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Abstract. Support vector machines (SVMs), with their roots in Statistical Learning �eory (SLT) 
and optimization methods, have become powerful tools for problem solution in machine learning. 
SVMs reduce most machine learning problems to optimization problems and optimization lies at 
the heart of SVMs. Lots of SVM algorithms involve solving not only convex problems, such as linear 
programming, quadratic programming, second order cone programming, semi-de�nite program-
ming, but also non-convex and more general optimization problems, such as integer programming, 
semi-in�nite programming, bi-level programming and so on. �e purpose of this paper is to 
understand SVM from the optimization point of view, review several representative optimization 
models in SVMs, their applications in economics, in order to promote the research interests in both 
optimization-based SVMs theory and economics applications. �is paper starts with summariz-
ing and explaining the nature of SVMs. It then proceeds to discuss optimization models for SVM 
following three major themes. First, least squares SVM, twin SVM, AUC Maximizing SVM, and 
fuzzy SVM are discussed for standard problems. Second, support vector ordinal machine, semi-
supervised SVM, Universum SVM, robust SVM, knowledge based SVM and multi-instance SVM 
are then presented for nonstandard problems. �ird, we explore other important issues such as l

p
-

norm SVM for feature selection, LOOSVM based on minimizing LOO error bound, probabilistic 
outputs for SVM, and rule extraction from SVM. At last, several applications of SVMs to �nancial 
forecasting, bankruptcy prediction, credit risk analysis are introduced.
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1. Introduction

Support vector machines (SVMs), which were introduced by Vapnik and his coworkers in 

the early 1990’s (Cortes, Vapnik 1995; Vapnik 1996, 1998), are proved to be e�ective and 

promising techniques for data mining (Peng et al. 2008; Yang, Wu 2006). �ere are three es-

sential elements making SVMs so successful: the principle of maximal margin, dual theory, 

and kernel trick. SVMs, unlike traditional methods (e.g. Neural Networks), having their 

roots in Statistical Learning �eory (SLT) and optimization methods, become powerful tools 

to solve the problems of machine learning with �nite training points and overcome some 

traditional di�culties such as the “curse of dimensionality”, “over-�tting” and etc. SVMs’ 

theoretical foundation and implementation techniques have been established and SVMs 

are gaining quick development and popularity due to a number of their attractive features: 

nice mathematical representations, geometrical explanations, good generalization abilities 

and promising empirical performance (Cristianini, Shawe-Taylor 2000; Deng, Tian 2004, 

2009; Deng et al. 2012; Herbrich 2002; Schölkopf, Smola 2002). �ey have been success-

fully applied in many �elds ranging from text categorization (Joachims 1999a; Lodhi et al. 

2000), face detection, veri�cation, and recognition (Jonsson et al. 2002; Lu et al. 2001; Tefas 

et al. 2001), speech recognition (Ganapathiraju et al. 2004; Ma et al. 2001), to bioinforma-

tics (Guyon et al. 2001; Zhou, Tuck 2006), bankruptcy prediction (Shin et al. 2005), remote 

sensing image analysis (Melgani, Bruzzone 2004), time series forecasting (Kim 2003; Tay, 

Cao 2001), information and image retrieval (Druker et al. 2001; Liu et al. 2007; Tian et al. 

2000), information security (Mukkamala et al. 2002) and etc. (Adankon, Cheriet 2009; An-

cona et al. 2001; Azimi-Sadjadi, Zekavat 2000; Borgwardt 2011; Gutta et al. 2000; Peng et al. 

2009; Schweikert et al. 2009; Yao et al. 2002).

In recent years, the �elds of machine learning and mathematical programming are in-

creasingly intertwined (Bennett, Parrado-Hernández 2006), in which SVMs are the typical 

representatives. SVMs reduce most machine learning problems to optimization problems, 

optimization lies at the heart of SVMs, especially the convex optimization problem plays an 

important role in SVMs. Since convex problems are much more tractable algorithmically and 

theoretically, lots of SVM algorithms involves solving convex problems, such as linear pro-

gramming (Nash, Sofer 1996; Vanderbei 2001), convex quadratic programming (Nash, Sofer 

1996), second order cone programming (Alizadeh, Goldfarb 2003; Boyd, Vandenberghe 2004; 

Goldfarb, Iyengar 2003), semi-de�nite programming (Klerk 2002) and etc. However, there 

are also non-convex and more general optimization problems appeared in SVMs: integer or 

discrete optimization considers non-convex problems with integer constraints, semi-in�nite 

programming (Goberna, López 1998), bi-level optimization (Bennett et al. 2006) and so on. 

Especially in the process of model construction, these optimization problems may be solved 

many times. �e research area of mathematical programming intersects with SVMs closely 

through these core optimization problems.

Generally speaking, there are three majors themes in the interplay of SVMs and math-

ematical programming. �e �rst theme contains the development of under-lying models 

for standard classi�cation or regression problems. Novel methods are developed by making 

some changes to the standard SVM models that enable the development of powerful new 
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algorithms, including ν-SVM (Schölkopf, Smola 2002; Vapnik 1998), linear programming 

SVM (Deng, Tian 2009; Deng et al. 2012, Weston et al. 1999), least squares SVM (LSSVM) 

(Johan et al. 2002), proximal SVM (PSVM) (Fung, Mangasarian 2001), twin SVM (TWSVM) 

(Khemchandani, Chandra 2007; Shao et al. 2011), multi-kernel SVM (Sonnenburg et al. 2006; 

Wu et al. 2007), AUC maximizing SVM (Ataman, Street 2005; Brefeld, Sche�er 2005), local-

ized SVM (Segata, Blanzieri 2009), cost sensitive SVM (Akbani et al. 2004), fuzzy SVM (Lin, 

Wang 2002), Crammer-Singer SVM (Crammer, Singer 2001), K-support vector classi�cation 

regression (K-SVCR) (Angulo, Català 2000) and etc., are developed. �e second theme con-

cerns the well-known optimization methods extended to new SVM models and paradigms. 

A wide range of programming methods is used to create novel optimization models in order 

to deal with di�erent practical problems such as ordinal regression (Herbrich et al. 1999), 

robust classi�cation (Goldfarb, Iyengar 2003; Yang 2007; Zhong, Fukushima 2007), semi-

supervised and unsupervised classi�cation (Xu, Schuurmans 2005; Zhao et al. 2006, 2007), 

transductive classi�cation (Joachims 1999b), knowledge based classi�cation (Fung et  al. 

2001, 2003; Mangasarian, Wild 2006), Universum classi�cation (Vapnik 2006), priviledged 

classi�cation (Vapnik, Vashist 2009), multi-instance classi�cation (Mangasarian, Wild 2008), 

multi-label classi�cation (Tsoumakas, Katakis 2007; Tsoumakas et  al. 2010), multi-view 

classi�cation (Farquhar et al. 2005), structured output classi�cation (Tsochantaridis et al. 

