
Abstract. A wide selection of classical and recent tests for exponentiality are
discussed and compared. The classical procedures include the statistics of
Kolmogorov-Smirnov and Cramér-von Mises, a statistic based on spacings,
and a method involving the score function. Among the most recent
approaches emphasized are methods based on the empirical Laplace trans-
form and the empirical characteristic function, a method based on entropy as
well as tests of the Kolmogorov-Smirnov and Cramér-von Mises type that
utilize a characterization of exponentiality via the mean residual life function.
We also propose a new goodness-of-fit test utilizing a novel characterization
of the exponential distribution through its characteristic function. The finite-
sample performance of the tests is investigated in an extensive simulation
study.

AMS 1991 Classification Numbers: 62G10, 62G20

Key words: Goodness-of-fit test, exponential distribution, empirical charac-
teristic function, empirical distribution function, integrated empirical distri-
bution function, empirical Laplace transform, entropy, mean residual life
function.

1. Introduction and summary

The assumption of exponentiality is heavily used in many modelling situa-
tions, particularly in life testing and reliability. Standard procedures for
checking the validity of the exponential model are the tests of Kolmogorov-
Smirnov and Cramér-von Mises, which utilize the empirical distribution
function (EDF), procedures based on properties of normalized spacings and
the score test. Recent years, however, have witnessed an increasing interest
in using alternative methods, besides those directly involving the density and

Metrika (2005) 61: 29–45
DOI 10.1007/s001840400322

Recent and classical tests for exponentiality:
a partial review with comparisons

Norbert Henze and Simos G. Meintanis

Institut für Mathematische Stochastik, Universität Karlsruhe, Englerstr. 2, 76128 Karlsruhe,
Germany and Department of Economics, National and Kapodistrian University of Athens,
8 Pesmazoglou Street, 105 59 Athens, Greece

Received: January 2002/Revised: January 2004



the distribution function of the exponential model, in constructing good-
ness-of-fit tests for exponentiality. These approaches include methods based
on entropy and the Kullback-Leibler information and characterizations
involving statistical transforms, such as the Laplace and the Fourier
transform. Moreover, the old spirit of utilizing the EDF and the Kol-
mogorov-Smirnov and Cramér-von Mises distances has found new ways of
expression.

In this article some of these tests are highlighted, discussed and compared.
The tests under discussion are consistent against general alternatives, and/or
have proved powerful among competing procedures in earlier studies. Con-
sequently, some standard methods discussed in D’Agostino and Stephens
(1986) such as the tests of Moran (1951) and Greenwood (1946) are not
included. We also discarded many of the less powerful methods reviewed by
Ascher (1990) and among recent procedures those constructed to guard
against specific deviations from exponentiality (Alwasel (2001), Basu and
Mitra (2002), Gatto and Jammalamadaka (2002), Klar (2000), Henze and
Klar (2001), Muralidharan (2001) and Chaudhuri (1997)). A recent test of
Morris and Szynal (2002) was not included because the test statistic is not
invariant with respect to permutations of the data.

The paper is organized as follows. In Section 2 we introduce the test
procedures, including a new test based on the empirical characteristic func-
tion, and discuss some of their features. Section 3 presents the results of an
extensive Monte Carlo study on the power of the tests under consideration
against a wide selection of popular alternatives to the exponential model.

2. The test statistics

Let ExpðhÞ denote the exponential distribution with density expð�x=hÞ=
h; x � 0. In what follows we consider goodness-of-fit tests for the class
Exp ¼ fExpðhÞ : h > 0g of exponential distributions. Specifically, given a non-
negative random variable X with density f , distribution function F and mean
l ¼ EðX Þ, we wish to test the null hypothesis

H0 : The law of X is ExpðhÞ for some h > 0;

against general alternatives, based on independent copies X1; . . . ;Xn of X . Since
each statistic Tn considered will be a function of the scaled observations
Yj ¼ Xj=ĥn or their transformed values Zj ¼ 1� expð�YjÞ, 1 � j � n, where
ĥn ¼ �Xn ¼ n�1

Pn
j¼1 Xj is themaximum likelihood estimator of the parameter h,

it is scale invariant. As a consequence, the null distribution of Tn does not
depend on the parameter h.

In what follows, the order statistics of Xj, Yj and Zj will be denoted by XðjÞ,
YðjÞ and ZðjÞ, respectively. The notation �!

D
means convergence in distribution,

and 1fAg denotes the indicator of an event A, which is 1 if A occurs and is 0,
otherwise. The following tests are compared:

2.1. Tests based on the Empirical Distribution Function

These tests are based on direct measures of discrepancy between the EDF
FnðxÞ ¼ n�1

Pn
j¼1 1fYj � xg of the scaled data Y1; . . . ; Yn and the df of the unit
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exponential distribution. The most prominent EDF tests for exponentiality
are the Kolomgorov-Smirnov and the Cramér-von Mises test. These reject the
hypothesis H0 for large values of

KSn ¼ sup
x�0
jFnðxÞ � ð1� expð�xÞÞj

¼max max
1�j�n

j
n
� ZðjÞ

� �

; max
1�j�n

ZðjÞ �
j� 1

n

� �� �

and

x2
n ¼

Z 1

0

FnðxÞ � ð1� expð�xÞÞð Þ2expð�xÞ dx

¼ 1

12n
þ
Xn

j¼1
ZðjÞ �

2j� 1

2n

� �2

;

respectively (see D’Agostino and Stephens (1986), Sec. 4.9).

