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Abstract

Seismic hazard analyses (SHA) are routinely carried out around the world

to understand the hazard, and consequently the risk, posed by earthquake

activity. Whether single scenario, deterministic analyses, or state-of-the art

probabilistic approaches, considering all possible events, a founding pillar

of SHA is the estimation of the ground-shaking field from potential future

earthquakes. Early models accounted for simple observations, such that

ground shaking from larger earthquakes is stronger and that ground mo-

tion tends to attenuate rapidly away from the earthquake source. The first

ground motion prediction equations (GMPEs) were, therefore, developed

with as few as two principal predictor variables: magnitude and distance.

Despite the significant growth of computer power over the last few decades,

and with it the possibility to compute kinematic or dynamic rupture models

coupled with simulations of 3D wave propagation, the simple parametric

GMPE has remained the tool of choice for hazard analysts. There are nu-

merous reasons for this. First and foremost GMPEs are robust and reliable
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within the model space considered during their derivation, and many can be

extrapolated to a degree beyond this space with some confidence. With ever

expanding datasets and improved metadata the models are becoming more

and more useful: a range of predictor variables are now used, describing

the source, path and site effects in detail. GMPEs are also relatively easy

to implement and computationally inexpensive. Despite this, probabilistic

hazard calculations using GMPEs and accounting for uncertainties can still

take several days to run. Full simulation-based approaches, therefore, clearly

lie outside the computation budget afforded to most projects.

As well as the ever expanding list of predictor variables, other recent de-

velopments have also significantly improved the predictive power of GMPEs.

This has allowed them to maintain their advantage over more ‘physical’ sim-

ulation techniques. Possibly the biggest aspect of this is not related to the

median ground-shaking field, but rather its variability (and correlation in

space and with oscillator period). This is a major advantage of empirical as

opposed to simulation approaches, which typically struggle to replicate the

covariance of input variables and, consequently, the variance of the ground

motion. In this article we summarize some of the recent advances in ground

motion prediction equations, including their application in SHA. We begin

with a summary of the current state-of-the-art, then introduce the main ad-

ditional predictor variables now used. Region- and event-type (tectonic or

induced) specific predictions and adjustments are then discussed. Additional

topics include advances in estimating ground-motion variability (epistemic

and aleatory) and expanding GMPEs to predict other intensity measures

or waveform features. The article concludes with a discussion on the path

forward in earthquake ground motion prediction.

Keywords: seismology, earthquake engineering, earthquake, induced
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1. Introduction1

Seismic hazard assessment for a given site is founded on two pillars:2

firstly, a seismic-source model quantitatively describing all possible earth-3

quakes in the vicinity (generally within about 300 km) and, secondly, a4

ground-motion model expressing the shaking that would happen at the site5

given the occurrence of each of these earthquakes. This article focuses on the6

second of these components; nevertheless, when considering ground-motion7

models it is vital to bear in mind the descriptions of earthquakes contained8

within the seismic-source model. These descriptions invariably consist of9

the earthquake’s geographical location (and depth), its magnitude and, in-10

creasingly, its faulting mechanism and other characteristics (e.g. rupture11

geometry).12

The results of seismic hazard assessments are vital inputs to earthquake13

engineering as they provide the motions that need to be resisted by struc-14

tures and infrastructure constructed at the site. In the past most earthquake15

engineering analyses were based on the response spectral representation of16

shaking (e.g. Newmark and Hall, 1982; Chopra, 1995) or other pseudo-17

static methods. Consequently only estimates of scalar intensity measures18

(IMs), the principal ones being peak ground acceleration (PGA) and velocity19

(PGV) and elastic response spectral accelerations (SA) at various structural20

periods between 0 and commonly 2 s, were required for engineering analy-21

sis. In the past decade or so, Incremental Dynamic Analysis (Vamvatsikos22

and Cornell, 2002) and other time-history-based approaches have become23

increasingly used. There is a growing need, therefore, for seismic hazard24
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analysts to provide a time-history representation of earthquake shaking in25