2005) and etc. �e third theme considers the important issues in constructing and solving 

SVM optimization problems. On the one hand, several methods are developed for con-

structing optimization problems in order to enforce feature selection (Chen, Tian 2010; Tan 

et al. 2010), model selection (Bennett et al. 2006; Kunapuli et al. 2008), probabilistic outputs 

(Platt 2000), rule extraction from SVMs (Martens et al. 2008) and so on. On the other hand 

existing SVM optimization models are aimed at being solved more e�ciently for the large 

scale data set, in which the key point is creating algorithms that exploit the structure of the 

optimization problem and pay careful attention to algorithmic and numeric issue, such as 

SMO (Platt 1999), e�cient methods for solving large-scale linear SVM (Chang et al. 2008; 

Hsieh et al. 2008; Joachims 2006; Keerthi et al. 2008), parallel methods for solving large-scale 

SVM (Zanghirati, Zanni 2003) and etc.

Considering the many variants of SVM core optimization problems, a systematic survey 

is needed and helpful to understand and use this family of data mining techniques more 

easily. �e goal of this paper is to closely review SVMs from the optimization point of view. 

Section 2 of the paper takes standard C – SVM as an example to summarize and explain 

the nature of SVMs. Section 3 will describe SVM optimization models with di�erent varia-

tions according to the above three major themes. Several applications of SVMs to �nancial 

forecasting, bankruptcy prediction, credit risk analysis are introduced in Section 4. Finally, 

Section 5 will provide remarks and future research directions.

2. �e nature of C-Support vector machines

In this section, standard C-SVM (Deng, Tian 2004, 2009; Deng et al. 2012; Vapnik 1998) 

for binary classi�cation is brie�y summarized and understood from several points of view.
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De�nition 2.1. (Binary classi�cation). For the given training set

 1 1{( , ), ...,( , )} ( ) ,n l
l lT x y x y R= ∈ ×y  (1)

where , {1, 1}, 1, , ,n
i ix R y i l∈ ∈ = − = y  the goal is to �nd a real function ( )g x  in nR  and 

derive the value of y for any x by the decision function

 ( ) sgn(g(x)).f x =  (2)

C – SVM formulates the problem as a convex quadratic programming

 2

, ,
1

1
min || || ,

2

l

i
w b

i

w C
ξ =

+ ξ∑  (3)

 . . (( ) ) 1 , 1, , ,i i is t y w x b i l⋅ + ≥ − ξ =   (4)

 0, 1, , ,i i lξ ≥ =   (5)

where 1( , ..., ) ,T
lξ = ξ ξ  and C > 0 is a penalty parameter. For this primal problem, C – SVM 

solves its Lagrangian dual problem

 
1 1 1

1
min ( , ) ,

2

l l l

i j i j i j j

i j j

y y K x x
α = = =

α α − α∑∑ ∑  (6)

 
1

s.t. 0,
l

i i

i

y
=

α =∑  (7)

 0 , 1, , ,i C i l≤ α ≤ =   (8)

where ( , ')K x x  is the kernel function, which is also a convex quadratic problem and then 

construct the decision function.

As we all know, the principal of Structural Risk Minimization (SRM) is embodied in SVM, 

the con�dential interval and the empirical risk should be considered at the same time. �e 

two terms in the objective function (3) indicate that we not only minimize 2|| ||w (maximize 

the margin), but also minimize 
1

,
l

i

i=

ξ∑ which is a measurement of violation of the constraints 

(( ) ) 1, 1, , .y w x b i li i⋅ + ≥ =   Here the parameter C determines the weighting between the two 

terms, the larger the value of C, the larger the punishment on empirical risk.

In fact, the parameter C has another meaningful interpretation (Deng, Tian 2009; Deng 

et al. 2012). Consider the binary classi�cation problem, select a decision function candidate 

set F(t) depending on a real parameter t:

 { sgn(( ) ||| || , [0, )},t  f(x) w x) b w t t= = ⋅ + ≤ ∈ ∞F( )  (9)

and suppose that the loss function to be the so� margin loss function de�ned by

 ( , , ( )) max{0, 1 ( )}, where ( ) ( ) .c x y f x yg x g x w x b= − = ⋅ +  (10)

�us structural risk minimization is implemented by solving the following convex program-

ming for an appropriate parameter t:

 
, ,

1

min ,
l

i
w b

i
ξ =

ξ∑  (11)
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 s.t. (( ) ) 1 , 1, , ,i i iy w x b i l⋅ + ≥ − ξ =   (12)

 0, 1, , ,i i lξ ≥ =   (13)

 | || .| w t≤  (14)

An interesting point is proved that when the parameters C and t are chosen satisfying 

( ),t C= ψ  where ( )ψ ⋅ is nondecreasing in the interval (0, )+∞ , problem(3)~(5) and problem 

(11)~(14) will get the same decision function (Zhang et al. 2010). Hence the very interesting 

and important meaning of the parameter C is proposed: C corresponds to the size of the 

decision function candidate set in the principle of SRM: the larger the value of C, the larger 

the decision function candidate set.

Now we can summarize and understand C – SVM from following points of view: (i) Con-

struct a decision function by selecting a proper size of the decision function candidate set 

via adjusting the parameter C; (ii) Construct a decision function by selecting the weighting 

between the margin of the decision function and the deviation of the decision function 

measured by the so�-margin loss function via adjusting the parameter C; (iii) Another un-

derstanding about C – SVM can also be seen in the literatures (Deng et al. 2012): Construct 

a decision function by selecting the weighting between �atness of the decision function and 

the deviation of the decision function measured by the so�-margin loss function via adjust-

ing the parameter C.

3. Optimization models of support vector machines

In this section, several representative and important SVM optimization models with di�erent 

variations are described and analyzed. �ese models can be divided into three categories: 

models for standard problems, models for nonstandard learning problems, and models 

combining SVMs with other issues in machine learning.

3.1. Models for standard problems

For the standard classi�cation or regression problems, lot of methods are developed based on 

standard SVM models to be the powerful new algorithms. Here we brie�y introduce several 

basic and e�cient models, lots of developments of these models are omitted here.

3.1.1. Least squares support vector machine

Just like the standard C – SVM the starting point of least squares SVM (LSSVM) (Johan et al. 

