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1 Introduction

Micromagnetics is a strikingly simple and remarkably powerful theory. At
its core is the micromagnetic energy, whose local minima represent the sta-
ble magnetization patterns of a ferromagnetic body. This theory is now
routinely used for the analysis and design of magnetic devices. It explains
observations on many length scales, from nanometers to microns. It also
explains magnetic hysteresis, through the multiplicity of local minima.

Micromagnetics has mainly been applied in two alternative ways. Before
the advent of computing, analytical solutions were obtained by minimizing
the energy over a suitable class of trial fields; a classic example is the Stoner-
Wohlfarth theory of magnetic switching [108]. Since the advent of comput-
ing, micromagnetics has mainly been applied numerically. Simulation has
been very successful, giving detailed information about pattern formation
and hysteresis in samples up to about a micron in size.

Both these approaches have limitations. When we minimize the energy
over a restricted class of magnetizations, the answer is limited by the cor-
rectness of the ansatz. Many analytical solutions are now known to be
wrong (though still informative), because the true solution – observed nu-
merically and/or experimentally – does not match the ansatz. For exam-
ple, the Stoner-Wohlfarth theory matches experiment only for the smallest
nanoscale particles. Numerical simulation is free from this difficulty; it is,
in fact, the ideal tool for answering specific questions about submicron-scale
phenomena. However we seek understanding as well as answers. For ex-
ample, why do we see boundary vortices but not interior vortices at some
length scales? And what determines the familiar pattern of a cross-tie wall?
Simulation alone cannot answer such questions. Moreover simulation is lim-
ited to relatively small ferromagnets. Owing to the presence of small length
scales (domain walls, Bloch lines) and the nonlocal character of the energy
(dipolar interaction), fully-resolved computations are limited – even using
the most powerful computers – to dimensions on the order of a few microns
or less.

Thus the understanding and utilization of micromagnetics has remained
a challenge. Recently two new approaches have begun to emerge:

(a) identifying the scaling law of the minimum energy, and the character
of magnetization patterns that achieve it; and

(b) identifying simpler models, valid in appropriate regimes, whose behav-
ior is easier to understand or simulate.
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This review article provides an introduction to these new methods, and a
survey of the insight they provide.

The new approaches are both based on asymptotic analysis. They take
advantage of the presence of small nondimensional ratios, for example ex-
change length or film thickness divided by diameter. The asymptotic anal-
ysis assumes that some or all of these ratios tend to zero, with specified
relations between them. The existence of more than one nondimensional
parameter makes the problem rich, since there are several distinct regimes.
By identifying and exploring them we obtain a sort of “phase diagram.”

The new approaches are mathematically rigorous. To identify the scal-
ing law of the minimum energy one must prove matching upper and lower
bounds. The upper bound is usually familiar – obtained by the classi-
cal method of minimizing the energy over a suitable class of trial fields.
The lower bound, however, is usually unfamiliar. By proving an ansatz-
independent lower bound that matches an ansatz-dependent upper bound,
we effectively prove the correctness (or at least the adequacy) of the ansatz.
In some settings we get the energy scaling law but not the optimal prefactor.
In other settings we identify the prefactor as well, as the minimum value of
a suitable “asymptotic problem.”

Some readers may wonder how one can ever hope to prove an ansatz-
independent bound. For convex variational problems the answer is familiar:
every test field for the dual problem gives a lower bound. For nonconvex
problems there is no such universal tool. Most of our examples use the
presence of a small parameter and draw from the theory of Γ-convergence.

The goal of analysis is not to avoid simulation, but to maximize its utility.
This is especially clear in Section 5, where the focus is on relatively large
thin films. Fully-resolved simulations are simply not possible in this regime.
Our asymptotic problem, on the other hand, is accessible numerically. It
uniquely determines the magnetic charge. Moreover, there is a naturally
associated domain structure, which appears to be the ground state.

The achievements surveyed in this article include:

(1) A systematic analysis of soft thin films (Section 4). We identify five
distinct regimes corresponding to different relationships between the
thickness, diameter, and Bloch line width. For each regime we iden-
tify an asymptotic variational problem. Its solution determines the
ground-state magnetization pattern, and the leading–order behavior
of the energy. This topic encompasses work by Gioia & James [56],
Moser [94, 95], and Kohn & Slastikov [80].

(2) Nonhysteretic behavior in large thin films (Section 5). For relatively
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large thin films, which have many local minima and plenty of hystere-
sis, our asymptotic variational problem is degenerate but convex. As
a result it determines certain quantities – in particular the magnetic
charge and the region of field penetration – uniquely. We conclude that
although a large thin film has many stable magnetization patterns and
lots of hysteresis, some quantities (namely, those determined by the
asymptotic problem) should be free of hysteresis. This topic encom-
passes our recent papers [38, 40, 41].

(3) The internal structure of a cross-tie wall (Section 6.5). The cross-tie
wall is a special type of domain wall seen in thin films. It is inter-
esting due to its non-one–dimensional character, involving a periodic
arrangement of vortices. The recent work of Alouges, Rivière, and
Serfaty [7] uses matching upper and lower bounds to give the first
analytical explanation of its structure.

(4) The internal structure and stability of a Néel wall (Sections 6.2, 6.3,
6.4, and 6.6). The one–dimensional Néel wall, seen in extremely thin
films, is interesting due to its core-and-tail structure. Dipolar effects
play a major role, so the variational problem for the wall profile is
strongly nonlocal. The recent work of Melcher [89, 90] uses matching
upper and lower bounds to identify the structure of the tail. The
energy of a one–dimensional Néel wall is greater than that of a cross-
tie wall, so it must be a local not global minimum; the recent work of
DeSimone, Knüpfer, and Otto [42] explains why. In thicker films the
asymmetric Bloch wall has lower energy, and [98] proves that no other
structure can do significantly better.

(5) Nucleation of domain structure in a soft thin strip (Section 8.1). Under
a sufficiently large applied field the magnetization of a strip is satu-
rated and unique. As the applied field is reduced, the magnetization
remains in a local minimum until one reaches the critical field, where
an instability (bifurcation) occurs. The outcome of this instability is
the formation of magnetic domains. Until recently, the spatial struc-
ture of the instability was thought to be limited to coherent rotation,
curling, or smooth buckling. New work by Cantero-Álvarez and Otto
[20, 21, 22] has shown the existence of a fourth alternative – “oscil-
latory buckling” – which is probably the origin of the “concertina”
domain structure. This development demonstrates the value of seek-
ing lower as well as upper bounds: the proof of the lower bound may
point to existence of a previously-unnoticed regime.
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Micromagnetics was first formulated as a model over 60 years ago, but
it remains in its infancy mathematically. The associated challenges are of
course opportunities. In some areas, the recent analytical progress has taken
advantage of apparently unrelated mathematical developments, for example
the theory of Landau-Ginzburg vortices and the framework of Γ-convergence.
In other areas micromagnetics is driving the development of entirely new
methods – for example techniques for proving ansatz-independent lower
bounds.

As the reader has probably noticed by now, our story is coherent but
not very orderly – and certainly not finished. The goal of this paper is
not to review all of micromagnetics, but rather to give an overview of our
recent work. We have included some closely related topics, including in Sec-
tion 7 a fairly extensive survey of related mathematical tools and results.
However we have omitted many important topics – for example Landau-
Lifshitz-Gilbert dynamics – and we have barely scratched the surface con-
cerning thermally-activated switching. For some recent progress in these
areas see [74, 78, 79, 87].

The paper begins, in Sections 2 and 3, with a brief introduction to mi-
cromagnetics and a discussion of the small-particle and large-body limits.
Section 4 identifies five distinct thin-film regimes, discussing for each the
form of the limiting energy and what it tells us about the associated mag-
netization. Section 5 discusses one of those regimes – corresponding to
relatively large thin films – in greater depth. Section 6 assembles various
results on domain wall structures in thin films. Section 7 discusses some
related mathematical problems, drawing connections with micromagnetics
and setting our work in its natural mathematical context. All the preceding
sections address local or global energy minimization. Section 8 is different:
it addresses the nucleation of domain structure, and the relevance of saddle
points for thermally-activated switching.
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2 The energy functional and pattern formation

In this section we briefly describe the energy functional of micromagnetics,
thereby introducing also the notation used in the rest of this article. We
will mostly use the partially non-dimensionalized form (2.17) in which the
energy functional has units of volume and the important material parameters
are the non-dimensional quality factor Q and the Bloch-line-width d, which
has dimensions of length. In the last subsection we discuss briefly how the
competition of the different terms in the energy leads to the formation of
the complex magnetization patterns observed in experiment.

2.1 Formulation in S.I. units

The energy functional of micromagnetics is given, in S.I. units, by the fol-
lowing expression:

E(J) =

∫

Ω
A|∇m|2 +

∫

Ω
Kaϕ(m) +

µ0

2

∫

R3

|Hind|2 −
∫

Ω
Hext · J. (2.1)

Here Ω ⊂ R3 is the region of space occupied by a ferromagnetic body and J
is the magnetization density i.e., a vector field of constant length inside Ω,
and extended by zero to R3

|J(x)| =

{
Js in Ω,

0 in R3 \ Ω.
(2.2)

The positive scalar Js is called saturation magnetization. At fixed temper-
ature, it is a material constant so that the (rescaled) magnetization

m :=
J

Js
(2.3)

satisfies

|m(x)| =

{
1 in Ω,

0 in R3 \ Ω.
(2.4)

The four summands in (2.1) are called exchange energy, anisotropy en-
ergy, magnetostatic (or demagnetizing or stray field) energy, Zeeman energy
(or external field energy), respectively.

The vector field Hext is an applied magnetic field, the constant µ0 is
the magnetic permeability of vacuum while Hind is the magnetic field gen-
erated by the magnetized body Ω (also called induced, or demagnetizing,
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or stray field). This is obtained from J by solving Maxwell’s equations of
magnetostatics

{
curl Hind = 0,

div(µ0Hind + J) = 0,
in R

3. (2.5)

¿From (2.5)1 we deduce the existence of a scalar potential U for Hind

Hind = −∇U, (2.6)

which, in view of (2.5)2 satisfies

∆U = div
J

µ0
. (2.7)

The last two identities can be summarized by

Hind = −∇
(

∆−1 div
J

µ0

)
, (2.8)

which shows that div J is the source of Hind, and hence the magnetostatic
energy is minimized by divergence-free magnetization patterns. Since (2.5)2

holds in the sense of distributions
∫

R3

Hind · ∇ϕ = −
∫

Ω
J · ∇ϕ, ∀ϕ ∈ C∞

0 (R3), (2.9)

the divergence of J may consist of two components which, by the electro-
static analogy, are called volume charges and surface charges. For a smooth
J their densities are given, respectively, by div J (at points of Ω) and −J · ν
(at a point of the boundary ∂Ω of Ω where the outer unit normal is ν). For
a discontinuous J , a similar surface contribution arises also at all surfaces of
discontinuity inside Ω across which the flux J ·ν of J is discontinuous. Thus,
magnetization fields with vanishing magnetostatic energy describe domain
patterns that achieve flux closure.

The positive scalars A and Ka in (2.1) are material parameters which we
will assume to be constant, for simplicity. They are called the exchange con-
stant and the (magnetocrystalline) anisotropy constant. The energy density
ϕ is a non-negative function called the anisotropy energy density. It is typ-
ically a polynomial, with the symmetry properties inherited from those of
the underlying crystalline lattice. The zeroes of ϕ form the set of preferred
directions of magnetization (easy axes).

K := ϕ−1({0}) (2.10)
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For a uniaxial material (the typical example we will use in our discussion),
there exists a distinguished axis identified through a unit vector e, and ϕ
and K are given respectively by

ϕuni(m) = 1 − (m · e)2 (2.11)

Kuni = {+e,−e} (2.12)

Other expressions are of course possible, either for uniaxial materials (case
of an easy plane, higher order polynomials, etc.) or for materials with a
different crystallographic symmetry, but we do not need to discuss them in
detail.

According to micromagnetics, stable magnetization patterns on a body
Ω are described by minimizers (global or local) of the energy functional (2.1).
This is a nonconvex nonlocal variational problem in view of the nonconvex
pointwise constraint |J | = Js in Ω and of the nonlocal differential constraint
linking Hind with J .

2.2 Non-dimensional formulations and material parameters

In our developments, we will focus on partially or fully nondimensional ver-
sions of (2.1). For example, let

Kd =
J2

s

2µ0
(2.13)

and define

E(m) :=
E(J)

Kd
. (2.14)

Setting

Hext =
µ0Hext

Js
, U =

µ0U

Js
(2.15)

Hind =
µ0Hind

Js
= −∇U = −∇(∆−1 div m) (2.16)

we obtain

E(m) = d2

∫

Ω
|∇m|2 + Q

∫

Ω
ϕ(m) +

∫

R3

|∇U |2 − 2

∫

Ω
Hext · m . (2.17)
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This is the form of the energy functional we will use most frequently. Here
the ’energy’ E(m) has the dimensions of volume (since Kd is an energy
density). There are two important material parameters in (2.17). The so-
called quality factor

Q =
Ka

Kd
(2.18)

measures the strength of the anisotropy energy relative to that of the stray
field. It is a nondimensional quantity, and it separates ferromagnetic ma-
terials into two broad classes: soft materials, for which Q < 1, and hard
materials (Q > 1). The exchange length associated with the stray field
energy

d = dBL =

(
A

Kd

) 1

2

(2.19)

measures the relative strength of the exchange and magnetostatic energies.
It has dimensions of length, and it is also called Bloch line-width, and de-
noted with dBL, for reasons that will become clear later, see (7.20).

In terms of the rescaled fields m,U,Hind, equations (2.7), (2.9) are writ-
ten as

∆U = div m (2.20)

or, in weak form, as
∫

R3

∇U · ∇ϕ = −
∫

R3

Hind · ∇ϕ =

∫

Ω
m · ∇ϕ. ∀ϕ ∈ C∞

0 (R3). (2.21)

Another interesting partial nondimensionalization of (2.1) is obtained by
dividing E by Ka

I(m) :=
E(J)

Ka
=

E(m)

Q
(2.22)

hence obtaining

I(m) = d2
BW

∫

Ω
|∇m|2 +

∫

Ω
ϕ(m) +

1

Q

∫

R3

|∇U |2 − 2

Q

∫

Ω
Hext · m (2.23)

The material parameter

dBW =
dBL

Q1/2
=

(
A

Ka

) 1

2

(2.24)
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Material Q dBL(nm) dBW (nm)

Permalloy 2.5 × 10−4 5 316
α-Iron 2.5 × 10−2 3.7 23
SmCo5 38 5.2 0.8
Ne2Fe14B 4.9 2.7 1.2
Co 0.3 3.8 7

Table 1: Material parameter values for some common ferromagnetic mate-
rials

is the exchange length associated with the anisotropy energy. It is also called
Bloch wall-width, for reasons that will become clear later, see (7.18). It has
dimensions of length, and it measures the strength of the exchange energy
relative to that of the anisotropy energy.

It is instructive to look at the values of the material parameters appearing
in (2.17) and (2.22) for some concrete examples, see Table 1. The wide range
of variability of the quality factor Q, which spans six orders of magnitude,
is immediately apparent. By contrast, for the same set of materials, the
exchange length dBL only varies by a factor two.

2.3 Pattern selection as a result of energetic competition

Pattern selection is controlled by the interaction of the energy terms in (2.17)
as a compromise among conflicting trends. The most immediate example
of such conflicts is the competition between exchange and magnetostatic
energies. For m constant, eq. (2.20) is written more explicitly as

∆U = −(m · ν)(x) dσ (2.25)

where ν is the outer unit normal to the boundary ∂Ω of Ω, and dσ is the
surface measure. This shows that a constant magnetization always generates
a nonzero magnetostatic energy if Ω is not an infinite cylinder with axis
parallel to m. In other words, exchange energy and magnetostatic energy
can never simultaneously achieve their minimal value zero. Actually, for soft
materials, the competition between exchange and magnetostatic is the most
fundamenental driving force behind formation of domain patterns, at least
in the absence of an external field.

More generally, the features of the observed domain patterns are decided
by the relative strength of all four summands in (2.1), and hence they depend
on the values of the material parameters affecting them. The variability of

11



these numbers over wide ranges explains the great variability and richness of
observed configurations, see Figures 1 to 4. Essentially, understanding these
patterns means understanding the interaction among the various summands
in (2.1).

Figure 1: Iron whiskers. Reproduced with permission from Hubert and
Schäfer, Magnetic Domains, Springer 1998

Figure 2: NdFeB domain patterns. Reproduced with permission from Hu-
bert and Schäfer, Magnetic Domains, Springer 1998
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Figure 3: Permalloy film with circular cross–section. Reproduced with per-
mission from Hubert and Schäfer, Magnetic Domains, Springer 1998

Figure 4: A cross–tie wall in a Permalloy film. Reproduced with permission
from Hubert and Schäfer, Magnetic Domains, Springer 1998
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3 Bulk scalings

Consider a magnetic particle of fixed shape, e.g. a cubic particle. In this
section we study how the minimizers of the micromagnetic energy (2.17)
depend on the size of the particle. We will see that certain models that are
often thought of as alternatives to the micromagnetic approach actually arise
as rigorous limits of the micromagnetic formulation. Specifically, Stoner-
Wohlfarth theory corresponds to the small particle limit and Néel’s theory
of magnetic phases arises in the large particle limit.

The right notion of convergence is the so called Γ-convergence of the
corresponding energy functionals. This notion is explained in more detail in
Section 10. The main point is that Γ-convergence of the energy functionals
is essentially equivalent to the convergence of the corresponding minimizing
magnetizations, which are our main object of interest.

The limits above correspond to the competition of two length scales,
namely a material dependent scale (such as the Bloch line-width d) and the
size of the magnetic particle. In the next section we will also discuss thin
magnetic films, which involve three length scales: the material scale d, the
typical thickness t and the typical lateral dimension l. In order to establish
a consistent notation we consider from the beginning both t and l, but in
this section the aspect ratio

τ =
t

l
(3.1)

will be kept fixed, while in the later sections we will be interested in the
limit τ → 0. We consider for simplicity the case that the body Ω is a prism

Ω = Ω′ × (0, t) (3.2)

of height t and we denote by l a typical length of the base Ω′. As an example
one could take a square base, i.e. Ω′ = (0, l)2 × (0, t). For τ = 1, Ω is a cubic
particle of size l.

The change of variables x �→ x̄ = x
l ∈ ω rescales Ω to a set ω = ω′×(0, τ),

where ω′ has size of order one, and it reduces the energy functional (2.17)
to a fully non-dimensional form

e(m) = κ2

∫

ω
|∇m|2 + Q

∫

ω
ϕ(m) +

∫

R3

|∇u|2 − 2

∫

ω
hext · m, (3.3)
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where

e(m) =
1

l2t
E(m), (3.4)

κ =
d

l
, (3.5)

u
(x

l

)
=

1

l
U(x), (3.6)

hind

(x

l

)
= −∇x̄u

(x

l

)
= Hind(x) = −∇xU(x), (3.7)

hext

(x

l

)
= Hext(x). (3.8)

The static Maxwell equation (2.20) for u implies that

∆u = div m. (3.9)

If we take a square base and aspect ratio τ = 1 then ω is simply the unit
cube. Again, for simplicity, we will restrict attention to the case of spatially
uniform applied field, Hext ≡ const.

3.1 The small particle limit

Consider the case l << d, i.e., κ → +∞, while τ,Q are fixed numbers of
order one. Also, the strength of the applied field, if present, should be of
order one. In this limit, the classical model of Stoner and Wohlfarth [108]
is recovered, see [35].

Proposition 3.1 As κ → +∞, the functional (3.3) Γ-converges in H1 to

e∞(m) =

{
Qϕ(m) + m · Dωm − 2hext · m for m ≡ const in ω, |m| = 1,
+∞ else,

(3.10)

where Dω is the demagnetizing tensor of ω.

In this case the Γ-limit of the energy functionals agrees with the pointwise
limit, but this is not true in general (see Section 10).

In the proposition above, the demagnetizing tensor Dω is a traceless,
positive-definite tensor depending only on the shape of ω. For ω a unit cube
or a unit sphere, Dω = 1

3Id, with Id the identity. For a more general ω, Dω

is defined implicitly by

Dωm = − 1

|ω|

∫

ω
hm ∀m = const in ω, (3.11)
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where |ω| is the volume of ω and hm is the magnetic field induced by m, i.e.,
hm = −∇∆−1 div m.

Remark 3.2 The functional e∞ is defined on a finite-dimensional space.
It is therefore easy to study its local minima, as was done by Stoner and
Wohlfarth in their celebrated paper [108]. In fact, global and local minima
of the function m �→ e∞(m) characterize the asymptotic behavior of both
global and local minima of e (see [35], [12]). The Stoner-Wohlfarth model
is thus relevant to gain some insight onto the hysteretic behavior of very
fine particles. For a recent numerical investigation of the switching fields
of small cuboidal particles, and of their deviations from Stoner-Wohlfarth
predictions, see [6], where a nonmonotone dependence of the switching field
on particle size has also been observed.

3.2 Large body limit

Consider now the case l >> d, i.e. κ → 0, while τ,Q and hext are held fixed,
at order one. In the limit, we obtain a mathematically rigorous version of a
model which, for ellipsoidal specimens, coincides with the theory of magnetic
phases of Néel ([34], see also [99, 111, 112]).

Proposition 3.3 As κ → 0, the functional (3.3) Γ-converges with respect
to the weak convergence in L2 to

e0 = Q

∫

ω
ϕ∗∗(m) +

∫

R3

|∇u|2 − 2

∫

ω
hext · m, |m| ≤ 1 in ω, (3.12)

where ϕ∗∗ is the convex envelope of ϕ (extended by +∞ for |m| 
= 1):

ϕ∗∗(m) = min

{
4∑

i=1

λiϕ(mi) : |mi| = 1,m =
4∑

i=1

λimi, λi ≥ 0,
4∑

i=1

λi = 1

}
.

(3.13)

Remark 3.4 The notion of weak convergence appearing in the proposition
above is essentially equivalent to convergence of ‘local’ averages on arbitrary
cubes C cut out of ω:

mk → m weakly in L2(ω) ⇔ 1

|C|

∫

C
mk → 1

|C|

∫

C
m ∀ cubes C ⊂ ω.

(3.14)

The loss of the unit length constraint, in the limit, is thus not surprising
whenever mk is oscillating at a fine scale. This is precisely the case in
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micromagnetics, because domain patterns of size smaller than l generate,
when rescaled onto ω, fine-phase mixtures with characteristic rescaled size
tending to zero.

Proposition 3.3 implies that, in the large body limit, local averages of
micromagnetic minimizers can be computed by minimizing (3.12). Since
in computing magnetization curves the only relevant feature of a magnetic
configuration is its average over the whole specimen, (3.12) can be used to
compute magnetization curves in cases where the effects of hysteresis are
negligible. For ω an ellipsoid, minimizers of (3.12) are spatially uniform,
and minimizing (3.12),(3.13) reduces to the problem of finding a mixture of
at most four magnetic phases m1, ...,m4 (with respective volume fractions
λ1, ..., λ4), covering ω and carrying minimal energy. This is the approach of
Néel to the prediction of virgin magnetization curves, see [34, 96, 66].

Remark 3.5 The functional (3.12) is the ‘relaxation’ (i.e. the lower semi-
continous envelope with respect to weak convergence in L2) of the functional

Q

∫

ω
ϕ(m) +

∫

R3

|∇u|2 − 2

∫

ω
hext · m, (3.15)

(still endowed with the constraint |m| = 1 in Ω). The study of (3.15), initi-
ated with the paper [69] of James and Kinderlehrer, has received considerable
attention in the mathematical literature, see [34, 49, 99, 111, 112].
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4 A hierarchy of thin film models

We now consider thin magnetic films. In this case there are three relevant
length scales: the film thickness t, the lateral dimension l and the material
parameter d, the Bloch line-width (recall that for many materials d is of the
order of 5 nm, see Table 1). Out of these one can form two independent
dimensionless parameters. It turns out that for our discussion the most
useful parameters are the aspect ratio τ = t/l, already introduced above,
and a dimensionless measure of the size of the film given by tl/d2. We will
always study the limit of small aspect ratio

τ =
t

l
→ 0. (4.1)

In this case we identify four different regimes depending on the relation
of tl/d2 and ln(1/τ) which lead to four distinct two–dimensional limiting
theories, see the first four rows in Table 2. For very small films (l/d fixed
and still t/l → 0) one can also consider a different rescaling of the energy
leading to a limiting theory which captures higher energy states (see also
Table 2).