addition to estimates of various IMs.26

As stated by Douglas et al. (2015), although the characterization of27

earthquake shaking by a single number (an IM) is a great simplification,28

it makes seismic hazard assessment much more straightforward since the29

link between the seismic-source and ground-motion models can be expressed30

as a closed-form equation [ground motion prediction equations (GMPEs),31

also known as attenuation relation(ship)s] to estimate the probability of32

exceeding a given level of earthquake shaking. These probabilities are cal-33

culated through probabilistic seismic hazard assessment (PSHA) (Cornell,34

1968; McGuire, 1976), which is the basis of most current seismic design maps,35

e.g. the National Annexes of Eurocode 8 (Comité Européen de Normalisa-36

tion, 2005) and ASCE-7 (ASCE, 2013). Consequently it is still common to37

assess seismic hazard using PSHA through ground-motion models that re-38

turn IMs. Then, based on this analysis and if needed, to obtain earthquake39

time-histories for the most important scenarios, generally defined using dis-40

aggregation (Bazzurro and Cornell, 1999), either through selection from a41

databank of natural accelerograms (NIST, 2011) or simulations of artificial42

records (Douglas and Aochi, 2008).43

Because of the key role they still play in seismic hazard assessment, this44

review focuses on GMPEs derived empirically (i.e. from seismograms of real45

earthquakes). The purpose of this article is not to repeat the historical re-46

view of empirical ground motion estimation presented by Douglas (2003a)47

nor the overall scope of the review of all methods for ground-motion pre-48

diction by Douglas and Aochi (2008). Rather, this article seeks to review49

the great advances in ground-motion prediction over the past decade and to50

provide the reader with an overview of the principal topics of research. The51
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article concludes with some recommendations for future developments.52

Although much of the following discussion concerns topics that are rel-53

evant for all tectonic regimes (e.g. shallow active crustal, subduction and54

stable continental) the examples are mainly taken from studies related to55

ground motions in shallow active crustal environments. A review focused56

on other tectonic regimes may emphasize other issues (e.g. the importance57

of focal depth for subduction events and simulation-based ground-motion58

models for stable continental regions). The wealth of data from shallow59

active crustal areas means that epistemic uncertainties are probably lower60

than in other tectonic regimes (e.g. Douglas, 2010b, Compare Figures 2, 861

and 10). For instance, in some tectonic regimes (e.g. oceanic crust, deep62

Vrancea-type and the Himalaya) there are few strong-motion observations to63

constrain ground-motion models and consequently the epistemic uncertainty64

for these regions is much higher than for shallow active crustal areas.65

2. Summary of current state of practice66

It has now been more than fifty years since the first ground-motion model67

accounting for both magnitude and distance dependence was derived (Es-68

teva and Rosenblueth, 1964). Models are currently published at the rate of69

more than one per month and, at the last count, the total number of empir-70

ical equations for the prediction of PGA was 400 with many more based on71

simulations (Douglas, 2016). The close match between the rate of increase72

in strong-motion recordings and the number of GMPEs is shown in Figure 1.73

The rapidly increasing number of GMPEs led Bommer et al. (2010) to rec-74

ommend criteria for the selection of GMPEs to retain only those models for75

consideration that could be thought of as representing the state of the art.76
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Figure 1: Available strong-motion records from RESORCE (Akkar et al., 2014b) (left-hand

axis) and number of published GMPEs from Douglas (2016) (right-hand axis) against date

for Europe and the Middle East (up to 2012).

