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Separated representations based on finite sum decompositions constitute an appealing strategy for reducing 
the computer resources and the calculation costs by reducing drastically the number of degrees of freedom 
that the functional approximations involve (the number of degrees of freedom scale linearly with the 
dimension of the space in which the model is defined instead of the exponential growing characteristic of 
mesh-based discretization strategies). In our knowledge the use of separated representations is the only 
possibility for circumventing the terrific curse of dimensionality related to some highly multidimensional 
models involving hundreds of dimensions, as we proved in some of our former works. Its application is not 
restricted to multidimensional models, obviously separated representation can also be applied in standard 
2D or 3D models, allowing for high resolution computations. Because its early life numerous issues 
persist, many of them attracting the curiosity of many research groups within the computational mechanics 
community. In this paper we are focusing in two issues never until now addressed: (i) the imposition 
of non-homogenous essential boundary conditions and (ii) the consideration of complex geometries.

KEY WORDS: curse of dimensionality; separation of variables; singular value decomposition; essential
boundary conditions

1. INTRODUCTION

Some models encountered in science and engineering are sometimes defined in multidimensional

spaces (as the ones involved in quantum mechanics or kinetic theory descriptions of materials,
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including complex fluids) that exhibit the terrific curse of dimensionality when usual mesh-based

discretization techniques are applied.

In those models the difficulty is quite natural and their solution needs for new strategies. One

possibility lies in the use of sparse grids [1] but its use is restricted to models defined in spaces

of moderate dimensions. Another technique able to circumvent, or at least alleviate, the curse of

dimensionality consists of using a separated representation of the unknown field as we proposed

in our former works [2, 3] and then applied in numerous contexts: (i) quantum chemistry [4]; (ii)

Brownian dynamics [5]; (iii) kinetic theory description of polymers solutions and melts [6]; (iv)

kinetic theory descriptions of rods suspensions [7]; among many others.

Basically, the separated representation of a generic function u(x1, . . . , xD) (also known as finite

sums decomposition) writes:

u(x1, . . . , xD)≈
i=N
∑

i=1

F i
1(x1)×·· ·× F i

D(xD) (1)

This kind of representation is not new, it was widely employed in the last decades in the

framework of quantum chemistry. In particular the Hartree–Fock (that involves a single product of

functions) and post-Hartree–Fock approaches (as the MCSCF that involves a finite number of sums)

made use of a separated representation of the wavefunction [8]. In the context of computational

mechanics a similar decomposition was proposed, that was called radial approximation and that

was applied for separating the space and time coordinates in thermomechanical models [9].
This kind of approximation only needs a technique able to construct, in a way completely

transparent for the user, the separated representation of the unknown field involved in a partial

differential equation (PDE).

The technique that we proposed for computing the different functions involved in Equation (1)

consists of an alternating directions linearization strategy that we summarize here. For the sake

of clarity, and without any loss of generality, we restrict our discussion to the D-dimensional

Poisson’s equation

�u =− f (x1, x2, . . . , xD) (2)

where u is a scalar function of (x1, x2, . . . , xD). Problem (2) is defined in the domain

(x1, x2, . . . , xD)∈�=(−L ,+L)D with vanishing essential boundary conditions.

The problem solution can be written in the form

u(x1, x2, . . . , xD)=
∞
∑

j=1

� j

D
∏

k=1

Fk j (xk) (3)

where Fk j is the j th basis function, with unit norm, which only depends on the kth coordinate.

It is well known that the solution of numerous problems can be accurately approximated using

a finite (sometimes very reduced) number (N ) of approximation functions, i.e.:

u(x1, x2, . . . , xD)≈
N
∑

j=1

� j

D
∏

k=1

Fk j (xk) (4)

The previous expression implies the same number of approximation functions in each dimension,

but each one of these functions could be expressed in a discrete form using different number of

parameters (nodes of the 1D grids).
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Now, an appropriate numerical procedure is needed for computing the coefficients � j as well

as the N approximations functions in each dimension.