2.2. Testing via the integrated Empirical Distribution Function

Klar (2001) studied a test for exponentiality that is based on the weighted
L2-statistic

Tn;a ¼ na3

Z 1

0

WnðtÞ �WðtÞ½ �2expð�atÞdt;

where WðtÞ ¼
R1

t ð1� F ðx; 1ÞÞdx ¼ expð�tÞ and

WnðtÞ ¼
Z 1

t
1� FnðxÞð Þdx ¼ 1

n

Xn

j¼1
maxðYj � t; 0Þ

are the integrated survival function of the unit exponential distribution and its
empirical counterpart, respectively, and a > 0 is a constant. A computa-
tionally convenient formula for Tn;a is

Tn;a ¼
2ð3aþ 2Þn
ð2þ aÞð1þ aÞ2

� 2a3
Xn

j¼1

expð�ð1þ aÞYjÞ
ð1þ aÞ2

� 2

n

Xn

j¼1
expð�aYjÞ

þ 2

n

X

j<k

½aðYðkÞ � YðjÞÞ � 2� expð�aYðjÞÞ:

A test that rejects H0 for large values of Tn;a is consistent against each
alternative distribution with finite positive expectation. The limit null dis-
tribution of Tn;a is that of a3

R1
0 W2ðtÞ expð�atÞdt, where W is some cen-

tered Gaussian process in the Hilbert space of square-integrable functions
on ð0;1Þ.

Based on simulations Klar (2001) recommends to reject H0 if at least
one of the tests based on Tn;1 and Tn;10 rejects H0. To give a formal
description of this procedure, denoted by KLn, let ua;a ¼ 1fTn;a > zn;aðaÞg
denote the level-a-test based on Tn;a. The test results in 1 (rejection) or 0
(no rejection). The combined level-a-test is u1;10ðaÞ ¼ maxðu1;b;u10;bÞ,
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where a=2 � b � a, and b is uniquely determined by the condition
E½u1;10ðaÞ� ¼ a under H0. In practice, b and the pertaining quantiles of Tn;1
and Tn;10 have to be found empirically by a search algorithm (see Klar
(2001) for special numerical values) . Using the quantiles that belong to a

2
leads to a conservative test.

2.3. A statistic based on spacings and the Gini index

In D’Agostino and Stephens (1986, p. 447), the following statistic based on
the normalized spacings Dj ¼ ðnþ 1� jÞðXðjÞ � Xðj�1ÞÞ (j ¼ 1; . . . ; n; Xð0Þ ¼ 0)
is proposed: Calculate Uk ¼

Pk
j¼1 Dj=

Pn
j¼1 Xj, 1 � k � n� 1, which under

H0 is a sample of size n� 1 from a uniform distribution in (0,1). Then a two-
sided test is based on

Sn ¼
Xn�1

j¼1
Uj ¼ 2n� 2

n

Xn

j¼1
jYðjÞ:

Since ðn� 1Þ�1Sn ¼ 1� Gn, where

Gn ¼
1

2nðn� 1Þ
Xn

j;k¼1
jYj � Ykj

denotes the Gini index, a test based on Sn is equivalent to a two-sided test for
exponentiality based on Gn. Such a test was proposed and thoroughly studied
by Gail and Gastwirth (1978), who also stated the exact null distribution of Gn.
The limit null distribution of ½12ðn� 1Þ�1=2 Gn � 1=2f g is standard normal.
More generally, Hoeffding (1949) shows that, under the condition EðX 2Þ <1,

fGn� EðGnÞg=fVarðGnÞg1=2 has a limiting standard normal distribution. Both
Gail and Gastwirth (1978) and D’Agostino and Stephens (1986, p. 454) report
that the test based on Sn resp. Gn has very high power. Notice that

Sn

n� 1
¼ 1� Gn ! 1� 1

2
� EjX1 � X2j

EðX Þ ð2:1Þ

as n!1 almost surely provided that 0 < EðX Þ <1. The limit in (2.1) is equal
to 1=2 if X has an exponential distribution. Since the same holds for other
distributions (e.g., for the distribution having density f ðxÞ ¼ 3=4, if 0 � x � 1,
and f ðxÞ ¼ 1=12, if 1 � x � 4; f ðxÞ ¼ 0, otherwise, a test for exponentiality
based on Sn or Gn is not universally consistent.

2.4. Tests based on the entropy characterization

It is well known that among all distributions with density f concentrated on
½0;1Þ and fixed mean l, the entropy �

R1
0 f ðxÞ log f ðxÞdx is maximized by the

exponential distribution. Grzegorzewski and Wieczorkowski (1999) and
Ebrahimi et al. (1992) use this result to construct goodness-of-fit tests of
exponentiality based on the entropy estimator

Hm;n ¼
1

n

Xn

j¼1
log

n
2m
½XðjþmÞ � Xðj�mÞ�

n o
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of Vasicek (1976). Here, m is an integer satisfying 1 � m < n=2 and
Xðj�mÞ ¼ Xð1Þ, XðjþmÞ ¼ XðnÞ, if j� m � 0 or jþ m � n, respectively. Rejection
of H0 is for small values of Hm;n.