They also suggest that these criteria could be used as a quality assurance77

step to guide publication of new GMPEs.78

A brief comparison between the first ground-motion model (Esteva and79

Rosenblueth, 1964) and the recently-published GMPE of Abrahamson et al.80

(2014) helps demonstrate the developments in this field. The GMPE of81

Esteva and Rosenblueth (1964) was based on only 46 records and its three82

coefficients were estimated via standard least-squares regression. In contrast83

the model of Abrahamson et al. (2014) is based on over 15 000 records from84

more than 300 earthquakes and its roughly 40 coefficients were determined85

based on random-effects regression (Abrahamson and Youngs, 1992) or con-86
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strained based on ground-motion simulations or physical reasoning. Little87

information is provided on the data behind the model of Esteva and Rosen-88

blueth (1964) and it is thought that these data were obtained from various89

sources with seemingly little regard to their consistency or validity. In con-90

trast, the model of Abrahamson et al. (2014) is the outcome of careful data91

collection via the NGA projects (Power et al., 2008; Bozorgnia et al., 2014).92

The GMPE of Esteva and Rosenblueth (1964) is only for PGA and PGV93

because before the Caltech Blue Books (Brady et al., 1973) response spec-94

tra were difficult to obtain; whereas the model of Abrahamson et al. (2014)95

provides predictions for PGA, PGV and pseudo-SA at 22 periods between96

0.01 and 10 s. Finally, as is common for early GMPEs, Esteva and Rosen-97

blueth (1964) do not report the standard deviation (σ) of their equation;98

whereas Abrahamson et al. (2014) concentrate much of their effort on de-99

riving a complex σ that models the different components of ground-motion100

variability.101

In the decade or so since the review by Douglas (2003a) GMPE devel-102

opers have concentrated on: improvements in the estimation of the ground-103

motion variability associated with their models and its components (see104

Section 5); a move away from simple regression-based curve fitting; at-105

tempts at using non-parametric techniques; the use of much more and higher106

quality data; attempts at including additional independent parameters (see107

Section 3); a better appreciation of epistemic uncertainty (see Section 6);108

extensions of spectral models to shorter (< 0.1 s) and longer (> 2 s) peri-109

ods using individually-processed1 records, often from digital instruments; a110

1The extension to shorter periods is aided by the observation (Douglas and Boore,

2011; Bommer et al., 2012) that SA is relatively unaffected by high-cut filtering.
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more careful consideration of how the models perform beyond their ‘comfort111

zones’, e.g.: for M < 5, M > 7 and R < 10 km; and making the models112

easier to use and test within PSHA (see Section 4). In addition, there has113

been a growing interest in developing models for other IMs, e.g. peak ground114

displacement, Arias intensity and various duration measures (see Section 7).115

2.1. Current de facto standards116

As demonstrated by the review of Douglas (2003a) many different choices,117

in terms of dependent and independent variables, derivation technique and118

functional form, were made by GMPE developers until the 1990s. In the119

past couple of decades, however, there has been a general convergence to a120

set of de facto standards.121

Most developers now present models for PGA, increasingly PGV, and122

pseudo-SA for 5% of critical damping based on the geometric mean of the123

values from two horizontal components, or the orientation-independent hor-124

izontal component (Boore et al., 2006). They often use records from public125

online databases (e.g. Akkar et al., 2014b; Chiou et al., 2008) that have126

been low-cut filtered with record-specific cut-offs that are then respected127

when considering the reliable frequency ranges of their models.128

The size of an earthquake is invariably characterized in terms of mo-129

ment magnitude (M), although this is sometimes estimated from other mag-130

nitudes, commonly local magnitude (ML) (e.g. Bindi et al., 2005; Goertz-131

Allmann et al., 2011), duration magnitude (Md) (e.g. Bakun, 1984; Edwards132

and Douglas, 2014) or surface wave magnitude (Ms) (e.g. Ambraseys and133

Free, 1997), through region-specific equations. Generally the earthquake is134

characterized into three faulting mechanisms (styles of faulting): normal,135

strike-slip and reverse. It is now common to consider nonlinear magnitude136
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scaling (see Section 4.2).137