The proposed numerical scheme consists of an iteration procedure that solves at each iteration n

the following three steps:

Step 1: Projection of the solution in a discrete basis. If we assume the functions Fk j (∀ j ∈
[1, . . . ,n];∀k ∈[1, . . . , D]) known (verifying the boundary conditions), the coefficients � j can

be computed by introducing the approximation of u into the Galerkin variational formulation

associated with Equation (2):

∫

�

∇u∗ ·∇u d�=

∫

�

u∗ f d� (5)

Introducing the approximation of u and u∗

u(x1, x2, . . . , xD)=
n
∑

j=1

� j

D
∏

k=1

Fk j (xk) (6)

and

u∗(x1, x2, . . . , xD)=
n
∑

j=1

�∗
j

D
∏

k=1

Fk j (xk) (7)

we have

∫

�

∇

(

n
∑

j=1

�∗
j

D
∏

k=1

Fk j (xk)

)

·∇

(

n
∑

j=1

� j

D
∏

k=1

Fk j (xk)

)

d�=

∫

�

(

n
∑

j=1

�∗
j

D
∏

k=1

Fk j (xk)

)

f d� (8)

Now, we assume that f (x1, . . . , xD) can be written in the form

f (x1, . . . , xD)≈
m
∑

h=1

D
∏

k=1

fkh(xk) (9)

Equation (8) involves integrals of a product of D functions each one defined in a different

coordinate. Let
∏D

k=1 gk(xk) be one of these functions to be integrated. The integral over � can

be performed by integrating each function in its definition interval and then multiplying the D

computed integrals according to

∫

�

D
∏

k=1

gk(xk)d�=
D
∏

k=1

∫ L

−L

gk(xk)dxk (10)

which makes possible the numerical integration in highly dimensional spaces.

Now, due to the arbitrariness of the coefficients �∗
j , Equation (8) allows to compute the

n-approximation coefficients � j , solving the resulting linear system of size n×n. This problem

is linear and moreover rarely exceeds the order of tens of degrees of freedom. Thus, even if the

resulting coefficient matrix is densely populated, the time required for its solution is negligible

with respect to the one required for performing the approximation basis enrichment (step 3).
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Step 2: Checking convergence. From the solution of u at iteration n given by Equation (6) we

compute the residual Re related to Equation (2):

Re=

√

∫

�
(�u+ f (x1, . . . , xD))2

‖u‖
(11)

If Re<� (epsilon is a small enough parameter) the iteration process stops, yielding the solution

u(x1, . . . , xD) given by Equation (6). Otherwise, the iteration procedure continues.

The integral in Equation (11) can be written as the product of one-dimensional integrals by

performing a separated representation of the square of the residual.

Step 3: Enrichment of the approximation basis. From the coefficients � j just computed the

approximation basis can be enriched by adding the new function
∏D

k=1 Fk(n+1)(xk). For this purpose

we solve the non-linear Galerkin variational formulation related to Equation (2)
∫

�

∇u∗ ·∇u d�=

∫

�

u∗ f d� (12)

using the approximation of u given by:

u(x1, x2, . . . , xD)=
n
∑

j=1

� j

D
∏

k=1

Fk j (xk)+
D
∏

k=1

Rk(xk) (13)

The weighting function can be expressed as:

u∗(x1, x2, . . . , xD)=R∗
1(x1)×R2(x2)×·· ·× RD(xD)+·· ·+R1(x1)×R2(x2)×·· ·× R∗

D(xD) (14)

This leads to a non-linear variational problem, whose solution allows to compute the D functions

Rk(xk). Functions Fk(n+1)(xk) are finally obtained by normalizing, after convergence of the non-

linear solver, the functions R1, R2, . . . , RD .

To solve this problem we introduce a discretization of those functions Rk(xk). Each one of

these functions is approximated using a 1D finite element (FE) description. If we assume than

pk nodes are used to construct the interpolation of function Rk(xk) in the interval [−L , L], then

the size of the resulting discrete non-linear problem is
∑k=D

k=1 pk . The price to pay for avoiding

a whole mesh in the multidimensional domain is the solution of a non-linear problem. However,

even in high dimensions the size of the non-linear problems remains moderate and no particular

difficulties have been found in its solution up to hundreds dimensions. Concerning the computation

time, even when the non-linear solver converges quickly, this step consumes the main part of the

global computing time.

