPs/NPs and the interaction between MPs/NPs and other coexisting contami-
nants in the soil environment. The influence of MPs/NPs on soil physical, chemical and
microbiological properties is then summarized. Furthermore, the uptake and translocation
of MPs/NPs in terrestrial plants and the effects of individual MPs/NPs and the combina-
tion of MPs/NPs and other contaminants on plants’ growth performance, metabolism and
physiological toxicity, cytotoxicity and genotoxicity are discussed in detail. Knowledge
gaps and future perspective are proposed at the end.

2. MPs/NPs Pollution in Soil
2.1. Sources of MPs/NPs

MPs/NPs can be generally categorized into primary and secondary MPs/NPs. Pri-
mary MPs/NPs are produced by industrial manufacturing activities such as microbeads
and the microsphere, while secondary MPs/NPs are derived from the breaking and de-
composition of large plastic debris and fragments [1,29]. As shown in Figure 1, in soil and
agroecosystems, primary MPs/NPs mainly come from sewage sludge, fertilizer application
and wastewater irrigation, while secondary MPs/NPs mostly originate from plastic mulch
films and greenhouse plastic material residues [30–33]. In addition, the improper disposal
of municipal garbage and littering, atmospheric deposition and rainfall are other major
origins [34,35]. Overall, detected MPs/NPs are composed of varied non-degradable and
biodegradable plastic polymers, have a variety of shapes including regular spheres and
beads, and irregular pellets, granules, films, fibers, foams and fragments with numerous
colors, and the particle sizes range from a nanometer to a large schistose [23,36,37]. Notably,
MPs/NPs are suffering a progressive aging process in natural environments, which will
constantly change their physiochemical characteristics and thus alter their environmental
behaviors [38–40].
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Figure 1. Sources of MPs/NPs in soil and agroecosystems.

2.2. Interaction between MPs/NPs and Coexisting Pollutants

Combined contamination of various pollutants in soil and agroecosystem is unavoid-
able. The combined soil pollution with heavy metals and organic contaminants has been
widely reported [41–43], while coexisting emerging contaminants and traditional pollutants
in soil and sediments are gaining increasing research attention [44,45]. Recently, the knowl-
edge of the interaction between MPs/NPs and coexisting pollutants in soil systems has
been regularly updated [46–48]. The large specific surface area and high hydrophobicity
of MPs/NPs contribute to their adsorption and accumulation capability for coexisting
heavy metal, organic and biological pollutants [49–52]. On the other hand, MPs/NPs
may be regarded as a pollution source by releasing diversified additives to soil, especially
during the disposal and aging process [38,53–55]. Furthermore, MPs/NPs can serve as
the vectors for coexisting contaminants and subsequently alter their transport and fate
behaviors [15,48,56]. MPs/NPs can influence the mobility of coexisting organic pollutants
via multiple mechanisms [57–60]. For example, Li et al. [46] found that the presence of
polyamide MPs promoted the transport of oxytetracycline in loamy soil, and attributed
it to the inhibited adsorption into soil as well as the alteration in soil pore structure and
dispersion coefficient. Meanwhile, MPs/NPs have been proved to be effective in influ-
encing not only the mobility but also the speciation of heavy metals [61–63]. For example,
polystyrene NPs improved the mobility of Pb and Cd in saturated porous media, and the
aged NPs were more capable as heavy metal carriers compared to the pristine NPs [61].
Abbasi et al. [63] also indicated the vector role of plastic particles for heavy metals in the
rhizosphere zone. Furthermore, MPs were proved to promote the transformation of Cu, Cr
and Ni speciation and thus change their bioavailability [62]. Furthermore, increasing evi-
dence has demonstrated that MPs/NPs could be as a carrier for antibiotic resistance genes
(ARGs) and potential pathogens in natural soil, facility vegetable soil, and manured soil
systems [64–67]. Ineluctably, the interactions between MPs/NPs and coexisting pollutants
may cause potential combined effects on the aboveground plants.

3. Effect of MPs/NPs on Soil Properties

Soil properties are critical factors determining the fate and transport behaviors, bioavail-
ability and toxicity of contaminants in the soil–plant system [68,69]. Currently, MPs/NPs
are known to affect soil properties and structures via multiple pathways, and they can
further affect the plants’ performance indirectly [17,20]. The specific effect and degree
depend on their physical and chemical characteristics including polymer types, size, shape,
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concentration and degradability [13,14,70,71] (Figure 2). Based on current research, this
paper summarizes the effect of MPs/NPs on the physical, chemical and microbiological
properties of a soil system.

Figure 2. Effect of MPs/NPs on soil properties.

3.1. Physical Properties

MPs/NPs can be conceptually regarded as physical contaminants, the porosity and
pore structure tend to be directly changed after their occupation [72,73]. For example,
Zhang et al. [74] found that polyester microfibers reduced the volume of <30 µm pores
whereas increased the volume of >30 µm pores in soil. Machado et al. [13] indicated that
MPs’ shape is an important factor influencing pore space, water stable aggregates and
soil structure due to the distant manner incorporated into the soil matrix; polyester fibers
exhibited more apparent impact. The alteration in soil structure would consequently affect
hydraulic parameters such as soil aeration, permeability and water flow status. MPs/NPs
would increase, decrease or have no clear trend on the water holding capacity and soil bulk
density, and specifically depend on MPs/NPs’ type, shape and concentration as well as soil
texture [13,73–75]. MPs/NPs are proved to affect the saturated hydraulic conductivity and
evaporation dynamics, while the changes related to their types and dosage [72,75]. Notably,
the effects of MPs/NPs on soil physical properties were correlated with the experiment
scale. For example, increased soil aggregation due to polyester microfibers treatment was
observed in pot experiment but not in field experiment [74]. Overall, limited information
on the effects of MPs/NPs on soil physical properties is available, especially in the field
scale with different soil textures, and the governing mechanisms are still unclear.