The length of the travel path from source to site is generally measured138

either in terms of the distance to the surface projection of the rupture (the so-139

called Joyner-Boore distance, rjb) (Joyner and Boore, 1981) or, accounting140

for the depth, the distance to the causative fault (the so called rupture dis-141

tance, rrup). For smaller earthquakes, where point sources can be assumed,142

these distance metrics become equal to epicentral (repi) and hypocentral143

(rhyp) distances, respectively. Some recent studies present models for both144

finite-fault (rrup or rjb) and point-source (repi or rhyp) distance metrics so145

that the correct GMPE is available when used within PSHA for point sources146

(e.g. within area sources) (Bommer and Akkar, 2012) without having to per-147

form conversions. It is also common to account for magnitude-dependent148

decay of IMs with distance (see Section 4.2).149

Because boreholes were typically drilled to 30m and because of its subse-150

quent use within many projects and design codes, e.g. Eurocode 8, the time-151

average shear-wave velocity in the top 30m (Vs,30) is the common way that152

near-surface site conditions are characterized within recent GMPEs, either153

directly or, when insufficient information is available, through site classes.154

It is still relatively uncommon for GMPEs to account directly for potential155

nonlinear site amplification because this behavior is rare within observed156

strong ground motions. Within PSHA non-linear effects generally require157

a simulation-based site term to be adopted, often from a stand-alone study158

(Kamai et al., 2014; Seyhan and Stewart, 2014; Sandikkaya et al., 2013).159

Finally it has become standard to use either random-effects (Abraham-160

son and Youngs, 1992) or one- or two-stage maximum-likelihood regression161

(Joyner and Boore, 1993) to estimate the free coefficients of the model.162

These techniques, applied to the same data, would lead to very similar163
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results, although the latter may be more susceptible to trade-offs. Both164

techniques provide estimates of the between- and within-event components165

of ground-motion variability (see Section 5).166

3. Additional independent variables167

To obtain GMPEs that estimate more appropriate ground motions for a168

given earthquake, path and site, independent variables in addition to mag-169

nitude, faulting mechanism, source-to-site distance and a near-surface site170

class (or Vs,30) have been tested and/or included within some recent models.171

These attempts are briefly discussed in this section.172

3.1. Source parameters173

All GMPEs include magnitude as the main source parameter. This is174

now routinely moment magnitude due to its robustness, the fact that it175

does not saturate, and because it is possible to estimate from historical and176

palaeological information. The latter consideration is important in linking177

GMPEs to earthquake catalogs, where the longer the available time-period178

the more reliable are recurrence relations, particularly at higher magnitudes.179

While magnitude is certainly an important factor for ground-motion ampli-180

tudes, there are other source parameters that can control the amplitude and181

frequency content of radiated seismic energy. The most influential of these182

is the earthquake stress drop. While the stress drop has a physical mean-183

ing, there are different definitions (e.g. static, dynamic or ‘Brune’). When184

referred to in engineering seismology applications ‘stress drop’ or ‘stress185

parameter’ is effectively used to refer to the proportion of high-frequency186

energy (for a given magnitude) that is radiated from the source (Atkinson187

and Beresnev, 1997).188
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Following on from observations of Somerville (2003), model developers of189