Different non-linear solvers have been analyzed: fixed-point, Newton or one based on an alter-

nating directions scheme. In this work the last strategy was retained. Thus, in the enrichment step,

function Rs+1
1 (x1) is updated by assuming known all the others functions (given at the previous iter-

ation of the non-linear solver Rs
2(x2), . . . , Rs

D(xD)). Then, functions Rs+1
1 (x1), Rs

3(x3), . . . , Rs
D(xD)

are assumed known for updating function Rs+1
2 (x2), and so on until updating the last function

Rs+1
D (xD). Now the convergence is checked by calculating

∑i=D
i=1 ‖Rs+1

i (xi )− Rs
i (xi )‖

2. If this

norm is small enough we can define the functions Fk(n+1)(xk) by normalizing the functions

R1, R2, . . . , RD and come back to step 1. On the contrary, if this norm is not small enough, a new

iteration of the non-linear solver should be performed by updating functions Rs+2
i (xi ), i =1, . . . , D
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and then checking again the convergence. Despite its simplicity, our experience proves that this

strategy is in fact very robust.

We must recall that the technique that we proposed in the papers just referred, is not a universal

strategy able to solve any kind of multidimensional PDE. Thus, the efficient application of the

technique that we just described requires the separability of all the fields involved in the model.

Obviously, this separability is not always possible because some functions need a tremendous

number of sums. On the other hand, even when the field is separable (one could perform this sepa-

ration by invoking, for example, the singular value decomposition (SVD) or the multidimensional

SVD) the finite sums decomposition of general multidimensional functions is not realistic because

the amount of memory needed for storing the discrete form of such functions before applying the

multidimensional SVD.

In many physical models (see for example [2, 4]), a fully separation (consisting of a sum of

products of one-dimensional functions) could not be envisaged from a practical point of view.

Thus, a better approximation lies in writing

u(x1, . . . ,xd)≈
i=N
∑

i=1

F i
1(x1)×·· ·× F i

D(xd) (15)

where the different functions taking part in the finite sums decomposition are defined in spaces of

moderate dimensions, that is xi ∈�i ⊂R
qi , where usually qi =1, 2 or 3.

When the model is separable, as it is the case in many physical models coming from computa-

tional science and engineering, the unknown field involved in the model can be expressed as a tensor

product of approximations defined in lower-dimensional domains, eventually one-dimensional.

However in that case, two major difficulties appear: (i) the first one is related to the enforcement

of non-homogeneous essential boundary conditions; and (ii) the representation of geometrically

complex domains other than cubes or hyper-cubes. This paper concerns these two difficulties that

never until now, up to our knowledge, have been addressed. For the sake of clarity (and mainly

for the ease of representation of the results), and without loss of generality, in what follows we

restrict our analysis to 2D or 3D models.

The simplest way to enforce non-homogeneous essential boundary conditions (i.e. u =ug in ��)

consists in defining a function û(x), x∈�⊂R
D , with the requested regularity, verifying the

boundary conditions, i.e. û(x∈��)=ug(x∈��). Now, one could perform the separation of û, by

invoking the SVD or the multidimensional SVD, leading to

û(x1, . . . , xD)≈
i=M
∑

i=1

Gi
1(x1)×·· ·×Gi

D(xD) (16)

that allows defining the approximation of the unknown field as

u(x1, . . . , xD)≈
i=M
∑

i=1

Gi
1(x1)×·· ·×Gi

D(xD)+
i=N
∑

i=1

F i
1(x1)×·· ·× F i

D(xD) (17)

where the second part of the right member
∑i=N

i=1 F i
1(x1)×·· ·× F i

D(xD) is subjected to homogenous

boundary conditions.

Finally, in some cases, even when the separability is assured, the geometrical complexity of

the domain needs for special treatments. Different possibilities could be envisaged. This paper

explores a very simple strategy based on the use of R-functions.
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Sections 2 and 3 focus in the treatment of non-homogeneous essential boundary conditions and

complex geometries, respectively, within the separated representation framework. Finally, Section 4

presents some numerical examples proving the efficiency of the strategies proposed.

2. IMPOSITION OF NON-HOMOGENEOUS ESSENTIAL BOUNDARY CONDITIONS

Consider, for simplicity and without loss of generality, the following problem:

−�u = f (x1, x2, . . . , xD) in �=(0, L)D (18)

subjected to the boundary conditions:

u =ug 
=0 on �≡�� (19)

Let us assume that we are able to find a function �, continuous in �, such that −��∈ L2(�)

verifying Equation (19) [10]. Then, the solution of the problem given by Equations (18) and (19)

can be obtained straightforwardly by

u =�+z (20)

where we thus face a problem in the z variable

−�z = f +�� in � (21)

z = 0 on � (22)

solvable by the method of separation of variables before presented.