2002) is also to �nd a separating hyperplane, but with di�erent primal problem. In fact, intro-

ducing the transformation ( )x x= Φ and the corresponding kernel ( , ') ( ( ) ( ')),K x x x x= Φ ⋅Φ
the primal problem becomes the convex quadratic programming

 2 2

, ,
1

1
min || || ,

2 2

l

i
w b

i

C
w

η =

+ η∑  (15)

 s.t. (( ( )) ) 1 , 1, , .i i iy w x b i l⋅Φ + = −η =   (16)
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�e geometric interpretation of the above problem with 2x R∈  is shown in Figure 1, where 

minimizing 21
|| ||

2
w realizes the maximal margin between the straight lines

 ( ) 1 and ( ) 1,w x b w x b⋅ + = ⋅ + = −  (17)

while minimizing 2

1

l

i
i=

η∑ implies making the straight lines (17) be proximal to all inputs of 

positive points and negative points respectively.

1

w� � 1

w� �

Fig. 1. Geometric interpretation of LSSVM

Its dual problem to be solved in LSSVM is also a convex quadratic programming

 1 1 1

1
max ( ( , ) ) ,

2

l l l
ij

i j i j i j i
i j i

y y K x x
Cα = = =

δ
− α α + + α∑∑ ∑  (18)

 
1

s.t. 0,
l

i i
i

y
=
α =∑  (19)

where

 
1, ,

0, .ij

i j

i j

=
δ =

≠





 (20)

In C – SVM, the error is measured by the so� margin loss function, this leads to the fact 

that the decision function is decided only by the support vectors. While in LSSVM, almost 

all training points contribute to the decision function, which makes it lose the sparseness. 

However, LSSVM needs to solve a quadratic programming with only equality constraints, or 

equivalently a linear system of equations. �erefore, it is simpler and faster than C – SVM.

3.1.2. Twin support vector machine

Twin support vector machine (TWSVM) is a binary classi�er that perform classi�cation us-

ing two nonparallel hyperplanes instead of a single hyperplane as in the case of conventional 

SVMs (Shao et al. 2011). Suppose the two non-parallel hyperplanes are the positive hyperplane

 ( ) 0,w x b+ +⋅ + =  (21)
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and the negative hyperplane

 ( ) 0.w x b− −⋅ + =  (22)

�e primal problems for �nding these two hyperplanes are two convex quadratic program-

ming problems (Shao et al. 2011)

 2 2 2
1 2

, ,
1 1

1 1
min (|| || ) (( ) ) ,

2 2

p p q

i j
w b

i j p

c w b w x b c
+ + −

+

+ + + +
ξ = = +

+ + ⋅ + + ξ∑ ∑  (23)

 s.t. ( ) 1 , 1, , ,j jw x b j p p q+ +⋅ + ≤ − +ξ = + +  (24)

 0, 1, ,j j p p qξ ≥ = + +  (25)

and

 2 2 2
3 4

, ,
1 1

1 1
min (|| || ) (( ) ) ,

2 2

p q p

i j
w b

i p j

c w b w x b c
− − +

+

− − − −
ξ = + =

+ + ⋅ + + ξ∑ ∑  (26)

 s.t. ( ) 1 , 1, , ,j jw x b j p− −⋅ + ≥ −ξ =   (27)

 0, 1, , ,j j pξ ≥ =   (28)

where , 1, ...,ix i p=  are positive inputs, and , 1, ...,ix i p p q= + +  are negative inputs, 

1 2 3 40, 0, 0, 0c c c c> > > >  are parameters, T T
1 1( , ..., ) , ( , ..., ) .p p q p− + + +ξ = ξ ξ ξ = ξ ξ

For both of the above primal problems an interpretation can be o�ered in the same way. 

�e geometric interpretation of the problem (23)~(25) with 2x R∈ is shown in Figure 2, 

where minimizing the second term 2

1

(( ) )
p

i
i

w x b+ +
=

⋅ +∑  makes the positive hyperplane (blue 

solid line in Fig. 2) to be proximal to all positive inputs, minimizing the third term
1

p q

j
j p

+

= +
ξ∑

with the constraints (24) and (25) requires the positive hyperplane to be at a distance from the 

negative inputs by pushing the negative inputs to the other side of the bounding hyperplane 

3

2.5

2

1.5

1

0.5

3     4         5              6                 7

Fig. 2. Geometric interpretation of TWSVM
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(blue dotted line in Fig. 2),
 
where a set ξ  of variables is used to measure the error whenever the 

positive hyperplane is close to the negative inputs. Minimizing the �rst term 2 21
(|| || )

2
w b+ ++  

realizes the maximal margin between the positive hyperplane ( ) 0w x b+ +⋅ + = and the bound-

ing hyperplane ( ) 1w x b+ +⋅ + = − in 1nR +  space.

TWSVM is established based on solving two dual problems of the above primal prob-

lems separately. �e generalization of TWSVM has been shown to be signi�cantly better 

than standard SVM for both linear and nonlinear kernels. It has become one of the popular 

methods in machine learning because of its low computational complexity, since it solves 

above two smaller sized convex quadratic programming problems. On average, it is about 

four times faster than the standard SVMs.

3.1.3. AUC maximizing support vector machine

Nowadays the area under the receiver operating characteristics (ROC) curve, which corre-

sponds to the Wilcoxon-Mann-Whitney test statistic, is increasingly used as a performance 

measure for classi�cation systems, especially when one o�en has to deal with imbalanced 

class priors or misclassi�cation costs. �e area of that curve is the probability that a randomly 

drawn positive example has a higher decision function value than a random negative example; 

it is called the AUC (area under ROC curve). When the goal of a learning problem is to �nd 

a decision function with high AUC value, then it is natural to use a learning algorithm that 

directly maximizes this criterion. Over the last years, AUC maximizing SVMs (AUCSVM) 

have been developed (Ataman, Street 2005; Brefeld, Sche�er 2005), in which one kind of 

primary problem to be solved is a convex problem

 2

,
1 1

1
min || || ,

2

l l

ij
w

i i

w C

+ −

ξ = =
+ ξ∑∑  (29)

 s.t. ( ( )) 1 , 1, , , 1, , ,i j ijw x x i l j l+ − + −⋅ − ≥ − ξ = =   (30)

 0, 1, , , 1, , ,ij i l j l+ −ξ ≥ = =   (31)

where , 1, , , and , 1, ,i jx i l x j l+ + − −= =   are positive and negative inputs separately. It’s dual 

problem is also a convex quadratic programming problem.