3.2. Chemical Properties

Plants’ performance is very sensitive to soil chemical properties such as pH, organic
matter content and nutrient availability [76]. pH is a major factor determining the environ-
mental behaviors and bioavailability of both nutrients and contaminants [77,78]. Few stud-
ies reported that MPs/NPs would increase, decrease or cause ignorable effects on soil pH,
depending on MPs/NPs’ properties and exposure time [10,79–81]. Furthermore, MPs/NPs
would change the amount and transformation of dissolved organic matter [82–84], influ-
ence the form and availability of nutrient elements, and even affect their circulation process
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by changing the activity of microorganisms and enzymes [85–87]. Moreover, MPs/NPs
are proved be able to affect the production of plant root exudates, which may drive soil-
pant feedbacks [21,88,89]. Transformation, mobility, bioavailability and toxicity of varied
pollutants are also of great concern for soil chemical properties. As introduced above,
MPs/NPs can not only release additives but also adsorb coexisting pollutants, and may
further change their migration, transformation and bioavailability. The interaction may
thus produce a combined ecotoxicological effect on soil–plant systems [15,90,91].

3.3. Microbiological Properties

Soil microbiological properties are critical for the whole soil and agroecosystem [92].
MPs/NPs pollution can influence microbial community, activity and microbial process
directly and indirectly [93–95]. Firstly, individual MPs/NPs and their combination with
coexisting pollutants would pose a direct toxicity to microbial composition and activity.
Addition of polyvinyl chloride (PVC) and polyethylene (PE) to acid soil and sediment
decreased the richness and diversity of the bacterial communities, and the effects were
related to MPs’ type and concentration [93,96]. Meanwhile, Wang et al. [90] indicated that
PE exposure induced a hormesis effect on soil bacterial and the fungal numbers. On the
other hand, MPs/NPs would indirectly alter microbiological features by changing soil
physiochemical properties such as pH, conductivity, ratio of C/N and soil aeration [97–99].
Apart from their type, dosage, shape and properties, MPs/NPs’ degradability also plays
an important role in their concrete effect [79,100]. In addition to the impact of MPs/NPs
on bacteria communities, MPs/NPs also have potential influence on the activity and
abundance of arbuscular mycorrhizal fungal [97,101,102]. For instance, Lehmann et al. [103]
found polyester fiber exposure increased arbuscular mycorrhizal fungi colonization. Wang
et al. [102] found biodegradable polylactic acid (PLA) produced a stronger impact on
arbuscular mycorrhizal fungal diversity and community than PE. Overall, there are still
huge research gaps in the effect of MPs/NPs on soil microbiological properties.

Above all, MPs/NPs play a critical role in soil physical, chemical and microbiological
properties (Figure 2). Notably, there are close connection between varied physical, chemical
and biological parameters. The comprehensive interaction and alteration will eventually
change soil structure and function, as well as soil mass and energy cycle, which may
drive significant feedback to the whole plant–soil system [104,105]. However, previous
investigations are scarce and systematic exploration is urgently required in further studies.

4. Effect of MPs/NPs on Plants

Recently, increasing attention has been paid to the research on the impact of MPs/NPs
on terrestrial plants. Most of the studies have been carried out through pot experiments
while some are conducted by field experiment [74,106,107]. The research objects mainly
include model plant A. thaliana, grain crops (e.g., wheat, soybean, rice and maize), vegetable
crops (e.g., lettuce, cucumber, onion and cress) and fruits (e.g., strawberry) [19,21,27,108].
Diversified non-biodegradable and biodegradable MPs/NPs with particle sizes ranging
from nanometers to micrometers and even larger debris residues were applied, and a
wide range of MP/NP concentrations were considered [22,107,109] (Table 1). As shown
in Figure 3, MPs/NPs could be accumulated and translocated in plants through down-
top and top-down pathways. MPs/NPs and the combination with coexisting pollutants
could influence plants’ growth performance and various physiology process, including
photosynthesis, oxidative stress, nutrient uptake and cycle, and even cause cytotoxicity
and genotoxicity.
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Table 1. Effects of MPs/NPs on terrestrial plants.

Plant Species
MPs/NPs

Main Effects References
Type Size Concentration

Cress (Lepidium sativum L.) green fluorescent plastic 50, 500, 4800 nm 103–107

particles mL−1
MPs exposure resulted in short-term and transient
effects on germination rate and root growth [110]

Cucurbita pepo L. PE, PVC, PP, PET 40–50 µm 0.02%, 0.10%, 0.20%

MPs impaired root and shoot growth and
influenced leaf size, chlorophyll content,
photosynthetic efficiency and micro- and macro
elemental profile; PVC was the most toxic and PE
was less toxic

[111]

Vicia faba L. PS 100 nm, 5 µm 10, 50, 100 mg L−1

5 µm PS decreased biomass and CAT enzyme
activity, increased SOD and POD enzyme activity;
100 nm PS (100 mg L−1) decreased growth;
100 nm PS induced higher genotoxic and
oxidative damage than 5 µm PS; 100 nm PS
accumulated in root

[112]

Allium cepa L. PES fibers 1.70 µm 0.4% (w:w) PES fibers increased aboveground biomass [103]