2.1. Construction of the function �

We thus take an extension of the essential boundary conditions, ug , �, within the domain �. The

solution will be constructed in the form

u ≈�+
Q
∑

j=1

� j

D
∏

k=1

Fk j (xk) (23)

thus achieving the exact imposition of essential boundary conditions. In the last equation, Fk j (xk)

is a function of the approximation space of the solution with homogeneous boundary conditions.

In practice, the function ug can be defined at different portions of the boundary, through

different functions �i . Assuming the domain where the model is defined given by the hypercube

(0, L)D , essential boundary conditions must be enforced on all the (D−1)-dimensional faces of

the hypercube: the two limit points of a 1D segment, the four faces of a 2D square, the six faces

of a 3D cube, and so on. Thus, the number of faces of a D-dimensional hypercube results P =2D

on which different essential boundary conditions �i are assumed prescribed.

u(�1) = �1

u(�2) = �2

...

u(�P) = �P

(24)

where �i represent the different (D−1)-dimensional faces.
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Each one of these functions �i can be grouped to form a single, global, function � utilizing,

for instance, the transfinite interpolation method proposed in [11]. Each portion of the essential

boundary ��i can be described by an implicit function wi (x1, x2, . . . , xi−1, xi+1, . . . , xD)=0, where

wi is a function vanishing on ��i and positive elsewhere (the distance function, for instance, can

be considered as a suitable wi function). Thus,

�=

∑P
i=1 �i

∏P
j=1; j 
=i w j

∑P
i=1

∏P
j=1; j 
=i w j

(25)

constitutes a generalization of Lagrangian interpolation. The resulting function � interpolates each

�i along each wi .

Following this procedure, the weak form of the problem will be: Find z ∈ H1(�) such that for

every z∗ ∈ H1
0 (�)

∫

�

∇z∗ ·∇z d�=

∫

�

z∗ f d�+

∫

�

∇z∗ ·∇�d� (26)

holds.

Remark 1

The proposed form for the function �, given by Equation (25) is singular at some points of the

boundary. Provided that numerical integration has been performed in this work through standard,

first order, Gauss quadrature rules, no integration point will be placed in these singular positions.

There exist, however, some alternative expressions for the function � that posses singular points

at different positions. The interested reader can consult their form in reference [12] and references

therein.

Finally, the obtained function �, which is generally not product or sum separable, according

to [13], is separated approximately by employing the SVD technique. To this end, we employ

singular values up to a given precision, which is normally fixed to 10−5‖�‖.

3. PROBLEMS DEFINED OVER GENERAL DOMAINS

The proposed solution strategy is based on the method of the characteristic function [14]. Let us

consider a function � :�� →R, with �
� a hypercube (usually the smallest one) containing the

arbitrarily-shaped domain �, and with continuous derivatives such that:

�(x) > 0, x∈�

�(x) = 0, x∈��

�(x) = 0, x /∈�

|∇�(x)| � �>0, x∈��

(27)

The solution space will then be S�
h ={u | u =�v, v∈ H1(��)}⊂ H1

0 (��).
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The approximate solution to the problem given by Equations (18)–(19) will be uh ∈S�
h , where

uh is the solution of the problem:

Find u ∈S�
h such that for every w∈ H1

0 (��)

∫

�
�
∇w ·∇u d�=

∫

�
�
w f d� (28)

andS�
h =�Sh , withSh the finite-dimensional trial space, that depends on the particular method

employed.

A study of the error and convergence associated with this method can be found in [14] and

references therein, whereas the demonstration of the completeness of the method is accom-

plished in [12].
The final form of the solution in the context of a separated representation will then be:

u ≈� ·

[

Q
∑

j=1

� j

D
∏

j=1

Fk j (xk)

]

(29)

which will verify straightforwardly the homogeneous essential boundary conditions enforced along

the boundary.