The different limit theories are much simpler than the full three–dimensional
micromagnetic energy functional. They capture the leading–order terms in
the energy and lead to a drastic simplification of the very complex micro-
magnetic energy landscape. They thus provide a good description of the
robust features of the magnetization patterns in the thin-film limit. We will
discuss this in more detail in the next section in the regime of large thin
films (tl/d2 ≫ ln(l/t)) and compare the predictions of the thin film theory
with experiments.

In this section we first illustrate the separation of energy scales by in-
vestigating the energy contributions of certain prototypical magnetization
patterns and then state the rigorous results which lead to Table 2.

4.1 Heuristics and separation of energy scales

Here we briefly discuss the energy contributions of a prototypical magne-
tization configuration, following closely Section 4 of [38]. The results are
summarized in Table 3. We first consider the energy due to variations of
m in the x3 direction, i.e. normal to the film plane. If these variations are
of order one they lead to an energy contribution of order l2d2/t. In all the
relevant regimes this will be much larger than the energy scales we are in-
terested in. Hence for the rest of this heuristic discussion we will suppose
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Regime Energy Limit Bulk constraint Bdry constr.

tl/d2 ≪ 1/L t2lL (1/2πl)
∫

(m′ · ν ′)2 m3 = 0, |m| = 1
Stoner-W. m = const

tl/d2 = λ/L t2lL/λ
∫
|∇′m|2 + (λ/2πl)

∫
(m′ · ν ′)2 m3 = 0, |m| = 1

Bdry penalty

tl/d2 = µ t2l/µ
∫
|∇′m|2 + µ

l

∫
|∇V |2 m3 = 0, |m| = 1 m′ · ν ′ = 0

Bdry vortex

tl/d2 ≫ L t2l 1
l

∫
|∇V |2 m3 = 0, |m| ≤ 1 m′ · ν ′ = 0

Magnetostatic

κ = d/l fixed tl2 κ2
∫
|∇′m|2 + 1

l2

∫
m2

3 |m| = 1

Table 2: The different scaling regimes in thin films, with the abbreviation
L = ln(l/t) = ln(1/τ). The second column gives the factor by which the
energy is divided before one passes to the limit. The limit energy in the
boundary vortex regime is formal, since it is actually infinite on all admissible
magnetizations (see text). The limiting energies are invariant under the
rescaling Ω′ �→ rΩ′, l �→ rl. Going down in the first four rows corresponds to
a passage from small (compared to d) films to large films or, equivalently, to
decreasing d. At least on the formal level, the different regimes are naturally
connected (taking into account the prefactors in the ‘energy’ column). The
second regime turns into the first as λ → 0, while the second and third
regime merge as λ → ∞ and µ → 0. Finally, the third regime turns into the
fourth as µ → ∞ (if one looks at the limit in the sense of Γ-convergence,
it is natural that the constraint |m| = 1 is relaxed in the limit, since the
Dirichlet integral drops out).
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out–of–plane component m3 l2 t

non–tangential component m′ · ν ′ l t2 ln l
t

in–plane divergence ∇′ · m′ l t2

external field Hext |Hext| l2 t

anisotropy Q Q l2 t

Néel wall l t2 ln−1 l t
d2

Bloch line d2 t ln l
d

Exchange energy for magnetization varying
smoothly on scale l d2 t

Table 3: Estimates for the key energy contributions in a soft ferromagnetic
film.

that
m = m(x1, x2) in Ω. (4.2)

The rigorous convergence results actually show that this holds asymptoti-
cally. At finite thickness it is still possible that (4.2) is significantly violated
on a small set (this occurs e.g. in asymmetric Bloch walls, cf. Section 6.2),
but this turns out to be insignificant for the energy contributions we discuss
below.

In view of (4.2) the local energy contributions reduce to

d2t

∫

Ω′

|∇′m|2dx′ + Qt

∫

Ω′

ϕ(m)dx′, (4.3)

where we use the shorthand notation x′ = (x1, x2) and write ∇′ for the
in-plane gradient (∂1, ∂2). In the following we will always consider magneti-
zations that vary smoothly on a scale comparable to the lateral dimension
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l. Then, ∇m is of order 1/l and the exchange and anisotropy energy contri-
butions are of order d2t and Ql2t, respectively.

The nonlocal magnetostatic energy can be computed by considering the
Fourier transform in the tangential direction,

F(m)(ξ′) =
1

2π

∫

R2

e−iξ′·x′

m(x′) dx′, (4.4)

where m is extended by zero outside Ω′, as usual. We note in passing that
our normalization of F differs from the choice made frequently in the physics
literature; our choice makes F an L2 isometry, i.e. ||Fm||L2 = ||m||L2 . A
short calculation shows that the magnetostatic energy splits into a contribu-
tion due to the normal component m3 (which, in terms of the electrostatic
analogy leads to a surface charge at the top and bottom surface of the film),
and a contribution due to the in-plane divergence div′m′. We get

∫

R3

|∇U |2 dx = t

∫

R2

f

(
t

2
|ξ′|

) ∣∣∣∣
ξ′

|ξ′| · F(m′)

∣∣∣∣
2

dξ′

+t

∫

R2

g

(
t

2
|ξ′|

)
|F(m3)|2 dξ′. (4.5)

Here the Fourier multipliers are given by

g(z) =
sinh(z)

|z| exp(z)
=

1 − exp(−2z)

2z
and f(z) = 1 − g(z).

Since we assumed that m varies smoothly on a scale comparable to l, its
Fourier transform is essentially concentrated on wave vectors ξ′ of order 1/l
or less. In view of our assumption t/l ≪ 1 the arguments of f and g are thus
small in the relevant range of ξ′ and we expect that (4.5) is approximated
as follows

∫

R3

|∇U |2 dx

≈ t2

2

∫

R2

1

|ξ′| |ξ
′ · F(m′)|2 dξ′ + t

∫

R2

|F(m3)|2 dξ′ (4.6)

= t2
∫

R3

|∇V |2 dx + t

∫

Ω′

m2
3 dx′,

where V is the single layer potential of the surface charge density div′ m′.
Classically, V is given as the solution of

∆V = 0 in R3 \ (Ω′ × {0})
[V ] = 0 and

[
∂V
∂x3

]
= div′ m′ on Ω′ × {0}

}
. (4.7)
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Here [·] denotes the jump of a quantity · across the plane R2 × {0}. A
different heuristic argument giving the energy contribution of the in-plane
divergence of m is as follows: The potential U t satisfies Maxwell’s equation
∆U t = div(m(x′)χ(0,t)(x3)), where χ(0,t) is 1 in the interval (0, t) and zero
outside. Dividing by t and considering that χ(0,t)/t converges formally to
the Dirac mass δ0 we see that the limit V of U t/t is given by (4.7). For a
rigorous argument using the relevant weak formulation of (4.7), see [38], p.
1439.

The above characterization of V implicitly contains the assumption that
the normal component of m′ does not jump across a possible discontinuity
line of m′, in particular

m′ · ν ′ = 0 on ∂Ω′, (4.8)

where ν ′ denotes the normal to the boundary ∂Ω′ of the cross section Ω′.
We will come back to this shortly.

¿From (4.6) we first recover the classical argument of Néel that in thin
films a nonzero normal component m3 leads to a large energy contribution
of order tl2. If the in-plane magnetization satisfies (4.8) then a scaling
argument in connection with (4.7) shows that the magnetostatic energy is
of order t2l.

If m′ does not satisfy (4.8) then an additional energy contribution due
to the boundary ’charge’ m′ · ν ′ arises. To compute it one has to go back
to the exact representation (4.5) of the magnetostatic energy and a short
calculation shows that for a constant magnetization and a straight boundary
piece the extra contribution per unit length is of order t2 ln(l/t)(m′ · ν ′)2,
see e.g. [38], Section 4.4. For a general boundary one thus expects an extra
contribution of the order

t2 ln(l/t)

∫

∂Ω′

(m′ · ν ′)2. (4.9)

We will see in the next subsection that this is indeed the case, see (4.12)
below.

So far we have implicitly assumed that the magnetization is smooth and
varies on a typical scale proportional to the lateral extension l of the film.
Typical magnetization patterns, however, consist of regions of slowly varying
magnetization (domains) which are separated by domain walls, in which the
magnetization changes rapidly. We will see below in Subsection 6.3 that
the energy of a typical domain wall in thin films, i.e. the Néel wall, is of
order l2t/ ln(lt/d2) and thus is asymptotically negligible compared with the
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magnetostatic energy contributions. One can also check that the energy of
a Bloch line (where the magnetization develops a nontrivial m3 component
on a region of diameter d) is of order d2t ln(l/d) and also asymptotically
negligible, see (7.21) below and Section 4.5 in [38].

4.2 Rigorous convergence results - the first four regimes

The heuristic discussion on the separation of energy scales suggests that in
the thin film limit we get a strong simplification of the energy landscape. If
we select a certain energy regime then all energy contributions below this
level will become asymptotically irrelevant. Energy contributions that are
asymptotically much larger are not allowed to be present, i.e. they lead to
constraints in the limiting theory. Typical examples are the constraint that
m should become independent of x3 or that the out-of-plane component m3

should vanish.
We now describe the rigorous results which are motivated by this rea-

soning and which are summarized in Table 2. We first focus on the first
four rows of this table. It is interesting to note that these four regimes
capture very well the qualitative changes in the experimentally observed
patterns for increasing size, even though they are mathematically only sep-
arated by logarithmic terms. For extremely small films one sees (nearly)
uniform states (Stoner-Wohlfarth regime). With increasing size one finds
flower states (boundary penalty regime), states with vortices on the bound-
ary, such as the C- and S-states in rectangular samples or the buckle and leaf
states in square samples (boundary vortex regime), and flux-closed patterns
(magnetostatic regime).

To state the results precisely it is convenient to work in a fixed two–
dimensional domain ω′ (e.g. the unit square) obtained from Ω′ by rescaling
all lengths by l. We thus employ the scalings (3.3)–(3.8). For brevity we
consider only the situation with zero applied field. Adding a suitably scaled
applied field poses no additional difficulty since this represents a continuous
perturbation and therefore passes through the Γ-limit, see Section 10. As
before we always consider the small-aspect-ratio limit, i.e

τ → 0, (4.10)

and we denote by eτ the minimal micromagnetic energy for a sample with
aspect ratio τ .

In the regime of very small films, i.e. if (lt/d2) ln(l/t) → 0 or, equiva-
lently,

τ

κ2
ln(1/τ) → 0, (4.11)
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Table 3 suggest that the most interesting term is the one arising from the
boundary energy (4.9). Indeed Kohn and Slastikov [80] showed (see also
Carbou [24]) that

1

τ ln(1/τ)
eτ Γ→ e, (4.12)

where

e =

{
1
2π

∫
∂Ω′(m

′ · ν ′)2 if m = const,m3 = 0, |m| = 1,
∞ else.

(4.13)

To make the Γ-convergence result precise, we need to specify the con-
vergence of three–dimensional magnetizations mτ : ω → R3 to a two–
dimensional limit m. We say that convergence holds if the x3-averages
m̄τ = (1/τ)

∫ τ
0 mτdx3 converge strongly to m in L2.

If
τ

κ2
ln(1/τ) → λ (4.14)

(small body limit) then [80]

λ

τ ln(1/τ)
eτ Γ→ e, (4.15)

where

e =

{ ∫
Ω′ |∇′m|2 + λ

2π

∫
∂Ω′(m

′ · ν ′) if m3 = 0, |m| = 1,
∞ else.

(4.16)

On the other hand, if the body remains large in the sense that

τ

κ2

1

ln(1/τ)
→ ∞ (4.17)

then the magnetostatic energy dominates and we have, in the sense of Γ-
convergence (with respect to weak L2 convergence of x3 averages) [38]

1

τ
eτ Γ→

∫

R3

|∇v|2 (4.18)

provided that m3 = 0 and that m satisfies the relaxed (convexified) con-
straint |m| ≤ 1 (else the limit energy is ∞). Here v is the single layer
potential of div′m′ defined as in (4.7) (replacing Ω′ by the nondimensional-
ized domain ω′). In particular this imposes the constraint m′ · ν ′ = 0 (for
nonsmooth fields m′ this has to be understood in the sense of traces, see
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[38]). A more detailed discussion of this result, its interpretation and com-
parison of the predictions of the limit theory with experiments appears in
the next section.

Finally for the critical scaling

τ

κ2
= 1 (4.19)

the limit of eτ/τ is formally given by

∫

ω′

|∇′m|2 +

∫

R3

|∇v|2, (4.20)

subject to the constraints m3 = 0 and |m| = 1. Here v is defined as in (4.7),
replacing Ω′ by the non-dimensionalized domain ω′. The problem is that
the limit functional is infinite on all admissible test functions, if ω′ is simply
connected, e.g. if ω′ is a disk or a square. Indeed, the constraint (4.8) forces
m′ to be tangential at the boundary, but there is no unit vector field in H1

which is tangential to the boundary. Moser [94, 95] has nonetheless shown
that the above formal limit captures the right behavior. More precisely he
shows that

2π ln ln(1/τ) − C ≤ 1

τ
min eτ ≤ 2π ln ln(1/τ) + C (4.21)

and that the x3-averages of minimizers of eτ converge (strongly in the
Sobolev space W 1,p, for all p < 2) to a limit m which has two singulari-
ties (vortices) on ∂ω′, is otherwise tangential to ∂ω′ and satisfies the Euler-
Lagrange equation corresponding to (4.20) in ω′.

4.3 The fifth regime

The fifth regime corresponds to letting the aspect ratio τ = t/l tend to zero,
while keeping κ = d/l fixed. It was historically the first regime for which
a rigorous convergence result was obtained. In fact Gioia and James [56]
showed that in this regime the energy functionals eτ Γ-converge to eGJ given
by

eGJ(m) =

{
κ2

∫
ω′ |∇′m|2 +

∫
ω′ m

2
3 if m ∈ H1(ω′),

+∞ else,
(4.22)

where ∇′ is the in-plane gradient.
Like the first regime this regime corresponds to very small films. The im-

portant difference is that one considers here just energy eτ (without further
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rescaling) while in the first regimes one rescales the energy by 1/(τ ln(1/τ)).
The setting of Gioia and James emphasizes the fact that the nonlocal magne-
tostatic energy reduces to the local term m2

3 which behaves like an effective
anisotropy (this is thus an extreme case of shape anisotropy). The limiting
functional has many (minimizing) zero energy states. In fact, all constant
in-plane magnetizations have zero limiting energy.

The first regime breaks the degeneracy between all these states and as-
signs to them a refined limiting energy according to

∫
∂ω′(m

′ · ν ′)2. On the
other hand, the limit functional for the first regime does not discriminate
between limiting magnetizations which are not constant in-plane fields and
assigns infinite energy to all of them.
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5 A two–dimensional model for large soft films

and comparison with experiment

In this section we discuss in detail the regime lt/d2 ≫ ln(l/t), which cor-
responds to large films. This regime is of special interest for at least two
reasons. First, it covers a large range of concrete samples (including e.g.
thicknesses from a few nm to hundreds of nm and lateral dimensions from
1 µm to several hundred µm and larger). This allows us to compare the
predictions of the thin-film theory with a wealth of experimental data. Sec-
ondly this regime covers exactly a range of parameters which is not accessible
by direct numerical simulation of the full micromagnetic functional E(m),
since large lateral dimensions beyond a few µm would require an excessive
number of discretization points for an accurate resolution of all the relevant
length scales.

5.1 Statement of the limit problem and the convergence re-

sult

For the rest of this section we will neglect anisotropy, i.e. we will set Q = 0.
Table 3 suggests that anisotropy is indeed negligible as long as Q ≪ τ = t/l
and this is established rigorously in [38]. For Permalloy we have Q = 2.5 ×
10−4 so that the condition Q ≪ τ = t/l is indeed well satisfied, even for films
with very small aspect ratio. To simplify the comparison with experiments
we will explicitly include an in-plane applied field Hext (usually to be taken
as constant).

We thus study the three–dimensional energy functional (2.17)

E(m) = d2

∫

Ω
|∇m|2 +

∫

R3

|∇U |2 − 2

∫

Ω
Hext · m, (5.1)

where (see (2.15))

Hext =
µ0Hext

Js
. (5.2)

After the non-dimensionalization (3.3)–(3.8) this becomes

eτ (m) = κ2

∫

ω
|∇m|2 +

∫

R3

|∇u|2 − 2

∫

ω
hext · m, (5.3)

where ω = ω′ × (0, τ) and τ = t/l is the aspect ratio of the film. For both
functionals we impose the constraint

|m| = 1, (5.4)
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and the potentials U and u are determined from m through the static
Maxwell equations (2.20) and (3.9), respectively. Table 3 suggests that a
natural scaling for the applied field is Hext(x) = τ h̃ext(x/l). We also assume
that the applied field is in-plane. We thus suppose

Hext(lx) = hext(x) = τ

(
h̃′

ext(x1, x2)

0

)
. (5.5)

Theorem 5.1 Suppose that

τ → 0,
κ2

τ
ln

1

τ
→ 0 (5.6)

and that hext is given by (5.5) with h̃′
ext fixed. Then

1

τ
eτ Γ→ e, (5.7)

where

e(m) =

{ ∫
R3 |∇v|2 − 2

∫
ω′ h̃

′
ext · m′ if m3 = 0, |m′| ≤ 1,

+∞ else
(5.8)

and where v is the single layer potential of div′m′, i.e.

∆v = 0 in R3 \ (ω′ × {0})
[v] = 0 and

[
∂v
∂x3

]
= div′ m′ on ω′ × {0}

}
. (5.9)

We recall that the energy
∫
|∇v|2 of the single layer potential of div′m′

is only finite if the normal component of m′ does not jump across a possible
discontinuity curve of m′, in particular if

m′ · ν ′ = 0 on ∂ω′. (5.10)

As before Γ-convergence is taken with respect to weak L2 convergence of
thickness averages, i.e. we say that at sequence of three–dimensional mag-
netizations mτ converges to a two–dimensional magnetization m as τ → 0,
if

1

τ

∫ τ

0
mτ (·, x3) dx3 → m weakly in L2(ω′, R3). (5.11)

In the following we will view e as a functional on tangential vector fields
m′ = (m1,m2), keeping in mind the constraint m3 = 0. One feature of
Theorem 5.1, which may look unusual at first glance, is that the unit length
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constraint on m is replaced by the inequality constraint |m′| ≤ 1 on the
limiting in-plane magnetizations m′. We discuss this in more detail in Re-
mark 5.3 at the end of the next subsection.

The proof of Theorem 5.1 is given in [38]. The heuristic justification of
the argument is that the scaling assumptions on t and l (or equivalently on
τ = t/l and κ = d/l) are precisely what is needed to ensure that the key
energy contributions are clearly separated in the thin film limit, as shown in
Table 3. Indeed, the hypothesis τ → 0 implies that the scaling in the upper
tier of the table is stronger than lt2, the hypothesis (5.5) makes sure that
the middle tier scales as lt2 (with the exception of the anisotropy energy,
which has been dropped), while the scaling of the lower tier is weaker than
lt2 in view of the assumption τ−1κ2 ln(1/τ) → 0. For the upper tier, energy
penalization in the full model turns into a constraint in the reduced model.
The middle tier gives the leading–order energy scaling of the full model, giv-
ing rise to the reduced limiting model. This is determined by a competition
of penalization of in-plane divergence with the energy contributions of the
external field. Finally, the lower tier contains terms that are of higher order,
see (6.19) and (7.21).

Theorem 5.1 ensures, in particular, that sequences mτ of ground states
for the full micromagnetic problem converge (in the sense of (5.11)) to mag-
netizations (m′, 0) which solve the reduced problem. In fact, we will use
knowledge about the behavior of minimizers of the reduced problem to
deduce information on some of the asymptotic features of micromagnetic
minimizers, in the thin film limit, see Corollary 5.2 below. The reduced
problem however, is degenerate. The following discussion clarifies what we
can actually learn by minimizing the reduced energy.

5.2 Discussion of the reduced problem, its Euler-Lagrange

equation and the relation with the theories of van den

Berg and Bryant and Suhl

The reduced variational problem is convex. It is even strictly convex in the
potential v. Consequently, v is uniquely predicted by energy minimization.
On the other hand the reduced variational problem is highly degenerate in
m′: for constant external field h̃′

ext = const the energy e depends on m′ only
through its in–plane divergence div′ m′.

To extract further information from the reduced variational problem
and to compare it to existing models in the physics literature, it is very
instructive to look at the corresponding Euler-Lagrange equation (since the
problem is convex, solutions of the Euler-Lagrange equations and minimizers
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of the functional agree). These can be written in the form

−∇′ṽ + h̃′
ext = λm′ on ω′, (5.12)

where λ = λ(x′) ≥ 0 is the Lagrange multiplier corresponding to the in-
equality constraint

|m′| ≤ 1. (5.13)

It turns out that for sufficiently small applied fields the constraint is
not active, i.e. one can satisfy (5.12) with λ ≡ 0. Then the Euler-Lagrange
equation reduces to

−∇′ṽ + h̃′
ext = 0, (5.14)

i.e. in this case the stray field −∇′v compensates the external field within
the sample (in our thin–film framework). This is analogous to electrostat-
ics, where charges on ∂ω arrange themselves to shield the interior ω of a
conductor from an external field.

The model of van den Berg [113] considers the case without external field
and in view of (5.14) predicts that the stray field and thus div′ m′ vanishes
(‘flux closure’).

The model of Bryant and Suhl [19] allows for an external field and de-
termines ∇′v and thus div′ m′ from (5.14). The constraint (5.13) on the
magnetization, however, limits the ‘charges’, unlike the case in electrostat-
ics. Hence stronger external fields ‘penetrate’ into the sample and we have

h̃′
pen = −∇′v + h̃′

ext 
= 0. (5.15)

Therefore, our model extends the model of Bryant and Suhl [19] and puts
it in a natural variational context.

In the region of field penetration

ω′
pen := {x′ ∈ ω′ | h̃′

pen(x′) 
= 0 }, (5.16)

m′ is uniquely determined by the Euler-Lagrange equation, in fact m′ =
h̃′

pen(x′)/|h̃′
pen(x′)|. Moreover, the region ω′

pen is itself uniquely determined
since it only depends on the uniquely determined potential v. We notice
in passing that, in order to properly define ω′

pen, we need some technical
assumptions ensuring some regularity of v (in [38] it is shown that, for
constant applied field, these are satisfied if ω′ is simply connected; for the
situation without anisotropy considered here, even this assumption can be
dropped, see [88]).
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Using the additional information arising from the Euler-Lagrange equa-
tion of the reduced problem we can strengthen the results that naturally
follow from Theorem 5.1. In particular, we can strengthen the notion of
convergence of micromagnetic minimizers to minimizers of the reduced prob-
lem.

Corollary 5.2 Under the assumptions of Theorem 5.1 and assuming, in
addition, that h̃′

ext is constant, we have

i) Let m′ and n′ be two minimizers of the reduced variational problem
with corresponding potentials v and w. Then w = v and

m′ = n′ = h̃′
pen/|h̃′

pen| on ω′
pen, (5.17)

where h̃′
pen and ω′

pen are defined in (5.14) and (5.16), respectively.

ii) Suppose that mτ is a sequence of almost minimizers of eτ/τ , i.e.

lim
τ→0

1

τ
(eτ (mτ ) − min eτ ) = 0. (5.18)

Then we have for any minimizer m′ of the reduced variational problem
and its potential v

lim
τ→0

1

τ

∫

ω′
pen×(0,τ)

∣∣∣∣m
τ −

(
m′

0

)∣∣∣∣
2

dx = 0, (5.19)

lim
τ→0

∫

R3

∣∣∣∣
1

τ
∇uτ −∇v

∣∣∣∣
2

dx = 0, (5.20)

lim
τ→0

1

τ
eτ (mτ ) = e′(m′). (5.21)

Remark 5.3 We now come back to the point that the reduced problem only
involves the inequality constraint |m′| ≤ 1 while we impose the condition
|m| = 1 in the three–dimensional problem. This relaxation of the constraint
might be surprising from a physics point of view - indeed both van den Berg
and Bryant & Suhl consider only magnetization fields of unit length.