However, the existing algorithms all have the serious drawback that the number of con-

straints is quadratic in the number of training points, so they become very large even for 

small training set. To cope with this, di�erent strategies can be constructed, in one of which a 

Fast and Exact k – Means (FEKM) (Goswami et al. 2004) algorithm is applied to approximate 

the problem by representing the l l+ −  many pairs ( )i jx x+ −−  by only l l+ −− cluster centers 

and thereby reduce the number of constraints and parameters. �e approximate k – Means 

AUCSVM is more e�ective at maximizing the AUC than the SVM for linear kernels. Its 

execution time is quadratic in the sample size.
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3.1.4. Fuzzy support vector machine

In standard SVMs, each sample is treated equally; i.e., each input point is fully assigned to 

one of the two classes. However, in many applications, some input points, such as the outli-

ers, may not be exactly assigned to one of these two classes, and each point does not have the 

same meaning to the decision surface. To solve this problem, each data point in the training 

data set is assigned with a membership, if one data point is detected as an outlier, it is as-

signed with a low membership, so its contribution to total error term decreases. Unlike the 

equal treatment in standard SVMs, this kind of SVM fuzzi�es the penalty term in order to 

reduce the sensitivity of less important data points. Fuzzy SVM (FSVM) construct its primal 

problem as (Lin, Wang 2002)

 ∑
=

+
l

i

ii
bw

sCw

1

2

2
1

,,
,||||min ξ

ξ
 (32)

 s.t. (( ) ) 1 , 1, ..., ,i i iy w x b i l⋅ + ≥ − ξ =  (33)

 0, 1, , ,i i lξ ≥ =   (34)

where is is the membership generalized by some outlier-detecting methods. Its dual problem 

is similarly deduced as C – SVM to be a convex quadratic programming

 
1 1 1

1
min ( , ) ,

2

l l l

i j i j i j j

i j j

y y K x x
α = = =

α α − α∑∑ ∑  (35)

 
l

i
i 1

s.t. y 0,i

=

α =∑  (36)

 0 , 1, , .i iCs i l≤ α ≤ =   (37)

Model (32)~(34) is also the general formulation of the cost sensitive SVM (Akbani et al. 

2004) solving the imbalanced problem, in which di�erent error costs are used for the positive 

( )C+  and negative ( )C− classes

 

1

1 2
2, ,

1

min || || ,

i i

i i
w b

y y

w C C x

=−

+ −
ξ =

+ ξ +∑ ∑  (38)

 s.t. (( ) ) 1 , 1, , ,i i iy w x b i l⋅ + ≥ −ξ =   (39)

 0, 1, , .i i lξ ≥ =   (40)

3.2. Models for nonstandard problems

For the nonstandard problems appeared in di�erent practical applications, a wide range of 

programming methods are used to build novel optimization models. Here we present several 

important and interesting models to show the interplay of SVMs and optimization.

3.2.1. Support vector ordinal regression

Support vector ordinal regression (SVOR) (Herbrich et al. 1999) is a method to solve a spe-

cialization of the multi-class classi�cation problem: ordinal regression problem. �e problem 
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of ordinal regression arises in many �elds, e.g., information retrieval, econometric models, 

and classical statistics. It is complementary to the classi�cation problem and metric regres-

sion problem due to its discrete and ordered outcome space.

De�nition 3.1. (Ordinal regression problem). Given a training set

 
1, ,

1, ,
{ } ,j

j j M
i i l

T x =
=

= 


 (41)

where j
ix  is an input of a training point, the supscript 1, ,j M=  denotes the corresponding 

class number, 1, , ji l=  is the index within each class, and jl  is the number of the training 

points in class j. Find 1M −  parallel hyperplanes in nR

 ( ) 0, 1, , 1,rw x b r M⋅ − = = −  (42)

where 1 2 1 0, , , ,n
M Mw R b b b b b−∈ ≤ ≤ ≤ = −∞ = +∞ such that the class number for any x can 

be predicted by

 
{1, , }

( ) arg min { : ( ) 0}.r
r M

f x r w x b
∈

= ⋅ − <


 (43)

SVOR constructs the primal problem as

 
(*)

*2

, , 1 1

1
min || || ( ),

2

jM l
j j
i i

w b j i

w C
ξ = =

+ ξ +ξ∑∑  (44)

 s.t. ( ) 1 , 1, , , 1, , ,j j i
i j iw x b j M i l⋅ − ≤ − + ξ = =   (45)

 *
1( ) 1 , 1, , , 1, , ,j j i

i j iw x b j M i l−⋅ − ≥ − ξ = =   (46)

 *0, 0, 1, , , 1, , ,j j j
i i j M i lξ ≥ ξ ≥ = =   (47)

where T
1 1 0( , , ) , , .M Mb b b b b−= = −∞ = +∞  Its dual problem is the following convex quadratic 

programming

 
(*)

* * ' ' ' *
' ' '

, ', ' ,

1
min ( )( )( ) ( ),

2

j j j j j j j j
i i i i ii i i

j i j i j i

x x
α

α −α α −α ⋅ − α +α∑∑ ∑  (48)

 

1

* 1

1 1

s.t. , 1, , 1,

j jl l
j j
i i

i i

j M

+
+

= =
α = α = −∑ ∑   (49)

 *0 , , 1, , , 1, , ,j j j
i i C j M i l≤ α α ≤ = =   (50)

 *1 10, 1, , ,i i lα = =   (51)

 0, 1, , .M M
i i lα = =   (52)

�ough SVOR is a method to solve a specialization of the multi-class classi�cation problem 

and has many applications itself (Herbrich et al. 1999), it is also used in the context of solving 

general multi-class classi�cation problem (Deng, Tian 2009; Deng et al. 2012; Yang 2007; Yang 

et al. 2005), in which the SVOR is used as a basic classi�er and used several times instead of 

only once, just as the binary classi�ers for multi-class classi�cation. �ere are many choices 
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since any p – class SVOR with di�erent order can be candidate, where p = 2, 3, ... , M. When 

p = 2, this approach reduces to the approach based on binary classi�ers.

3.2.2. Semi-supervised support vector machine

In practice, labeled instances are o�en di�cult, expensive, or time consuming to obtain, 

meanwhile unlabeled instance may be relatively easy to collect. Di�erent with standard SVMs 

using only labeled training points, lots of semi-supervised SVMs (S3VM) use large amount of 

unlabeled data, together with the labeled data, to build better classi�ers. Transductive support 

vector machine (TSVM) (Joachims 1999b) is such an e�cient method �nding a labeling of 

the unlabeled data, so that a linear boundary has the maximum margin on both the original 

labeled data and the (now labeled) unlabeled data. �e decision function has the smallest 

generalization error bound on unlabeled data.