Remark 2

If the problem under consideration possesses non-homogeneous essential boundary conditions and

is defined in a domain other than an hypercube at the same time, the obvious choice for the

approximation combines the techniques developed in Sections 2 and 3 above:

u ≈�+�·

[

Q
∑

j=1

� j

D
∏

j=1

Fk j (xk)

]

(30)

3.1. Construction of the function �

It is clear that this approach is not very useful unless a method to easily construct such function

� in a general case is established. In this case we employ R-functions [11].
An R-function is a real-valued function whose sign is completely defined by the sign of its

arguments. Such functions encode boolean operations that help to construct the combinations of

simple, basis, functions. For instance, consider the following functions [11], that behave like the

logical operators and and or:

x ∧ y ≡ (x + y−

√

x2 + y2) (31)

x ∨ y ≡ (x + y+

√

x2 + y2) (32)

Consider, for instance, the domain shown in Figure 1. The domain is defined by means of a set

of six inequalities of the general form

f1 = y�y1

f2 = x�x2

f3 = y�y3

. . .

(33)
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f1

f2

f3

f4

f5
f6

Figure 1. Definition of the boundary of a given domain by a set of six inequalities.
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Figure 2. Essential boundary of a given domain (a) and associated R-function (b).

These inequalities can be combined to render a definition of the whole domain as:

�=( f1 ∨ f2)∧ f3 ∧ f4 ∧ f5 ∧ f6 (34)

An example of the performance of this technique is shown in Figure 2, where the essential

boundary of the domain is defined (Figure 2(a)) by black lines and the resulting R-function is

depicted (Figure 2(b)).

The question now lies in establishing a separated representation for the function �. By

employing standard SVD we can employ up to m singular values of the decomposition,

�11 ×·· ·×�1D, . . . ,�m1 ×·· ·×�m D , necessary to obtain a prescribed precision. Thus, the final

expression for the approximate solution of the problem will be

u ≈[�11(x1)×·· ·×�1D(xD)+·· ·+�m1(x1)×·· ·×�m D(xD)]×

[

N
∑

j=1

� j

D
∏

j=1

Fk j (xk)

]

(35)

The difficulty in this case is that a large number of terms in the SVD decomposition of the

function � would lead to a complex expression for the approximate solution with a large number

of terms in the sum. Each term would be integrated in its own 1D space through standard Gauss

quadratures. Thus, finally, the above difficulty can be easily circumvented.
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4. NUMERICAL EXAMPLES

In this section we describe some simple numerical experiments for illustrating the potential of the

discretization technique based on the use of separated representations.

4.1. A first example

Let us consider the problem

�u =0 in (0,1)3 (36)

with

u = x on ��≡�

In this case, essential boundary conditions can be expressed in the form given by Equation (24) as

�1 = 0 on �1 =(0, y, z)

�6 = 1 on �6 =(1, y, z)

�i = x on the other four faces of the cube

With the help of the technique developed before, the obtained � function is shown in Figure 3

that corresponds to the exact solution �= x .

The weak form of the problem looks:
∫

�

∇z∗ ·∇z d�=

∫

�

z∗ f d�+

∫

�

∇z∗ ·∇�d�=0 (37)

Solving the problem in variable z gives the trivial solution z =0 and thus we have

u =�+z = x +0= x (38)

which coincides with the analytical solution of the problem, as expected.

4.2. A second, more elaborated, problem

Let us consider now the problem

�u =0 in (−1,1)2 (39)

subjected to the boundary condition

u = x2 + y2 on ��

that in this case do not verify the PDE (39).

In this case, with the help of the approximation proposed in Equation (25), we obtain the

following function verifying essential boundary conditions:

�=
−2+x4 + y4

−2+x2 + y2
(40)
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Figure 3. Function � obtained.

Figure 4. Function � for the second problem, Equation (39).

which is represented in Figure 4. This function cannot be written as a closed sums decomposition

according to [13]. Applying SVD, we arrive to the one-dimensional functions depicted in Figure 5,

that approximate the function � to the chosen level of precision, 10−5‖�‖ in this case.
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Figure 6. Error in the approximation of � by employing the first six SVD values.

The error generated in this separation, by employing the first six singular values of the decom-

position, is depicted in Figure 6.

The method before described was applied in meshes composed by 15, 20, 30, 50, 80 and 130

nodes along each spatial direction. The solution was compared with one approximate solution

obtained by standard FEs in a mesh composed by 40 000 nodes. The obtained solution, that will

be considered as the reference one, is depicted in Figure 7.