To understand this relaxation of the constraint better we first explain why
it arises naturally in the Γ-convergence setting and then discuss how the unit
length constraint might be restored through a finer analysis. Γ-convergence
analyzes the energy functional at a particular energy scale. Theorem 5.1
says in particular that given a two–dimensional magnetization field m′ with
e(m′) < ∞, there exists a sequence of three–dimensional magnetization fields
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mt which converge weakly to m′ (in the sense of (5.11)) such that eτ (mτ )/τ
converges to e(m′), even if |m′| < 1. In fact if m′ is a minimizer of e
(for a given applied field) then the fields mτ can be chosen as approximate
minimizers in the sense of (5.18). The reason that this is possible is, roughly
speaking, the low energy of Néel walls. To achieve, e.g., the limit m′ = 0
one can consider magnetization patterns which consist of thin strips with
magnetization ±(1, 0, 0), separated by Néel walls. Since the energy of a Néel
wall is negligible compared with the other energy contributions (see Table 3)
one can let the number of stripes and Néel walls go to infinity as τ → 0
(at a sufficiently slow rate), thus obtaining a sequence of magnetizations
whose volume average converges to zero at each fixed scale (this is exactly
weak convergence) and for which the additional energy due to the walls is
negligible (for a general limiting pattern the actual implementation of this
idea is rather delicate and is discussed in detail in [38]).

The low energy of Néel walls thus allows one to construct highly oscil-
latory magnetization patterns that still have low energy. In contrast to the
situation for the large body limit, however, the limit functional does not fa-
vor magnetizations that satisfy |m′| < 1. In fact, we will see in the next
section that given a minimizer m′

0 with |m′
0| < 1 one can construct a new

minimizer m′ (for the same applied field) that satisfies |m′| = 1. Thus, one
might speculate that rapid oscillations of mτ are never necessary. In other
words, if one considers minimizers m̂τ of eτ (and not just approximate mini-
mizers) then they may converge strongly to a limit m′ that satisfies |m′| = 1.
Mathematically this is so far an unsolved problem, even though some results
are available for related, but different, problems [8, 37, 67, 68, 103, 104]. To
make progress on this question one could view the result in Theorem 5.1 as
the zero–order term in an asymptotic expansion of the energy and one would
then need to understand the higher-order terms that break the degeneracy of
the zero–order limit functional (we have seen such a hierarchy of Γ-limits
in Section 4.3; a very simple one–dimensional example is discussed in Sec-
tion 10.3). Some results on such higher-order contributions are discussed in
Section 6.

5.3 Numerical implementation

The reduced model can be used for the computation of domain patterns.
Following the algorithm proposed in [40], we proceed in two steps. First,
we use to our advantage the fact that replacing the nonconvex constraint
|m′|2 = 1 with the relaxed, convex constraint |m′|2 ≤ 1 does not change the
minimum of e′. Thus, we minimize the reduced energy e′ among all regular,
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in–plane vector fields of length less than or equal to one:

Step 1. Find a regular m′
0 minimizing e′.

(We call an in–plane vector field m′(x′) on ω “regular” if it satisfies [m′ · ν ′] =
0 across all possible discontinuity lines and at ∂ω). The in–plane divergence
div′ m′ is known to have characteristic singularities near the edges and cor-
ners of ω. Since the energy e′ depends on m′ only through div′ m′, this raises
the question of how to choose a local refinement strategy for a triangulation
of ω. In [44] we derive the necessary refinement rate to retain the optimal
rate of convergence in the energy norm. In particular, we show that it is
sufficient to refine the triangulation towards the edges (and not the corners).

Computation of the magnetostatic part of the energy leads to matrix–
vector products with fully populated matrices due to the nonlocal character
of the magnetostatic interaction. On translation invariant grids one can ap-
ply the Fast Fourier Transform (FFT) to reduce computational cost from
O(N2) to O(N log N). On locally refined triangulations we use the method
of H–matrices (hierarchical matrices) as introduced in [58]. This method
relies on the fact that submatrices of the original matrix can be replaced by
suitable low-rank approximations. The approximate matrix is then stored
in a hierarchical data structure of size O(N log N), thus allowing an evalu-
ation of matrix–vector products in O(N log N) time. We implement a new
class of hierarchical matrices, the so–called H2–matrices [59], with optimal
complexity O(N) in the matrix–vector multiplication.

An application of H2–matrices to three–dimensional stray field compu-
tations in micromagnetics is given in [27], where the large body limit, cf.
Section 3.2, is considered. In conjunction with a boundary integral formu-
lation of the three–dimensional stray field, H-matrices have been used in
[50].

The m′
0 obtained at the end of the first step has the correct energy, but

in general violates the unit length constraint. The second step postprocesses
m′

0 to obtain a minimizer m′ of e′ with unit length according to the following
procedure.

Step 2. For a given regular m′
0 of at most unit length, find a scalar

function ψ solving

|∇′⊥ψ + m′
0|2 = 1 in ω, (5.22)

ψ = 0 on ∂ω. (5.23)
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The computed domain pattern m′, which we later compare with experi-
ments, is obtained by setting m′ = ∇′⊥ψ + m′

0.

The first step in the algorithm above involves a convex (but degenerate)
variational problem. We solve it with an interior point method [114]. In
more detail, the convex constraint is enforced by adding to the physical
energy e′ a small multiple s of a self-concordant barrier B. The unique
stationary point of the strictly convex functional e′ + sB is computed by
Newton’s method. This is then used as the initial guess for the minimizer
of e′ + s̃B, where s̃ < s. The parameter s is then slowly decreased by
multiplicative increments. Within Newton’s method, the Hessian of e′ +
sB is inverted by a preconditioned conjugate gradient method, where the
magnetostatic part of the Hessian is evaluated with the help of H2–matrices.

For the second step, we recall that there are many Lipschitz continuous
solutions of (5.22),(5.23). However, there is a special solution, known as the
viscosity solution, which has special mathematical properties. This can be
computed efficiently using the level set method [107]. This is the pointwise
solution of (5.22),(5.23) selected by our algorithm.

Our numerical scheme selects, automatically and robustly, one out of the
many minimizers of the reduced energy e′. The selection principle implicit
in this scheme is the same as the one often proposed in the physics literature.
Indeed, it appears to pick minimizers with as few walls as possible. Clearly,
a more physical selection mechanism should be based on minimizing wall
energy. This requires, however, the characterization of energy terms that
represent higher order corrections of our model, a step that seems to be
far from trivial. Understanding wall energies requires, in particular, the
understanding of their structures. Preliminary steps in this direction are
discussed in Section 6.

Figure 5 shows the predictions of our numerical scheme for a square film
of edge-length one, subject to a monotonically increasing field applied along
the diagonal. This rather special geometry was chosen to guarantee that
nontrivial domain patterns could persist beyond penetration of the external
field, as illustrated by the 90–degree domain wall emerging from the bottom
right corner of the sample.

5.4 Comparison with experiment

To check the predictions of the reduced theory, the response of two AC-
demagnetized Permalloy (Ni81Fe19, Js = 1.0 T) square samples of edge
lengths L = 30 and 60 µm and thicknesses D = 40 and 230 nm, respectively,
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H = 0.00 H = 0.28 H = 0.63

H = 0.68 H = 0.75 H = 0.77

H = 0.88 H = 0.98 H = 1.11

Figure 5: Predictions of the two–dimensional theory: gray–scale plots of the
vertical component of the computed magnetization.
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have been observed in a digitally enhanced Kerr microscope, [40]. The
observed domain patterns are given in Figures 6, 7, where the field intensity
Hext, measured in Tesla, is scaled according to

H =
l

d

Hext

Js
. (5.24)

Figure 6: Permalloy films: L = 60 µm, D = 230 nm.

In comparing Figures 5, 6, and 7 one may speculate that the small lag
in the strength of the applied field exhibited by the thinner samples may
be due to the fact that, for these films, the walls are of Néel type and they
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Figure 7: Permalloy films: L = 30 µm, D = 40 nm.
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are repelled by the lateral boundary, cf. Section 6.4 for a discussion of
their repulsive effect. This effect, whose impact on the hysteretic response
of soft films is discussed in [41], could be captured by an enhanced two–
dimensional model in which higher-order terms in the film thickness are
taken into account.

Figure 8 examines more closely the predictions of our theory, and, in par-
ticular, the phenomenon of external field penetration. In order to estimate
the critical field strength at which penetration occurs, we have superim-
posed on each gray-scale plot the level curves of the potential vpen of the
penetrated field, defined by

−∇′vpen = h̃′
pen = −∇′v + h̃′

ext ,

see eq. 5.15. Regions where the field lines concentrate are regions where
∇vpen 
= 0, i.e., where the external field has penetrated the sample. Within
them, the Euler-Lagrange equation (5.12) implies that m′ is parallel to ∇v.
The theory predicts that m′ can have no walls in the penetrated region.
The pictures confirm this, and show quite clearly that two apparently inde-
pendent phenomena – the expulsion of the domain walls from the interior
of the sample and the penetration of the external field – are in fact two
manifestations of the same event.

The comparison between computed patterns and experimental observa-
tions shows that the material parameter regime in which the constructions
of the theories of van den Berg and of Bryant and Suhl are relevant is cor-
rectly identified. Moreover, the successful comparison shows that the energy
at leading order is captured in a satisfactory way by the reduced model de-
scribed in this section.
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Figure 8: The transition between expulsion and penetration regimes. Lines
show the level curves of the potential of the penetrated field, arrows indicate
the magnetization direction.
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6 Higher order terms and wall structures

In this section, we discuss walls in ferromagnetic films of low anisotropy.
Walls are transition layers in the magnetization which separate domains.
What are the mechanisms which stabilize such a transition layer? Ordinary
Bloch walls in bulk samples arise from the competition of exchange energy
and crystalline anisotropy, cf. Section 7.2 and [66, 3.6.1 (A)]. As we shall
see, walls in films rather arise from the competition of exchange and magne-
tostatic energy. Apart from the intrinsic interest in these structures, their
energetic contributions are also expected to play a crucial role in breaking
the degeneracy of the two–dimensional limit functional (5.8) discussed in
the previous section.

Following van den Berg, [113], we shall start by explaining why there
are walls at all in low anisotropy ferromagnetic films, cf. Subsection 6.1.
Then we will discuss the wall structures themselves – as it turns out, the
picture is quite complex. In Subsection 6.2, we introduce the two basic wall
types, the Néel wall and the stray–field free asymmetric Bloch wall. The
thickness–dependent crossover can be rigorously identified on the level of
the specific line energy [98]. The Néel wall is a multiscale object in itself. In
Subsection 6.3, we discuss the logarithmic tail of the Néel wall, and present
its rigorous analysis by Melcher [89, 90]. In Subsection 6.4, we discuss the
core of the Néel wall in moderately thin films, and present some rigorous
analysis on how the volume charge is distributed between core and tail [39].
In Subsection 6.5, we introduce the cross–tie wall, which is a compound wall
made of a periodic microstructure of Néel wall segments. It is observed in
moderately thin films. We present the rigorous analysis by Alouges, Rivière
and Serfaty [7], which identifies an optimal pattern. In Subsection 6.6, we
give an explanation why the Néel wall in very thin films does not form a
cross–tie pattern [42]. In Subsection 6.7, we address the mechanisms which
determine the period of the cross–tie wall. In Subsection 6.8, we consider
thick films with a perpendicular uniaxial anisotropy and analyze domain
branching [28, 29].

For each topic, we start with an informal discussion, then present the
rigorous result and finally give some insight into its proof. The arguments
of this section rely on the variational nature of the micromagnetic model:
The ground state structures are characterized as minimizers of the energy.
Physically motivated constructions (’models’) yield upper bounds on the
minimal energy. A rigorous analysis can contribute by establishing that
these upper bounds cannot be improved (in terms of scaling, asymptotically
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or exactly). Even if these ansatz–free lower bounds just capture the correct
scaling, they allow to unambiguously identify the various regimes. We shall
try to give an idea on how such lower bounds are obtained.

6.1 Why walls in soft ferromagnetic films?

Based on the nonrelaxed “magnetostatic regime” introduced in Section 4
we shall very informally explain how the principle of pole avoidance leads
to the formation of walls in ferromagnetic films, even in the absence of
crystalline anisotropy. This discussion follows the lines of van den Berg’s
work, see e. g. [113]. Let us think of a “mesoscopic” magnetization m where
walls would be represented by line discontinuities. In the magnetostatic
regime, the exchange energy suppresses the variation of m in the thickness
direction, i. e. m = m(x′). The magnetostatic energy, on the other hand,
suppresses the out–of–plane component, i. e. m = m′ ∈ S1, it suppresses a
non–tangential component, i. e. m′ · ν ′ = 0 along ∂Ω′, and suppresses the
in–plane divergence, i. e. ∇′ · m′ = 0 in Ω′. This is the principle of pole
avoidance. We collect these conditions on the two–dimensional unit length
m′(x′):

∇′ · m′ = 0 in Ω′ and m′ · ν ′ = 0 along ∂Ω′. (6.1)

These conditions are too rigid for a smooth mesoscopic m′. This can be seen
by using the first property of (6.1) to write m′ with the help of a stream
function ψ as m′ = ∇′⊥ψ. Then is seen the fact that m′ ∈ S1 and the second
condition in (6.1) turn into the Dirichlet problem for the eikonal equation,
i. e.

|∇′⊥ψ|2 = 1 in Ω′ and ψ = const along ∂Ω′. (6.2)

(This is a special case of (5.22) and(5.23).) It is well known that (6.2) does
not admit a smooth solution for a simply connected, bounded Ω′. On the
other hand, (6.2) admits many continuous solutions that satisfy the first
condition of (6.2) outside of a set of lower dimensionality. The simplest one,
the “viscosity solution”, is the distance function to ∂Ω′:

ψ(x′) = dist(x′, ∂Ω′). (6.3)

The negative distance function ψ(x′) = −dist(x′, ∂Ω′) is of course as good,
or any distance function of the form ψ(x′) = dist(x′, ∂Ω′ ∪ Γ′) where Γ′

is an arbitrary curve. Notice that unless Ω′ is a disk, all these functions ψ
feature lines across which the derivative jumps. Hence we learn that the
solution concept for (6.2) has to be relaxed to allow for line singularities.
This therefore applies also to (6.1): For (6.1) to be solvable, one has to
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admit for line singularities and interpret the first condition in (6.1) in the
distributional sense.

It is tempting to interpret these line singularities of the mesoscopic mag-
netization enforced by (6.1) as walls. Indeed, van den Berg has shown that
huge variety of domain and wall patterns in the “magnetostatic regime” fit
into the above framework. Let us just mention the “Landau state”, which
can be associated with (6.3), see Figure 9.

Figure 9: The Landau state

Notice that the first condition in (6.1), when interpreted in the distribu-
tional sense, implies that the normal component of m′ does not jump across
the one–dimensional discontinuity lines – charge–free walls in the jargon
of micromagnetics. As usual in the study of transition layers, we assume
that the mesoscopic discontinuity lines are straight. In view of the above,
straight discontinuity lines are characterized by a single (nonoriented) angle
2θ∞ ≥ 0, which is the angle between the constant magnetization to the left
and to the right, see Figure 10. In the sequel, we will always denote by
x1 and x2 the in–plane variables normal and tangential, respectively, to the
straight wall.

6.2 Néel vs. asymmetric Bloch wall

In this subsection, we present the two basic wall types in soft ferromagnetic
films. On a microscopic level, a straight discontinuity line is replaced by
a smooth transition layer. We assume that the magnetization is indepen-
dent of the tangential in–plane variable x2, but we do a priori allow for a
dependence on the out–of–plane variable x3. Hence the considered class of
admissible magnetizations is given by

m = m(x1, x3) ∈ S
2 (6.4)

with
lim

x1↑±∞
m = (cos θ∞,± sin θ∞, 0). (6.5)
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x1

2x

θ 8 θ 8

Figure 10: The wall angle θ∞

It is well known in the applied literature that there are two basic types of
walls in films:

• In thin films, the (symmetric) Néel wall is observed, see [66, Chapter
3.6 (C)]. If the film is sufficiently thin, the internal structure of the
wall is subject to the same constraints which are also imposed on the
mesoscopic magnetization: Variations in x3–direction are effectively
suppressed by the exchange energy, and the out–of–plane component
m3 is effectively suppressed by the stray–field energy. Hence the mag-
netization is of the form

m = (m1(x1),m2(x1), 0), (6.6)

see Figure 11. In view of (6.5), these walls are not charge–free on a
microscopic level:

∇ · m =
dm1

dx1

≡ 0. (6.7)

• In thicker films, the asymmetric Bloch wall (and its variant, the asym-
metric Néel wall) are observed, see [66, Chapter 3.6 (D)]. Indeed,
for sufficiently thick films the volume charges (6.7) lead to a pro-
hibitively large magnetostatic energy. The ordinary Bloch wall, i. e.
m = (cos θ∞,m2(x1),m3(x1)), which has no volume charges, would
generate surface charges at x3 ∈ {0, t}. For sufficiently thick films
however, the exchange energy leaves enough room to avoid both vol-
ume and surface charges:

∇ · m = 0 for x3 ∈ (0, t) and m3 = 0 for x3 ∈ {0, t}. (6.8)
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The nonobvious fact that there exists an m of the form (6.4), which
exactly satisfies (6.8) has been discovered in [65], see Figure 12. Si-
multaneously, numerical simulation in [82] showed that the relaxation
of the symmetry assumption (6.6) allows for a considerable reduction
of the energy.

t �
�
�
�

Figure 11: The basic form of a Néel wall

Figure 12: The asymmetric Bloch wall

This distinction of two basic types of mesoscopically one–dimensional
transitions is reflected by the scaling of the specific line energy. We will first
do this heuristically and then present the corresponding rigorous result [98].
To fix ideas, in this and the next subsection we treat the case of adjacent
domains of opposite magnetization, i. e. θ∞ = π

2 . For reasons which will be
clarified in the sequel we require a small anisotropy Q ≪ 1 whose easy axis
stabilizes the magnetization (0,±1, 0) in the adjacent domains. Hence the
relevant specific energy (that is, per length in x2) for configurations of the
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form (6.4) is given by

Ex1x3
(m) = d2

∫

R×(0,t)

(
|∂1m|2 + |∂3m|2

)
dx1dx3 (6.9)

+

∫

R2

|∇um|2 dx1dx3 + Q

∫

R×(0,t)

(
m2

1 + m2
3

)
dx1dx3,

where the stray–field um = um(x1, x3) is defined in the usual way, cf (2.16).

Let us first heuristically discuss the case of the asymmetric Bloch wall.
Because of the structure assumption (6.8), the magnetostatic contribution to
(6.9) drops out. Let us assume that the anisotropy contribution is negligible.
Then the remaining variational problem of minimizing the exchange energy
among all magnetizations of the form (6.8) has a single length scale, namely,
t. Hence, by dimensional analysis, we expect that the wall width w and its
specific energy E scale as

wasymBloch ∼ t and EasymBloch ∼ d2. (6.10)

In this case, the contribution from anisotropy would scale as Q t2, which is
indeed small compared to d2 as long as

t2 d−2 ≪ Q−1. (6.11)

This purely dimensional argument, however, does not reveal how the ex-
change energy (in combination with the constraint (6.8)) manages to localize
the transition layer. We will give the argument at the end of this subsection
in connection with Theorem 6.1.

Let us now consider the case of a Néel wall. For magnetizations of the
form (6.6), the specific energy (6.9) reduces to

E1d(m) = d2t

∫

R

| d

dx1
m′|2 dx1+

∫

R2

|∇um|2 dx1dx3+Q t

∫

R

m2
1 dx1. (6.12)

The stray–field energy term becomes more transparent when considered in
Fourier space (k1 denotes the dual variable to x1)

∫

R2

|∇um|2 dx1dx3 = t

∫

R

(
1 − sinh(1

2 t|k1|)
1
2t|k1| exp(1

2 t|k1|)

)
|F(m1)|2 dk1. (6.13)

Note that this is the x2–independent version of (4.5). Here

F(m1)(k1) =
1√
2π

∫

R

m1(x1)e
−ik1x1 dx1. (6.14)
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We note that the Fourier multiplier has a crossover at horizontal wavelengths
2π
|k1| of the order of the film thickness t:

1 − sinh(1
2t|k1|)

1
2t|k1| exp(1

2t|k1|)
≈

{
1
2t|k1| for t|k1| ≪ 1

1 for t|k1| ≫ 1

}
. (6.15)

Since we expect magnetizations of the form (6.6) to occur for sufficiently
thin films it is natural to consider the t|k1| ≪ 1 approximation to (6.15).
This yields

E1dthin(m) (6.16)

= d2t

∫

R

| d

dx1
m′|2 dx1 +

t2

2

∫

R

|k1||F(m1)|2 dk1 + Q t

∫

R

m2
1 dx1

= d2t

∫

R

| d

dx1
m′|2 dx1 +

t2

2

∫

R

∣∣| d

dx1
|1/2m1

∣∣2 dx1 + Q t

∫

R

m2
1 dx1.

Let us make a deliberately naive attempt to guess the scaling of the
width w of the Néel wall from (6.16) by a dimensional argument. The
exchange energy would scale as d2 t w−1, the anisotropy energy as Q t w,
whereas the magnetostatic energy would not depend on w and scale like t2.
Hence, w would, like for the bulk Bloch wall, be determined by the balance
of exchange and anisotropy contributions, i.e. w ∼ dQ−1/2, see Subsection
6.8. But, as opposed to bulk Bloch walls, the main contribution would come
from magnetostatics, since t2 ≫ Q1/2 d t for sufficiently soft materials.

The flaw of this argument lies in the assumption that the Néel wall has
a single length scale w, when it actually has two: a core and a tail width
wcore ≪ wtail. Indeed, we think of the Néel wall centered at x1 = 0 as
being divided into two portions: a core |x1| � wcore and two tails wcore �
|x1| � wtail. This two–scale nature allows the Néel wall to decrease its
magnetostatic energy by a logarithmic factor. In fact, the scalings of the
energy contributions are

contribution from exchange ∼ d2 t w−1
core,

contribution from magnetostatics ∼ t2 ln−1 wtail

wcore
,

contribution from anisotropy ∼ Q t wtail.

(6.17)

The logarithmic scaling of the magnetostatic contribution will be explained
in Subsection 6.3. Now, optimizing in wtail and wcore yields

wcorethin ∼ d2 t−1, wtail ∼ Q−1 t and ENeelthin ∼ t2 ln−1 wtail

wcorethin
.

(6.18)
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For very soft materials like permalloy (Q ≪ 1), Q−1 t may be larger than
the sample dimension ℓ. In this case wtail has to be estimated by ℓ and thus
the specific Néel wall energy scales as

ENeelthin ∼ t2 ln−1 ℓt

d2
. (6.19)

This is the model of what is called the ultrathin Néel wall, see [66, p.243],
because it is the appropriate model for very thin films. The core width of
the Néel wall in moderately thin films scales as d, as we shall explain in
Subsection 6.4. In fact, the scaling (6.18) is only consistent with the thin–
film approximation (6.16) provided the smallest length scale, i. e. wcorethin,
is large compared to t, which yields t ≪ d. Notice also that the scaling
(6.18) is consistent with the assumption that wcorethin ≪ wtail as long as

t2 d−2 ≫ Q. (6.20)

The optimization of (6.18) in wtail and wcore also shows that, by a loga-
rithmic factor, the main contribution to the energy scaling comes from the
magnetostatic energy. In particular (6.18) shows that the Néel wall not only
requires a small–scale cutoff by the exchange energy but also a large–scale
cutoff, which in the present case is provided by anisotropy. Only this cutoff
limits the tail width wtail.

The heuristics which lead to the energy scaling of asymmetric Bloch and
Néel walls have been made rigorous in [98]. The analysis does not presuppose
the special form (6.6) or (6.8). It thus confirms that there are only these
two basic types of mesoscopically one–dimensional transition layers in soft
materials – at least in terms of the leading–order scaling of the specific wall
energy.

Theorem 6.1 ([98]) In the regime (6.11) & (6.20) and for θ∞ = π
2 in

(6.5) we have

min
m satisfies (6.4)

Ex1x3
(m) ∼

{
d2 for t2 d−2 ≥ ln 1

Q

t2 ln−1 t2

Q d2 for t2 d−2 ≤ ln 1
Q

}
. (6.21)

The notation “A ∼ B in the regime (6.11) and (6.20)” means that there
exists a universal constant 0 < C < ∞ such that 1

C A ≤ B ≤ C A provided
t2 d−2 ≤ 1

C Q−1 and t2 d−2 ≥ C Q. Upper bounds are proved by construction
based on the ansatz (6.6), resp. (6.8) and inspired by the physics literature, in
particular [65] for (6.8). The main contribution of a mathematically minded
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analysis is to show that these models cannot be substantially improved, i.
e. in terms of scaling. This is done by providing ansatz–free lower bounds.