Ebrahimi et al. (1992) show that, if m; n!1, and m=n! 0, their test is
consistent against distributions with finite mean, while Grzegorzewski and
Wieczorkowskki (1999) removed the moment condition. (For a finer analysis
of the convergence of Hm;n to the corresponding population entropy the reader
is referred to Song (2000)). Taufer (2002) considers Hm;n, as well as the entropy
estimator of Van Es (1992), and alternative transformations of the original
observations, with a view towards maximizing the power of the resulting test.
As in the case of the previous statistic, his recommendation is to employ the
transformed observations Uj; 1 � j � n� 1, and the corresponding entropy
estimator Hm;n�1. Taufer (2002) notes that the test which rejects H0 for small
values of Hm;n�1 is consistent.

2.5. The statistic of Cox and Oakes

Summarizing the simulation results of some 15 test statistics for exponen-
tiality, Ascher (1990) concludes that if nothing a priori is known about the
alternative distribution, the test of Cox and Oakes (1984), which rejects the
null hypothesis for both small and large values of

COn ¼ nþ
Xn

j¼1
ð1� YjÞ log Yj;

is the ‘best’. To derive the asymptotic null distribution of COn assume
(without loss of generality) that EðX Þ ¼ 1 and notice that

1
ffiffiffi
n
p COn ¼

1
ffiffiffi
n
p
Xn

j¼1
1þ ð1� YjÞ logXj
� 	

:

Putting gðhÞ ¼ ð1� X=hÞ logX , a Taylor expansion of gðĥnÞ around h ¼ 1
yields

1
ffiffiffi
n
p COn �

1
ffiffiffi
n
p
Xn

j¼1
Wj; ð2:2Þ

where Wj ¼ 1þ ð1� XjÞ logXj þ ð1� cÞðXj � 1Þ, c ¼ 0:5772 . . . denotes
Euler’s constant, and X � Y means that the random variables X and Y have the
same asymptotic distribution. Since EðW1Þ ¼ 0 and EðW 2

1 Þ ¼ p2=6, the Central
Limit Theorem and (2.2) imply that the limit null distribution of
ð6=nÞ1=2ðCOn=pÞ is standard normal. The test based onCOn is consistent against
finite-mean distributions (say l ¼ 1) with E½X logX � logX � 6¼ 1, provided
that the latter expectation exists.

2.6. Tests based on a characterization via the mean residual life function

Under the assumption 0 < l <1, the distribution of X is exponential if, and
only if EðX � tjX > tÞ ¼ l for each t > 0. Since this condition is equivalent to
E ½minðX ; tÞ� ¼ l � F ðtÞ for each t > 0, Baringhaus and Henze (2000) sug-
gested the Kolmogorov-Smirnov type statistic
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KSn ¼
ffiffiffi
n
p

sup
t�0

1

n

Xn

j¼1
minðYj; tÞ �

1

n

Xn

j¼1
1fYj � tg























¼
ffiffiffi
n
p

maxðKSþn ;KS�n Þ;
where

KSþn ¼ max
j¼0;1;...;n�1

1

n
ðYð1Þ þ � � � þ YðjÞÞ þ Yðjþ1Þ 1� j

n

� �

� j
n

� �

;

KS�n ¼ max
j¼0;1;...;n�1

j
n
� 1

n
ðYð1Þ þ � � � þ YðjÞÞ � YðjÞ 1� j

n

� �� �

;

and the Cramér-von Mises type statistic

CMn ¼n
Z 1

0

1

n

Xn

j¼1
minðYj; tÞ �

1

n

Xn

j¼1
1fYj � tg

 !2

expð�tÞdt

¼ 1

n

Xn

j;k¼1
2� 3e�minðYj;YkÞ � 2minðYj; YkÞðe�Yj þ e�Yk Þ þ 2e�maxðYj;YkÞ
h i

:

Rejection of H0 is for large values of KSn or CMn. The asymptotic null dis-
tributions of KSn and CMn are the same as the limit distributions of the
classical Kolmogorov-Smirnov and Cramér-von Mises statistics when testing
the simple hypothesis of uniformity on the unit interval (see Theorem 1 of
Baringhaus and Henze (2000)).

If 0 < l ¼ EðX Þ <1, then

KSn
ffiffiffi
n
p ! sup

z�0

1

l
EðminðX ; zÞ � P ðX � zÞ



















and

CMn

n
!
Z 1

0

E min
X
l
; z

� �� �

� P
X
l
� z

� �� �2
e�zdz

in probability as n!1 (Theorem 2 of Baringhaus and Henze (2000)). If
EðX Þ ¼ 1, then KSn=

ffiffiffi
n
p ! 1 and CMn=n! 1 in probability. It follows that

the tests based on KSn or CMn are consistent against each fixed alternative
distribution having positive, possibly infinite, mean.

2.7. Test statistics derived from the empirical Laplace transform

In these tests, the Laplace transform wðtÞ ¼ ð1þ tÞ�1 of the unit exponential
distribution is estimated by its empirical counterpart wnðtÞ ¼ n�1

Pn
j¼1

expð�tYjÞ.