The solution strategy can be resumed as follows. For each discretization, ranging from 15 nodes to

130 nodes at each spatial direction, we have employed the same SVD decomposition of function �,

constructed to approximate the function to an error of 10−5. The separated representation strategy

12



Figure 7. Solution obtained by standard FEM, assumed as the reference solution of the problem.

d.o.f. along each spatial direction
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Figure 8. Solution convergence obtained by the proposed technique.

presented in Sections 1 and 2 has been employed until reaching a small enough residual. The

obtained error for each discretization along each spatial direction is depicted in Figure 8.

The final solution for the separation of variables technique is depicted in Figure 9. The

homogeneous part of the solution, i.e. the solution for the problem in z variable, is shown in

Figure 10.
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Figure 9. Solution obtained by the proposed technique. Mesh consisting of 80 nodes in each direction.

Figure 10. Solution obtained by the proposed technique for the homogeneous
problem in z variable. Mesh of 80 nodes.

4.3. Extension of the proposed technique to higher-dimensional problems

The main issue associated with the straightforward extension of the proposed technique to higher-

dimensional problems lies in obtaining the appropriate counterpart of the SVD decomposition

in high dimensions. To this end, we have employed the technique implemented by Kolda and

Bader [15], in conjunction with the MATLAB tensor toolbox [16]. In general, we seek for
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Figure 11. Functions obtained along x (a), y (b) and z (c) spatial directions for the boundary conditions
of the problem stated in Equation (43).

decompositions of our function �, whose nodal values are stored in an order n (n =3 in the

example here considered, for simplicity of graphical representation) tensor A, in the form

A=R×1 U×2 V×3 W×4 . . . (41)

where R is a diagonal tensor and U, V, W, . . . are the components or factors of the decomposition.

Columns of the factors are orthonormal in standard, two-dimensional SVD, but this is not possible,

in general, for tensors of order three or higher. The products involved in the previous decomposition

are defined as follows. Mode-n multiplication, denoted by ×n , means to multiply the matrix times

the tensor in the nth mode. In other words, the n-mode product of a tensor C∈R
I1×I2×···×IN

by a matrix U∈R
Jn×In is an I1 × I2 × . . . In−1 × Jn × In+1 ×·· ·× IN -tensor whose components
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Figure 12. Functions obtained along x (a), y (b) and z (c) spatial directions for
the problem stated in Equation (43).

are given by

(C×n U)i1i2...in−1 jn in+1...iN
=

∑

in

ci1i2...in−1in in+1...iN
u jn in (42)

In this work we have employed the PARAFAC (Parallel Factors) decomposition, also known

as CANDECOMP or Canonical Decomposition, provided by the MATLAB tensor toolbox [16].
This technique provides a diagonal tensor R, suitable for the purpose of this work. The r most

relevant entries of this tensor are employed in the decomposition, in order to accomplish with a

user-predefined tolerance in the representation of the function �.
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Figure 13. Solution obtained by the proposed technique for the problem with non-homogeneous boundary
conditions in three dimensions. Mesh of 40 elements along each direction.

To analyze the behavior of the technique, we have extended the previous problem to three-

dimensional settings

�u =0 in (−1,1)3 (43)

subjected to the boundary condition

u = x2 + y2 +z2 on ��

The higher-order SVD decomposition of the function � up to the tolerance 10−6‖�‖ provides

the functions depicted in Figure 11(a)–(c). Only four functions along each spatial direction were

necessary.

With these functions thus calculated, we let the method run to obtain the solution to the problem

as depicted along each direction in Figure 12. The global, three-dimensional, solution to the

problem is depicted in Figure 13. In this case, 18 functions were necessary along each spatial

direction, that is a sum decompositions consisting of 18 sums, to reach the before-mentioned

accuracy. This figure also depicts the trace of the solution at the plane x =0.

4.4. A numerical model involving 109 degrees of freedom

In order to show the potential of the proposed method, we have analyzed the problem

�u =2(1− y4)(1−z6)+12(1−x2)y2(1−z6)+30(1−x2)(1− y4)z4 in (−1,1)3 (44)

(the same analyzed in [2]), subjected to the boundary conditions

u =0 on ��
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Figure 14. Functions obtained along x (a), y (b) and z (c) spatial directions for
the problem stated in Equation (44).