To give a flavor of a lower bound argument, we show how to obtain the
bound � d2 for m of the form (6.8). This shows how the exchange energy in
combination with (6.8), and the nonconvex constraint |m|2 = 1, manages to
stabilize the transition layer. Indeed, the second condition in (6.8) implies

π2

∫

R×(0,t)
m2

3 dx1dx3 ≤ t2
∫

R×(0,t)
(∂3m3)

2 dx1dx3. (6.22)

Furthermore, (6.8) together with θ∞ = π
2 yields

∫ t
0 m1 dx3 = 0, which gives

π2

∫

R×(0,t)
m2

1 dx1dx3 ≤ t2
∫

R×(0,t)
(∂3m1)

2 dx1dx3. (6.23)

Similarly, we have for the vertical average m̄2 = 1
t

∫ t
0 m2 dx3:

π2

∫

R×(0,t)
(m2 − m̄2)

2 dx1dx3 ≤ t2
∫

R×(0,t)
(∂3m2)

2 dx1dx3. (6.24)

Now because of m2
1 + m2

2 + m2
3 = 1, (6.22), (6.23) and (6.24) combine to

π2 t

∫

R×(0,t)
(1 − m̄2

2) dx1 ≤ t2
∫

R×(0,t)
|∂3m|2 dx1dx3. (6.25)

On the other hand, we have

t

∫

R

1

1 − m̄2
2

(∂1m̄2)
2 dx1 ≤

∫

R×(0,t)

1

1 − m2
2

(∂1m2)
2 dx1dx3

≤
∫

R×(0,t)
|∂1m|2 dx1dx3, (6.26)

where we again used m2
1 + m2

2 + m2
3 = 1. Now (6.25) and (6.26) combine by

the Modica–Mortola argument (cf. Subsection 7.2) to give a lower bound:

d2

∫

R×(0,t)
|∂1m|2 + |∂3m|2 dx1dx3

(6.25),(6.26)

≥ d2

(
t

∫

R

1

1 − m̄2
2

(∂1m̄2)
2 dx1 +

π2

t

∫

R

(1 − m̄2
2) dx1

)

≥ 2π d2

∫

R

|∂1m̄2| dx1

(6.5)

≥ 4π d2.
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6.3 The logarithmic tails of the Néel wall

It is by now well–established that the tails of a Néel wall decay logarith-
mically, see [66, Figure 3.76]. However, early treatments based on ansatz
functions missed the very slow decay and led to an overestimation of the
wall energy, in particular for low anisotropy Q (see e.g. the review article
[43], pp. 397–401, where q = 1/Q, and [66], p. 242). A first formal asymp-
totic analysis predicting the logarithmic decay was carried out by Riedel and
Seeger [101]; a detailed mathematical discussion and various refinements of
their work can be found in the work of Garcia–Cervera [52, 53]. Finally,
Melcher [89, 90] recently established the logarithmic behavior of the tails
rigorously, see Theorem 6.2 below.

We start by giving a very informal argument in favor of the logarithmic
scaling (6.17) of the magnetostatic energy of the Néel wall, as well as in
favor of a logarithmic tail in the range wcore � |x1| � wtail. We notice that
due to (6.5) and (6.6), there must be an x1 such that |m1(x1)| = 1, which we
think of as the center of the wall. By symmetry we may assume m1(0) = 1.
On the Fourier side, m1(0) = 1 is expressed as

∫

R

F(m1) dk1 =
√

2π. (6.27)

It helps to think of (6.27) as a constraint on the charge distribution −dm1

dx1
,

i. e. as
∫ 0
−∞

dm1

dx1
dx1 = −

∫ ∞
0

dm1

dx1
dx1 = 1, rather than on the shape of m

itself. Minimizing the thin–film magnetostatic energy t2

2

∫
R
|k1||F(m1)|2 dk1,

subject to the constraint (6.27), yields the optimality condition

F(m1)(k1) =

√
2π λ

|k1|
for k1 
= 0 (6.28)

for some Lagrange multiplier λ. Since the Fourier transform of − 2
x1

(in

the sense of Cauchy’s principal value) is given by −
√

2π i sign(k1), we may
regard (6.28) as the Fourier transform of 2 ln w

|x1| , where w is some length
scale which can be identified with wtail:

m1(x1) = 2λ ln
wtail

|x1|
. (6.29)

Note that changes in wtail affect m1 by an additive constant to which the
charge distribution −dm1

dx1
is oblivious.
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If one assumes that most of the volume charges −dm1

dx1
reside in the tail

(this assumption will be questioned in Subsection 6.4), (6.27) turns into

∫

{w−1

tail
�|k1|�w−1

core}
F(m1)(k1) dk1 ≈

√
2π. (6.30)

This determines the constant λ in (6.28) asymptotically; we obtain from
(6.29):

m1(x1) ≈
ln wtail

|x1|
ln wtail

wcore

for wcore ≪ |x1| ≪ wtail (6.31)

and from (6.28):

t2

2

∫

{w−1

tail
�|k1|�w−1

core}
|k1||F(m1)|2 dk1 ≈ π

2
t2 ln−1 wtail

wcore
. (6.32)

The asymptotic formula (6.32) justifies (6.17) and specifies (6.18) to

ENeelthin ≈ π

2
t2 ln−1 t2

Q d2
. (6.33)

This very formal argument has been made rigorous in [89, 90]:

Theorem 6.2 ([90]) In the regime (6.20) and for θ∞ = π
2 in (6.5) one has

min
m satisfies (6.6)

E1dthin(m) ≈ π

2
t2 ln−1 t2

Q d2
.

Furthermore, for any minimizer, m1 is symmetric around 0, decreasing on
the right half–axis and satisfies

m1(x1) ∼
ln t

Q |x1|

ln t2

Q d2

for d2t−1 ≪ |x1| ≪ Q−1t.

The precise meaning of “A ≈ B in the regime (6.20)” is the following: For
any ǫ > 0 there exists a δ > 0 such that for Q ≤ δ t2 d−2 it holds 1−ǫ ≤ A

B ≤
1 + ǫ. Let us give an outline of the approach. One is interested in the tails,
which are expected to carry most of the energy. Thus it seems promising
to consider the linearization of E1dthin around m1 = 0. The original non–
linear character is just preserved in the affine constraint

∫ 0
−∞

dm1

dx1
dx1 =

−
∫ ∞
0

dm1

dx1
dx1 = 1 on the charge distribution −dm1

dx1
, which is expressed by
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(6.27). The linearized energy E1dthinlin can then be conveniently expressed
in Fourier space:

E1dthinlin(m)

= d2t

∫

R

(
d

dx1
m1

)2

dx1 +
t2

2

∫

R

|k1||F(m1)|2 dk1 + Q t

∫

R

m2
1 dx1

=

∫

R

(
d2 t |k1|2 +

t2

2
|k1| + Q t

)
|F(m1)|2 dk1. (6.34)

Now (6.34) is minimized subject to the constraint (6.27). We introduce the
rescaling

x1 = 1
2 Q−1 t x̂1 and E1dthinlin = 1

2 t2 Ê1dthinlin,

and denote by F̂ and k̂1 the Fourier transform and the wave vector after
rescaling. The solution is given by

F̂(m1) =

√
2πλ

ǫ|k̂1|2 + |k̂1| + 1
and Ê1dthinlin = 2πλ with ǫ = 4

Q d2

t2
,

where the Lagrange multiplier λ is determined through

λ−1 =

∫

R

(ǫ|k̂1|2 + |k̂1| + 1)−1 dk̂1 ≈ 2 ln
1

ǫ
.

For ε = 0 the inverse Fourier transform can be carried out explicitly, defining
m̂ = λ−1m:

m̂0
1(x̂1) := F̂−1

(
1√

2π(|k̂1| + 1)

)
(x̂1)

=
cos x̂1

π

∫ ∞

|x̂1|

cos ξ1

ξ1
dξ1 +

sin |x̂1|
π

∫ ∞

|x̂1|

sin ξ1

ξ1
dξ1, for x̂1 
= 0.

The function m̂0
1 has the expansions

m̂0
1(x̂1) =

1

π

{
ln(1/|x̂1|) − γ + O(x̂1) as |x̂1| ≪ 1

x̂−2
1 + O(x̂−4

1 ) as |x̂1| ≫ 1

where γ = 0.577 . . . is Euler’s constant.

This shows that in the region d2 t−1 ≪ x1 ≪ t Q−1 the optimal profile
for the linearized energy E1dlinthin indeed has a logarithmic shape (6.31).
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Theorem 6.2 shows that the minimizers of the linearized energy E1dthinlin

already capture the correct leading–order asymptotics both for the tails and
the minimal energy for E1dthin. In [39, Proposition 2], the correction has
been shown to scale as

min
m satisfies (6.6)

E1dthin(m) − π

2
t2 ln−1 wtail

wcore
∼ t2

(
ln ln

wtail

wcore

)
ln−2 wtail

wcore

in a slightly different context.

6.4 The core of the Néel wall in moderately thin films

In moderately thin films, the Néel wall has an even more complex structure
than the analysis of the previous subsection reveals. We quote from [66,
p.243] “In the centre of the wall, the flux into the wall normal direction [i.
e. x1] is ... 1 in reduced units. In the domains this flux is ... cos θ∞. In
each half wall the reduced total magnetic charge ±(1−cos θ∞) has therefore
to be distributed. Part of the charge is concentrated in the core, where it
supports a low energy state by close interaction with its counterpart of op-
posite polarity. This part is limited by the exchange energy, which prevents
an arbitrarily narrow core width. The other part of the charge gets widely
spread in the tail.” We refer to Figure 13. In this subsection we present
a rigorous analysis [39], which brings this to the point. We start with the
heuristics.

Tail Core Tail

Figure 13: The charge distribution in core and tail

The “close interaction between charges in the core” cannot be captured
within the thin–film approximation of the stray–field energy (6.16). As a
heuristic, let us replace the Fourier multiplier in (6.13) by its second limiting
expression in (6.15), since it is the asymptotic expression for horizontal scales
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≪ t. For subsequent use, we consider a general wall angle θ∞ and neglect
anisotropy, which is not relevant for the balance in the core. Notice that in
this case m1 − cos θ∞ is the quantity which is square integrable for |x1| →
±∞. Therefore, in (6.13) F(m1) has to be replaced by F(m1 − cos θ∞).
Hence, E1d is approximated by

E1dthick(m) = d2t

∫

R

|dm′

dx1
|2 dx1 + t

∫

R

|F(m1 − cos θ∞)|2 dk1

= d2t

∫

R

|dm′

dx1
|2 dx1 + t

∫

R

(m1 − cos θ∞)2 dx1.

It is convenient to express E1dthick in terms of the local angle, m′ = (cos θ, sin θ):

E1dthick(m) = d2t

∫

R

(
dθ

dx1

)2

dx1 + t

∫

R

(cos θ − cos θ∞)2 dx1.(6.35)

This standard variational problem has — up to translation – a unique min-
imizer for the boundary conditions (6.5). A dimensional argument shows
that the width of the transition layer scales as

wcorethick ∼ d. (6.36)

The energy of the optimal transition layer can be computed explicitly:

ENeelthick = 2 d t

∫ θ∞

−θ∞

(cos θ − cos θ∞) dθ = 4 d t (sin θ∞ − θ∞ cos θ∞).

(6.37)

Hence E1dthick(m) indeed models the competition of magnetostatics and
exchange in the Néel wall core as described in the quotation. This is consis-
tent as long as the core width is small compared with t, i. e.

d ≪ t, (6.38)

so that the approximation of the Fourier multiplier (6.15) leading to (6.35)
is justified. On the other hand, the magnetostatic part of E1dthin models the
spreading of charges into logarithmic tails, as we have seen in Subsection
6.3.

Let us now address the optimal mix suggested in the quotation and
envision a Néel wall profile m′ = (cos θ, sin θ) with θ∞ = π

2 and center at
x1 = 0. We think of the profile as being divided into a core governed by
E1dthick(m) and tails governed by E1dthin(m). The core extends over |θ| ≤
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θcore and the tails over the region described by |θ| ≥ |θcore| and |x1| � wtail.
Observe that core and tails not only live in different parts of physical space
but also in different parts of frequency space: In view of (6.36), the core
has a peaked frequency spectrum around |k1| ∼ d−1 whereas the tail has
a spread–out frequency spectrum, cf. (6.28). This justifies thinking of the
energy as the sum of the energies of core and tail.

The energy of the optimal core is given by (6.37) with θ∞ replaced by
θcore. The magnetostatic energy of the optimal tail is given by (6.32), but
with a factor of cos2 θcore. Indeed, the right tail has only to accommodate
the charges −dm1

dx1
coming from the rotation from m1 = cos θcore to m1 = 0

(instead of the rotation from m1 = 1 to m1 = 0 considered in Subsection 6.3).
This means that in the informal discussion at the beginning of Subsection
6.3, the constraint (6.27) has to be replaced by

∫
R
F(m1) dk1 =

√
2π cos θcore.

The square in cos2 θcore is a consequence of the fact that the magnetostatic
energy is quadratic in m1, cf. (6.32). We summarize these findings:

contribution from core ≈ 4 d t (sin θcore − θcore cos θcore),

contribution from tail ≈ π
2 t2 (ln−1 wtail

wcore
) cos2 θcore,

contribution from anisotropy ∼ Q t wtail.

(6.39)

We allow ourselves to be noncommittal about wcore since it only appears in
the logarithm; to fix ideas we take wcore = d ∼ wcorethick. Now the quotation
suggests that the optimal Néel wall profile is obtained by optimizing the sum
of (6.39) in θcore and wtail (as opposed to wcore and wtail for the ultrathin
Néel wall, see (6.17)).

This somewhat bold optimization principle has been made rigorous for
a special case in [39]. It treats the case where the length wtail of the Néel
wall tails is not implicitly determined by the balance of magnetostatics and
anisotropy as in (6.18), but is imposed by boundary conditions:

m = (0,±1, 0) for ± x1 ≥ wtail. (6.40)

The condition (6.40) models the confinement of the Néel wall tails by sample
edges or neighboring Néel walls. The result of [39] is also restricted to the
limiting regime where the core energy dominates the tail energy, i. e.

d t−1 ln
wtail

d
≪ 1 with the understanding that d ≪ wtail. (6.41)

Notice that this contains (6.38). In the regime (6.41), the optimization
principle in θcore based on (6.39) yields

θcore ≈ π

2
− 2 d t−1 ln

wtail

d
and ENeelmix ≈ 4 d t − 2π d2 ln

wtail

d
.
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This is exactly what can be proved using the original magnetostatic energy
in E1d.

Theorem 6.3 ([39]) Let Q = 0. In the regime (6.41) and t ≪ wtail, we
have

min
m satisfies (6.6) and (6.40)

E1d ≈ 4 d t − 2π d2 ln
wtail

d
. (6.42)

The precise meaning of the notation of Theorem 6.3 is the following: For
any ǫ > 0 there exists a δ > 0 such that if d ≤ δwtail, dt−1 ln wtail

d ≤ δ and
t ≤ δ wtail, one has

| 1

dt
min E1d − 4 + 2πdt−1 ln

wtail

d
| ≤ ǫ dt−1 ln

wtail

d
.

The statement in [39, Theorem 1] has an additional factor of two, since it
considers the case of an array of winding Néel walls at distance wtail and
computes the energy of a pair of walls. The proof is based on a perturbation
analysis around the well–characterized minimizer of (6.35). It uses the vari-
ational structure and, amongst others, the fact that E1d, when expressed in
terms of m1 alone:

E1d(m) = d2t

∫

R

1

1 − m2
1

(
d

dx1
m1)

2 dx1+

∫

R2

|∇um|2 dx1dx3+Q t

∫

R

m2
1 dx1,

is nonlinear but convex in m1.

The comparison of (6.37) for θ∞ = π
2 with (6.42) quantifies how the

spreading of charges into the tails reduces the total wall energy. It can be
seen from (6.42) that this effect decreases as the confinement length wtail

of the tails is decreased: ∂ENeelmix

∂wtail
< 0. It can also be read off that the

relative importance of the repulsive term decreases with increasing thickness:
−∂ENeelmix

∂wtail
/ENeelmix ≈ π

2 d t−1 w−1
tail. This quantifies the repulsion.

It has to be noted, however, that for the full energy Ex1x3
(i. e. when

minimizing over the larger class (6.4)), there is no proper regime where the
leading–order energy scales as d t, as we learn from Theorem 6.1. The scaling
in Theorem 6.3 is a consequence of the restriction to magnetizations of the
form (6.6). Other restrictions of the magnetization have been considered,
for instance that of a bulk Bloch wall symmetry, i. e. (0,m2(x1),m3(x1)).
This yields a scaling of the specific wall energy as d4/3 t2/3, see [53, Theorem
7.1].
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6.5 The cross–tie wall

Formula (6.37) shows that the core energy of a Néel wall strongly degenerates
for small wall angles θ∞:

ENeelthick(θ∞) = 4 d t (sin θ∞ − θ∞ cos θ∞) ≈ 4

3
d t θ3

∞ for θ∞ ≪ 1.

(6.43)
In particular, a (θ∞ = π

4 )–wall “costs” only a fraction of a (θ∞ = π
2 )–wall:

ENeelthick(
π
4 ) = 4−π

4
√

2
ENeelthick(

π
2 ), with 4−π

4
√

2
≈ 0.152. In the physics liter-

ature, this observation is evoked to explain the occurrence of the cross–tie
wall, see Figure 14. The cross–tie wall is a periodic pattern of small–angle
Néel walls which macroscopically acts as a (θ∞ = π

2 )–wall. This pattern is
formed by perpendicular Néel wall segments (the “cross–ties”) which divide
a central wall into segments. In this subsection, we report on a remarkable
work by Alouges, Rivière and Serfaty [7], which, based on (6.43), identifies
an optimal mesoscopic pattern.

Figure 14: Cross–tie wall in a 76–nm–thick Permalloy film. Reproduced with
permission from Hubert and Schäfer, Magnetic Domains, Springer 1998

Motivated by van den Berg’s view, cf. Subsection 6.1, all admissible
mesoscopic patterns are described by (discontinuous) in–plane magnetiza-
tions m′(x′) ∈ S1 which macroscopically act as a (θ∞= π

2 )–wall, which have
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x

2

1

cross
w

Figure 15: The optimal mesoscopic pattern

some tangential period wcross, and which are weakly divergence–free, i. e.

limx1→±∞ m′ = (0,±1),

m′(x1, x2 + wcross) = m′(x1, x2),

∇′ · m′ = 0 distributionally.

(6.44)

We first describe the optimal mesoscopic magnetization m′ and its line dis-
continuities, which are sketched in Figure 15. If x1 = 0 denotes the position
of the central discontinuity line, m′ obeys the symmetry (m1,m2)(−x1, x2) =
(m1,−m2)(x1, x2). If x2 = 0 denotes the line half way between two perpen-
dicular discontinuity lines, m′ also obeys the symmetry (m1,m2)(x1,−x2) =
(−m1,m2)(x1, x2). Hence, it suffices to specify m′ in {x1 > 0, 0 < x2 <
wcross

2 }, the shaded region in Figure 15. In this region, the magnetization
is continuous (but not differentiable) and given by pasting a vortex–like
magnetization to a constant magnetization:

m′(x′) =

⎧
⎨

⎩

(− x2√
x2

1
+x2

2

, x1√
x2

1
+x2

2

) for x1 ≥ x2

(− 1√
2
, 1√

2
) for x1 ≤ x2

⎫
⎬

⎭ . (6.45)

It is easy to check that m′ satisfies (6.44). The angle θ∞ of the line discon-
tinuities cover the range from π

4 to zero. The line energy per unit length in
x2–direction of this pattern is easily calculated to be (we may set wcross = 1)

Ecrosstie = 2ENeelthick(
π

4
) + 2

∫ ∞

1

2

ENeelthick(arctan
1

2x1
) dx1

= 4 d t (
√

2 − 1). (6.46)
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Notice that this is indeed smaller than the line energy ENeelthick(
π
2 ) = 4 d t

of a simple (θ∞= π
2 )–Néel wall. Surprisingly, it can be shown that the value

(6.46) is optimal:

Theorem 6.4 ([7]) It holds

min
m satisfies (6.44)

1

wcross

∫

Γ
ENeelthick(θ∞) ds = 4 d t (

√
2 − 1),

where Γ denotes the union of all line discontinuities of m′ as characterized
by the angle θ∞ which varies with arc length s.

Let us give the concept of the proof. It follows a strategy laid out in [70]
for a mathematically related variational problem. This strategy makes use
of continuous maps Φ′(m′) ∈ R2 with the following two properties:

⎧
⎨

⎩
∇′ · Φ′(m′) = 0

for every smooth m′(x′) ∈ S1 with ∇′ · m′ = 0,

⎫
⎬

⎭ (6.47)

and ⎧
⎪⎪⎨

⎪⎪⎩

|
(
Φ′(m′

left) − Φ′(m′
right)

)
· ν ′| ≤ ENeelthick(θ∞)

for any m′
left,m

′
right ∈ S1 which form the angle θ∞

with a normal ν ′ ∈ S1, see Figure16

⎫
⎪⎪⎬

⎪⎪⎭
.(6.48)

θ 8

m’left

ν’

m’right

Figure 16: Wall and normal

By the divergence theorem, such a Φ′ yields a lower bound independent
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of m′:

1

wcross

∫

Γ
ENeelthick(θ∞) ds

(6.48)

≥ 1

wcross

∣∣∣
∫

Γ

(
Φ′(m′

left) − Φ′(m′
right)

)
· ν ′ ds

∣∣∣

=
∣∣∣

1

wcross

∫

R×(0,wcross)
∇′ · Φ′(m′) dx′

−Φ′(m′(x1=+∞)
)
· (1, 0) − Φ′(m′(x1=−∞)

)
· (−1, 0)

∣∣∣
(6.44),(6.47)

=
∣∣Φ′((0, 1)) · (1, 0) − Φ′((0,−1)) · (−1, 0)

∣∣. (6.49)

In order to yield an optimal lower bound, Φ′ must be adapted to the form
of ENeelthick (and the conditions imposed at x1 = ±∞). The choice of Φ′ in
[7] is guided by

1

2dt
Φ̃′(m′) = θ m′ + m′⊥ where m′ := (cos θ, sin θ) (6.50)

introduced in [103]. That paper treats the case where m′ admits a global
phase θ. It is not difficult to see that Φ̃′ satisfies (6.47) and (6.48). But it
cannot be used here since there is no global phase θ for the cross–tie pattern
(6.45), see also Subsection 6.6. For [7], symmetric variants of the Φ̃′ in (6.50)
are pieced together to form a map Φ′(m′) continuous in m′ ∈ S1:

1

2dt
Φ′(m′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θm′ + m′⊥ + (0,−
√

2) for −π
4 ≤ θ ≤ π

4

(π
2 − θ)m′ − m′⊥ + (−

√
2, 0) for π

4 ≤ θ ≤ 3π
4

(θ − π)m′ + m′⊥ + (0,
√

2) for 3π
4 ≤ θ ≤ 5π

4

(3π
2 − θ)m′ − m′⊥ + (

√
2, 0) for 5π

4 ≤ θ ≤ 7π
4

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

Using the corresponding property of Φ̃′, one checks that also Φ′ satisfies
(6.47) and (6.48). Finally, one easily checks that for this choice of Φ′, the
right hand side of (6.49) indeed takes the value 4d t (

√
2 − 1).

6.6 Two–dimensional stability of the Néel wall in very thin

films

We return to the ultrathin Néel wall investigated in Subsection 6.2 and 6.3.
In this case, the degeneracy in the angle is even more pronounced. Indeed,

ENeelthin(θ∞) =
π

2
t2 (ln−1 wtail

wcore
) (1 − cos θ∞)2

≈ π

8
t2 (ln−1 wtail

wcore
) θ4

∞ for θ∞ ≪ 1, (6.51)
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cf. the argument which leads to (6.39). So the ultrathin Néel wall should
be more prone to the formation of a cross–tie pattern, Figure 15, than the
Néel wall in moderately thin films. But in fact, experiments do show stable
(θ∞= π

2 )–Néel walls in sufficiently thin films.

We first give the heuristic explanation from the physics literature why
the ultrathin Néel wall does not suffer from the cross–tie instability. As
we have noted in Subsection 6.5, the optimal mesoscopic cross–tie pattern
m′, see Figure 15 and formula (6.45), does not allow for a global phase θ.
More precisely, there are topological defects residing in the points indicated
in Figure 17. The black circles indicate a point singularity with winding
number 1, the white circle a point singularity with winding number −1.
Analogously to the line singularities, the point singularities are replaced by
smooth structures on the microscopic level, the so–called Bloch lines (“line”
refers to the x3–direction). Because of the topological reasons mentioned,
these structures require an out–of–plane component m3. The inner structure
of the Bloch line which replaces a white circle is easy, cf. Figure 18: It is the
regularization of a vortex, where the magnetization avoids the singularity
by turning out of the plane when approaching the center.

x1

x2

Figure 17: Topological defects in the mesoscopic cross–tie pattern

In [38] the following scaling of the energy for the Bloch line in ultrathin
films is heuristically derived:

EBloch ∼ d2t ln
wcross

d
,
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x2

x1

x3

x1

Figure 18: The circular Bloch line

see also Section 7.3. Since the Néel–wall energy tends quadratically to 0 for
t ↓ 0, cf. (6.51), the relative cost of Bloch lines increases with decreasing
film thickness. This is the common explanation why cross-tie walls are not
observed in sufficiently thin films despite the pronounced angle degeneracy,
cf. (6.51).