2.7.1. The test of Baringhaus and Henze (1991)
This approach uses the fact that w satisfies the differential equation
ð1þ tÞw0 ðtÞ þ wðtÞ ¼ 0, t 2 R. Consequently, choosing a constant a > 0 and
rejecting H0 for large values of
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BHn ¼ n
Z 1

0

ð1þ tÞw0nðtÞ þ wnðtÞ
h i2

expð�atÞdt

¼ 1

n

Xn

j;k¼1

ð1� YjÞð1� YkÞ
Yj þ Yk þ a

� Yj þ Yk

ðYj þ Yk þ aÞ2

"

þ 2YjYk

ðYj þ Yk þ aÞ2
þ 2YjYk

ðYj þ Yk þ aÞ3

#

should give a reasonable test of H0. Baringhaus and Henze (1991) proved that
BHn has a nondegenerate limiting null distribution. Since

BHn

n
!
Z 1

�1
ð1þ tÞw00ðtÞ þ w0ðtÞ
� �2

expð�atÞdt

in probability, where w0ðtÞ ¼ E½expð�tX=lÞ� is the Laplace transform of X=l,
the test is consistent against any distribution with (positive) finite mean l. As
a!1, the test statistic approaches the square of the first component of the
smooth test for exponentiality, which is

Ûn2 ¼
ffiffiffi
n
p

2

1

n

Xn

j¼1
Y 2

j � 2

 !

ð2:3Þ

(see Baringhaus et al. (2000)).

2.7.2. The test of Henze (1993)
In contrast to BHn, the test of Henze (1993) employs a ‘more direct’
L2-distance type statistic between wn and w and rejects the null hypothesis for
large values of

HEn ¼ n
Z 1

0

�

wnðtÞ �
1

1þ t

�2

expð�atÞdt

¼ 1

n

Xn

j;k¼1

1

Yj þ Yk þ a
� 2

Xn

j¼1
expðYj þ aÞE1ðYj þ aÞ

þ nð1� a expðaÞE1ðaÞÞ;
where E1ðzÞ ¼

R1
z ½expð�tÞ=t�dt is the exponential integral and a > 0 is a

constant.
Under H0 the statistic HEn has a nondegenerate limiting distribution.

Because of the stochastic convergence

HEn

n
!
Z 1

0

w0ðtÞ �
1

1þ t



















2

expð�atÞdt

if 0 < EðX Þ <1 and HEn=n!
R1
0 j1� 1

1þt j
2 expð�atÞdt if EðX Þ ¼ 1, the test

is consistent against any fixed alternative distribution not degenerate at zero.
Just as BHn, also HEn is connected with the first nonzero component of the
smooth test for exponentiality as a!1 (see Baringhaus et al. (2000)).

2.7.3. The test of Henze and Meintanis (2002a)
Apart from the tests based on BHn and HEn, we cross-reference simulation
results from Henze and Meintanis (2002a) in which the generalized version
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Ln ¼ n
Z 1

0

½ð1þ tÞwnðtÞ � 1�2wðtÞ expð�atÞdt

of HEn is considered (notice that the choice wðtÞ ¼ 1=ð1þ tÞ2 yields the sta-
tistic HEn). The weight function w is assumed to satisfy wðtÞ ¼ OðtkÞ as
t!1, for some integer k. Henze and Meintanis (2002a) derive the limit
distribution of Ln under H0 and under contiguous alternatives to exponen-
tiality. Since

Ln

n
!
Z 1

0

ð1þ tÞw0ðtÞ � 1ð Þ2wðtÞ expð�atÞdt

if 0 < EðX Þ <1 and Ln=n!
R1
0 t2wðtÞ expð�atÞdt if EðX Þ ¼ 1 (see Theo-

rem 2.7 of Henze and Meintanis (2002a)), the test based on Ln is consistent
against any fixed alternative distribution not degenerate at zero provided that
wðtÞ > 0 for each t.

If the weight function w satisfies wðtÞ ¼ Ctm þ oðtmÞ as t! 0 for some
C > 0 and m � 0, then lima!1 amþ5Ln ¼ CCðmþ 5ÞÛ2

n2, where Ûn2 is given in
(2.3).

2.8. Test statistics derived from the empirical characteristic function

In these tests, the characteristic function (CF) /ðtÞ ¼ CðtÞ þ iSðtÞ of X is
estimated by the empirical CF (ECF)

/nðtÞ ¼
1

n

Xn

j¼1
expðitXjÞ ¼ CnðtÞ þ iSnðtÞ:

The ECF has a long history as a tool for statistical inference. For good-
ness-of-fit problems in particular, the methods date back to Heathcote
(1972), Koutrouvelis and Kellermeier (1981), S. Csörg}o and Heathcote
(1982), S. Csörg}o (1985), and S. Csörg}o and Heathcote (1987). More recent
work includes, among others, Henze et al. (2003), Gürtler and Henze
(2000), Koutrouvellis and Meintanis (1999) and Kankainen and Usakakov
(1998). A large part of the literature on the ECF is covered in Ushakov
(1999).

In this paper we compare the test of Epps and Pulley (1986) and a new test
which is based on a characterization of exponentiality involving the CF. The
new statistic is similar in spirit to the statistic of Henze and Meintanis (2002b)
which was motivated by a different characterization of exponentiality via the
CF. For details on both characterizations the reader is referred to Meintanis
and Iliopoulos (2003). We cross-reference simulation results from Henze and
Meintanis (2002b), thereby including all three tests for exponentiality utilizing
the empirical CF.