For a training set given by

 1 1 1{( , ), ,( , )} { , , },l l l l qT x y x y x x+ +=     (53)

where , { 1,1}, 1, , , , 1 , , ,n nx R y i l x R i l l qi i i∈ ∈ − = ∈ = + +  and the set 1{ , , }l l qx x+ + is a 

collection of unlabeled inputs. �e primal problem in TSVM is constructed as the following 

(partly) combinational optimization problem

 
*

2 * *

, , , 1 1

1
min || || ,

2

l l

i i
w b y i i

w C C
ξ = =

+ ξ + ξ∑ ∑  (54)

 s.t. (( ) ) 1 , 1, , ,y w x b i li i i⋅ + ≥ − ξ =   (55)

 * * *(( ) ) 1 , 1, , ,y w x b i l l qi i i⋅ + ≥ − ξ = + +  (56)

 0, 1, , ,i liξ ≥ =   (57)

 * 0, 1, , ,i l l qiξ ≥ = + +  (58)

where * * * *
1( , , ), 0, 0l l qy y y C C+ += > > are parameters. However, �nding the exact solution 

to this problem is NP-hard. Major e�ort has focused on e�cient approximation algorithms. 

�e SVM-light is the �rst widely used so�ware (Joachims 1999b).

In the approximation algorithms, several relax the above TSVM training problem to 

semi-de�nite programming (SDP) (Xu, Schuurmans 2005; Zhao et al. 2006, 2007). �e basic 

idea is to work with the binary label matrix of rank 1, and relax it by a positive semi-de�nite 

matrix without the rank constraint. However the computational cost of SDP is still expensive 

for large scale problems.

3.2.3. Universum support vector machine

Di�erent with semi-supervised SVM leveraging unlabeled data from the same distribution, 

Universum support vector machine (USVM) use the the additional data not belonging to 

either class of interest. Universum contains data belonging to the same domain as the prob-
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lem of interest and is expected to represent meaningful information related to the pattern 

recognition task at hand. Universum classi�cation problem can be formulated as follows:

De�nition 3.2. (Universum classi�cation problem). Given a training set

 * *
1 1 1{( , ), , ( , )} { , , },l l uT x y x y x x=     (59)

where *, { 1,1}, 1, , , , 1, , ,n n
i i jx R y i l x R j u∈ ∈ − = ∈ =  and the set

 * *
1{ , , }uU x x=   (60)

is a collection of unlabeled inputs known not to belong to either class, �nd a real function 

g(x) in nR  such that the value of y for any xcan be predicted by the decision function

 ( ) sgn( ( )).f x g x=  (61)

Universum SVM constructs the following primal problem

 2 *
2

, , , (*)
1 1

1
min || || ( ),

2

l u

t i u s s
w b

i s

w C C
ξ ψ = =

+ ξ + ψ +ψ∑ ∑  (62)

 s.t. (( ) ) 1 , 0, 1, ,i i i iy w x b i l⋅ + ≥ − ξ ξ ≥ =  , (63)

 * *( ) , 1, , ,s s sw x b s u−ε −ψ ≤ ⋅ + ≤ ε +ψ =   (64)

 *, 0, 1, , ,s s s uψ ψ ≥ =   (65)

where (*) * *
1 1( , , , , )T

u uψ = ψ ψ ψ ψ  and 0, 0, 0t uC C> > ε >  are parameters. Its goal is to 

�nd a separating hyperplane ( ) 0w x b⋅ + =  such that, on the one hand, it separates the in-

puts 1{ , , }lx x with maximal margin, and on the other hand, it approximates to the inputs 
* *
1{ , , }

u
x x .We can also get its dual problem and introduce kernel function for dealing with 

nonlinear classi�cation.

It is natural to consider the relationship between USVM and some 3-class classi�cation. 

In fact, it can be shown that, under some assumptions, USVM is equivalent to K-SVCR (An-

gulo, Català 2000), and is also equivalent to the SVOR with M = 3 with slight modi�cation 

(Gao 2008). USVM’s performance depends on the quality of the Universum, methodology 

of choosing the appropriate Universum is the subject of future research.

3.2.4. Robust support vector machine

In standard SVMs, the parameters in the optimization problems are implicitly assumed to 

be known exactly. However, in practice, some uncertainty is o�en resent in many real-world 

problems, these parameters have perturbations since they are estimated from the training 

data which are usually corrupted by measurement noise. �e solutions to the optimization 

problems are sensitive to parameter perturbations. So it is useful to explore formulations that 

can yield discriminants robust to such measurement errors. For example, when the inputs 

are subjected to measurement errors, it would be better to describe the inputs by uncertainty 

sets nR∈iX , 1, , ,i l=   since all we know is that the input belongs to the set iX . �erefore 

the standard problem turns to be the following robust classi�cation problem.
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De�nition 3.3. (Robust classi�cation problem). Given a training set

 1 1{( , ), ,( , )},l lT = X Y X Y  (66)

where iX  is a set in nR , { 1,1}i ∈ −Y . Find a real function g(x) in nR , such that the value of 

y for any x can be predicted by the decision function

 ( ) sgn( ( )).f x g x=  (67)

�e geometric interpretation of the robust problem with circle perturbations is shown in 

Figure 3, where the circles with “+” and “o” are positive and negative input sets respectively, 

the optimal separating hyperplane * *( ) 0w x b⋅ + =  by the principle of maximal margin is 

constructed by robust SVM (RSVM). Now, the primal problem of RSVM for such case is a 

semi-in�nite programming problem

 2

, ,
1

1
min || ||

2

l

i
w b

i

w C
ξ =

+ ξ∑ , (68)

 s.t. (( ( )) ) 1 , || || 1, 1, , ,i i i i i iy w x ru b u i l⋅ ⋅ + ≥ − ξ ∀ ≤ =   (69)

 0, 1, , ,i i lξ ≥ =   (70)

where the set iX  is a supersphere obtained from perturbation of a point ix

 { ||| || }.i ix x x r= − ≤iX  (71)

0

[x]
2

[x]
1

Fig. 3. Geometric interpretation of robust classi�cation problem

�is semi-in�nite programming problem can be proved to be equivalent to the following 

second order cone programming (Goldfarb, Iyengar 2003; Yang 2007)

 
, , , , ,

1

1
min ( ) ,

2

l

i
w b u v t

i

u v C
ξ =

− + ξ∑  (72)

 s.t. (( ) ) 1 , 1, , ,i i i iy w x b r t i l⋅ + − ≥ −ξ =   (73)

 0, 1, , ,i i lξ ≥ =   (74)

 1,u v+ =  (75)
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its dual problem is also a second order cone programming

 
, , , , 1

max ,
u v

l

i
z z

i
α β γ =

β+ α∑
 (78)

 

,
1 1 1

s.t. ( ),
l l l

i i i j i j i j
i i j

r y y K x x
= = =

γ ≤ α − α α∑ ∑∑
 (79)

 

1
,

2
uzβ+ =

 (80)

 

1
,

2
vzβ+ = −

 (81)

 1

0,
l

i i
i

y
=

α =∑
 (82)

 
0 , 1, , ,i C i l≤ α ≤ = 

 (83)

 
2 2 ,v uz zγ + ≤

 (84)

which can be e�ciently solved by Self-Dual-Minimization (SeDuMi). SeDuMi is a tool for 

solving optimization problems. It can be used to solve linear programming, second-order 

cone programming and semi-de�nite programming, and is available at the web site http://

sedumi.mcmaster.ca.