Lettuce
(Lactuca sativa L.) PVC a: 100 nm–18 µm

b: 18–150 µm 0.5%, 1%, 2%

0.5% a and 1% a increased the total length, surface
area, volume, and diameter of roots; 1% a
increased the SOD activity; PVC-a was related to
photosynthesis, PVC-b was correlated with
root morphology

[109]

Soybean
(Glycine max (L.) Merr.) PE, (Bio) mulch film 2 × 2 cm,1 × 1 cm 0.5 × 0.5 cm

debris 0%, 0.1%, 0.5%, 1%

PE reduced plant height, culm diameter, leaf area
and root/shoot ratio while Bio debris showed
adverse effects on germination viability and
root biomass

[107]

Cucumber
(Cucumis sativus L.) PS 100, 300, 500, 700 nm 50 mg L−1

300 nm PS significantly increased root activity
MDA and root proline content; PS significantly
increased soluble protein in cucumber fruits;
decreased the levels of Mg, Ca and Fe, and the
effect depends on PS particle sizes

[113]
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Table 1. Cont.

Plant Species
MPs/NPs

Main Effects References
Type Size Concentration

Wheat
(Triticum aestivum L.) PS 100 nm 0.01–10 mg L−1

enhanced wheat seedling growth, growth
parameters and chlorophyll content, reduced the
shoot to root biomass ratio and micronutrients
contents, altered metabolic profiles

[114]

Lettuces
(L. sativa L.) PS 93.6 nm 0, 0.1, 1 mg L−1

decreased the dry weight, height and leaf area,
plant pigment content and nutritional quality,
produced oxidative stress

[115]

Spring onion
(Allium fistulosum L.)

PA beads: 15–20 µm
PES fibers: 5000 µm length, 8 µm diameter
PEHD, PP: 2–3 mm spheres
PS, PET: 2–3 mm cylinders

PES: 0.2%
Others: 2.0%

have different effects on plant performance
including plant biomass, tissue elemental
composition, root traits, and soil microbial
activities depending on particle types

[20]

Common bean (Phaseolus
vulgaris L.) LDPE, Bio 250–500 µm,

500–1000 µm
0.5%, 1.0%, 1.5%, 2.0%,
2.5% (w/w)

effect of LDPE-MP depends on its concentration:
≥1.0% showed significantly higher specific root
nodules, 2.5% showed significantly higher specific
root length,1.0% caused higher leaf area and 0.5%
caused lower leaf relative chlorophyll content
Bio-MP treatments showed significantly higher
specific root length and specific root nodules,
lower shoot, root and fruit biomass

[116]

Garden cress
(L. sativum L.) PP, PE, PVC, PE+PVC <0.125 mm 184 mg kg−1 caused negative effect on biometric traits,

depending on MPs’ types and exposure time [22]

Wheat
(T. aestivum L.)

MacroLDPE: 6.92 × 6.10 mm
MacroBio: 6.98 mm × 6.01 mm
Micro: 50 µm–1 mm

1% (w/w)
affected above-ground and below-ground parts,
biodegradable plastic residues showed stronger
negative effects than PE

[117]

Flowering Chinese cabbage
(Brassica rapa L.) PS 70 nm, 5 µm 10 mg kg−1 PS influenced the plant photosynthesis and

growth depending on MP size [118]
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Table 1. Cont.

Plant Species
MPs/NPs

Main Effects References
Type Size Concentration

Tomato (Lycopersicon
esculentum L.) PS, PP, PE 52–368 µm 10, 100, 500,

1000 mg L−1

MPs (≤500 mg L−1) had inhibitory effects on seed
germination, and then alleviated under
1000 mg L−1 conditions; PE was more toxic to
seedling growth than PS and PP

[119]

Arabidopsis
(Arabidopsis thaliana L.)
Wheat (T. aestivum L.)

PS 40 nm, 1 µm 8.3 × 1011 n mL−1

5.3 × 107 n mL−1

PS accumulated at Arabidopsis and wheat root
cap cells [120]

Maize
(Zea mays L. var. Jubilee)

PE microbeads 3 µm 0.0125 mg L−1

100 mg L−1

PE bioaccumulation in the rhizosphere decreased
transpiration, nitrogen content, and growth; PE
may accumulate in the rhizosphere, impairing
water and nutrient uptake, and eventually
reaching root eaters

[121]

Arabidopsis
(A. thaliana L.)

PS-SO3H: 55 nm
PS-NH2: 71 nm

0.3,1.0 g kg−1

10, 50, 100 µg mL−1

decreased above-ground biomass, seedling
growth, root elongation Arabidopsis can take up
and transport PS

[21]

Rice
(Oryza sativa L.)

BM and PE mulch film 50 µm 1% (w/w)

reduced the height and dry weight of rice plant,
induced oxidative stress; caused negative effects
on the growth of rice plants via nitrogen
metabolism and photosynthesis

[122]

Wheat
(T. aestivum L.) PVC, PE 125 µm 1%, 5%, 10%, 20%

MPs had a negative, dose-dependent impact on
plant growth affecting both above- and
below-ground productivity

[123]

PE: polyethylene; PVC: polyvinyl chloride; PP: polypropylene; PET: polyethylene terephthalate; PS: polystyrene; PES: polyester; (Bio) mulch film: biodegradable plastic mulch film;
PA: polyamide; PEHD: polyethylene high density; LDPE: low-density polyethylene; Bio: biodegradable plastic; PS-SO3H: sulfonic-acid-modified polystyrene nanoparticles; PS-NH2:
amino-modified polystyrene nanoparticles; BM: PBAT based biodegradable mulch film; PBAT: butyleneadipate-co-terephthalate; CAT: catalase; SOD: superoxide dismutase; POD:
peroxidase; MDA: malondialdehyde.
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Figure 3. Physiological response of terrestrial plants to MPs/NPs.