2.8.1. The test of Epps and Pulley (1986)
Notice that, if the distribution of X is ExpðhÞ, the ECF /nðtÞ of X1; . . . ;Xn
should be close to the parametric estimator uðt; hÞ ¼ 1=ð1� i �XntÞ of the CF of
ExpðhÞ. The normalized Epps-Pulley test statistic is
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EPn ¼ð48nÞ1=2
Z 1

�1
/nðtÞ �

1

1� i �Xnt

� �
�Xn

2pð1þ i �XntÞ dt

¼ð48nÞ1=2 1

n

Xn

j¼1
expð�YjÞ �

1

2

" #

:

Epps and Pulley (1986) show that the limit null distribution of EPn is standard
normal, and that the test which rejects the hypothesisH0 for large values of jEPnj
is consistent against each alternative distribution with monotone hazard rate,
provided that F is absolutely continuous, F ð0Þ ¼ 0, and 0 < l <1. Curiously
enough, although motivated via the empirical characteristic function, EPn is
essentially an estimator of the value of theLaplace transform E½expð�tX=lÞ� of
the (rescaled) underlying distribution, evaluated at t ¼ 1, since

EPn

ð48nÞ1=2
þ 1

2
¼ 1

n

Xn

j¼1
expð�YjÞ ! E½expð�X=lÞ�

almost surely as n!1.

2.8.2. The test of Henze and Meintanis (2002b)
This procedure is based on the fact that the distribution of X is ExpðhÞ if, and
only if, the CF of X satisfies the equation SðtÞ ¼ htCðtÞ, t 2 R (Meintanis and
Iliopoulos (2003)). Writing cnð�Þ and snð�Þ for the real and the imaginary part,
respectively, of the ECF unðtÞ ¼ n�1

Pn
j¼1 expðitYjÞ of the scaled data

Y1; . . . ; Yn, the statistic of Henze and Meintanis (2002b) is

Wn ¼ n
Z 1

�1
snðtÞ � tcnðtÞð Þ2wðtÞdt; ð2:4Þ

where wð�Þ denotes a nonnegative weight function satisfying
R1
0 t2wðtÞdt <1.

Henze and Meintanis (2002b) prove that Wn has a nondegenerate limit null
distribution. Under a fixed alternative distribution satisfying 0 < EðX Þ � 1,
Wn=n has a positive stochastic limit as n!1 provided that wðtÞ > 0 for each t.
Consequently, a test for exponentiality that rejects H0 for large values of Wn is
universally consistent.

Closed-form expressions for Wn in terms of sums arise for the weight
functions w1ðtÞ ¼ expð�atÞ and w2ðtÞ ¼ expð�at2Þ, a > 0, in (2.4). Writing
W ð1Þ

n and W ð2Þ
n for the resulting statistics, we have

W ð1Þ
n ¼ a

2n

Xn

j;k¼1

1

a2 þ ðYj � YkÞ2
� 1

a2 þ ðYj þ YkÞ2
� 4ðYj þ YkÞ
ða2 þ ðYj þ YkÞ2Þ2

"

þ 2a2 � 6ðYj � YkÞ2

ða2 þ ðYj � YkÞ2Þ3
þ 2a2 � 6ðYj þ YkÞ2

ða2 þ ðYj þ YkÞ2Þ3

#

and

W ð2Þ
n ¼

ffiffiffi
p
p

4n
ffiffiffi
a
p

Xn

j;k¼1
1þ 2a� ðYj � YkÞ2

4a2

 !

exp �ðYj � YkÞ2

4a

 !"

þ 2a� ðYjþ YkÞ2

4a2
� Yjþ Yk

a
� 1

 !

exp �ðYjþ YkÞ2

4a

 !#

:
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2.8.3. A new test for exponentiality based on the ECF
Meintanis and Iliopoulos (2003) proved that the distribution of a random
variable X is exponential if, and only if, its CF satisfies the equation

j/ðtÞj2 ¼ CðtÞ; t 2 R;

where j/ðtÞj2 ¼ C2ðtÞ þ S2ðtÞ is the squared modulus of /. Consequently, a
reasonable test for exponentiality may be based on the statistic

Tn ¼ n
Z 1

0

junðtÞj2 � cnðtÞ
 �2

wðtÞdt;

where wð�Þ is a nonnegative weight function. Henze and Meintanis (2002c)
proved that under the condition

R1
0 t4wðtÞdt <1, the limit null distribution

of Tn is that of
R1
�1W2ðtÞwðtÞdt, where W is some zero mean Gaussian

element in the Hilbert space L2ðR;B;wðtÞdtÞ. Under a fixed alternative X with
EðX Þ ¼ 1 (this assumption is made without loss of generality because of scale
invariance) and EðX 2Þ <1, we have

ffiffiffi
n
p Tn

n
� D

� �

�!D Nð0; r2
0Þ; as n!1;

where

D ¼
Z 1

�1
½j/ðtÞj2 � CðtÞ�2wðtÞdt

and r2
0 is given in Henze and Meintanis (2002c). Henze and Meintanis (2002c)

also obtained the limit distribution of Tn under contiguous alternatives to H0.
As for Wn, closed-form expressions for Tn in terms of sums arise for the

weight functions w1ðtÞ ¼ expð�atÞ and w2ðtÞ ¼ expð�at2Þ, a > 0. The result-
ing statistics are denoted by T ð1Þn;a and T ð2Þn;a , respectively. Putting Yjk� ¼ Yj � Yk
and Yjkþ ¼ Yj þ Yk, straightforward algebra yields