3.2.5. Knowledge based support vector machine

In many real-world problems, we are given not only the traditional training set, but also prior 

knowledge such as some advised classi�cation rules. If appropriately used, prior knowledge can 

signi�cantly improve the predictive accuracy of learning algorithms or reduce the amount of 

training data needed. Now the problem can be extended in the following way: the single input 

points in the training points are extended to input sets, called knowledge sets. If we consider 

the input sets restricted as polyhedrons, the problem is formulated mathematically as follows:

De�nition 3.4. (Knowledge-based classi�cation problem). Given a training set

 1 1 1 1{( , ), ,( , ),( , ), ,( , )},p p p p p q p qT y y y y+ + + +=  X X X X  (85)

where iX  is a polyhedron in nR  de�ned by { | },i i ix Q x d= ≤X and ,il n
iQ R ×∈ ,il

id R∈

1 1,py y= = = 1 1.p p qy y+ += = = − Find a real valued function g(x) in nR , such that 

the value of y for any x can be predicted by the decision function

 ( ) sgn( ( )).f x g x=  (86)
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Of course we can construct the primal problem to be the following semi-in�nite program-

ming problem

 2

, ,
1

1
min || || ,

2

+

ξ =
+ ξ∑

p q

i
w b

i

w C  (87)

 s.t.    ( ) 1,⋅ + ≥w x b  for . 1, , ,ix i p∈ = X  (88)

 ( ) 1,w x b⋅ + ≤ −  for . 1, , ,ix i p p q∈ = + +X  (89)

 0, 1, , .ξ ≥ = +i i p q  (90)

However, it was shown that the constraints (88)~(90) can be converted into a set of limited 

constraints and then the problem becomes a quadratic programming (Fung et al. 2001)

 2

, , , , ,
1 1

1
min || || (( ) ),

2 j

p q n

i i
w b u v t

i j

w C
+

ξ = =
+ ξ +η∑ ∑  (91)

 Ts.t.    , 1, , ,i i i iQ u w i p− ξ ≤ + ≤ ξ =   (92)

 T 1 , 1, , ,i i id u b i p− + ≤ η =   (93)

 T , 1, , ,i i i iQ u w i p p q−ξ ≤ − ≤ ξ = + +  (94)

 T 1 , 1, , ,i i id u b i p p q+ + ≤ η = + +  (95)

 , , 0.uξ η ≥  (96)

�is model considered the linear knowledge incorporated to linear SVM, while linear 

knowledge based nonlinear SVM and nonlinear knowledge based SVM were also proposed 

by Mangasarian and his co-workers (Fung et al. 2003; Mangasarian, Wild 2006). Handling 

prior knowledge is worthy of further study, especially when the training data may not be easily 

available whereas expert knowledge may be readily available in the form of knowledge sets. 

Another prior information such as some additional descriptions of the training points was 

also considered and a method called privileged SVM was proposed (Vapnik, Vashist 2009), 

which allows one to introduce human elements of teaching: teacher’s remarks, explanations, 

analogy, and so on in the machine learning process.

3.2.6. Multi-instance support vector machine

Multi-instance problem was proposed in the application domain of drug activity predic-

tion, and similar to both the robust and knowledge-based classi�cation problems, it can be 

formulated as follows.

De�nition 3.5. (Multi-instance classi�cation problem). Suppose that there is a train-

ing set

 1 1{( , ), ,( , )},l lT = X Y X Y  (97)
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where 1{ , , },
ii ilx x= iX ,n

ijx R∈ 1, , ,ij l=  { 1,1}l ∈ −Y . Find a real function g(x) in nR , such 

that the label y for any instance x can be predicted by the decision function

 
( ) sgn( ( )).f x g x=  (98)

�e set iX
 
is called a bag containing a number of instances. Note that the interesting point 

of this problem is that: the label of a bag is related with the labels of the instances in the bag 

and decided by the following way: a bag is positive if and only if there is at least one instance 

in the bag is positive; a bag is negative if and only if all instances in the bag are negative. A 

geometric interpretation of multi-instance classi�cation problem is shown in Figure 4, where 

every enclosure stands for a bag; a bag with “+” is positive and a bag with “o” is negative, and 

both “+” and “o” stand for instances.

0

[x]
2

[x]
1

Fig. 4. Geometric interpretation of multi-instance classi�cation problem

For a linear classi�er, a positive bag is classi�ed correctly if and only if some convex com-

bination of points in the bag lies on the positive side of a separating plane. �us the primal 

problem in the multi-instance SVM (MISVM) is constructed as the following nonlinear 

programming problem (Mangasarian, Wild 2008)
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1 2

, , ,
1 1

1
min || || ,
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ξ = = +
+ ξ + ξ∑ ∑

p r s

i i
w b v

i i r

w C C  (99)

 ( )

s.t.    ( ) 1 , 1, , ,i
j j i

j I i

w v x b i p
∈

⋅ + ≥ −ξ =∑   (100)

 
( ) 1 , 1, , ,i iw x b i r r s⋅ + ≤ − +ξ = + +  (101)

 
0, 1, , , 1, , ,i i p r r sξ ≥ = + +   (102)
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jv j I i i p≥ ∈ =   (103)
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j I i

v i p
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= =∑   (104)
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where r and s are respectively the number of the instances in all positive bags and all negative 

bags, and p is the number of positive bags.

�ough the above problem is nonlinear, it is easy to see that among its constraints, only 

the �rst one is nonlinear, and in fact is bilinear. �en a local solution to this problem is ob-

tained by solving a succession of fast linear programs in a few iterations: Alternatively, hold 

one set of variables which constitute the bilinear terms constant while varying the other 

set. For a nonlinear classi�er, a similar statement applies to the higher dimensional space 

induced by the kernel.

3.3. Other SVM issues

�is section concerns some important issues of SVMs: feature selection, parameter (model) 

selection, probabilistic outputs, rule extraction, implements of algorithms and so on, in which 

the optimization models are also applied.

3.3.1. Feature selection via SVMs

Standard SVMs cannot get the importance features, while identifying a subset of features 

which contribute most to classi�cation is also an important task in machine learning. �e 

bene�t of feature selection is twofold. It leads to parsimonious models that are o�en preferred 

in many scienti�c problems, and it is also crucial for achieving good classi�cation accuracy 

in the presence of redundant features. We can combine SVM with various feature selection 

strategies, Some of them are “�lters”: general feature selection methods independent of SVMs. 