4.1. Effect of MPs/NPs on Plant Growth Performance

The effect of MPs/NPs on seed germination and growth of terrestrial plants has
been widely investigated. MPs/NPs species are certainly decisive, polyester (PES) and
polystyrene (PS) caused significant increases in root biomass of spring onion than high den-
sity polyethylene (PEHD), polyethylene terephthalate (PET), and polypropylene (PP) [20].
MPs/NPs’ size also plays important role in their interference: smaller size particles tend
to induce greater toxicity than the larger ones [124]. MPs/NPs’ dosage and type are also
important: Yang et al. [97] studied polylactic acid (PLA) and high-density polyethylene
(HDPE) on maize growth, found that maize growth was promoted by HDPE and low-dose
PLA, while maize shoot and root biomass were decreased by high-dose PLA. In addition,
seedling growth and root elongation response of A. thaliana depended on MPs’ surface
charge [21], which may affect the uptake and accumulation status.

Plant height, stem diameter, leaf area, plant fresh weight and dry weight are important
biometric parameters indicating plants’ growth performance. Previous studies showed
that MPs/NPs exhibited positive, negative or negligible impact on terrestrial plants un-
der certain environmental conditions, depending on their type, size, dosage and plant
species [20,22,123]. For example, polyvinyl chloride (PVC) was more toxic than polypropy-
lene (PP) and polyethylene (PE) for garden cress [22]. Onion bulbs’ dry biomass was
decreased by polyamide (PA) treatment but nearly doubled by polyester (PES) exposure;
the water content increased 2-fold after PA exposure but decreased after PES, polyethylene
terephthalate (PET) and PP treatment [20]. Degradability is also proved as an important
factor, and the concrete effect is related to the released additives and the degradation
byproducts of MPs/NPs [119]. Qi et al. [117] reported that biodegradable mulch film
residues showed a stronger negative effect on wheat than non-degradable PE. Conversely,
Li et al. [107] found PE induced a greater negative effect on soybean height, culm diameter
and leaf area than biodegradable plastic mulch film debris. Apart from root treatment, foliar
PS exposure significantly decreased the dry weight, height and leaf area of lettuce [115].
Of note, MPs/NPs’ effect also depends on their exposure time. Nevertheless, the present
studies were mainly conducted in the short-term; longer periods or life cycle reflections
through field experiments should be addressed in further investigations.
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4.2. Effect of MPs/NPs on Plants Physiology
4.2.1. Photosynthesis

There is a great progress in physiological response of terrestrial plants to MPs/NPs’
exposure (Figure 3). Photosynthesis disturbance is regarded as one of the main mecha-
nisms contributing to the effect of MPs/NPs on terrestrial plants [118,125]. Alterations
in photosynthetic pigments (chlorophyll a and b, carotenoids) and chlorophyll fluores-
cence are important indicators of the response to MPs/NPs treatment. MPs/NPs exposure
are proven to decrease [115,122,126] and increase [22,114] chlorophyll content of varied
plants. Meanwhile, few studies did not observe the significant influence of MPs/NPs on
plant chlorophyll content [117,127]. The discrepancy varied as a function of plant species,
MPs/NPs characteristics as well as the experimental conditions. Reduction in light energy
absorption capacity, dissipation, capture and electron transfer, the accumulation of ROS,
as well as the proteases related to chlorophyll molecules synthesis are regarded as the
possible mechanisms [27,109,115,128]. Furthermore, MPs also exhibited certain influences
on other photosynthesis parameters such as the photosynthetic rate, stomatal conductance,
intercellular carbon dioxide concentration and transpiration rate chlorophyll fluorescence
and photosynthetic electron transport rate [114,128]. Overall, systematic research on the
response of terrestrial plants to MPs/NPs is still urgently needed and the governing mech-
anisms still require further clarification.

4.2.2. Oxidative Stress

Oxidative stress is significant for plants’ adaptability to the environment. It is also
a critical biometric index to evaluate the phytotoxicity of MPs/NPs [129]. It has been
confirmed that the contribution of MPs/NPs is mainly related to the polymer type, size,
surface charge and dosage. For instance, Jiang et al. [112] found that 100 nm PS induced
higher oxidative damage than 5 µm PS for Vicia faba L. Similarly, smaller PVC particles
(100 nm~18 µm) at 1% more significantly increased superoxide dismutase activity of lettuce
leaves than the larger particles (18–150 µm), whereas neither of them produced an obvious
effect on malondialdehyde (MDA) content [109]. Gao et al. [128] found that the antioxidant
levels of lettuce generally increased with the increasing PE content, and the damage was
greater in the roots than in the leaves. Degradability of MPs/NPs was also considerable: the
degree of oxidative stress on rice shoot and root caused by PE mulch film MPs was higher
than poly(butyleneadipate-co-terephthalate)-based biodegradable mulch film MPs [122].
In addition to root treatment, foliar exposure of PS also triggered oxidative stress of lettuce,
shown in the significantly increased electrolyte leakage rate and decreased total antioxidant
capacity [115]. Moreover, the effect of MPs/NPs is related to their combination with other
pollutants; for example, Zong et al. [127] found that the presence of PS remarkably reduced
the heavy metal accumulation in wheat and reduced the accumulation of reactive oxygen
species (ROS) of wheat, while single PS did not cause significant effect on the ROS.