This does not yet explain why the (θ∞= π
2 )–Néel wall is stable in very

thin films, even if an out–of–plane component is suppressed. This question
has been addressed in [42]. There, a class of microscopic in–plane magne-
tizations m′(x′) ∈ S1, which macroscopically act as a (θ∞ = π

2 )–wall, and
which have some period w in the tangential direction, is considered. The
Néel–wall tails are constrained to have the width wtail by a two–dimensional
version of (6.40). This amounts to:

m′(x1, x2) = (0,±1) for ± x1 ≥ wtail,

m′(x1, x2 + w) = m′(x1, x2).
(6.52)

For this type of m′, the three–dimensional energy (per period w in x2)
without anisotropy assumes the form

Ex1x2
(m′) = d2t

∫

R×(0,w)
|∇′m′|2 dx′ +

∫

R×(0,w)×R

|∇um|2 dx,

where the the magnetostatic potential um(x1, x2, x3) is generated by the
volume charge ∇′ · m′ in {0 < x3 < t}. For sufficiently thin films, this
charge distribution is well approximated by the surface charge −t∇′ ·m′ on
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{x3 = 0}. This is the thin–film approximation of (4.6) and yields

Ex1x2thin(m′)

= d2t

∫

R×(0,w)
|∇′m′|2 dx′ +

t2

2

∫

R× 2π
w

Z

|k′|−1|F(∇′ · m′)|2 dk′

= d2t

∫

R×(0,w)
|∇′m′|2 dx′ +

t2

2

∫

R×(0,w)
||∇′|−1/2∇′ · m′|2 dx′.(6.53)

This is the proper two–dimensional generalization of (6.16) with Q = 0. The
relevant regime is when the core width of the ultrathin (θ∞= π

2 )–Néel wall,
cf. (6.18), is much smaller than the imposed tail width, i. e.

d2 t−1 ≪ wtail. (6.54)

The energy of the ultrathin Néel wall approximately behaves as

ENeelthin ≈ π

2
t2 ln−1 wtail t

d2
,

cf. the argument which leads to (6.18). In [42], it is shown that the one–
dimensional transition profile is asymptotically optimal under all two–dimensional
variations of the type (6.52):

Theorem 6.5 ([42]) In the regime (6.54),

min
m′ satisfies (6.52)

1

w
Ex1x2thin(m′) ≈ π

2
t2 ln−1 wtail t

d2
. (6.55)

Let us give the concept of the proof. For an arbitrary m′ of the form
(6.52) there is a curve Γ in (−wtail, wtail) × R with

Γ is w–periodic in x2 and m′ = ν ′ along Γ.

One may think of Γ as the wall center, see Figure 19.
The strategy is to show that for length(Γ) (short for length(Γ ∩ (R ×

(0, w))))

Ex1x2thin(m′) �
π

2
t2 (ln−1 wtail t

d2
) length(Γ), (6.56)

which yields (6.55) because of length(Γ) ≥ w. This is done by a duality
argument based on the charge distribution −∇′ ·m′. The charge distribution
is tested by the characteristic function φ

φ = −1
2 left of Γ and φ = 1

2 right of Γ,
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x2

x1

m Γ

φ = −1/2 φ = 1/2

Figure 19: The mesoscopic wall position

see Figure 19. By the construction of Γ, the definition of φ and the diver-
gence theorem one has on the one hand

∣∣∣∣∣

∫

R×(0,w)
∇′ · m′ φdx′

∣∣∣∣∣ = length(Γ).

In order to conclude (6.56), one needs, on the other hand, that
∣∣∣∣∣

∫

R×(0,w)
∇′ · m′ φdx′

∣∣∣∣∣

≤
(( 2

π
t−2 ln

wtail t

d2
Ex1x2thin(m′) + o(1)

)
length(Γ)

)1/2

. (6.57)

This inequality is based on Cauchy–Schwarz in Fourier space

∫

R×(0,w)
∇′ · m′ φdx′ ≤

(∫

R× 2π
w

Z

|k′|−1|F(∇′ · m′)|2 dk′
∫

R× 2π
w

Z

|k′||F(φ)|2 dk′
)1/2

(6.53)

≤
(

2 t−2 Ex1x2thin(m′)
∫

R× 2π
w

Z

|k′||F(φ)|2 dk′
)1/2

,

on the fact that an interpolation estimate of the form
∫

R× 2π
w

Z

|k′||F(φ)|2 dk′ 
� sup
x′

|φ|
∫

R×(0,w)
|∇′φ| dx′ (6.58)

just fails logarithmically, and on the obvious identity

sup
x′

|φ|
∫

R×(0,w)
|∇′φ| dx′ =

1

2
length (Γ)
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for our φ. The failure of (6.58) is carefully controlled by a cutoff in k′–space
and gives rise to the logarithmic scaling including the optimal prefactor in
(6.57) via the interpolation estimate

∫

R× 2π
w

Z

min{wcore |k′|2, |k′|, w−1
tail}|F(φ)|2 dk′

�
2

π
ln

wtail

wcore
sup
x′

|φ|
∫

R×(0,w)
|∇′φ| dx′, (6.59)

which holds for all wcore ≪ wtail and an arbitrary function φ. The main
ingredient for (6.59) is the inequality

∫

R× 2π
w

Z

4 sin2(
k′ · δx′

2
) |F(φ)|2 dk′ =

∫

R×(0,w)
(φ(x′ + δx′) − φ(x′))2 dx′

≤ 2 sup
x′

|φ|
∫

R×(0,w)
|δx′ · ∇′φ| dx′

(6.60)

for arbitrary δx′ ∈ R2. This inequality is multiplied with |δx′|−3 and inte-
grated over the annulus {wcore ≤ |δx′| ≤ wtail}.

6.7 The cross–tie period

We return to the cross–tie wall of Subsection 6.5. The analysis of that
subsection does not yield the cross–tie period wcross. Indeed, the variational
problem considered in Theorem 6.4 is oblivious to wcross. In this subsection
we heuristically address mechanisms which might determine wcross, following
[39]. In the physics literature, this is considered an open problem: “An
attempt to calculate the equilibrium period of cross–ties has to include the
repulsive interaction between the main wall segments and the adjacent cross–
ties... . In addition, the extra energy connected ... [with] the Bloch lines
has to be considered. No reliable estimates are available for either of these
contribution, which means that a consistent theory of the cross–tie wall is
still lacking.”, cf. [66, p.245].

Let us address the proposed mechanisms. The repulsive interaction be-
tween the main wall segments and the adjacent cross–ties results from the
following fact: The sense of winding of these Néel walls, cf. Figure 20, is
such that their tails compete for space. Since the average distance between
the main wall segments and the adjacent cross–ties scales as wcross, we have
wtail ∼ wcross in the language of Subsection 6.4. As Theorem 6.3 shows for
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(θ = π
2 )–walls, the specific wall energy decreases with increasing wtail. The

repulsive mechanism due to the Bloch lines is easy to understand: As stated
in Subsection 6.6 for very thin films, every Bloch line carries a quantum
of energy which only weakly depends on wcross. But the number of Bloch
lines per unit length is given by 2w−1

cross. There is no ambiguity about the
relevant attractive mechanism. It is given by an in–plane uniaxial crystalline
anisotropy, which favors the magnetization in the domains. Of course, we
think of soft materials:

Q ≪ 1. (6.61)

Since there is a band around the central wall segments of width ∼ wcross,
where the magnetization deviates from the easy axis, see Figure 21, anisotropy
favors a small wcross.

x

x

2

1 wcross

Figure 20: Winding Néel walls in cross–tie

wcross

x

x

2

1

Q

Figure 21: The effect of anisotropy

In order to arrive at a more quantitative picture, we make the following
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assumption: The dominant energy contribution is the energy of the Néel
wall core. According to Subsection 6.5, it completely determines the relative
proportions of the optimal mesoscopic pattern, cf. (6.45) and Figure 15, but
not its length scale wcross. We now identify the corrections to the energy
from anisotropy, Néel–wall interaction and Bloch–line contribution based on
this optimal mesoscopic pattern. The sum of these expressions will then be
minimized in wcross.

Based on (6.45), the contribution from crystalline anisotropy per length
in x2 is easy to quantify:

anisotropy per length ≈ 1

4
(1 +

π

2
)Q t wcross. (6.62)

In order to assess the contribution of Néel–wall interaction, we need the
result of Theorem 6.3 for an arbitrary wall angle θ∞. Recall the heuristics
of Subsection 6.4 on the optimal mix of core and tail in a Néel wall. We are
now interested in the case of an arbitrary wall angle θ∞ and tails limited to
a length wtail, cf. (6.40). In this situation, the contribution from the tails in
(6.39) has to be replaced by π

2 t2 (ln−1 wtail

d ) (cos θcore − cos θ∞)2. Minimiza-
tion of core and tail contributions in θcore gives the following expression for
the specific Néel–wall energy:

ENeelmix ≈ 4 d t (sin θ∞ − θ∞ cos θ∞) − 8

π
d2 (ln

wtail

d
) θ2

∞ (6.63)

in the regime d ≪ wtail and d t−1 ln wtail

d ≪ 1, cf. (6.41). The leading
term in (6.63) is the expression on which the identification of the optimal
mesoscopic pattern was based upon, see (6.43). We are interested in the
correction term. It captures the reduction of the specific Néel wall energy
coming from spreading a small amount of the Néel wall charge in form of
logarithmic tails. More important, it quantifies how this reduction increases
with decreasing confinement of the tails. We apply (6.63) to the Néel walls in
the optimal mesoscopic pattern. As motivated above, we use wtail ∼ wcross

(so that ln wtail

d ≈ ln wcross

d ) and integrate the correction term along the
discontinuity lines of the mesoscopic pattern (with varying θ∞(s)). We so
obtain the following correction to the total Néel wall energy per length:

Correction to total Néel wall energy per length

≈ −d2 ln
wcross

d
(π + 0.844

8

π
). (6.64)

For the contribution of the Bloch lines, we focus on the simpler circular Bloch
line. The circular Bloch line seamlessly extends into the vortex segment of
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the mesoscopic magnetization, cf. (6.45). By a logarithmic factor, the main
contribution to the energy of a Bloch line comes from the exchange energy.
We therefore calculate the exchange energy of the vortex segments outside
the vortex core and assume that the vortex core size scales as d. Per unit
length in x2 this yields:

Total Bloch line energy per length ≈ π d2 t w−1
cross ln

wcross

d
. (6.65)

We now minimize the sum of (6.62), (6.64) and (6.65) in wcross. The
minimizer is the solution of

0.643Q t − 5.29 d2 w−1
cross − 3.14 d2 t w−2

cross ln
wcross

d
≈ 0. (6.66)

Obviously, there are two regimes:

wcross ≈
{

8.23Q−1 d2 t−1 for t d−1 ≪ ( 1
Q ln−1 1

Q)1/2 Regime I

2.21 ( 1
Q ln 1

Q)1/2 d for t d−1 ≫ ( 1
Q ln−1 1

Q)1/2 Regime II

}
.

(6.67)
In the first regime, the dominant repulsive mechanism is the Néel–wall in-
teraction; in the second regime, it is the Bloch–line contribution.

Let us check the consistency of the argument: For (6.64) and (6.65) we
need to check wcross ≫ d and dt−1 ln wcross

d ≪ 1. This is consistent provided
the film is sufficiently thick, i. e.

t d−1 ≫ ln
1

Q
, (6.68)

so that Regime I is restricted to the band ln 1
Q ≪ t d−1 ≪ ( 1

Q ln 1
Q)1/2.

Notice, however, that in regime (6.68), the asymmetric Bloch wall beats the
Néel wall as we learn from Theorem 6.1. Hence, the above analysis only
applies to a small range of film thicknesses.

Let us now compare (6.67) with some experimental observations of cross–
tie walls. The scaling of wcross with respect to Q was experimentally inves-
tigated by Middelhoek in [91] for Permalloy films of thickness t = 60nm,
for which the effective quality factor was varied through the application of
mechanical stresses. The observations show that wcross is proportional to
Q−1, which is in agreement with Regime I.

Concerning the dependence on thickness t, we turn to [66, p.449]. We
consider Figure 5.59 a) through e), where we read off wcross. To compare
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t wexp
cross wRegI

cross wRegII
cross wcross

10 nm 62.4 µm 82.3 µm 2.01 µm 82.4 µm
30 nm 29.2 µm 27.4 µm 2.01 µm 27.7 µm
40 nm 16.4 µm 20.6 µm 2.01 µm 20.9 µm
60 nm 8.0 µm 13.7 µm 2.01 µm 14.2 µm
76 nm 2.8 µm 10.8 µm 2.01 µm 11.5 µm

Table 4: Comparison of predictions and observations of wcross

these experiments for Permalloy films of varying thickness with the theo-
retical prediction, we use d = 5nm and Q = 2.5 × 10−4. Hence (6.61) is
certainly satisfied while only the thicker films satisfy (6.68). In Table 4, the
first column gives the film thickness, the second column the experimental
cross–tie period, the third column the prediction based on Regime I, the
fourth column the prediction based on Regime II and the fifth column the
prediction based on the solution wcross of (6.66). The order of magnitude is
certainly well captured by the theoretical model (6.66). It tends to overes-
timate the repulsive mechanisms, especially for the larger thicknesses. The
theoretical model also predicts the right trend in the t–dependence. The
comparison of the last three rows shows that the experiments are in a pa-
rameter regime where the full theoretical model (6.66) is well approximated
by Regime I. Hence the dominant mechanism for these experiments seems
to be rather the Néel–wall interaction than the cost of Bloch lines.

Recent observations of cross–tie walls in films of CoFeSiB seem to provide
an example of Regime II. The proportionality of wcross to Q−1/2 for this set
of experiments seems to be well established while the dependence on the
thickness is being currently investigated [36].

6.8 Domain branching

In this section, we address thick films with a strong uniaxial perpendicular
anisotropy, i. e.

Q ≫ 1, (6.69)

which favors the out–of–plane magnetizations m = (0, 0,±1). It is experi-
mentally well documented and heuristically well understood that this leads
to domains with m ≈ (0, 0,±1), which branch and thus refine towards the
sample edges {x3 = 0, t}, see Figure 22. In this section, we present the
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heuristic arguments, which go back to Lifshitz [84], essentially following
Privorotskii [100] and Hubert [64] (see also [66, 3.7.1]). We also present a
rigorous scaling analysis of the minimal energy [28, 29], which confirms the
heuristics.

Figure 22: Domain branching in a cobalt crystal. Reproduced with permis-
sion from Hubert and Schäfer, Magnetic Domains, Springer 1998

To fix ideas, we impose some period w in the in–plane variables, i. e.

m(x1 + w, x2, x3) = m(x1, x2 + w, x3) = m(x1, x2, x3),

and consider the energy per area w2:

E(m) = d2

∫

(0,w)2×(0,t)
|∇m|2 dx+

∫

(0,w)2×R

|∇u|2 dx+Q

∫

(0,w)2×(0,t)
|m′|2 dx.

In domains of infinite thickness, the uniform magnetizations m ≡ (0, 0, 1)
and m ≡ (0, 0,−1) are the ground states since all energy contributions van-
ish. In films of a finite thickness, the magnetostatic and the anisotropy con-
tributions to the energy compete: The magnetization favored by anisotropy
generates surface charges m3. But the penalization of surface charges is
“soft”: Alternating domains with m = (0, 0, 1) and m = (0, 0,−1) (bubble
domains) reduce the magnetostatic energy, see Figure 23 for a sketch of the
mesoscopic magnetization. This reduction is significant for domain widths
ℓ smaller than the thickness, i. e.

ℓ ≪ t, (6.70)
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since charge cancellations occur over the distance ℓ. A dimensional argument
yields that the magnetostatic energy scales as

w−2 × magnetostatic contribution ∼ ℓ. (6.71)

On the other hand, these domains require walls. We obviously have

w−2 × wall area ≈ ℓ−1t. (6.72)

U

x1

x2

x3

m

Figure 23: Bubble domains

In order to assess the total wall energy, we need the specific wall energy.
For sufficiently thick films, the wall type is that of infinite films: the bulk
Bloch wall. It is of the form:

m = m(x1), m = (0,m2,m3), m → (0, 0,±1) as x1 → ±∞

and thus does not generate volume charges. Hence, the bulk Bloch wall is
stabilized by a balance of exchange and anisotropy energy. The optimal wall
profile and the specific wall energy is therefore found by minimizing

E1dbulk(m) = d2

∫

R

| dm

dx1
|2 dx1 + Q

∫

R

|m′|2 dx1

= d2

∫

R

1

1 − m2
3

(
dm3

dx1
)2 dx1 + Q

∫

R

(
1 − m2

3

)
dx1. (6.73)

Hence the wall profile is given by m3(x1) = tanh x1

wbulkBloch
with wall width

wbulkBloch and wall energy per area defined by

wbulkBloch = Q−1/2 d, EbulkBloch = 4Q1/2 d, (6.74)
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see also Section 7.2.

¿From (6.72) and (6.74) we now deduce

w−2 × wall contribution ≈ Q1/2 d ℓ−1 t. (6.75)

Optimizing the sum of (6.71) and (6.75) in ℓ yields the domain width ℓbubble

and total energy in the regime (6.70):

ℓbubble ∼ Q1/4 d1/2 t1/2, w−2 Ebubble ∼ Q1/4 d1/2 t1/2. (6.76)

This is self–consistent as long as t ≫ ℓbubble ≫ wbulkBloch, which in view of
(6.74) and (6.76) translates into

t ≫ Q1/2 d. (6.77)

But precisely in this regime one can do better! Indeed, the magnetostatic
energy favors a small domain width ℓ at the surfaces, whereas the wall energy
favors a large domain width ℓ in the bulk. This suggests that the typical
domain width ℓ should be larger in the bulk than at the surfaces:

t ≫ ℓbulk ≫ ℓsurface ≫ wbulkBloch. (6.78)

This refinement can be achieved by domain branching, see Figure 24 for a
schematic representation of the experimentally observed mesoscopic mag-
netization. For appropriate refinement, ℓbulk appears in the wall energy
contribution (6.75) but ℓsurface in the surface magnetostatic contribution
(6.71):

w−2 × wall contribution ∼ Q1/2 d ℓ−1
bulk t,

w−2 × surface magnetostatic contribution ∼ ℓsurface.
(6.79)

However, the mesoscopic structure in Figure 24 is not charge–free in the
interior, as indicated in Figure 25. In the regime (6.78), each discontinuity of
the mesoscopic pattern carries a surface charge density scaling as ℓbulk t−1 ≪
1. Hence the strength of the demagnetizing field scales as ℓbulk t−1 so that

w−2 × bulk magnetostatic contribution ∼ ℓ2
bulk t−1. (6.80)

The minimization of the sum of (6.79) and (6.80) in ℓbulk yields

ℓbulk ∼ Q1/6 d1/3 t2/3. (6.81)
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x1

x3

Figure 24: Schematic domain branching

This is consistent with the first condition in (6.78) provided (6.77) is satis-
fied. We think of the surface width ℓsurface to be (at least) so small that
the surface magnetostatic contribution is dominated by the bulk magne-
tostatic contribution. In view of (6.79), (6.80) and (6.81) this means that
ℓsurface ≪ Q1/3d2/3t1/3. Notice that in regime (6.77) this necessarily implies
ℓsurface ≪ wbulk, the second assumption in (6.78), which thus is consistent.
Finally, the third assumption in (6.78) is ensured by (6.69) & (6.77). Hence,
we have

w−2 Ebranch ∼ Q1/3 d2/3 t1/3, (6.82)

which beats (6.76) in regime (6.77).

U

m

Figure 25: Charges in the bulk

The energy scaling (6.82) has been made rigorous:

Theorem 6.6 ([28, 29]) In the regime (6.69) & (6.77) we have

w−2 min
m

E(m) ∼ Q1/3 d2/3 t1/3, (6.83)

provided w ≫ Q1/6 d1/3 t2/3.
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The last condition just ensures that the artificially imposed period w
leaves enough room for the bulk domains of width ℓbulk given by the heuristic
discussion, cf. (6.81). Actually, [28, 29] considers a slightly simplified model
of E where the exchange energy has been replaced by a term which mimics
the wall energy. The analysis in [28, 29] is motivated by the work in [76, 77]
on a mathematically similar model for twin branching of martensite near
a martensite–austenite interface. A finer analysis of this two–dimensional
model, which captures the anisotropic self–similarity of the branched struc-
ture near the surface was carried out by Conti [30].

We sketch the argument for the lower bound, which is surprisingly ele-
mentary given the complexity of the pattern. At first, one uses the strong
crystalline anisotropy to single out the m3–component:

Q1/2 d

∫

(0,w)2×(0,t)
|∇m3| dx ≤ 1

2
E(m), (6.84)

∫

( 2π
w

Z)2×R

k2
3

|k|2 |F(m3)|2 dk � E(m). (6.85)

Inequality (6.84) follows from the standard Modica–Mortola argument, cf.
(10.8), i. e.

2Q1/2 d

∫

(0,w)2×(0,t)
|∇m3| dx

≤ d2

∫

(0,w)2×(0,t)

1

1 − m2
3

|∇m3|2 dx + Q

∫

(0,w)2×(0,t)
(1 − m2

3) dx,

and the second identity of (6.73). The approximate inequality (6.85) follows
from a triangle inequality in Fourier space

(∫

( 2π
w

Z)2×R

k2
3

|k|2 |F(m3)|2 dk

)1/2

≤
(∫

( 2π
w

Z)2×R

1

|k|2 |k · F(m)|2 dk

)1/2

+

(∫

( 2π
w

Z)2×R

|F(m′)|2 dk

)1/2

.

Notice that the right–hand side is (
∫
|∇u|2 dx)1/2 + (

∫
|m′|2 dx)1/2, so that

(6.85) follows from (6.69).
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The next step is to factorize in x3 the left–hand side of (6.84) and (6.85):
∫ t

0

(
Q1/2 d

∫

(0,w)2
|∇′m3| dx′

)
dx3 ≤ Q1/2 d

∫

(0,w)2×(0,t)
|∇m3| dx,

(6.86)
∫ t

0

( ∫

( 2π
w

Z)2

1

1 + t2|k′|2 |F
′(m3)|2 dk′

)
dx3 ≤ 2

∫

( 2π
w

Z)2×R

k2
3

|k|2 |F(m3)|2 dk.

(6.87)

Inequality (6.86) is obvious. For inequality (6.87) we remark that since m3

vanishes outside {0 < x3 < t}, the left–hand side of (6.87) is identical to

1

2

∫ t

0

∫

( 2π
w

Z)2

1

1 + t2|k′|2
∣∣F ′(m3)(k

′, x3 + t) −F ′(m3)(k
′, x3)

∣∣2 dk′ dx3

= 2

∫

( 2π
w

Z)2×R

sin2(k3 t
2 )

1 + t2|k′|2 |F(m3)|2 dk,

so that (6.87) follows from
sin2

“

k3t

2

”

1+t2|k′|2 ≤ t2k2

3

t2k2

3
+t2|k′|2 .

Motivated by the heuristic discussion, we introduce a length scale ℓbulk ≪
t and observe that for fixed x3∫

{|k′|≥ℓ−1

bulk
}
|F ′(m3)|2 dk′ � ℓbulk sup

x′

|m3|
∫

(0,w)2
|∇′m3| dx′, (6.88)

∫

{|k′|≤ℓ−1

bulk
}
|F ′(m3)|2 dk′ � ℓ−2

bulk t2
∫

( 2π
w

Z)2

1

1 + t2|k′|2 |F ′(m3)|2 dk′.

(6.89)

The approximate inequality (6.89) is obvious for ℓbulk ≪ t. The ingredient
for (6.88) is identical to (6.60):
∫

( 2π
w

Z)2
4 sin2

(
k′ · δx′

2

)
|F ′(m3)|2 dk′

=

∫

(0,w)2
(m3(x

′ + δx′) − m3(x
′))2 dx′ ≤ 2 sup

x′

|m3|
∫

(0,w)2
|δx′ · ∇′m3| dx′.