�at is, these methods select important features �rst and then SVMs are applied. On the other 

hand, some are wrapper-type methods: modi�cations of SVMs which choose important fea-

tures as well as conduct training/testing. In the machine learning literature, there are several 

proposals for feature selection to accomplish the goal of automatic feature selection in the 

SVM (Bradley, Mangasarian 1998; Guyon et al. 2001; Li et al. 2007; Weston et al. 2001; Zhu 

et al. 2004; Zou, Yuan 2008) via some optimization problems, in some of which they applied 

the 0l -norm, 1l -norm or ∞l -norm SVM and got competitive performance.

Naturally, we expect that using the pl -norm (0 1)p< <  in SVM can �nd more sparse 

solution than using 1l -norm and more algorithmic advantages. �rough combining C-SVM 

and feature selection strategy by introducing the pl -norm (0 1)p< < , the primal problem in

pl -support vector machines ( pl -SVM) is (Chen, Tian 2010; Deng et al. 2012; Tian et al. 2010)

 
, ,

1

min || ||
l

p
p i

w b
i

w C
ξ =

+ ξ∑ , (105)

 
s.t.    (( ) ) 1 ,i i iy w x b⋅ + ≥ −ξ 1, , ,i l=   (106)

 
0,iξ ≥ 1, , ,i l=   (107)

where p is a nonnegative parameter, and

 
∑
=

=
n

i

p
i

p
p ww

1

|||||| . (108)

For the case of p = 0, 0|| ||w  represents the number of nonzero components of w, for the 

case of p = 0, the problem turns to be a linear programming, for the case of p = 2, a convex 
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quadratic programming, and for the case of ∞=p , the problem is proved to be equivalent 

to a linear programming problem (Zou, Yuan 2008).

However, solving this nonconvex, non-Lipschitz continuous minimization problem is 

very di�cult. A�er equivalently transforming the problem to be

 
, , ,

1 1

min ,
n l

p
i i

w b v
i i

v C
ξ = =

+ ξ∑ ∑  (109)

 
s.t.    (( ) ) 1 , 1, , ,i i iy w x b i l⋅ + ≥ −ξ =   (110)

 
0,iξ ≥ 1, , ,i l=   (111)

 ,v w v− ≤ ≤  (112)

and introducing the �rst-order Taylor’s expansion as the approximation of this nonlinear 

objective function, this problem can be solved by a successive linear approximation algo-

rithm (Bradley et al. 1998; Deng et al. 2012). Furthermore, a lower bound for the absolute 

value of nonzero entries in every local optimal solution of l
p
-SVM is developed (Tian et al. 

2010), which re�ects the relationship between sparsity of the solution and the choice of the 

parameters C and p.

3.3.2. LOO error bounds for SVMs

�e success of SVMs depends on the tuning of their several parameters which a�ect the 

generalization error. An e�ective approach choosing these parameters which will generalize 

well is to estimate the generalization error and then search for parameters so that this esti-

mator is minimized. �is requires that the estimators are both e�ective and computationally 

e�cient. Leave-one-out (LOO) method (Vapnik, Chapelle 2000) is the extreme case of cross-

validation, and LOO error provides an almost unbiased estimate of the generalization error. 

However, one shortcoming of the LOO method is that it is highly time consuming when the 

number of training points l is very large thus methods are sought to speed up the process. 

An e�ective approach is to approximate the LOO error by its upper bound, that is computed 

by running a concrete classi�cation algorithm only once on the original training set T of 

size l . �is approach has successfully been developed for both support vector classi�cation 

machine (Gretton et al. 2001; Jaakkola, Haussler 1998, 1999; Joachims 2000; Vapnik, Chapelle 

2000), support vector regression machine (Chang, Lin 2005; Tian 2005; Tian, Deng 2005), 

and support vector ordinal regression (Yang et al. 2009). �en we can search for parameter 

so that this upper bound is minimized.

Furthermore, inspired by the LOO error bound, approaches were proposed by directly 

minimizing the expression given by the bound in an attempt to minimize leave-one-out error 

(Tian 2005; Weston 1999), and these approaches are called LOO support vector machines 

(LOOSVM). LOOSVMs also involve solving convex optimization problems, and one of which 

in such the algorithms is a linear programming problem

 
,

1

min ,
l

i
i

α ξ =
ξ∑  (113)

 
s.t.    ( ) 1 ( , ), 1, , ,i i i i i jy f x K x x i l≥ − ξ +α =   (114)
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0, 0,i iα ≥ ξ ≥ 1, , ,i l=   (115)

where

 1

( ) sgn( ( , )),
l

i i i j
i

f x y K x x
=

= α∑  (116)

and )',( xxK  is the kernel function. LOOSVMs possess many of the same properties as 

SVMs. �e main novelty of these algorithms is that apart from the choice of kernel, they are 

parameter less: the selection of the number of training errors is inherent in the algorithms 

and not chosen by an extra free parameter as in SVMs.

3.3.3. Probabilistic outputs for support vector machines

For a binary classi�cation problem with the training set (1), standard C-SVM computes a 

decision function (2) such that it can be used to predict the label of any test input x. However, 

we cannot guarantee that the deduction is absolutely correct. So sometimes we hope to know 

how much con�dence we have, i.e. the probability of the input x belonging to the positive 

class. To answer this question, investigate the information contained in g(x). It is not di�cult 

to imagine that the larger g(x) is, the larger the probability is. So the value of g(x) can be used 

to estimate the probability ( 1| ( ))P y g x=  of the input x belonging to the positive class. In fact, 

we only need to establish an appropriate monotonic function from ( , )−∞ +∞ where g(x) takes 

value to the probability values interval [0,1], such as the sigmoid function is used (Platt 2000)

 1 2

1
( ) ,

1 exp( )
p g

c g c
=

+ +
 (117)

where 1 0c < and 2c  are two parameters to be found. In order to choose the optimal values
*
1c and *

2c , an unconstrained optimization problem is constructed following the idea of 

maximum likelihood estimation

 y 1 y 1

max   (1- ),

i i

i ip p
= =−
∏ ∏  (118)

where

 
1 2

1 2

1
( , ) , 1, , .

1 exp( ( ) )
= = =

+ +
i i

i

p p c c i l
c g x c

 (119)

�is problem is a two-parameter maximization, hence it can be performed using any num-

ber of optimization algorithms, while Figure 5 shows a numerical results of the probabilistic 

outputs for a linear SVM on some data (Platt 2000).

For better implementation of solving problem (118), an improved algorithm that theoreti-

cally converges and avoids numerical di�culties was also proposed (Lin et al. 2007). 