4.2.3. Nutrient Uptake and Cycle

MPs/NPs can also influence the content and cycle of carbon (C), nitrogen (N), phos-
phorus (P), as well as various macro and micronutrients in soil–plant systems [83,130,131].
Zang et al. [123] found that MPs significantly affected key pools and fluxes within C cycle,
specifically influenced assimilated 14C allocation and CO2 emission. PS MPs accumulation
in V. faba root could probably influence the nutrients and water transport by blocking
the cell connections or cell wall pores [112]. Urbina et al. [121] indicated that PE parti-
cles may accumulate in maize rhizosphere and then impair the nutrient uptake, and the
bioaccumulation of PE obviously decreased N content of hydroponic maize. Furthermore,
isotope analysis suggested that ~30% C in maize rhizosphere was originated from PE. PS
exposure remarkably increased C and N content of wheat, while it reduced absorption and
accumulation of micronutrients (Fe, Mn, Cu, Zn) [114]. Obvious micronutrient (Mn, Cu)
and essential amino acid reduction in lettuce was induced by foliar-applied PS exposure,
and leaf C:N ratio significantly decreased with increasing PS concentration [115]. The
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presence of MPs is also proved to stimulate phosphatase activity, influence P conversion,
increase and decrease P content and availability in soil [83,85,96]. However, overall, there
are still huge knowledge gaps on the effect of MPs/NPs on the nutrient uptake and cy-
cling in soil–terrestrial plant systems; further investigations are in urgent demand for
comprehensive understanding.

4.3. The Uptake and Translocation of MPs/NPs by Plants

Clarifying the mechanisms governing the uptake and translocation process of MPs/NPs
in plants is necessary for the accurate evaluation of their potential risks to the food chain
and human health [132]. Recently, great developments have been achieved successively
(Table 2). MP particles would probably produce physical blockage of the pores in seed
capsule and adsorb on root hair [110]. Taylor et al. [120] reported that nano and micro-PS
would accumulate at root cap cells of Arabidopsis and wheat, but did not find the particles
in internal root structure. Recently, evidence on the uptake, translocation and accumulation
of MPs/NPs into plants’ root and body has been identified through confocal laser scanning
microscope and scanning electron microscope characterization. Li et al. [19] provided
the visual evidence suggesting the uptake of submicrometre- (0.2 µm) and micrometre-
sized (2 µm) PS and polymethylmethacrylate (PMMA) particles to wheat and lettuce
via crack-entry mode, and transpirational pull was regarded as the main driving force
for their movement. Notably, the absorption and translocation process of MPs/NPs by
plants highly depend on their physiochemical properties, mainly including particle size
and surface characterization [19,21,133,134]. For example, Sun et al. [21] provided direct
evidence that both negatively charged (PS-SO3H) and positively charged MPs (PS-NH2)
could accumulate in A. thaliana, while PS-NH2 showed low levels due to the larger size
increased aggregation. Zhu et al. [133] confirmed that smaller-size PS are easier to be taken
up by wheat root tissues, and the -NH2 group on PS surface are helpful for the translocation
in wheat tissular/cellular compared to -COOH group.

Currently, down-top and top-down pathways were both reported. For example, Lian
et al. [114] found PS (100 nm) were taken up by wheat roots and subsequently down-top
transported to leaves via xylem pathways. Liu et al. [134] authenticated the uptake of nano
(80 nm) and micro (1 µm) PS by rice root and the subsequent translocation to their aerial
parts. Adversely, PS (93.6 nm) could probably be absorbed through lettuce leaves’ stoma
and then transported downwards to roots [115]. Sun et al. [135] also found that PS could
accumulate in maize leaves and transfer to vasculature and then move down to the roots
through the vascular bundle. Overall, compared to the research on plants performance
under MPs/NPs stimulation, information on detailed uptake and transport processes of
varied MPs/NPs in plants is still insufficient, and governing mechanisms need further
exploration for the accurate assessment of their potential risks.

Table 2. The uptake and translocation of MPs/NPs by terrestrial plants.

Plant Species
MPs/NPs

Uptake and Translocation Reference
Type Size Concentration

Cress
(Lepidium sativum L.)

green fluorescent
plastic

50, 500,
4800 nm

103–107

particles mL−1
PS caused physical blockage of the
pores in the seed capsule [110]

Mung bean (Vigna
radiata (L.) Wilczek)

carboxylate-
modified
polystyrene

28 nm 0, 10, 100 mg kg−1

dry soil
NPs were detected in leaves [136]

Carrots
(Daucus carota var.
sativa Hoffm.)

PS 0.1–1 µm
5 µm 10 and 20 mg L−1

1 µm PS can enter carrot roots and
accumulate in the intercellular layer
but are unable to enter the cells;
0.2 µm PS can migrate to the leaves.

[137]

Vicia faba L. PS 50 nm 0.01, 0.1 1g L−1 PS could internalize into different
external compartments [138]
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Table 2. Cont.

Plant Species
MPs/NPs

Uptake and Translocation Reference
Type Size Concentration

Italian lettuce (Lactuca
sativa L.), radish
(Raphanus sativus L.),
wheat (Triticum
aestivum L.) and corn
(Zea mays L.)