T ð1Þn;a ¼
a
n

Xn

j;k¼1

1

a2 þ Y 2
jk�
þ 1

a2 þ Y 2
jkþ

" #

� 2a
n2

Xn

j;k¼1

Xn

l¼1

1

a2 þ ½Yjk� � Yl�2
þ 1

a2 þ ½Yjk� þ Yl�2

" #

þ a
n3
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j;k¼1

Xn

l;m¼1
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þ 1
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" #

and
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1

2n
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 !" #
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Both T ð1Þn;a and T ð2Þn;a are related to the time-honored first component Ûn2 of the
smooth test for exponentiality, since lima!1 a5 T ð1Þn;a ¼ 48Û 2

n2 and lima!1 a5=2

T ð2Þn;a ¼ 3
ffiffiffi
p
p

Û 2
n2=4. A similar observation was made by Henze and Meintanis

(2002b) for the statistic Wn, and by Baringhaus et al. (2000) for other weighted
integral test statistics in different goodness-of-fit testing problems.

3. Simulations

This section presents the results of a Monte Carlo study conducted to assess
the power of the tests under discussion. All calculations were done using
double precision arithmetic in FORTRAN and routines from the IMSL
library, whenever available. Empirical critical values of size a for all tests were
obtained from 50 000 replications. For the new tests T ð1Þn;a and T ð2Þn;a , these are
given in Table 1. With these critical values, the power of the tests was sim-
ulated based on samples of size n ¼ 20 and n ¼ 50 from the following dis-
tributions:

� the Weibull distribution with density hxh�1 expð�xhÞ, denoted by W ðhÞ,
� the Gamma distribution with density CðhÞ�1xh�1 expð�xÞ, denoted by CðhÞ,
� the lognormal law LNðhÞ with density ðhxÞ�1ð2pÞ�1=2 expð�ðlog xÞ2=ð2h2ÞÞ,
� the half-normal HN distribution with density ð2=pÞ1=2 expð�x2=2Þ,
� the uniform distribution U with density 1, 0 � x � 1,
� the modified extreme value EV ðhÞ, with distribution function 1� exp ðh�1
ð1� exÞÞ,

� the linear increasing failure rate law LF ðhÞ with density ð1þ hxÞ exp
ð�x� hx2=2Þ,

� Dhillon’s (1981) law DLðhÞ, with distribution function 1� expð�ðlog
ðxþ 1ÞÞhþ1Þ,

� Chen’s (2000) distribution CHðhÞ, with distribution function 1� expð2ð1�
exhÞÞ.

These distributions comprise widely used alternatives to the exponential
model and include densities f with decreasing hazard rates (DHR)
f ðxÞ=½1� F ðxÞ�, increasing hazard rates (IHR) as well as models with non-
monotone hazard functions.

Table 1. Critical points for T ð1Þn;a (top) and T ð2Þn;a (bottom)

a a ¼ 0:05 a ¼ 0:1

n ¼ 20 n ¼ 50 n ¼ 20 n ¼ 50

0:50 3.21 2.61 2.28 1.93
1.10 0.931 0.711 0.655

1:0 0.999 0.826 0.667 0.591
0.443 0.401 0.301 0.285

1:5 0.422 0.359 0.280 0.256
0.244 0.226 0.171 0.162

2:5 0.113 0.103 0.078 0.074
0.104 0.104 0.076 0.074

5:0 0.012 0.012 0.0089 0.0089
0.028 0.030 0.021 0.022
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For the nominal level 5%, Tables 2-5 show power estimates of the tests
under discussion. The entries are the percentages of 10 000 Monte Carlo
samples that resulted in rejection of H0, rounded to the nearest integer. An
asterisk denotes power 100%.

Table 2. Percentage of Monte Carlo samples declared significant by various tests for the
exponential distribution (n ¼ 20 left, n ¼ 50 right)

altern. EP KS CM x2 KS KL S CO EP KS CM x2 KS KL S CO

W ð0:8Þ 24 14 22 20 17 28 24 28 48 35 46 44 38 53 48 56
W ð1:4Þ 36 35 35 34 28 29 35 37 80 71 77 75 64 72 79 82

Cð0:4Þ 76 62 75 76 71 88 76 91 99 97 99 99 98 � 98 �
Cð1:0Þ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Cð2:0Þ 48 46 47 47 40 44 46 54 91 86 90 90 83 93 90 96

LNð0:8Þ 25 28 27 33 30 35 24 33 45 62 60 76 71 92 47 66
LNð1:5Þ 67 55 66 62 58 66 67 60 95 92 95 94 91 94 95 92
HN 21 24 22 21 18 16 21 19 54 50 53 48 39 37 54 45
U 66 72 70 66 52 61 70 50 98 99 99 98 93 97 99 91