3.3.4. Rule extraction from support vector machines

�ough SVMs are the state-of-the-art tools in data mining, their strength are also their 

main weakness, as the generated nonlinear models are typically regarded as incomprehen-

sible black-box models. �erefore, opening the black-box or making SVMs explainable, i.e. 
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extracting rules from SVMs models to mimic their behavior and give comprehensibility to 

them became more important and necessary in areas such as medical diagnosis and credit 

evaluation (Martens et al. 2008).

�ere are several techniques to extract rules from SVMs so far, and one potential method 

of classifying these rule extraction techniques is in terms of the “translucency”, which is of 

the view taken within the rule extraction method of the underlying classi�er. Two main 

categories of rule extraction methods are known as pedagogical (Setiono et al. 2006) and 

decompositional (Fung et al. 2005; Núñez et al. 2002). Pedagogical algorithms consider the 

trained model as a black box and directly extract rules which relate the inputs and outputs 

of the SVMs. On the other hand, decompositional approach is closely related to the internal 

workings of the SVMs and their constructed hyperplane.

Fung et al. (2005) present an algorithm to extract propositional classi�cation rules from 

linear SVMs. �e method is considered to be decompositional because it is only applicable 

when the underlying model provides a linear decision boundary. �e resulting rules are 

parallel with the axes and nonoverlapping, but only (asymptotically) exhaustive. �e algo-

rithm is iterative and extracts the rules by solving a constrained optimization problem that is 

computationally inexpensive to solve. Figure 6 shows execution of the algorithm for binary 

classi�cation and only rules for the black squares are being extracted (Fung et al. 2005). 

Di�erent optimal rules will be extracted according to di�erent criteria, and maximizes the 

log of the volume of the region that the rules encloses is one kind of which, leads to solving 

the following optimization problem

 y 1

max  log( ),
n

i

i
x R

x
∈ =

∏  (120)

 
s.t.   ( ) 0,w x b⋅ + =  (121)

 0 1.x≤ ≤  (122)

Fig. 5. Probabilistic outputs for a linear SVM 
on some data
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However, existing rule extracted algorithms have limitations in real applications especially 

when the problems are large scale with high dimensions. So the incorporation of the feature 

selection into the rule extraction problem is also a possibility to be explored, and there are 

already some papers considering this topic (Yang, Tian 2011).

4. Applications in economics

SVMs have been successfully applied in many �elds including economics, �nance and manage-

ment. Some applications of SVMs to �nancial forecasting problems have been reported (Cao, 

Tay 2001, 2003; Kim 2003; Tay, Cao 2001, 2002). Tay and Cao (2002) proposed C-ascending 

SVMs by increasing the value of parameter C, this idea was based on the assumption that it 

was better to give more weights on recent data than distant data. �eir results showed that 

C-ascending SVMs gave better performance than standard SVM in �nancial time series 

forecasting. Cao and Tay (2003) also compared SVMs with multilayer backpropagation (BP) 

neural network and the regularized radial basis function (RBF) neural network. Simulation 

results showed that SVMs with adaptive parameters outperform two other methods.

Bankruptcy prediction is an important and widely studied topic since it can have signi�cant 

impact on bank lending decisions and pro�tability, SVMs were successfully adopted to this 

problem in recent years (Fan, Palaniswami 2000; Huang et al. 2004; Min, Lee 2005; Min et al. 

2006; Shin et al. 2005). �e results for di�erent real world data sets demonstrated that SVMs 

outperform BP at the accuracy and generalization performance. �e e�ect of the variability 

in performance with respect to various values of parameters in SVMs were also investigated.

Due to recent �nancial crises and regulatory concerns, credit risk assessment is an area 

that has seen a resurgence of interest from both the academic world and the business com-

munity. Since credit risk analysis or credit scoring is in fact a classi�cation problem, so lots 

of classi�cation techniques were applied to this �eld, and naturally competitive SVMs can be 

used (Stoenescu Cimpoeru 2011; Shi et al. 2005; �omas et al. 2005; Van Gestel et al. 2003; Yu 

et al. 2009; Zhou et al. 2009). Additionally, combining genetic algorithms with SVMs, named 

hybrid GA-SVMs can simultaneously perform feature selection task and model parameters 

optimization (Huang et al. 2007). Because in credit scoring areas we usually cannot label one 

customer as absolutely good or bad, a fuzzy support vector machine di�erent with model 

(32)~(34) was proposed to treat every inputs as both positive and negative classes, but with 

di�erent memberships (Wang et al. 2005),
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s.t.   ( ) 1 , 1, , ,i iw x b i l⋅ + ≥ −ξ =   (124)

 
( ) 1 , 1, , ,i iw x b i l⋅ + ≤ − +η =   (125)

 
0, 0, 1, , ,i i i lξ ≥ η ≥ =   (126)

where m
i
 is the membership for the ith inputs to the class y

i
.
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Other applications in economics, including motor insurance fraud management (Furlan 

et al. 2011), environmental risk assessment (Kochanek, Tynan 2010), e-banking website qual-

ity assessment (Kaya, Kahraman 2011) and etc., can also be explored by SVMs.

5. Remarks and future directions

�is paper has o�ered an extensive review of optimization models of SVMs, including least 

squares SVM, twin SVM, AUC Maximizing SVM, and fuzzy SVM for standard problems; 

support vector ordinal machine, semi-supervised SVM, Universum SVM, robust SVM, knowl-

edge based SVM, and multi-instance SVM for nonstandard problems, as well as pl -norm 

SVM for feature selection, LOOSVM based on minimizing LOO error bound, probabilistic 

outputs for SVM, and rule extraction from SVM. �ese models have already been used in 

many real-life applications, such as text categorization, bio-informatics, bankruptcy predic-

tion, remote sensing image analysis, network intrusion and detection, information security, 

and credit assessment management. Some applications to �nancial forecasting, bankruptcy 

prediction, credit risk analysis are also reviewed in this paper. Researchers and engineers in 

data mining, especially in SVMs can bene�t from this survey in better understanding the 

essence of the relation between SVMs and optimization. In addition, it can also serve as a 

reference repertory of such approaches.

Research in SVMs and research in optimization have become increasingly coupled. 

In this paper, we can see optimization models including linear, nonlinear, second order 

cone, and semi-de�nite, integer or discrete, semi-in�nite programming models are used. 

Of course, there are still many optimization models of SVMs not discussed here, and new 

practical problems remaining to be explored present new challenges to SVM to construct 

new optimization models. �ese models should also have the same desirable properties as 

the models in this paper including (Bennett et al. 2006): good generalization, scalability, 

simple and easy implementation of algorithm, robustness, as well as theoretically known 

convergence and complexity.
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