PS 100 nm, 5 µm 1, 10 mg L−1

fluorescent nano-PS in the roots or
germs of the tested crops suggests that
nanoplastics can be taken up by plants
even at a very early growth stage

[139]

V. faba L. PS 5 mm, 100 nm 10, 50, 100 mg L−1
100 nm PS accumulated in root and
most probably blocked cell
connections or cell wall pores

[112]

Pea (Pisum sativum L.) PS 20 nm 20, 40 mg kg−1 MP translocation in cell wall of
vascular bundle [140]

Wheat (T. aestivum L.)
Lettuce (L. sativa L.) PS, PMMA 0.2 µm, 2 µm 50 mg L−1

PS and PMMA penetrated the stele
via the crack-entry mode,
transpirational pull was the main
driving force

[19]

Wheat (T. aestivum L.) PS 0.2 µm 0.5 mg g−1

uptake of PS into the root outer
cortical exosome space and vascular
tissue, transported to the
aboveground stem vascular bundle
and leaf vascular tissue

[141]

Cucumber
(Cucumis sativus L.) PS 100, 300, 500,

700 nm 50 mg L−1

PS initially accumulated in root
system, and then was transported to
the aboveground parts. PS was
distributed in the leaves, flowers, and
fruits, through the stems

[113]

Wheat
(T. aestivum L.) PS 100 nm 0.01–10 mg L−1

PS was taken up by wheat roots and
subsequently down-top transported
to leaves via xylem pathways

[114]

Lettuce
(L. sativa L.) PS 93.6 nm 0,0.1,1 mg L−1

possible absorption of PSNPs through
leaves stoma and the translocation
downwards to plant roots.

[115]

Rice
(Oryza sativa L.) PS 80 nm,

1 µm 40 mg L−1

both nano- and micro-sized PS could
be absorbed by rice roots and
translocated to aerial parts, apoplastic
transport may be the main pathway

[134]

Wheat (T. aestivum L.)
Lettuce (L. sativa L.) PS, PS-Eu 200 nm 0–5000 µg L−1

MPs accumulated mainly in the roots,
while transport to the shoots was
limited

[142]

Arabidopsis
(A. thaliana L.) PS-SO3HPS-NH2

55 nm
71 nm

0.3, 1.0 g kg−1

10, 50, 100 µg mL−1
PS can accumulate in Arabidopsis
thaliana, depending on surface charge [21]

Maize
(Z. mays L.)

PS-COOH
PS-NH2

22.0 ± 1.5 nm
24.0 ± 2.2 nm

0, 10, 50, 100, 200, 400,
500 ng/spot

PS could accumulate on maize leaves
PS in the leaves would transfer to the
vasculature mainly through stomatal
opening and move down to the roots
through vascular bundle

[135]

Wheat
(T. aestivum L.)

PS-NH2PS-NH2PS-
COOHPS-COOH

38.3 nm
191.2 nm
34.4 nm
101.2 nm

20 mg L−1

PS could be taken up by wheat root
and cells, and the translocation is
dependent on particle size and surface
characterization

[133]

PS: polystyrene; PMMA: polymethylmethacrylate; PS-Eu: Polystyrene (PS) particles doped with the europium
chelate Eu–β-diketonate; PS-SO3H: sulfonic-acid-modified polystyrene nanoparticles; PS-NH2: amino-modified
polystyrene nanoparticles; PS-COOH: carboxy-modified polystyrene nanoparticles.

4.4. Cytotoxicity and Genotoxicity

Compared with the knowledge on plant growth performance response to MPs/NPs
exposure, information on the inherent mechanisms, especially at the molecular level, is still
scarce and vague, although it is necessary for the accurate prediction of the persistent risks
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of MPs/NPs for the whole ecosystems. MPs/NPs are proved to cause the cytotoxicity and
genotoxicity on terrestrial plants [112,143,144]. Jiang et al. [112] studied the genotoxicity of
PS in V. faba root tips using mitotic index and micronucleus test, PS treatment increased
cytotoxicity while nano-sized (100 nm) particles induced higher genotoxic than micro-
sized (5 µm) particles. Nano-sized PS (50 nm) exhibited cytotoxicity and genotoxicity to
Allium cepa L. root meristems even at low dosage (0.01 g L−1) [138]. Maity et al. [145] also
studied the cytotoxic and genotoxicity of PS to A. cepa, apart from the decreased mitotic
index indicating the cytotoxic, PS down regulated the expression of encoding gene cdc2.
Recently, the metabolomic and transcriptomic analysis further advanced the understanding
of the effect of MPs/NPs on crop plants [146–148]. Zhou et al. [149] indicated that PS
would alter gene transcription of rice at elevated concentrations in hydroponically cultured
conditions. Wu et al. [106] firstly investigated the molecular mechanisms of the response
of rice to PS exposure via metabolomic and transcriptomic analyses through field study;
different rice cultivars exhibited different performances in metabolite accumulation and
gene regulation/interaction. These results confirmed the effects of MPs/NPs on terrestrial
plants at the molecular level, and the insufficient studies and huge knowledge gaps urgently
call for further exploration.

5. Combined Effect of MPs/NPs and Coexisting Pollutants

It is necessary to lay more stress on the combined effect of MPs/NPs and coexist-
ing pollutions on terrestrial plants for the comprehensive assessment of their ecological
risks [137,150,151]. The latest relative studies were listed in Table 3, and synergistic effect,
antagonism effect and neutralization effect were all reported depending on varied species
of plants, MPs/NPs and combined pollutants.
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Table 3. Combined effects of MPs/NPs and coexisting pollutants on terrestrial plants.

Plant species
MPs/NPs Coexisting

Pollutants Combined Effect References
Types Size Concentration

Carrots
(Daucus carota var.
sativa Hoffm.)