CHð0:5Þ 63 47 61 61 56 77 63 80 94 90 94 95 92 99 94 99
CHð1:0Þ 15 18 16 14 13 11 15 13 38 36 37 32 26 23 38 30
CHð1:5Þ 84 79 83 79 67 76 84 81 � � � � 98 � � �
LF ð2:0Þ 28 32 30 28 24 23 29 25 69 65 69 64 53 54 69 60
LF ð4:0Þ 42 44 43 41 34 34 42 37 87 82 87 83 72 75 87 80

EV ð0:5Þ 15 18 16 14 13 11 15 13 38 36 37 32 26 23 38 30
EV ð1:5Þ 45 48 47 43 35 37 46 37 90 88 90 86 75 79 90 78
DLð1:0Þ 20 22 21 23 20 21 19 25 39 43 44 52 46 66 39 55
DLð1:5Þ 64 62 63 65 56 63 62 72 97 96 97 98 95 99 97 99

Table 3. Percentage of Monte Carlo samples declared significant by the entropy test based on
Hm;n�1 for m ¼ 4; 5; 6; 8 (n ¼ 20) and m ¼ 10; 12; 14; 16; 20 (n ¼ 50)

altern. n ¼ 20 n ¼ 50

4 5 6 8 10 12 14 16 20

W ð0:8Þ 11 10 10 9 21 19 17 15 13
W ð1:4Þ 20 20 20 19 53 53 52 51 47
Cð0:4Þ 51 45 38 27 90 85 79 72 55
Cð1:0Þ 5 5 5 5 5 5 5 5 5
Cð2:0Þ 33 35 36 36 81 82 82 82 80

LNð0:8Þ 47 51 53 56 90 96 96 96 86
LNð1:5Þ 55 55 54 51 90 90 90 89 86
HN 8 8 8 7 20 19 17 16 12
U 31 27 23 16 86 80 72 63 44

CHð0:5Þ 35 30 25 17 74 67 59 51 36
CHð1:0Þ 6 6 5 5 11 10 9 8 7
CHð1:5Þ 47 47 46 40 96 96 94 93 87
LF ð2:0Þ 12 12 11 10 30 29 27 24 20
LF ð4:0Þ 18 18 17 16 50 48 46 43 35

EV ð0:5Þ 6 6 5 5 11 10 9 8 7
EV ð1:5Þ 17 16 15 12 52 48 44 39 29
DLð1:0Þ 26 28 29 30 63 65 66 67 67
DLð1:5Þ 51 54 55 55 96 97 97 97 96
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The main conclusions that can be drawn from the simulation results are
the following:

1. For n ¼ 20, the most powerful among the tests in Tables 2 and 3 are
the tests based on EPn, KSn, CMn, Sn and COn. For n ¼ 50, the same
holds true, with the exception of the test based on KSn which performs
less favorably, and it is replaced by the classical Cramér-von Mises
test.

2. From the figures in Tables 4 and 5 it is evident that the power of the
tests based on BHn and HEn, as well as that of the new tests based on
T ð1Þn;a and T ð2Þn;a , depends on the value of the weight parameter a, for some
alternatives more drastically than for other alternatives. The fact that no

Table 4. Percentage of Monte Carlo samples of size n ¼ 20 declared significant by the tests based
on the empirical Laplace transform (left: BH top, HE bottom) and the new tests based on the
empirical CF (right: T ð1Þn;a top, T ð2Þn;a bottom)

altern. 0.5 1.0 1.5 2.5 5.0 0.5 1.0 1.5 2.5 5.0

W ð0:8Þ 26 25 24 24 24 1 1 1 4 15
26 25 24 24 24 1 3 5 10 19

W ð1:4Þ 36 37 37 36 32 40 44 45 45 40
37 38 37 37 36 45 45 44 42 36

Cð0:4Þ 87 83 80 77 72 0 2 11 33 57
86 82 79 79 76 10 26 37 50 60

Cð1:0Þ 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5

Cð2:0Þ 53 53 51 48 43 55 57 56 55 48
54 53 51 48 42 55 55 52 50 44

LNð0:8Þ 37 33 29 26 22 49 39 34 27 22
36 32 29 29 26 31 26 24 22 20

LNð1:5Þ 63 65 66 67 68 0 0 2 18 58
63 65 66 66 67 1 10 21 38 62

HN 18 20 21 21 19 23 28 31 33 29
19 20 21 21 21 31 33 33 31 25

U 50 58 61 65 66 69 78 82 86 84
51 58 62 62 65 83 86 87 85 81

CHð0:5Þ 75 70 67 63 59 0 1 6 23 43
73 69 66 63 59 4 18 27 37 48

CHð1:0Þ 13 14 15 14 13 16 21 23 25 22
13 14 15 14 14 23 25 25 23 18

CHð1:5Þ 78 82 83 84 82 81 87 89 91 90
80 82 83 84 82 90 91 91 91 87

LF ð2:0Þ 25 28 25 28 27 30 36 39 42 37
26 28 28 28 28 40 42 41 39 33

LF ð4:0Þ 37 40 41 42 40 43 50 54 56 52
38 40 42 42 42 54 57 56 54 47

EV ð0:5Þ 13 14 15 14 13 16 21 23 25 22
13 14 15 15 14 23 25 25 23 18

EV ð1:5Þ 36 41 43 44 43 43 53 58 63 59
37 41 43 43 44 60 64 63 61 54

DLð1:0Þ 25 24 23 21 17 34 30 28 25 20
26 24 22 20 18 27 24 23 21 18

DLð1:5Þ 72 70 68 64 57 74 73 71 67 60
73 70 68 64 57 69 66 64 61 56
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prior knowledge about possible deviations from exponentiality is
assumed, calls for a compromise solution, and it seems that the tests
corresponding to a ¼ 1:5 or a ¼ 2:5 satisfactorily fulfill this objective.
Also, since the BHn and the HEn tests exhibit a very similar perfor-
mance, we hereafter refer only to the BHn test, and denote this test by
BHn;a.