The analytical solution to this problem is given by the function u =(1−x2)(1− y4)(1−z6). The

solution has been approximated by using a separated representation where each one-dimensional

function along each coordinate was approximated by using standard piecewise linear FE shape

functions on a grid consisting of 1001 nodes on each direction.

The different computed one-dimensional functions are depicted in Figure 14(a)–(c). As expected

an accurate enough solution was obtained after only one iteration, as was the case in [2], because

the particular form of the exact solution that consists of a single functional product.

The solution obtained is represented in Figure 15, where derefinement has been applied to the

results by employing a coarser mesh (for obvious reasons, it is difficult to depict the results on

a mesh of 109 nodes). The error obtained is depicted in Figure 16, where a slice on an arbitrary

section of the domain has been performed for clarity.
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Figure 15. Solution of the problem stated in Equation (14).

Figure 16. Slice on the error map of the problem stated in Equation (14).

In this example we do not pursue accuracy, but testing the possibility of employing a huge

number of degrees of freedom. What is noticeable about this solution, which approaches the limits

of traditional FEs, is that, despite the extremely high number of degrees of freedom involved,

the Matlab code ran in around 10 s on a PC with four processors (only one was employed, no
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Figure 17. Geometry of the problem in Section 4.5.
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Figure 18. Characteristic function for the problem in Section 4.5.

parallel calculation was allowed, even if parallelization is an easy matter in the context of separated

representations) with 1.96 Gb of RAM memory each, running under Linux.

4.5. Models defined in domains other than hypercubes

To show that the proposed method is applicable to problems defined over irregularly shaped

domains, other than hypercubes, we consider the following problem defined over a cylindrical

domain whose geometry is depicted in Figure 17. The problem is defined as �u =1.0, with u =0

on ��.

Since the analytical solution is not known, we have compared the results with those from a finite

element simulation over a fine enough mesh, using standard linear triangular elements over the

actual geometry of the domain. By applying the technique explained in Section 3.1, we computed

the characteristic function depicted in Figure 18.

In order to apply the separated representation strategy, we first embed the geometry in a squared

in which each axis contains 60×60 nodes. The solution outside the domain of interest depicted

in Figure 17 is obviously discarded.
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Figure 20. Error in the approximation of the problem in Section 4.5.

By comparing the separated representation solution to that obtained by a dense enough FE mesh,

and by using the norm ‖e‖2 =(1/n)

√

∑n
i e2

i (with n the number of points in which the error is

evaluated and ei the pointwise error at that points), we have obtained after the first iteration an

error of 2.97×10−5, with no significant improvement by adding other sums of the decomposition.

The computed solution is depicted in Figure 19. If more accurate solutions are desired, higher

nodal densities along each direction should be employed. It is important to note that the separated

representation solution cannot produce solution more accurate than the ones related to a finite

element FE discretization on the mesh resulting from the one-dimensional nodal distributions

tensor product (Figure 20).
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5. CONCLUSIONS

Problems defined in high-dimensional spaces are very common in Engineering and Applied

Sciences. The common feature of all these models relies in the exponentially growing size of

the mesh with the number of dimensions of the problem. In previous works by the authors, a

technique based on the use of a separated representation consisting of a finite sums decomposition

has proven to be very useful for some of these problems.

However, the theoretical establishment of these techniques still deserves further developments.

In this paper we have dealt with two particular features of the method, never until now, in our

knowledge, addressed. The first one is the imposition of non-homogeneous essential boundary

conditions and the second one is related to the simulation in domains other than hypercubes.

The proposed technique is based upon the construction of a change of variable for the first

case. This change of variable must be compatible, of course, with the separated representation

strategy needing the use of multidimensional SVD techniques for that purpose. The second issue

related to the treatment of complex geometries has been accomplished through the method of

the characteristic function, a very classical method, recently recovered within the framework of

meshless methods. Using both strategies we have solved some numerical models proving the

usefulness of the proposed techniques and, in turn, enlarge its field of application. We believe

that the proposed techniques have an enormous potential in a wide range of applications, and this

constitutes our current effort of the research.

The extension of these strategies to some physical models defined in high dimensions and the

consideration of general boundary conditions including general natural conditions are some works

in progress.
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