PS 0.1–1 µm
5 µm 10, 20 mg L−1 As: 1, 2, 4 mg L−1

As increases the negatively charged area of PS and
causes a greater amount of microplastics to enter
the carrot; As exacerbates the effect of PS on carrots

[137]

Rice
(Oryza sativa L.) PS, PTFE 10 µm 0.04, 0.1, 0.2 g L−1 As: 1.6, 3.2, 4.0 mg L−1

PS and PTFE reduced As uptake, and absorbed As
decreased with the increasing concentration of
microparticles

[152]

Red lettuce
(Lactuca sativa L. cv.
Red Sails)

PS 100–1000 nm,
>10,000 nm 0.25, 0.50, 1.00 g L−1 DBP: 5 mg L−1

PS reduced the DBP bioavailability, caused
decrease in photosynthetic, and serious oxidative
damage, and reduced the quality of
DBP-treated-red lettuce

[153]

Rapeseed
(Brassia campestris L.) PMMA <100 nm 0, 0.05, 0.5, 5 g L−1 As: 0, 10, 20, 40, 60 mg L−1

caused synergistic effect on rapeseed germination,
promoted As uptake in rapeseed under
high concentration

[124]

Lettuce
(L. sativa L. var.
ramosa Hort)

PE ~23 µm 0.25, 0.50,
1.00 mg mL−1 DBP: 5 mg L−1

MP can inhibit growth, hinder photosynthesis and
interfere with the antioxidant defense system
in lettuce;
exposure to MP exacerbated the damage to lettuce
by DBP

[128]

Lettuce
(L. sativa L. var.
ramosa Hort)

PS 100~1000 nm,
>10,000 nm

0.25, 0.50,
1.00 mg mL−1 DBP: 5 mg L−1

PS reduced lettuce biomass and DBP enrichment in
roots and leaves, exacerbated oxidative stress and
subcellular damage

[151]

Rape (B. napus L.) PE 293 µm 0.001%, 0.01%, 0.1% Cu: 50, 100 mg kg−1

Pb: 25, 50 mg kg−1
PE increased accumulation and toxicity of heavy
metals to rape [154]

Wheat
(Triticum aestivum L.) PS 87 nm 0, 10 mg L−1 Cd: 0, 20 µM PS partially alleviated Cd-induced toxicity

in wheat [155]



Sustainability 2023, 15, 4504 15 of 23

Table 3. Cont.

Plant species
MPs/NPs Coexisting

Pollutants Combined Effect References
Types Size Concentration

Strawberry
(Fragaria × ananassa
Duch.)

HDPE 20 µm thick, 2~5 mm 0.2 g kg−1 Cd: 3 mg L−1
HDPE increased Cd bioavailability and
accumulation in roots, decreased the total number
of fruits and total biomass per plant

[108]

Maize (Zea mays L.
var. Wannuoyihao) HDPE, PS 100–154 µm 0.1%, 1%, 10% Cd: 5 mg kg−1

high-dose of HDPE (10%) amplified Cd
phytotoxicity
PS negatively affected maize growth and
phytoxicity further increased in the presence of Cd

[156]

Maize (Z. mays L. var.
Wannuoyihao) PE, PLA 100~154 µm 0.1%, 1%, 10% Cd: 0, 5 mg kg−1

PLA caused higher Cd bioavailability than PE, but
no alterations in plant Cd content. MPs and Cd
drove shifts in maize performance and root
symbiosis

[102]

Lettuce
(L. sativa L.) PE <0.5 mm 0.1%, 1%, 10% Cd: 0.49, 1.75, 4.38 mg kg−1 co-exposure of PE increased the toxicity, uptake,

accumulation and bioavailability of Cd [90]

Soybean
(Glycine max (L.)
Merr.)

PS 100 nm,
1, 10, 100 µm 10 mg kg−1 phenanthrene, 1 mg kg−1

PS decreased the uptake of Phe in soybean roots
and leaves, but caused combined toxicity to
soybean plants

[157]

Lettuce (L.sativa L.) PS 100 µm, 100 nm 100, 1000 mg kg−1

Cu: 82.00 mg kg−1

Zn: 174.84 mg kg−1

Pb: 42.08 mg kg−1

Cd: 0.20 mg kg−1

MPs increased the uptake of heavy metals
in lettuce [150]

Maize (Z. mays L. var.
Wannuoyihao)

HDPE,
PLA 100–154 µm 0.1%, 1%, 10% ZnO: 30 ± 10 nm

0, 50, 500 mg kg−1 soil
HDPE and PLA increased Zn accumulation in
roots, decreased Zn translocation to aerial parts [97]

Brassica chinensis L. PS 75 µm 0.5%, 1.0%, 1.5%,
2.0% Cd: 10 mg kg−1

PS-Cd co-pollution produced higher phytotoxicity
than PS alone, PS mitigated the phytotoxicity of Cd
alone and reduce Cd uptake.

[158]

Wheat (T. aestivum L.) PS 0.5 µm 100 mg L−1 Cu: 2 mg L−1,
Cd: 1 mg L−1 mitigated Cu and Cd bioavailability and toxicity [127]

PS: polystyrene; PTFE: polytetrafluoroethylene; PMMA: polymethylmethacrylate; PE: polyethylene; HDPE: high–density polyethylene; PLA: polylactic acid; DBP: dibutyl phthal;
Phe: phenanthrene.
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5.1. Combined Effect of MPs/NPs and Heavy Metals