3. The performance of the best tests in Tables 2 and 3, the test of Baringhaus
and Henze (1991), and the new tests based on T ðjÞn;1:5 and T ðjÞn;2:5, j ¼ 1; 2, was
compared by ranking, for each alternative distribution. When n ¼ 20, the
T ð1Þn;2:5 test dominates, and despite the fact that the new tests perform
poorly under DHR alternatives, they clearly rank at the top, followed by

Table 5. Percentage of Monte Carlo samples of size n ¼ 50 declared significant by the tests based
on the empirical Laplace transform (left: BH top, HE bottom) and the new tests based on the
empirical CF (right: T ð1Þn;a top, T ð2Þn;a bottom)

altern. 0.5 1.0 1.5 2.5 5.0 0.5 1.0 1.5 2.5 5.0

W ð0:8Þ 53 51 50 48 47 6 12 17 25 35
52 51 50 48 48 16 22 27 31 38

W ð1:4Þ 80 80 81 79 76 75 80 81 81 78
81 81 81 79 76 81 82 81 80 76

Cð0:4Þ � 99 99 99 97 82 87 90 92 94
� 99 99 99 97 87 91 92 93 94

Cð1:0Þ 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5

Cð2:0Þ 95 94 93 91 86 92 93 92 90 84
95 94 93 91 87 91 89 88 85 82

LNð0:8Þ 81 67 58 47 36 89 77 66 49 31
74 62 55 46 38 60 46 40 32 27

LNð1:5Þ 93 94 95 95 95 16 36 54 74 91
93 94 95 95 95 47 65 74 83 92

HN 44 49 52 53 53 45 55 60 64 63
45 50 52 53 53 60 64 65 64 61

U 93 96 97 98 99 98 99 � � �
92 96 97 98 99 � � � � �

CHð0:5Þ 98 97 96 95 92 65 74 79 83 85
98 97 96 94 92 76 80 83 84 85

CHð1:0Þ 29 33 35 37 37 30 39 44 48 48
29 34 35 37 37 43 48 50 49 46

CHð1:5Þ � � � � � � � � � �
� � � � � � � � � �

LF ð2:0Þ 60 65 68 69 68 61 70 74 77 76
61 66 68 69 69 74 78 79 78 75

LF ð4:0Þ 80 84 86 87 87 80 87 90 91 91
81 85 86 87 87 89 91 92 92 90

EV ð0:5Þ 29 33 35 37 37 30 39 44 48 48
29 34 35 37 37 43 48 50 49 46

EV ð1:5Þ 79 85 87 89 91 82 90 93 95 96
80 85 87 89 91 93 95 96 96 95

DLð1:0Þ 60 52 47 40 33 67 60 54 43 30
58 51 46 40 34 50 42 37 32 27

DLð1:5Þ 99 99 98 97 94 99 98 98 96 92
99 99 98 97 94 97 96 95 93 89

42 N. Henze and S. G. Meintanis



the BHn;1:5, the COn, and the test based on CMn, in this order. For n ¼ 50,
the differences in power are less pronounced, and with the exception of
the somewhat less powerful classical Cramér-von Mises test, all tests
perform comparably. However, the tests based on T ð1Þn;1:5, T ð2Þn;1:5, and T ð1Þn;2:5,
rank at the top, followed by the CMn, the BHn;1:5, and the test of Epps and
Pulley.
We also compared, when possible, the new tests based on T ðjÞn;1:5 and T ðjÞn;2:5,
j ¼ 1; 2 with the tests of Henze and Meintanis (2002a, 2002b). The latter
tests are more powerful in cases of DHR or non-monotone hazard rate
alternatives, while the new tests are preferable for alternatives with IHR.
In conclusion, the new tests are serious competitors, and perhaps should
be employed, in the absence of any information regarding the type of
deviation from exponentiality. When such information exists and indi-
cates an IHR alternative, the new tests are powerful, but then they should
also be compared with tests that are designed to specifically guard against
such deviations. However, when a deviation towards DHR alternatives is
more likely, the new tests should not be employed. With an appropriate
choice of the weight parameter, the tests of Baringhaus and Henze (1991)
and Henze (1993) are among the most powerful tests. Also, between the
two methods utilizing the mean residual life function, the Cramér-von
Mises type test exhibited a very competitive performance, and among the
more classical procedures the test of Cox and Oakes.
The test of Epps and Pulley and the test based on spacings were com-
petitive only for n ¼ 50, while the methods involving entropy did not
compete well for either sample size. Among the methods involving the
EDF (or the integrated EDF), the Kolmogorov-Smirnov test is the least
powerful. The test of Klar (2001) competes well with the classical Cramér-
von Mises test but, at least in the cases of alternative distributions con-
sidered here, does not rank at the top.
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