This latter inequality has to be averaged over vectors δx′ of length |δx′| ≤
ℓbulk to obtain (6.88). We notice that (6.88) & (6.89) amount to a slight
generalization of the interpolation inequality

∫

(0,w)2
m2

3 dx′ �

(
sup
x′

|m3|
∫

(0,w)2
|∇′m3| dx′

)2/3 (∫

(0,w)2
||∇′|−1m3|2 dx′

)1/3

,
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which holds for an arbitrary function m3.

If we now choose ℓbulk like in the heuristic argument, cf. (6.81), the
estimates (6.84) – (6.89) combine to

Q1/3 d2/3 t−2/3

∫

(0,w)2×(0,t)
m2

3 dx =

∫ t

0
Q1/3 d2/3 t−2/3

∫

( 2π
w

Z)2
|F ′(m3)|2 dk′ dx3

� E(m).

Together with Q
∫
(0,w)2×(0,t) |m′|2 dx ≤ E(m) this yields the desired lower

bound in the regime (6.69) and (6.77).
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7 Pattern formation in micromagnetics: mathe-

matical context

The analysis of magnetization patterns and their complex multiscale struc-
ture has only recently attracted the broader attention of the mathematics
community. There has, however, been a lot of work on related problems
(often motivated by questions in geometry), which capture certain crucial
aspects of the micromagnetics functional. In this section we discuss three
examples: the possible formation of singularities and harmonic maps, the
relation between smooth wall profiles and sharp interface theories (such as
domain theory), and the role of topological singularities in soft magnetic
films.

7.1 Structure of singularities at small scales: Micromagnet-

ics and Harmonic Maps

The different terms in the micromagnetic energy functional

E(m) = d2

∫

Ω
|∇m|2 + Q

∫

Ω
ϕ(m) +

∫

R3

|∇U |2 − 2

∫

Ω
Hext · m (7.1)

scale differently under a rescaling of the domain. As we already discussed
in Section 3, at small scales the highest order term, namely the exchange
energy, is the dominant. Hence we expect that this term should control
whether singularities (e.g. “Bloch points”) can arise in minimizing magne-
tization patterns and what their typical structure is.

If we focus only on the exchange energy the minimization problem as-
sumes an extremely simple form:

minimize D(m) =

∫

Ω
|∇m|2 subject to |m| = 1 (7.2)

and to suitable boundary conditions. In other words we seek to minimize the
Dirichlet integral D(m) among maps m : Ω ⊂ Rn → S2. Every minimizer
m needs to satisfy the condition

d

dt
|t=0D

(
m + ϕ

|m + ϕ|

)
= 0 for all ϕ ∈ C∞

0 (Ω; R3), (7.3)

where C∞
0 denotes the space of smooth maps which vanish in a neighbor-

hood of the boundary ∂Ω. A short calculation shows that this condition is
equivalent to the (weak form of) the Euler-Lagrange equations

−∆m = |∇m|2m, (7.4)
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where |∇m|2 can be understood as a Lagrange multiplier arising from the
constraint |m|2 = 1. Solutions of this equation are called harmonic maps.
We say that a harmonic map is minimizing if D((m + ϕ)/|m + ϕ|) ≥ D(m)
for all ϕ ∈ C∞

0 (Ω; R3).
The study of harmonic maps and their (possible) singularities has been

a central question in geometric analysis for many decades (see [106] for a
recent introduction with many further references). In the following we first
briefly summarize some of the key results and then discuss their extension to
the micromagnetic functional. It turns out that the presence of singularities
depends strongly on the dimension n of the domain Ω. For n = 2 Morrey
showed already in 1948 that minimizing harmonic maps must be smooth.
Understanding the situation in higher dimensions was one of the major open
question in geometric analysis in the 1960s and 1970s and the problem was
finally solved by Schoen and Uhlenbeck. We state their result for the special
case n = 3.

Theorem 7.1 ([105]) Let n = 3 and let m be a minimizing harmonic map.
Then there exists a discrete set S (which may be empty) such that m is
smooth in Ω \ S.

A set is discrete if it has no accumulation points in Ω, in particular it can
contain at most countably many points. If the boundary of the set Ω is
smooth then one can show that m is smooth up to the boundary, with the
exception of at most finitely many points.

Singularities can indeed arise. A typical example is given by the map

m0(x) =
x

|x|

from the three–dimensional unit ball B3 to its boundary. Indeed, it is easy
to see that m0 solves (7.4). To prove that m0 is actually minimizing is
much more delicate [85, 15]. In the above example the singularity arises for
topological reasons. There is no smooth map from B3 to S2 which agrees
with m0 on the boundary. There are, however, also examples of singularities
in cases were the boundary data are topologically trivial.

The question whether nonminimizing harmonic maps may have singu-
larities remained open even longer. Finally, Hélein [61, 62] showed in 1990
that for n = 2 all solutions of (7.4) (with finite energy D(m)) are smooth.
Shortly afterwards Rivière [102] destroyed all hope for a regularity theory for
(7.4) in higher dimension. For n = 3 he constructed a harmonic map which
is not continuous on any open subset. This led to a new notion of solution,
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which lies in between harmonic maps and minimizing harmonic maps. We
say that a map is stationary if it satisfies (7.4) (or, equivalently, (7.3)) and if
it is also well behaved with respect to variations of the independent variable,
i.e.

d

dt |t=0
D(m ◦ Φt) = 0, for all Φt = id + tϕ with ϕ ∈ C∞

0 (Ω; R3), (7.5)

where ◦ denotes the composition of maps. For those maps Evans established
a slightly weaker counterpart of the Schoen-Uhlenbeck result.

Theorem 7.2 ([47]) Suppose that n = 3 and that m is a stationary map.
Then there exists a closed subset S such that m is smooth on Ω\S and such
that S has zero one–dimensional Hausdorff measure, H1(S) = 0.

This in particular implies that the singular set cannot contain any segment of
a line or a smooth curve. In contrast to the result of Schoen and Uhlenbeck
the set S here could contain a set of small fractal dimension, e.g. a Cantor
subset of a line segment. No such example is known, however.

Now let us turn to micromagnetics. Carbou [23] showed that the above
results can be extended to the micromagnetic functional E(m), given by
(7.1) (in fact he took Hext = const, but a smooth variable field poses no addi-
tional difficulties). Independently, Hardt and Kinderlehrer [60] analyzed the
regularity property of minimizing micromagnetic maps. The Euler-Lagrange
equation for E(m) is

−d2∆m +
1

2
∇ϕ(m) − (Hind + Hext) = (d2|∇m|2 − (Hind + Hext) · m)m.

(7.6)

Here Hind = −∇u and ∇ϕ denotes the gradient of ϕ tangential to S2.
Denoting the left–hand side of (7.6) by He (the effective magnetic field acting
on Ω), and writing λ for the scalar Lagrange multiplier of m on the right–
hand side, we can rewrite the Euler-Lagrange equation as He(x) = λ(x)m(x)
or, equivalently,

He ∧ m = 0 in Ω, (7.7)

granting to (7.6) its physical meaning of equilibrium condition for the torques
acting on m.

We say that m is a stationary micromagnetic map if, in addition,

d

dt |t=0
E(m ◦ Φt) for all Φt = id + tϕ with ϕ ∈ C∞

0 (Ω; R3). (7.8)
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Finally, we say that m is minimizing if E((m + ϕ)/|m + ϕ|) ≥ E(m) for all
ϕ ∈ C∞

0 (Ω; R3).

Theorem 7.3 ([23]) Suppose that Hext is smooth.

(i) If n = 2 then every solution m of the Euler-Lagrange equation (7.6) is
smooth.

(ii) Suppose that n = 3 and that m is a stationary micromagnetic map.
Then there exists a closed set S such that m is smooth in Ω \ S and
the one–dimensional Hausdorff measure of S is zero, H1(S) = 0.

(iii) Suppose that n = 3 and m is minimizing. Then there exists a discrete
set S such that m is smooth in Ω \ S.

Statement (iii) can be refined. Hardt and Kinderlehrer [60] showed that
minimizers are smooth up to the boundary (if the boundary is sufficiently
smooth) with the exception of a finite set S. Near a singular point a the
magnetization approaches the standard singularity R x−a

|x−a| , where R is a
fixed rotation. Moreover, they derive a universal bound on the number
of possible singularities in terms of the applied field, the domain and the
anisotropy function. They also show that singularities can indeed arise for
smooth applied fields, even for globally minimizing maps m. Examples of
concrete physical situations where singularities are expected are reviewed in
[66], Section 3.6.5 (D), pp. 268–271. There, one can also find a discussion
in how far the (continuum) micromagnetic energy can still be used near a
singular point and what modifications of the energy functional might be
needed in the immediate vicinity of a singular point.

7.2 Walls vs. sharp interfaces: Modica-Mortola functionals

and domain theory

The exchange energy plays very different roles at different length scales. At
very small scales (≪ d) it determines the presence and structure of possible
singularities, as we saw in the previous subsection. At scales comparable to
the Bloch–line width d or the Bloch–wall width dBW = d/

√
Q it determines

the inner structure of domain walls. At larger scales the inner structure of
the domain walls is not seen, but it is important to keep track of the fact that
a domain wall carries a certain energy per unit area. This domain wall energy
is crucial in determining patterns at larger scales, as we saw in the discussion
on domain branching in Section 6.8. The description of the magnetization
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pattern in terms of regions of constant magnetizations separated by sharp
interfaces carrying a certain energy per unit area is exactly the content of
domain theory, which is often used as an approximation of micromagnetics.

In this subsection we discuss how domain theory arises as a rigorous limit
of micromagnetics in a specific regime, corresponding in particular to hard
materials Q ≫ 1. The idea that a simplified functional, which allows for
sharp domain walls, should lead to the right description of the magnetization
patterns on large scales should be applicable in a much broader regime.
Mathematically, however, this so far remains an open question, and new
tools to capture multiscale behavior might be needed (see e.g. [5]).

The easiest setting to explain the relation between domain walls and
sharp–interface theories is that of hard uniaxial material. Macroscopic sam-
ples of such materials tend to exhibit complex domain patterns, including
very fine magnetic domains. It is not surprising that, historically, the first
attempts to understand pattern formation through the competition among
the various terms of the energy functional (2.17) have involved cases in which
the role of anisotropy is decisive.

Consider, for simplicity, the case Hext = 0, and let l be the diameter of
Ω. By rescaling Ω to a set ω of unit diameter through the change of variables
x �→ x̄ = x

l ∈ ω, and suitably normalizing the energy functional (7.1) we
obtain

iε,Q(m) = ε

∫

ω
|∇m|2 +

1

ε

∫

ω
ϕ(m) +

1

Qε

∫

R3

|∇u|2, (7.9)

where

ε =
d

lQ1/2
=

dBW

l
, (7.10)

u
(x

l

)
=

1

l
U(x), (7.11)

iε,Q(m) =
1

ε

I(m)

l3
=

1

ε

E(m)

Ql3
. (7.12)

For a sample that is large enough compared with the intrinsic length
scale dBW , i.e.

l ≫ dBW , (7.13)

ε is a small number. It is therefore natural to study iε,Q in the limit ε → 0.
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If, in addition, Q is large enough that it makes sense to assume

Qε = 1 ⇐⇒ Q =

(
l

d

)2

=
l

dBW
≫ 1 (7.14)

we are naturally led to the study of minimizers of the functional

iε(m) = ε

∫

ω
|∇m|2 +

1

ε

∫

ω
ϕ(m) +

∫

R3

|∇u|2 (7.15)

in the limit ε → 0.
Intuitively, as ε tends to zero the second summand of (7.15) will force

minimizers of iε to assume only values in K, the zero level set of ϕ. In
the uniaxial case Kuni = {±e}. Then, magnetostatic energy will favor non-
uniform, divergence-free patterns (in order to reduce the effect of the charges
m · ν at the boundary of ω). Since m(x) ∈ {±e}, and since surface discon-
tinuities of m are not allowed by the exchange energy, we expect to see
transition layers joining the two values ±e in a divergence-free fashion. In
these layers, m(x) /∈ Kuni: their thickness is then decided by the competition
of anisotropy (which favors thin transition regions and thus high gradients
of m) and exchange. This reasoning is precisely the one put forward by
Landau and Lifschitz [83]. At least in the case when (7.13) and (7.14) hold,
a rigorous mathematical justification of this argument is available. This has
been provided in [10], by adapting to the micromagnetic setting an argument
due to Modica and Mortola ([93], [92]).

The essence of the argument is that in the limit ε → 0 minimizers of the
functional

ε

∫

ω
|∇m|2 +

1

ε

∫

ω
ϕuni(m) (7.16)

(possibly subject to suitable boundary conditions or augmented by other
lower order terms such as the magnetostatic energy) develop the structure
outlined above. They take values very close to the set K, except in an
ε neighborhood of certain interfaces. Moreover, in this neighborhood the
profile of the minimizer is essentially one–dimensional, varying mainly in
the direction normal to the interface. Therefore, the effective energy due
to the interface can be determined by solving a one–dimensional optimal
profile problem. Performing a further rescaling of length by ε this problem
consists in minimizing

∫ ∞

−∞
|∇m|2 +

∫ ∞

−∞
ϕuni(m) (7.17)
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among all one–dimensional profiles such that m(s) → ±e as s → ±∞ (and
|m| = 1). Using that ϕuni(m) = 1− (m · e)2 one can solve the corresponding
Euler-Lagrange equation explicitly and one finds that minimizing profiles
correspond to suitably parametrized great circles on S2. The optimal wall
energy turns out to be 4 in this dimensionless formulation. In the physical
domain Ω the typical scale of the wall profile is the Bloch wall width

dBW = εL =

√
A

Ka
(7.18)

and its energy per unit area given by

4
Kal

3ε

l2
= 4

√
AKa. (7.19)

If we also consider the magnetostatic energy, then interfaces whose normal ν
is perpendicular to e play a special role. A sharp jump from e to −e at such
an interface gives zero contribution to the distributional divergence div m
and hence does not lead to additional magnetostatic energy. If we replace
the sharp jump by a transition profile, then there is a distinguished wall
profile, which is optimal for (7.17) and which is in addition divergence free
– this is exactly the classical Bloch–wall profile, corresponding to the great
circle with m · ν = 0.

Anzellotti, Baldo, and Visintin [10] extended the Modica-Mortola ar-
gument to the micromagnetic functional iε. The limit functional i0 allows
only for magnetizations ±e, penalizes the interfacial area between these two
states by the Bloch wall energy and includes the magnetostatic energy of the
magnetization pattern. This is the essence of domain theory, which is often
considered as a useful, though only approximately valid, strategy to predict
domain patterns. The following proposition shows that domain theory can
be deduced from micromagnetics as a suitable limit theory, at least in the
case that (7.13) and (7.14) hold.

Proposition 7.4 As ε → 0, the functional iε Γ-converges in L1 to

i0 =

{
4PerΩ{m(x) = +e} +

∫
R3 |∇u|2 if m ∈ BV (Ω) and m(x) ≡ ±e,

+∞ else,

where PerΩ{m(x) = +e} measures the area of the interface between the
region magnetized according to +e and that magnetized according to −e.

Remark 7.5 In the result above, BV (Ω) denotes the space of functions with
bounded variation (see e.g. [57, 48, 9]). For a function in this space, which
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in addition only takes the values +e and −e, the interface between the regions
where each of the two values is taken has finite area (in a suitably generalized
sense). As outlined above and argued in more detail in Section 10, the es-
sential part of the result is that, in the limit ε → 0, exchange and anisotropy
combine to define the energy per unit area of a domain wall. The additional
term

∫
R3 |∇u|2 is a continuous perturbation and it is simply reproduced in

the limit (see Proposition 10.4 below and note that L1 and L2 convergence
are equivalent since |m| = 1). By the same reasoning, the argument can be
extended to cover the presence of an applied field. There is also an extension
to more complex anisotropy energies, such as those appropriate for materials
with cubic symmetry.

The essence of domain theory is the elimination of a length scale (the
thickness of domain walls), through the replacement of a transition layer
with a sharp interface carrying the same energy. This scheme has a great ap-
peal, and it should have a range of applicability much wider than the rather
restrictive material parameter regime encoded in (7.13), (7.14). Clearly, it is
essential that all dimensions of the sample should be large compared to dBW ,
and that the material be sufficiently hard. But it should be possible to relax
the assumption Q ≫ 1, at the cost of having to overcome some technical
difficulties. Nevertheless, the result above is important in that it demon-
strates the possibility to derive domain theory as a rigorous consequence of
micromagnetics.

For soft materials, i.e. Q < 1, (7.14) certainly fails. In these cases, we
cannot rely on ϕ to simplify the structure of the problem by allowing only
finitely many values of m to compete for a low energy state. In addition,
for samples which are small in some dimension (thin films), the calculation
proving that the optimal transition layer has the one–dimensional structure
of a Bloch wall is no longer justified. In fact, the structure of walls in confined
geometries is much richer, but also much more complex, see Section 6 above,
[66] and Kléman’s review [73] on soft ferromagnetic materials.

7.3 The role of topology: soft films and Ginzburg-Landau

vortices

For a very soft ferromagnetic material, Q ≪ 1, and in the absence of the
aligning action of an applied magnetic field, pattern formation is controlled
by the competition of magnetostatic and exchange energy. Minimization of
the former promotes divergence-free magnetization patterns and, in partic-
ular, configurations that are everywhere tangential to the boundary of the
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sample. In a thin film Ω, with cross-section Ω′ perpendicular to the coor-
dinate axis x3, and neglecting variations of m along the thickness direction
(which are strongly disfavored by the exchange energy) this requires m3 ≡ 0,
and that the in-plane component m′ be tangential to the lateral boundary
(see Section 4.1 and Table 3 for a more quantitative discussion).

We are thus led to consider a two–dimensional unit vector field, defined
on the cross-section of the film, and everywhere tangential to its boundary.
There are, however, no continuous vector fields of this type, and there is no
such field with finite exchange energy. In fact, the way the system beats
this topological obstruction is by creating a localized region, called a Bloch
line, where the magnetization becomes perpendicular to the plane of the
cross-section (escape in the third dimension). The section of a Bloch line
with the plane of the cross-section is a vortex. Its core size is decided
by the competition between magnetostatics (penalizing the surface charges
associated with m3 
= 0, hence favoring a core as narrow as possible) and
exchange (which clearly favors a core as spread out as possible).

For a film of thickness t and circular cross section of radius l, assume
that the core of a Bloch line is a cylinder Ωr = Ω′

r×(0, t) of radius r, coaxial
with the sample Ωl = Ω′

l × (0, t). For thin films, it is safe to assume that
the magnetization is constant along the thickness direction. The exchange
contribution to the energy can be rougly estimated as

Eexch = d2

(∫

Ωl\Ωr

|∇m|2 +

∫

Ωr

|∇m|2
)

≈ 2πd2t ln

(
l

r

)
+ πd2t

≈ 2πd2t ln

(
l

r

)
.

The magnetostatic contribution to the energy can be estimated through its
leading order term

Emst ≈ t

∫

Ωr

m2
3 = πr2t .

Optimizing Eexch + Emst with respect to r shows that the competition be-
tween exchange and magnetostatic energies results in Bloch lines of charac-
teristic width dBL = d, where

d =

(
A

Kd

) 1

2

, (7.20)
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each carrying a characteristic energy of order

d2t ln

(
l

d

)
, (7.21)

where t is the film thickness, and l is the diameter of the cross-section. Since
in typical applications d ≪ l, one is confronted with the problem of studying
vortices whose energy (after scaling by d2t) diverges while their size (relative
to that of the sample) tends to zero.

Vortex structures of the type just described are common in other physi-
cal systems which have been described using mathematical tools similar to
the ones suitable for micromagnetics. Problems associated with topological
obstructions are of great mathematical interest, and have received consider-
able attention in the recent literature. A very well studied example is that
of the so called ‘Ginzburg-Landau vortices’, see e.g. [13, 109, 110]. In two
dimensions, this is the problem of minimizing an energy of the type

∫

Ω′

|∇m|2 +
1

ǫ2

∫

Ω′

(
|m|2 − 1

)2

among vector fields in the space

{
m ∈ H1(Ω′) : m = m0 on ∂Ω′}

in the limit ǫ → 0. Here m0 is a prescribed vector field which has unit length
on ∂Ω′.

It is worth emphasizing a key difference between this problem, in which
vector fields would be constrained to be tangential to ∂Ω′ by a (hard) bound-
ary condition, with the case of soft magnetic films, where only an energetic
penalty against non-tangential vector fields is in action. This results in an
interesting qualitative difference for the solutions of the corresponding mini-
mization problems. While Ginzburg-Landau vortices can only appear in the
interior of Ω′, in the case of soft magnetic films vortices at the boundary of
ω′ will appear in certain material parameter regimes (see [94, 95, 81] and
Section 4.2).
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8 Beyond low energy states

8.1 Magnetization reversal in soft films

Hysteresis means that an experimentally observed magnetization depends
on the history of the external field. For an external field which varies at a
sufficiently slow pace in time, we may think of the observed magnetization
as a local minimizer of the micromagnetic energy at any moment. Hence,
hysteresis can be related to a complex energy landscape with several local
minima whose energy might be far from the global minimum. This com-
plex energy landscape is probed by the external field. In fact, the Stoner–
Wohlfarth astroid visualizes this point of view in a very special situation. It
is based on the assumption that the sample is so small that the magnetiza-
tion is spatially uniform at any moment, cf. Proposition 3.1. For somewhat
larger samples, this is no longer true even if the remanent states (the local
minimizers at zero external field) are almost uniform. This was recently
brought to the point in [97] for an ellipsoid of revolution.

For sufficiently strong external fields, the magnetization essentially sat-
urates in (the fixed) direction of the external field. A further increase in the
external field strength will not affect the magnetization much. This defines
the saturation branch, parametrized by the field strength. Imagine moving
down the saturation branch by slowly decreasing the external field strength.
Typically, one eventually encounters an instability. This event is termed
nucleation and is at the onset of switching, but is not necessarily connected
with an irreversible event. Nucleation has been theoretically and numer-
ically investigated for some time, we shall mention some of the pertinent
work below.

In this section, we report on a series of mathematical papers [20, 21, 22]
on nucleation in elongated thin–film elements. This work is motivated by
the ubiquitous concertina pattern in elongated soft thin–film elements, see
Figure 26. The concertina pattern is the quasiperiodic pattern which can
be seen in the middle of the cross–section; it is framed by two Landau
states. Figure 27 gives a sketch of the corresponding domain pattern with
charge–free walls. The concertina pattern is experimentally generated in
the following way: First, the element is saturated along the long axis, then
the external field is slowly reduced, and eventually reversed. For some field
strength, the uniform magnetization buckles into the concertina pattern.

Let us give a short summary of this section. In Subsection 8.1.2, we
present [20], which proves that there are exactly four regimes of instability
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in elongated thin–film elements. These regimes are identified in terms of
the scaling of the critical field. To our knowledge, the oscillatory buckling
regime (Regime III) has not been reported in the physics literature. In
Subsection 8.1.3, we present [21], which focuses on Regime III and identifies
the asymptotic form of the unstable mode by Γ–convergence of the Hessian.
In Subsection 8.1.4, we present [22], which identifies the type of bifurcation
in Regime III by Γ–convergence of a nonlinearly renormalized energy.

Figure 26: Concertina pattern in a Permalloy film, thickness t = 300nm,
width ℓ = 18µm. Reproduced with permission from Hubert and Schäfer,
Magnetic Domains, Springer 1998

Figure 27: Domains in the concertina pattern of Fig. 26

8.1.1 The setting

An idealized geometry

Motivated by the concertina pattern we consider the following idealized
sample geometry

Ω = R × (0, ℓ) × (0, t) with ℓ ≫ t,

see Figure 28. The reasons for this choice are:
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• Ω mimics an elongated thin–film element of thickness t and width ℓ.
In Section 8.1.4, a finite periodicity L in direction x1 will be imposed.

• Due to the translation invariance in x1, Ω admits m∗ = (1, 0, 0) as a
stationary point for all external fields of the form Hext = (−hext, 0, 0),
hext ∈ R (note the change of sign), and for an easy axis in direction
of x1 or perpendicular to x1. In fact, we shall neglect crystalline
anisotropy altogether without much loss of generality.

Hext

t

x3

x2

x1

l

Figure 28: The geometry

The Hessian

The local stability of the stationary point m∗ = (1, 0, 0) is described by
the second variation of the energy E, its Hessian. Owing to the constraint
|m|2 = 1, infinitesimal perturbations of m∗ = (1, 0, 0) are of the form

δm = (0, δm2, δm3), δm = δm(x1, x2, x3).