Heavy metal pollution in soil is one of the important environmental problems in the
world. The availability and toxicity of heavy metals to plants is one of the hot spots in envi-
ronmental science and botany [159,160]. Considering the interaction between MPs/NPs
and heavy metals, there is an urgent need to evaluate the combined effect of MPs/NPs and
heavy metals on terrestrial plants [71,161]. It has been proved that co-exposure of MPs/NPs
would produce positive or negative effect on the uptake, accumulation and bioavailability
of heavy metals by plants. The synergistic effect has been widely reported in recent studies.
For example, Jia et al. [154] found that PE increased the uptake, accumulation and toxicity
of Cu and Pb in rape, aggregated the oxidative damage and deteriorated rape quality. Treat-
ment of polymethyl methacrylate (PMMA) and As (V) also caused synergistic interaction on
rapeseed germination; the addition of PMMA enhanced As accumulation in rape sprouts
under high As concentration conditions [124]. Meanwhile, the co-existence of As conversely
enhanced the PS amount in carrots, and thus exacerbated the effect of PS on carrots [137].
Wang et al. [90] found that PE increased Cd bioavailability and accumulation in lettuce,
and mainly attributed the synergistic effect to the alteration in soil microenvironment, in-
cluding the decreased soil pH, cation exchange capacity (CEC) and increased soil dissolved
organic carbon (DOC). Furthermore, MPs/NPs could also produce an antagonism effect
when combined with heavy metals. Lian et al. [155] found PS alleviated Cd toxicity to
wheat due to the reduction in Cd accumulation, acceleration in radicals’ formation and
enhancement of carbohydrate and amino acid metabolisms. Zong et al. [127] investigated
the combined effect of PS and Cu/Cd on wheat seedlings by hydroponic experiment, and
PS relieved Cu/Cd accumulation in wheat seedling, enhanced photosynthesis and reduced
ROS accumulation occurred after PS-heavy metals co-treatment.

MPs aging would change their combined effect with heavy metals. Gu et al. [162]
found aged polyvinyl chloride (PVC) promoted the bioaccumulation of Cd in wheat and
thus produced greater synergistic effect with Cd on wheat root growth.

5.2. Combined Effect of MPs/NPs and Organic Pollutants

Apart from heavy metals, few studies have focused on the combined effect of MPs/NPs
and various organic pollutants. Dibutyl phthalate (DBP) is one of the important additives
in plastic polymer, and is easily released into the environment during the use and dis-
posal process [163,164]. The combined effect of DBP, PE and PS of different sizes and
concentrations on lettuce and red lettuce has been recently reported [128,151,153]. Gao
et al. [128] found that PE exposure exacerbated the phytotoxicity and damage of DBP
to lettuce; the growth parameters and photosynthesis were all inhibited under MP-DBP
treatment conditions compared to the DBP-only treatment. Dong et al. [153] studied the
co-exposure of PS and DBP on red lettuce in hydroponic systems: PS reduced DBP bioavail-
ability, induced more negative effect on photosynthetic and oxidative stress, and finally
reduced red lettuce quality. Traditional organic pollutants such as polycyclic aromatic
hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and total petroleum hydrocar-
bons (TPH) are of great significance for the ecosystem in soil environment. However, the
consideration of their combined effect with MPs/NPs on terrestrial plant is serious limited.
Xu et al. [157] studied the effect of combined effect of PS MPs and phenanthrene (Phe)
on soybean seedlings: PS inhibited Phe uptake in soybean root and leaves but aroused
combined toxicity, and the toxicity due to the coexistence of micron-size PS was higher than
that of nano-size. Meanwhile, there are also great knowledge gaps regarding the interaction
between MPs/NPs and engineering nanoparticles. Yang et al. [97] examined the combined
effect of MPs and engineering nanoparticles (ZnO) on maize growth, and found that the
presence of non-degradable high-density polyethylene and biodegradable polylactic acid
increased Zn content in maize roots, and decreased Zn transport to aerial parts. Overall,
the investigations on the combined effect of MPs/NPs and the coexisting pollutants for
terrestrial plants are severely insufficient, and represent key knowledge gaps that need to
move forward.
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6. Conclusions and Future Perspectives

Valuable progress has been achieved based on current research. Individual NPs/MPs
and their combination with coexisting pollutants have been proved to interfere with the seed
germination and growth performance, cause varied physiology, as well as the cytotoxicity
and genotoxicity in kinds of terrestrial plants, directly and indirectly. However, the relative
studies are still in their infancy, and the involved mechanisms need further clarification.
Further research should focus on the following points:

(1) Effect of MPs/NPs on terrestrial plants varies as a function of plant species and
plastic properties. MPs/NPs used in previous studies are mostly primary commercial
microsphere; more realistic pristine and aged secondary MPs/NPs deserve further
attention. As for plants, the species firstly need to be expanded for a comprehensive
understanding. Moreover, current research mainly focuses on individual plants;
investigations about the effects of MPs/NPs on community-level plants should be
moved forward.

(2) Present studies are mostly carried out by short-term laboratory pot experiments
cultured with nutrient solution, sand or soil matrix. Considering the growth cycles of
plants and the integrity of soil–plant systems, long-term and field-scale investigations
in realistic circumstances are necessary for the accurate prediction of the ecological
threat of MPs/NPs for terrestrial systems.

(3) Combined effects of MPs/NPs and coexisting pollutants are currently focused on
limited heavy metals and organic pollutants. More efforts regarding the combined
influence of various MPs/NPs and inorganic, organic and biological contaminants on
terrestrial plants need to be carried out in the future.

(4) There are still knowledge gaps regarding the mechanisms governing the uptake, accu-
mulation, physiological response, cytotoxicity and genotoxicity of plants to MPs/NPs’
exposure; interdisciplinary advantages should be addressed for in-depth clarification
from different levels and multiple pathways.
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