The Hessian HessE(m∗) in m∗ is given by

1
2 HessE(m∗)(δm, δm) = 1

2 HessE0(m∗)(δm, δm) − hext

∫

Ω
|δm|2 dx, (8.1)

where HessE0(m∗) denotes the Hessian without Zeeman term, i. e.

1
2 HessE0(m∗)(δm, δm) = d2

∫

Ω
|∇ δm|2 dx +

∫

R3

|∇uδm|2 dx,

and the magnetostatic potential uδm is determined by δm in the usual way.

Variational characterization of critical field and unstable modes

The critical field hcrit is the value of hext for which HessE(m∗) ceases to
be positive definite. The unstable modes are the elements of the degenerate
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subspace of HessE(m∗) at hext = hcrit. The following variational charac-
terization of both can be inferred from (8.1): hcrit and the (normalized)
unstable modes are the minimum and the minimizers, respectively, of the
variational problem

1
2 HessE0(m∗)(δm, δm) subject to

∫

Ω
|δm|2 dx = 1. (8.2)

It is natural to capitalize on the translation invariance of (8.2) in x1 by
a partial Fourier transform in that variable. More precisely, the Hessian
HessE0(m∗)(·, ·) factorizes into {HessE0(m∗)(k1, ·, ·)}k1∈R, where

1

2
HessE0(m∗)(k1, δm, δm)

= d2

∫

(0,ℓ)×(0,t)

(
k2

1 |δm|2 + |∂2 δm|2 + |∂3 δm|2
)
dx2dx3

+

∫

R2

(
k2

1 |uδm|2 + |∂2 uδm|2 + |∂3 uδm|2
)
dx2dx3, (8.3)

k1 denotes the dual variable to x1 and δm = δm(x2, x3). Hence, we replace
the variational problem (8.2) in δm(x1, x2, x3) by the variational problem in
δm(x2, x3) and k1 of minimizing

1
2HessE0(m∗)(k1, δm, δm) subject to

∫

(0,ℓ)×(0,t)
|δm|2 dx2dx3 = 1.

(8.4)

Notice that unstable modes can also be seen as the ground states for the
operator

L δm = −d2△Neumannδm −
(

∂2

∂3

)
uδm. (8.5)

A complete explicit diagonalization beyond the obvious factorization (8.3)
of L seems not at hand. Indeed, the contribution from the exchange energy
is diagonal with respect to cosine series in (x2, x3) whereas the contribu-
tion from the magnetostatic energy is diagonal with respect to the Fourier
transform in (x2, x3). This lack of compatibility reflects the fact that the
exchange energy is confined to the sample but the energy of the stray field
extends into the ambient space.

Different types of models and modes

Following [1] we distinguish between “models” and “modes”. A model
is a special ansatz for an infinitesimal perturbation δm. In view of (8.2), it
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gives an upper bound for hcrit. A mode is an eigenfunction of (8.5) – but
only the eigenfunction corresponding to the smallest eigenvalue yields hcrit

and the degenerate subspace.

We now discuss the physics literature. There, besides infinite prisms like
our Ω, ellipsoids have been considered, since they also allow for constant
stationary states m∗. Brown [16] found two modes for ellipsoids of rotation:
The first mode corresponds to a coherent rotation, the second mode cor-
responds to a curling of the magnetization. The characterizing feature of
the curling mode is the complete absence of a stray field, i.e., no surface or
volume charges are generated by this mode. Brown also found that for suf-
ficiently small samples (w.r.t. d), the coherent mode has a lower eigenvalue
than the curling mode.

In [51], three models are compared for an infinite circular cylinder: Co-
herent rotation, Brown’s curling mode and a model for buckling. It is found
that only in a small size range the buckling model beats the two modes.
In [3], the infinite cylinder is investigated more systematically: Cylindri-
cal coordinates (x1, r, φ) reduce (8.5) to a one–dimensional problem in r
parametrized by (k1, n) ∈ Z × R. The case n = 0 is treated completely, the
lowest eigenvalue occurs for k1 = 0 and corresponds to the curling mode.
By a lower bound estimate, the cases n ≥ 2 are discarded for nucleation.
The case n = 1 is treated numerically, the buckling model of [51] is found
to be close to an actual mode.

In [2], an infinite prism with rectangular cross–section is considered. This
is the geometry considered here, but in [2], no consideration was given to
extreme aspect ratios of the rectangular cross–section, i. e. t ≪ ℓ. Guided
by [3], modes and models which vary in the infinite direction x1 are ignored.
Upper and lower bounds for hcrit are given.

Based on these works, Aharoni [1, p. 202] emphatically rules out any
other type of unstable mode besides coherent rotation, buckling and curling.
Moreover, he claims that the buckling mode only plays a minor role [1, pp.
200-202]. We now report on [20], where it is shown that there are exactly
four different regimes. As we shall discuss, two of these regimes (Regime II
and Regime III) are buckling regimes, one of which (Regime III) covers a
wide range in parameter space of thin films. Aharoni’s analysis misses this
regime since, implicitly guided by t ∼ ℓ, it discards modes which vary in the
infinite direction x1.
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8.1.2 Identification of four scaling regimes

[20] is a rigorous analysis of the scaling of the critical field hcrit. By di-
mensional analysis, hcrit is a function of the non–dimensional parameters
t/d, ℓ/d:

hcrit = hcrit(t/d, ℓ/d). (8.6)

[20] identifies all regimes for the scaling of this function.

Theorem 8.1 For t ≪ ℓ

hcrit ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t
ℓ ln

(
ℓ
t

)
for t ≤ d2

ℓ ln−1
(

ℓ
d

)
Regime I

(
d
ℓ

)2
for d2

ℓ ln−1( ℓ
d ) ≤ t ≤ d2

ℓ Regime II

(
dt
ℓ2

)2/3
for d2

ℓ ≤ t ≤ (dℓ)1/2 Regime III

(
d
t

)2
for (dℓ)1/2 ≤ t Regime IV

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(8.7)

As in previous sections, the notation A ∼ B means that there exists a
universal constant C < ∞ with 1

C A ≤ B ≤ CA. Theorem 8.1 can best
be visualized in terms of a phase diagram for (8.6) in parameter space, see
Figure 29.

It is instructive to confront Theorem 8.1 with Theorem 5.1. The reduced
convexified model of Theorem 5.1 implicitly treats the reduced critical field
ℓ
thcrit as being zero. Theorem 8.1 shows that ℓ

thcrit ≪ 1 is indeed true in
the interior of Regimes III and IV which, up to a logarithm, coincide with
the regime considered in Theorem 5.1. We notice that Regime III is broad
in the sense that it spans a range of film thicknesses t which includes both
basic types of walls discussed in Subsection 6.2, cf. Theorem 6.1.

Theorem 8.1 is proved by establishing upper and lower bounds on (8.4),
which match in terms of scaling. The upper bounds stem from physically
motivated models. The main contribution of a mathematically minded anal-
ysis is to show that these models can not be substantially improved, i.e. in
terms of scaling. This is done by providing ansatz–free lower bounds, which
rely on suitable interpolation inequalities. In this sense the analysis of [20]
is half–way between proposing (new) models and identifying ground–state
modes.

Heuristic interpretation
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Figure 29: Phase diagram for hcrit(t/d, ℓ/d)

We now interpret Theorem 8.1. This is done by a discussion of the
models which lead to the (optimal) upper bounds for (8.2). We go through
the four regimes in the order of increasing thickness t (hence from Regime
I to Regime IV). The models are determined by a competition between the
exchange energy and the magnetostatic energy. With increasing sample
size the magnetostatic energy increases in relative importance: Regime I is
completely dominated by exchange, Regime IV entirely by magnetostatics.
The relative importance of surface charges and volume charges (which are at
the origin of the magnetostatic energy) depends on size too: With increasing
thickness the volume charges become more important. An interesting feature
is dimensional reduction: The model in Regime I is constant, in Regime II
it depends on x2, in Regime III it depends on x1 and x2, whereas in Regime
IV it depends on x2 and x3.

Regime I: Coherent rotation

This regime is driven by the avoidance of an exchange contribution. The
exchange energy favors a spatially constant perturbation. But the coherent
rotation necessarily creates a non–tangential magnetization at the sample
edges ∂Ω, which is penalized by magnetostatics. A coherent rotation in the
film plane (the x1, x2–plane) only creates surface charges at the small lateral
edges R × {0, ℓ} × (0, t). Hence the model is of the form:

δm2 ≡ (ℓt)−1/2, δm3 ≡ 0,

where the constant (ℓt)−1/2 is chosen such that the constraint in (8.4) is
satisfied. The corresponding finite perturbation is sketched in Figure 30.
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Figure 30: Coherent rotation

Let us comment on the scaling of hcrit. The only contribution to HessE0(m∗)
comes from the surface charges. The surface charge at the two lateral edges
R × {0} × (0, t) and R × {ℓ} × (0, t) has density (ℓt)−1/2 and −(ℓt)−1/2,
respectively. On length scales larger than t, the surface charge behaves like
a line charge on R × {0} × {0} and R × {ℓ} × {0} with density ℓ−1/2t1/2

and −ℓ−1/2t1/2, respectively. Hence the magnetostatic contribution per unit
length in x1 scales as

∫

R2

|∇uδm|2 dx2dx3 ∼ (ln
ℓ

t
) (ℓ−1/2t1/2)2 =

t

ℓ
ln

ℓ

t
.

The argument of the logarithm is ℓ
t since t is the small scale cut–off and ℓ

is the large scale cut–off. This yields the scaling of hcrit.

Regime II: Nonoscillatory buckling

This regime is driven by the avoidance of surface charges: The magneto-
static influence is already strong enough to suppress any normal component
at ∂Ω. The exchange energy is still strong enough to suppress variations in
x1- and x3-directions. The chosen model is

δm2 =
√

2(ℓt)−1/2 sin
(πx2

ℓ

)
and δm3 ≡ 0. (8.8)

Figure 31 shows the corresponding finite perturbation, which displays “Edge–
pinning”.

Let us again comment on the scaling of hcrit. Surface charges are com-
pletely suppressed, but there are volume charges:

−∇ · δm = −∂2 δm2 = −
√

2π ℓ−3/2t−1/2 cos(
πx2

ℓ
).
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Figure 31: Nonoscillatory buckling

We assess their contribution: The volume charge density in R× (0, ℓ)× (0, t)
scales as ℓ−3/2t−1/2. For t ≪ ℓ, these charges behave like surface charges on
R × (0, ℓ) × {0} with a density scaling as ℓ−3/2t1/2. The energy of a surface
charge on R × (0, ℓ) × {0} with unit density would scale as ℓ2 (always per
unit length in x1). Hence we obtain for the magnetostatic contribution

∫

R2

|∇uδm|2 dx2dx3 ∼ ℓ2 (t1/2ℓ−3/2)2 =
t

ℓ
.

On the other hand, the exchange contribution scales as

d2

∫

(0,ℓ)×(0,t)
|∇δm|2 dx2dx3 ∼

(
d

ℓ

)2

.

Hence in Regime II (i. e. t ≤ d2

ℓ ), the magnetostatic contribution is domi-
nated by the exchange contribution which sets hcrit.

Regime III: Oscillatory buckling

This regime is driven by the competition of volume charges and exchange
energy. As in Regime II, surface charges are suppressed at the expense of the
exchange energy, which generates volume charges. As opposed to Regime II,
volume charges do matter. Volume charges can be reduced by modulating
the ansatz (8.8) in the x1–direction by choosing a non–zero k1 in (8.4), see
Figure 32. If the period w = 2π

|k1| of this modulation is much smaller than
ℓ, volume charges cancel over a length scale of w instead of ℓ, cf. Figure 32.
We choose the following model:

δm2 = 2(ℓt)−1/2 cos(
2πx1

w
) sin(

πx2

ℓ
) and δm3 ≡ 0. (8.9)
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Figure 32: Oscillatory buckling

We now address the scaling of w and hcrit. Provided w ≪ ℓ, the domi-
nant part of the exchange energy comes from

∂1δm2 = −4π (ℓt)−1/2w−1 sin

(
2πx1

w

)
sin

(πx2

ℓ

)
.

Thus the exchange contribution scales as

d2

∫

(0,ℓ)×(0,t)
|∇δm|2 dx2dx3 ∼

(
d

w

)2

. (8.10)

The volume charge density in R × (0, ℓ) × (0, t) is of the form

−∇ · δm = −∂2 δm2 = −2π ℓ−3/2t−1/2 cos

(
2πx1

w

)
cos

(πx2

ℓ

)
.

Provided w ≫ t, this behaves like a surface charge density on R×(0, ℓ)×{0}
of the form

2π ℓ−3/2t1/2 cos

(
2πx1

w

)
cos

(πx2

ℓ

)
. (8.11)

To leading order in w ≪ ℓ, the magnetostatic potential uδm generated by
this surface charge density is of the form

uδm ≈ 1

2
ℓ−3/2t1/2w cos

(
2πx1

w

)
cos

(πx2

ℓ

)
exp

(
−2π|x3|

w

)
. (8.12)

Hence the magnetostatic contribution, which can be computed as the in-
tegral of the product of (8.11) and (8.12) over R × (0, ℓ) × {0}, scales as
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follows: ∫

R2

|∇uδm|2 dx2dx3 ∼ tw

ℓ2
. (8.13)

We see that the sum of exchange contribution (8.10) and magnetostatic
contribution (8.13) is minimized for

w ∼
(

d2ℓ2

t

)1/3

. (8.14)

For this choice we indeed obtain hcrit ∼
(

dt
ℓ2

)2/3
. Notice that the consistency

condition t ≪ w ≪ ℓ precisely turns into the conditions which define Regime
III.

The hypothesis that the experimentally observed period wexp of the con-
certina pattern is the frozen–in length scale w (8.14) of the unstable mode
at critical field is tempting. For a quantitative comparison we need a more
quantitative version of (8.14). It will be provided in Subsection 8.1.3.

Regime IV: Curling

This regime is driven by the avoidance of both surface and volume
charges. Hence the model δm should be tangential to ∂Ω and divergence–
free in Ω. We make the following choice:

δm2 = 2(ℓt)−1/2 sin(πx2

ℓ ) cos(π x3

t ), δm3 = 2(ℓt)−1/2 t
ℓ cos(πx2

ℓ ) sin(π x3

t )
(8.15)

The resulting finite perturbations are helicoidal in nature, see Figure 33.
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l
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hcrit ∼
(

d
t

)2
Charge-free

Figure 33: Curling

The scaling of hcrit is easy to explain: There is no contribution from the
magnetostatic energy. In the exchange energy, the contribution from ∂3 δm2

is dominant and scales as (d/t)2, which yields the scaling of hcrit.
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8.1.3 Asymptotic identification of the unstable mode in Regime
III

Theorem 8.1 identifies all scaling regimes by determining the scaling of hcrit,
but it does not determine the degenerate subspace. We now present a result
from [21] which rigorously identifies the asymptotic degenerate subspace in
the new Regime III. As we shall see, it confirms the heuristic ansatz (8.9)
from above.

The scaling

The approach of [21] is to identify the asymptotic minimizers (k1,δm2(x2, x3),
δm3(x2, x3)) by characterizing the Γ–limit of (8.4). For the notion of Γ–limit,
see Section 10. This requires a nondimensionalization. (8.14) suggests to
measure length anisotropically in the following units

x1 =

(
d2ℓ2

t

)1/3

x̂1, x2 = ℓ x̂2, x3 = t x̂3, (8.16)

with the implicit understanding that this also means k1 =
(

t
d2ℓ2

)1/3
k̂1, ∂2 =

ℓ−1∂̂2, dx2 = ℓ d̂x2 and so on. In view of the constraint in (8.4) we rescale
the infinitesimal perturbation as follows

δm = (ℓt)−1/2 δ̂m.

In view of Theorem 8.1 and hcrit = 1
2 min HessE0, the Hessian itself has to

be rescaled as

HessE0 =

(
dt

ℓ2

)2/3

ĤessE0.

We finally introduce the two nondimensional parameters

ǫ :=

(
d2

ℓt

)2/3

and δ :=

(
t2

dℓ

)2/3

, (8.17)

which characterize Regime III:

ǫ ≪ 1 and δ ≪ 1. (8.18)

The result
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Theorem 8.2 The variational problem of minimizing

1
2ĤessE0(m∗)(k1, δm, δm) subject to

∫

(0,ℓ)×(0,t)
|δm|2 dx2dx3 = 1

(8.19)

Γ–converges in the regime (8.18) under weak convergence of (k̂1, δ̂m2, δ̂m3)
in R × L2((0, 1) × (0, 1))2 to the variational problem of minimizing

k̂2
1

∫ 1

0
(δ̂m2)

2 dx̂2 +
1

2 |k̂1|

∫ 1

0
(∂̂2 δ̂m2)

2 dx̂2 subject to

∫ 1

0
|δ̂m2|2 dx̂2 = 1

(8.20)

if (δ̂m2, δ̂m3) is of the form (δ̂m2(x̂2), 0) with δ̂m2 ∈ H1
0 ((0, 1)), and +∞ if

this is not the case.

Since (8.20) can be solved explicitly, one obtains in the original variables:

Corollary 8.3 Let hcrit and (k1, δm2, δm3) be the minimum and a mini-
mizer of (8.4), respectively. In the regime (8.18), we have

(
ℓ2

dt

)2/3

hcrit ≈ 3(
π

2
)4/3, (8.21)

(
d2ℓ2

t

)1/3

|k1| ≈ (
π

2
)2/3, (8.22)

1

t ℓ

∫

(0,ℓ)×(0,t)

∣∣∣δm(x2, x3) −
√

2 (sin(π x2/ℓ), 0)
∣∣∣
2

dx2dx3 ≪ 1. (8.23)

¿From (8.22) and (8.23) we infer that the unstable subspace asymptot-
ically consists of all perturbations δm which are indeed of the form (8.9),
where the period w = 2 π

|k1| of oscillation in the infinite direction x1 is asymp-
totically given by

w ≈
(

32π
d2 ℓ2

t

)1/3

, (8.24)

which specifies (8.14).

We return to the hypothesis that the observed period wexp of the con-
certina pattern is the frozen–in length scale (8.24) of the unstable mode.
We have compared wexp to w for eight experiments pictured in [66]. These
experiments cover a substantial range of the non–dimensional parameters
t/d and ℓ/d, see Table 5. We find a deviation by a factor 0.5 − 0.7, which
warrants closer investigation in the future.
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t

d

ℓ

d

wexp

d

wtheo

d

wtheo

wexp

8 4000 1200 586 0.49
48 8000 700 512 0.73
60 3600 540 279 0.52
10 2000 500 347 0.69
8 2800 800 462 0.56
8 7000 1700 851 0.50

Table 5: Comparison of predictions and observations of the period of the
concertina pattern

The somewhat bold hypothesis that the period of the concertina pattern
is the frozen–in length scale of the unstable mode could be easily falsified by
a weakly nonlinear analysis: If the phase transition at hcrit is of first order
(i.e. discontinuous), there is little reason why the unstable mode at hcrit

should have an influence on the state for hext > hcrit. If however the phase
transition is of second order (i.e. continuous) this seems more plausible. In
the next subsection we shall argue that the phase transition is indeed of
second order.

8.1.4 Asymptotic identification of the type of bifurcation

In this section we present [22], in which the type of bifurcation is identi-
fied. The factorization (8.3) shows that the unboundedness of the sample
in x1–direction gives rise to a continuous spectrum with a bottom hcrit not
separated by a spectral gap. In order to avoid the well–known subtleties
related to such a situation without destroying the translation invariance in
x1, [22] imposes a convenient finite periodicity L in this direction:

m(x1 + L, x2, x3) = m(x1, x2, x3).

This also has the advantage of admitting a well–defined energy functional
E (energy over the length of one period):

E(m) = d2

∫

(0,L)×(0,ℓ)×(0,t)
|∇m|2 dx +

∫

(0,L)×R2

|∇um|2 dx

+2hext

∫

(0,L)×(0,ℓ)×(0,t)
m1 dx, (8.25)
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where um inherits the periodicity of m in x1. We think of the period L as
being large compared with the intrinsic w, cf. (8.24).

On a coarse level, one distinguishes between a subcritical, a transcritical
and a supercritical bifurcation, see Figure 34 for a sketch. In the subcrit-
ical case, there are no local minima close to m∗ for hext > hcrit. In the
transcritical and supercritical case, there are local minima close to m∗ for
hext > hcrit. But, only in the supercritical case, these local minima are
“shielded” from much lower energy levels further away (we think for in-
stance of m = (−1, 0, 0)) by an energy barrier in the following sense: There
exists an open ball B around m∗ in m–space such that

inf{E(m) |m ∈ B } < inf{E(m) |m ∈ ∂B }
for hext sufficiently close to hcrit.

(8.26)

Hence the supercritical type can be assimilated to a second–order phase
transition whereas the two other types correspond to a first–order phase
transition: For the supercritical type, both for conservative and dissipative
dynamics, the system will stay close to m∗ for a while as hext increases
beyond hcrit, provided that the initial kinetic energy was sufficiently small.
For the subcritical and the transcritical type, m will suddenly move far
away from m∗, at least generically. In this sense, the supercritical type is
less dependent on the specific dynamics than the two other types.

The traditional approach to find the type of bifurcation is to expand E,
restricted to the degenerate subspace of HessE(m∗) at the critical field, in
terms of m − m∗ and hext − hcrit. If there is a cubic term in m − m∗, the
bifurcation is transcritical. If there is no cubic term but a non–degenerate
quartic term, the bifurcation is super– or subcritical depending on whether
the quartic term is positive or negative definite.

h
crit

hext

h
crit

hext

h
crit

hext

Figure 34: Sub-, trans, and supercritical bifurcation
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The traditional approach seems rather delicate for our multiscale envi-
ronment where one has to combine the asymptotic expansion in m−m∗ with
the asymptotics of Regime III. [22] argues that the bifurcation is supercriti-
cal by directly establishing a quantitative version of (8.26), cf. Corollary 8.6.
This is done in two steps:

• In Theorem 8.4, one zooms in on m∗ in the energy landscape at the
right scale. The zooming–in is combined with the asymptotic Regime
III. Again, this is carried out in the framework of Γ–convergence. The
Γ–limit only contains quadratic, cubic and quartic terms and can be
seen as a normal form of E near m∗ in Regime III.

• In Theorem 8.5 it is shown that the Γ–limit is coercive. Roughly
speaking, this means that the Γ–limit goes to infinity if the rescaled
m−m∗ goes to infinity, provided the rescaled hext−hcrit is sufficiently
small.

We view this approach as a coarser, but more robust, way of identifying
the type of bifurcation. It seems better suited to multi–scale variational
problems.

The scaling

Length is nondimensionalized as for Theorem 8.2, i. e. (8.16). The new
element is the rescaling of the (m2,m3)–components of the magnetization.
Notice that for m ≈ m∗ = (1, 0, 0), (m2,m3) can be seen as the finite version
of the infinitesimal perturbation (δm2, δm3). Remark that

m1 =
√

1 − m2
2 − m2

3 ≈ 1 − 1
2(m2

2 + m2
3) for m ≈ (1, 0, 0).

As for Theorem 8.2, we expect that in Regime III, the out–of–plane com-
ponent is strongly suppressed by the penalization of surface charges so that
the above turns into

m1 ≈ 1 − 1
2m2

2. (8.27)

The magnetization component m2 will be rescaled in such a way as to bal-
ance the two contributions to the volume charge distribution ∇ · m, i. e.

∂1m1

(8.16),(8.27)
≈ −

(
t

d2ℓ2

)1/3

∂̂1(
1
2m2

2) and ∂2m2
(8.16)
=

1

ℓ
∂̂2m2.

This leads to
(m2,m3) = ǫ1/2 (m̂2, m̂3). (8.28)
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The external field is measured in units of the critical field as identified
in Theorem 8.1. As for the energy (8.25) itself, we subtract E(m∗) and
normalize appropriately:

hext =

(
dt

ℓ2

)2/3

ĥext, E − 2hext L ℓ t =

(
d8t2

ℓ

)1/3

Ê. (8.29)

We are now left with four nondimensional parameters, ǫ, δ from (8.17) and
also L̂ and ĥext. We are interested in Regime III close to critical field. Also,
in view of the remark on the spectral gap, we have to assume that the x1–
period L is not too large with respect to the intrinsic period w of oscillation.
This translates into

L̂ ∼ 1 and ĥext ∼ 1., (8.30)

where according to (8.16), L̂ is defined as

L =

(
d2ℓ2

t

)1/3

L̂.

We think of L̂ as being large, so that it does not much affect the unstable
wavelength ŵ = (32π)1/3, cf. (8.24).

The result

Theorem 8.4 Fix an M̂ ∼ 1. The variational problem of minimizing

Ê subject to |m|2 = 1 and

∫

(0,L̂)×(0,1)×(0,1)
|m − m∗|2 dx̂ = ǫM̂2

(8.31)
Γ–converges in the regime described by (8.18) & (8.30) under weak conver-
gence for (m̂2, m̂3) in L2((0, L̂)× (0, 1) × (0, 1))2 to the variational problem
of minimizing

Ê0 :=

∫

(0,L̂)×(0,1)
(∂̂1m̂2)

2 dx̂′ + 1
2

∫

(0,L̂)×R

∣∣|∂̂1|−1/2
(
− ∂̂1(

1
2m̂2

2) + ∂̂2m̂2

)∣∣2 dx̂′

−ĥext

∫

(0,L̂)×(0,1)
m̂2

2 dx̂′ subject to

∫

(0,L̂)×(0,1)
m̂2

2 dx̂′ = M̂2 (8.32)

if (m̂2, m̂3) is of the form (m̂2(x̂
′), 0) and E0 = +∞ if it is not of this form.
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Here |∂̂1|−1/2 denotes the operator with Fourier symbol |k̂1|−1/2. The
expression −∂̂1(

1
2m̂2

2)+ ∂̂2m̂2 is to be understood distributionally, where m̂2

has been extended by zero from R×(0, ℓ) to R×R. As for Theorem 8.2, this
imposes edge–pinning, i. e. m̂2(x̂2=1) = m̂2(x̂2=0) = 0 in a weak sense.

Let us point out that Ê0 interpolates between a linear regime and a wall
regime, depending on which of the two terms −∂̂1(

1
2m̂2

2) and ∂̂2m̂2 in the
charge distribution is dominant.

• For dominant ∂̂2m̂2, Ê0 is close to the Γ–limit (8.20) of the Hessian
integrated over frequencies k̂1:

Ê0 ≈
∫

2π

L̂
Z

(
k̂2

1

∫ 1

0
m̂2

2 dx̂2 +
1

2|k̂1|

∫ 1

0
(∂̂2m̂2)

2 dx̂2 − ĥext

∫ 1

0
m̂2

2 dx̂2

)
dk̂1.

• For dominant −∂̂1(
1
2m̂2

2), Ê0 is close to a 1–d model for small–angle
thin–film Néel walls (“ripples”) normal to x̂1, integrated over x̂2:

Ê0 ≈
∫ 1

0

(∫ L̂

0
(∂̂1m̂2)

2 dx̂1 +
1

2

∫ L̂

0

∣∣|∂̂1|1/2(1
2m̂2

2)
∣∣2 dx̂1 − ĥext

∫ L̂

0
m̂2

2 dx̂1

)
dx̂2.

(8.33)
Indeed, (6.16) with the anisotropy term replaced by the Zeeman term
turns into the inner integral of (8.33), when approximated and rescaled
according to (8.27), (8.28) and (8.16).
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Figure 35: Homotopy between the unstable mode and the concertina pattern

Figure 35 shows the minimizer m̂2 of Ê0 for varying strength of the
external field ĥext (ĥext = ĥcrit + 0.5, ĥext = ĥcrit + 6, ĥext = ĥcrit + 10).
The function m̂2 is represented by a grayscale plot for better comparison
with the experimental picture in Figure 26. The proportions correspond to
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a value of ε = 0.008. One clearly sees a homotopy between the unstable
mode and the strongly nonlinear concertina pattern.

Theorem 8.5 shows that Ê0 is coercive for L̂, ĥext ∼ 1:

Theorem 8.5 There exists a universal constant c > 0 such that for any
m̂2 ∈ L2((0, L̂) × (0, 1)) we have

Ê0(m̂2) ≥ c L̂−5/3

(∫

(0,L̂)×(0,1)
m̂2

2 dx̂′
)14/9

− ĥext

∫

(0,L̂)×(0,1)
m̂2

2 dx̂′.

It is not claimed that the exponent 14/9 is optimal; it is just important
that it is larger than 1. Theorem 8.5 states that there cannot be too much
cancellation between the two terms in the charge density. This is not so ob-
vious — the normal form Ê0 for “buckling” in micromagnetics thus behaves
quite differently from the normal form for buckling in plate theory, the von
Kármán model. Corollary 8.6 draws the conclusion that the bifurcation is
supercritical in the sense of (8.26):

Corollary 8.6 There exists an M̂ ∼ 1 such that in the regime (8.18) &
(8.30),

inf

{
E(m)

∣∣∣
∫

(0,L̂)×(0,1)×(0,1)
|m − m∗|2 dx̂ ≤ ǫM̂2

}

< inf

{
E(m)

∣∣∣
∫

(0,L̂)×(0,1)×(0,1)
|m − m∗|2 dx̂ = ǫM̂2

}
.

8.2 Local minima and thermally-activated switching

The micromagnetic energy is nonconvex due to the restriction |m| = 1. It
can have many local minima, each representing a stable magnetization pat-
tern. As the applied field varies, a ferromagnet exhibits hysteresis, because
the choice of local minimum is history-dependent.

We have discussed the limiting form of the energy in various thin-film
regimes. Mathematically speaking, these limiting forms have been justi-
fied only for energy minima, i.e. for ground-state patterns. But practically
speaking, we expect them to describe the accessible local minima as well.
Thus, we expect stable magnetization patterns in thin films to converge to
local minima of the appropriate asymptotic energy.
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It is natural to seek a more global understanding of the energy land-
scape. One motivation is the analysis of thermally-activated switching. The
Landau-Lifshitz-Gilbert equations of micromagnetic dynamics,

Jt = −γJ × H − αγ

Js
J × (J × H) with H = −δE

δJ
,

can be viewed as a damped Hamiltonian system. More explicitly we have

H = Hext + Hind +
1

Js
[2A∆m − Ka(∇ϕ)] .

To account for thermal fluctuations we must add a stochastic term:

Jt = −γJ×
(

H −
√

2αD

1 + α2
Wt

)
−αγ

Js
J×(J×H) with D =

kBT

γJs
, (8.34)

where kB is Boltzmann’s constant, T is temperature, and Wt is white noise
in both time and space. After division by Js we obtain the equivalent form

mt = −γm ×
(

H −
√

2αD

1 + α2
Wt

)
− αγm × (m × H). (8.35)

Models of this type go back at least 40 years [17]; for numerical studies in
the spatially inhomogeneous setting see e.g. [18, 54, 75].

For finite-dimensional damped Hamiltonian systems the effect of thermal
noise is well understood. Micromagnetics is infinite-dimensional, so rigor-
ous analysis is more difficult (and presently open), however we expect the
situation to be like the finite-dimensional setting. The system should spend
most of its time near stable states, with thermally-activated transitions be-
tween them. The transitions should moreover have Arrhenius kinetics, i.e.
the transition rate between any pair a, b of local minima should have the
form

kab = Cabe
−∆E/kBT (8.36)

where ∆E is the height of the energy barrier and Cab is a suitable prefactor.
This formula is applicable when thermal effects are small and transitions
rare, i.e. when ∆E/kBT ≫ 1. The minimum-energy saddle separating the
two stable states plays the role of a critical nucleus. Once the saddle point is
known, the most likely pathway of the transition is easily determined. The
prefactor can also be determined, albeit with more difficulty: it depends on
the linearization of the energy near the local minimum and the saddle [55].
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Rare events are important, but difficult to sample numerically. For ex-
ample, we expect memory devices to be stable for years, but we can only
simulate thermally-activated micromagnetics for a fraction of a second. The
Arrhenius formula (8.36) is valuable because it gives access to precisely the
regime we cannot sample numerically.

The bottom line is this: to understand thermally induced switching we
need (i) a list of stable states, and (ii) a list, for each pair of stable states,
of the lowest-energy saddle between them. For small magnetic elements –
the numerically accessible regime – the list of stable states is relatively short
and easy to determine: it suffices to solve the overdamped zero-temperature
dynamics with a variety of initial conditions. Finding the lowest-energy
saddle is, however, considerably more subtle.

Recently the problem of evaluating energy barriers and finding the as-
sociated saddles has seen considerable progress. The nudged elastic band
method [63, 71] and the string method [45] can be viewed as efficient numer-
ical implementations of the classical “mountain pass method” for finding
saddle points. Recently E, Ren, and Vanden-Eijnden applied the string
method to analyze the thermally-activated switching of permalloy thin films
and cylinders in the absence of an applied magnetic field [46]. One of their
examples is a thin film 200nm×200nm in cross-section and 10nm thick. The
relevant local minima are C-states and S-states, each of which can be viewed
as having a boundary vortex in one corner. The lowest-energy saddle point
separating the C and S states turns out to be a flower state, which can be
viewed as having a boundary vortex in the middle of one side (see Figure 1
of [46]). The string method is currently being applied to finite-temperature
hysteresis diagrams, and to predicting the temperature-dependence of the
coercive field [86].

9 Appendix on magnetostatics

We collect here a few results on magnetostatics. Existence and uniqueness
of hind satisfying

hind = −∇U (9.1)

and ∫

R3

hind · ∇ϕ = −
∫

Ω
m · ∇ϕ, ∀ϕ ∈ C∞

0 (R3), (9.2)

follow from the Riesz representation theorem. Let

X = {∇u : u ∈ C∞(R3),∇u ∈ L2(R3, R3)}
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denote the closure of the space of gradients of smooth functions in the L2

topology. Then X is a closed subset of L2(R3, R3) and hind is the projection
of −m ∈ L2(R3, R3) onto X. The main properties of the map P associating
hind = −Pm with each m are collected in the next proposition.

Proposition 9.1 (i) For each m ∈ L2, there exists a unique hind ∈ X
satisfying (9.2).

(ii) The field hind is characterized as the best approximation of −m within
X

|| − m − hind||L2 = min
h∈X

|| − m − h||L2 .

(iii) The linear map P : −m → hind is an orthogonal projection. In partic-
ular

||hind||L2 = ||Pm||L2 ≤ ||m||L2 .

Classically the induced field may be written as hind = −∇∆−1 div m. In
Fourier space hind is obtained by a pointwise projection using the matrix
ξ ⊗ ξ/|ξ|2, i.e.

F(hind)i(ξ) = −ξiξj

|ξ|2 Fmj(ξ). (9.3)

10 Appendix on Γ-convergence

10.1 Main properties

In this article we frequently study a sequence Ik of energy functionals and
we are interested in their limiting behavior as k → ∞. The limit we are
looking for is, however, not the usual (pointwise) limit. Rather, we look for
a notion of convergence which implies that

minimizers of Ik converge to minimizers of I.

Γ-convergence, introduced in 1974 by DeGiorgi and Franzoni [32, 33],
is exactly this notion. We first give the formal definition and review some
key properties of Γ-convergence. Then we illustrate the notion in an easy,
but interesting one–dimensional problem, in fact a 1d version of the sharp
interface problem discussed in Section 7.2. Two standard references for Γ-
convergence are [31, 11]. An easier introduction is [14] and short overviews
appear e.g in [4, 72].
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We consider functionals Ik defined on a complete metric space X (e.g. the
space L2 equipped with the usual distance given by the L2 norm d(f, g) =
||f − g||L2 ; there is another metric on L2 which is compatible with weak
convergence, when restricted to bounded sets in L2). We say that the func-
tional I is the Γ-limit of the sequence Ik if the following two conditions are
satisfied

(i) (lower bound) For every sequence fk → f we have

lim inf
k→∞

Ik(fk) ≥ I(f). (10.1)

(ii) (attainment of lower bound/recovery sequence) For every f there
exists a sequence gk such that gk → f and

lim
k→∞

Ik(gk) = I(f). (10.2)

Remark 10.1 We often consider Γ-convergence with respect to a continu-
ous parameter (such as the aspect ratio t) rather than a discrete index k.

Strictly speaking, we have It Γ→ I as t → 0 if Itk Γ→ I as k → ∞, for every
sequence tk → 0.

The main difference with ordinary convergence is that the definition of
the limit functional I at f involves not only the values of Ik at the point
f , but also in a neighborhood of f . This is crucial for the link between Γ-
convergence and the convergence of minimizers. The following result (which
follows essentially directly from properties (i) and (ii) above) makes this
precise.

Theorem 10.2 Suppose that I is the Γ-limit of the sequence Ik. Let fk be
minimizers of Ik.

(i) If fk → f then f is a minimizer of I.

(ii) If g is a minimizer of I then there exists a sequence gk of minimizers
of Ik such that gk converges to g.

Remark 10.3 Various refinements are possible. First, in (i) it suffices
that a subsequence fkj

of the sequence fk converges to f . Convergence of a
subsequence can often be assured under rather general ’soft’ conditions on the
functionals Ik, which does not require detailed knowledge of the minimizers.
Second, it suffices that the fk are approximate minimizers of Ik, i.e. Ik(fk) <
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Ik(h) + 1/k for all h ∈ X. Then the limit f of (a subsequence) is still a
minimizer of I. This is particularly useful if we do not know whether Ik has
a minimizer. In that case we still have a slightly weaker version of part (ii)
of the theorem, stating there exists gk converging to g which are approximate
minimizers in the above sense.

In applications we are often interested in applying additional external
fields. This amounts to adding an additional (usually linear) functional h
to the energy functional. The operation is compatible with Γ-convergence
as long as h is continuous.

Proposition 10.4 Suppose that h is a continuous functional on X (with
respect to the given metric) and

Ik Γ→ I. (10.3)

Then

Ik + h
Γ→ I + h. (10.4)

10.2 An example

To illustrate the concept of Γ-convergence consider scalar functions f defined
on the unit interval (0, 1) and the functionals

Ik =

∫ 1

0

1

k
|f ′(x)|2 + kϕ(f(x)) dx, (10.5)

where ϕ is a double well potential, with ϕ(±1) = 0 and ϕ > 0 otherwise.
One can take e.g.

ϕ(s) = (s2 − 1)2.

We will see shortly that the Γ-limit functional will ‘live’ mostly on non-
smooth functions f . For this reason it is convenient to extend Ik to a space
X which is as large as possible by making it +∞ outside its natural domain
of definition. Note that such an extension does not change the minimizers
of Ik. We may take X = L1(0, 1) (with the metric given by the usual L1

norm) and set

Ik(f) =

{ ∫ 1
0

1
k |f ′(x)|2 + kϕ(f(x)) dx, if f is smooth,

+∞ else.
(10.6)
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(We could also define Ik(f) by the integral expression for a larger class of f ,
e.g. for all f whose (distributional) derivative belong to L2. One can show
that this leads to the same Γ- limit.)

What is the Γ-limit of Ik as k → ∞ ? The second term in the integral
suggests that the Γ-limit will only be finite on functions which take only
the values ±1. Let f be a function which takes only values ±1 (and is not
identical 1 or −1). If we approximate f (in L1) by smooth functions then
the derivatives of the approximations fk must become very large at some
points as we improve the approximation. The more jumps between −1 and
1 the function f makes, the larger we expect the energy Ik(fk) to be. The
Γ-convergence result of Modica and Mortola makes this precise.

Proposition 10.5 The functionals Ik are Γ-convergent to I where

I(f) =

{
A0 · (number of jumps of f), if f(x) = ±1 for all x
+∞ else,

(10.7)

where

A0 = 2

∫ 1

−1
ϕ1/2(t) dt.

This result illustrates that Γ-convergence is very different from pointwise
convergence. In fact, the functionals Ik are finite on smooth functions, while
I is +∞ on smooth functions (except for the function which is identically
1 or identically −1). On the other hand, I is finite on functions which take
only the values ±1, while Ik is +∞ on those functions (again with the trivial
exceptions).

It is instructive to verify Proposition 10.5 using the definition of Γ-
convergence. To keep things simple we only consider a function f which
has exactly one jump, say f(x) = −1 for x < x0, while f(x) = 1 for x > x0.
To establish the lower bound in the definition of Γ-convergence we follow
Modica and Mortola and apply the arithmetic-geometric mean inequality to
the integrand of Ik

1

k
|f ′(x)|2 + kϕ(f(x)) ≥ 2|ϕ1/2(f(x))f ′(x)| (10.8)

and we observe that the expression inside the absolute value can be written
as a total derivative d

dxH(f(x)), where

H(s) =

∫ s

0
ϕ1/2(σ) dσ
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is the anti derivative of ϕ1/2.
Now consider a sequence fk which converges to f in L1. Then for almost

all values of x we have fk(x) → f(x) (more precisely this is true for a
subsequence, and this is enough to verify (10.1)). Choose a < x0 < b such
that convergence holds at a and b. Then

Ik(fk) ≥
∫ b

a
2| d

dx
H(fk(x))| dx ≥ 2 [H(fk(b)) − H(fk(a))]

→ 2 [H(1) − H(−1)] = 2A = I(f).

This finishes the verification of condition (i) of Γ-convergence.
To check condition (ii) we need to construct a sequence gk which approx-

imates the jump function f and does not ’waste’ energy. In particular, we
should choose gk such that the geometric-arithmetic inequality (10.8) be-
comes sharp. This is the case if g′k(x) = kϕ1/2gk(x). We define an optimal
profile h as the solution of

h′(ξ) = ϕ1/2(h(ξ)), lim
ξ→±∞

h(ξ) = ±1, h(0) = 0.

Then we can take gk(x) = h(k(x − x0)) and we see easily that Ik(gk) →
2A = I(f). This finishes the proof of Proposition 10.5 for the case that f
makes a single jump. If f has multiple jumps at x1, x2, . . . then for the lower
bound one simply applies the previous argument with points a1 < x1 < b1,
a2 = b1 < x2 < b2, etc. For the upper bound one first constructs good local
approximations near each xi as above and then interpolates between these
approximations (see e.g [4, 72] for further details).

What can we learn about the minimizers of Ik from the Γ-convergence
result ? The (global) minimizers of Ik are actually quite boring, they are
given by the two functions f which are identically 1 or identically −1. Al-
ready a slight modification of Ik, however, leads to a rather interesting
situation. We simply prescribe the average value of f to prevent the trivial
solution and to force f to switch from one well to the other. Specifically fix
λ (strictly) between −1 and 1 and set

Jk(f) =

{
Ik(f) if

∫ 1
0 f = λ,

+∞ else.
(10.9)

Then, by the same arguments as above, one can show that the functionals
Jk have a Γ-limit J , which agrees with I if the constraint is satisfied and is
+∞ otherwise. The minimization problem for J is very easy to solve. We
need to have at least one jump to satisfy the constraint. More jumps cost
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additional energy. Hence J has exactly two minimizers, f+ and f−, each of
which have exactly one jump (at 1/2 ± λ/2, respectively).

The Γ-convergence result and Theorem 10.2 imply that all minimizers
of Jk must converge to either f+ or f− (after choosing a subsequence).

10.3 Hierarchies of Γ-limits

Γ-convergence reveals limiting features of a family of functionals at a certain
energy scale. By using different rescalings one can extract different features
of the family of functionals (we have seen that, e.g. in Section 4.3). This
fact can also be easily illustrated using the example discussed in the last
subsection. If we considered the differently scaled functionals

Ĩk =

∫ 1

0

1

k2
|f ′(x)|2 + ϕ(f(x)) dx, (10.10)

then it is not difficult to show that Ĩk Γ→ Ĩ where

Ĩ(f) =

∫ 1

0
ϕ∗∗(f(x)) dx, (10.11)

where ϕ∗∗ is the convex envelope of ϕ and where we consider Γ-convergence
with respect to weak convergence in L2. As long as ϕ grows super linearly
at ∞ its convex envelope vanishes exactly on the convex hull of the energy
wells, i.e. the set [−1, 1]. The set of minimizers of Ĩ is very degenerate.
Every function taking values in [−1, 1] is a minimizer. The Γ-limit of the
rescaled functionals Ik = kĨk helps to break this degeneracy. Only functions
that take only the values ±1 have finite energy and the limit functional
distinguishes among these by the number of jumps.
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Appendix: Frequently used symbols

Symbol Meaning First appearance

E micromagnetic energy (in J) (2.1)
J magnetization (in Tesla) (2.1)
Js saturation magnetization (2.2)
m normalized magnetization J/Js (2.3)
A exchange stiffness (in J/m) (2.1)
Ka crystalline anisotropy constant (in J/m3) (2.1)
ϕ anisotropy function (2.1)
Hind magnetic field induced by J (in A/m) (2.1)
U potential of Hind (2.6)
µ0 vacuum permeability 4π × 10−7 Vs/Am (2.5)
Ω region occupied by ferromagnetic body (2.1)
C∞

0 (R3) space of smooth functions
which vanish outside a compact set (2.9)

K easy magnetization directions (2.10)
Kd magnetostatic energy density J2

s /2µ0 (2.13)
E normalized energy E/Kd (units of volume) (2.14)
Hext normalized applied field µ0Hext/Js (2.15)
Hind normalized induced field (2.16)
U potential of Hind (2.15)
Q quality factor Ka/Kd (2.18)

d = dBL Bloch–line width
√

A/Kd (2.19)
I E/Ka = E/Q (2.22)

dBW Bloch–wall width
√

A/Ka = d/
√

Q (2.24)
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Symbol Meaning First appearance

t thickness of a prism–shaped film Section 3
t time Section 8.2 only
l typical lateral dimension of a film Section 3
τ aspect ratio t/l (3.1)
Ω′ two–dimensional base of a film (3.2)
e fully nondimensional energy e = E/(l2t) (3.4)
ω rescaled (nondimensional) three–dimensional domain (3.3)
ω′ rescaled two–dimensional domain (3.3)
κ rescaled Bloch–line length κ = d/l (3.5)
u rescaled potential (3.6)
hind, hext rescaled fields (3.7), (3.8)
Dω demagnetizing tensor (3.11)
ϕ∗∗ convex envelope of ϕ (3.13)
x′ tangential coordinates x′ = (x1, x2) (4.3)
∇′ in–plane gradient (∂1, ∂2) (4.3)
F Fourier transform (4.4), (6.14)
m′ in–plane magnetization m′ = (m1,m2) (4.5)
V single layer potential (4.7)
eτ nondimensionsonal two–dimensional energy as

a function of the aspect ratio τ Section 4.2

h̃′ scaled applied field (5.5)
v rescaled single layer potential (5.9)
∇′⊥ rotated gradient (−∂2, ∂1) (5.22)
C∞

0 (Ω; R3) space of smooth vectorfields
vanishing outside a compact subset of Ω (7.3)

iε,Q, iε rescaled energy functionals (7.12), (7.15)
PerΩE perimeter of a set E Proposition 7.4
BV(Ω) functions of bounded variation Proposition 7.4
T absolute temperature Section 8.2
γ gyromagnetic ratio Section 8.2
α damping factor in LLG equations Section 8.2
W white noise Section 8.2
kB Boltzmann’s constant Section 8.2
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de ferromagnétisme, Comm. Partial Differential Equations 27 (2002),
1467–1495.

117



[27] C. Carstensen, D. Praetorius, Effective simulation of a macroscopic
model for stationary micromagnetics, Comput. Methods Appl. Mech.
Engrg. 194 (2005), no. 2-5, 531–548

[28] Choksi, R., Kohn, R. V., Bounds on the micromagnetic energy of a
uniaxial ferromagnet, Comm. Pure Appl. Math 51 (1998), 259–289

[29] R. Choksi, R.V. Kohn and F. Otto, Domain branching in uniaxial fer-
romagnets: a scaling law for the minimum energy, Comm. Math. Phys.
201 (1999), 61–79.

[30] S. Conti, Branched microstructures: scaling and asymptotic self-
similarity, Comm. Pure Appl. Math. 53 (11) (2000), pp. 1448–1474

[31] G. Dal Maso, An introduction to Γ-convergence, Birkhäuser, 1993.
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[66] A. Hubert and R. Schäfer, Magnetic domains, Springer, 1998.

[67] P.E. Jabin and B. Perthame, Compactness in Ginzburg–Landau energy
by kinetic averaging, Comm. Pure Appl. Math. 54 (2001), 1096–1109.

[68] P.E. Jabin, B. Perthame and F. Otto, Line–energy Ginzburg–Landau
models: zero–energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1
(2002), 187–202.

[69] R.D. James and D. Kinderlehrer, Frustration in ferromagnetic materi-
als, Continuum Mech. Thermodyn. 2 (1991), 215–239.

[70] W. Jin and R. V. Kohn, Singular perturbation and the energy of folds
J. Nonlinear Sci. 10 (2000), 355–390.

[71] H. Jonsson, G. Mills and K.W. Jacobsen, Nudged elastic band method
for finding minimum energy paths of transitions, in: Classical and
Quantum Dynamics in Condensed Phase Simulations (eds. B.J. Berne,
G. Ciccotti, and D.F. Coker), World Scientific, 1998.

[72] J. Jost and X. Li-Jost, Calculus of variations, Cambridge Univ. Press,
1998.
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