the NGA West 1 and 2 projects (Power et al., 2008; Bozorgnia et al., 2014)190

investigated the impact of depth to the top of the rupture plane (ZTOR) on191

ground motions. Some of them (e.g. Campbell and Bozorgnia, 2014) find192

that using ZTOR within the model leads to statistically better predictions193

with deep earthquakes generating higher ground motions than shallow events194

(all other things being equal), which could be explained by higher stress195

drops. Possible lower stress drops for aftershocks is behind the decision of196

some NGA West developers to exclude data from this type of event (e.g.197

Boore and Atkinson, 2008) whereas others (e.g. Chiou and Youngs, 2008)198

include terms to account for this difference. This effect appears to be small199

and could be related to the way that earthquakes are classified (Douglas and200

Halldórsson, 2010). Radiguet et al. (2009) present evidence that SAs from201

immature faults are statistically-significantly higher than those from mature202

faults, which again could be related to higher stress drops for earthquakes203

occurring on immature faults. The maturity of faults has yet to be included204

in a GMPE because the age of faults is not a readily-available parameter.205

The recent ground-motion model by Bora et al. (2015) includes an explicit206

term for the stress (drop) parameter (∆σ) commonly used within stochastic207

models (e.g. Atkinson and Silva, 2000; Rietbrock et al., 2013), while Douglas208

et al. (2013) and Bommer et al. (2016) present unique GMPEs for a range of209

∆σ. This allows models to be readily employed in areas where the average210

stress drop is known but it puts the onus on the user to select an appropriate211

median ∆σ (and uncertainty about this value).212

Directivity of earthquake ground motion fields is an emerging topic that213

has been addressed, for example, in the recent NGA West 2 project (Spudich214

et al., 2014). While often clear in large-magnitude earthquake simulations,215
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this issue has seen relatively little focus in recent years. This is primarily due216

to the nature of PSHA, which combines all possible earthquake scenarios:217

rupture directivity effects, therefore, tend to be smoothed out. However, in218

understanding deterministic hazard, or for future analyses, where rupture219

directivity preference can be assigned, accounting for this effect may help to220

reduce epistemic uncertainty.221

3.2. Path parameters222

Path terms within GMPEs have grown more complex in terms of their223

functional form over the past decade with the realization that ground mo-224

tions from small and large earthquakes do not decay at the same rate (see225

Section 4.2). In addition, because of the availability of ground-motion data226

(often from broadband instruments or high-sensitivity strong-motion sen-227

sors) at distances greater than 100 km (roughly the limit of analogue strong-228

motion recording) a number of GMPEs include terms to model anelastic229

attenuation, the rate of which is sometimes considered regionally-dependent230

(see Section 4). Cousins et al. (1999), for example, developed a GMPE231

for New Zealand that accounts for additional attenuation for travel paths232

through volcanic regions by including a term that is a function of the hori-233

zontal distance through such zones.234

Nevertheless, commonly travel path is simply parameterized using source-235

to-site distance. This means that the decay rate is the same for all locations236

irrespective of the crustal structure. Douglas et al. (2004, 2007) develop a237

technique based on simulations to calculate an equivalent hypocentral dis-238

tance that captures the impact of crustal structure on ground-motion decay239

and, consequently, allows a ground-motion model to be branched into region-240

specific models. This approach has yet to be applied for the derivation of a241
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GMPE for use in practice.242

A handful of GMPEs (generally for use in California) include terms to243

model the location of a site with respect to the hanging and foot walls of244

the causative fault (e.g. Campbell and Bozorgnia, 2014; Abrahamson et al.,245

2014), sometimes by using Rx (the horizontal, strike-normal distance to the246

shallowest part of the surface projection of the fault). The terms to model247

this effect are often complex and hence rely on simulations to constrain their248

free parameters. For applications in areas without clearly-defined dipping249

faults such terms are often turned off when the model is used within PSHA.250

3.3. Site parameters251

As discussed in Section 2.1, most current GMPEs use Vs,30 or site classes252

based on Vs,30 to characterize the near-surface conditions at a site. In an253

attempt to account for the effect of deeper structure on ground motions,254

some recent GMPEs for California often use, in addition to Vs,30, either the255

depth to the 1 km/s velocity horizon (Z1.0) (e.g. Chiou and Youngs, 2014)256

or the depth to the 2.5 km/s horizon (Z2.5) (e.g. Campbell and Bozorgnia,257

2014). Z1.0 and Z2.5 are often strongly correlated but weakly correlated258

with Vs,30 and hence their use alongside Vs,30 adds discriminatory power to a259

GMPE. For many parts of the world estimates of Z1.0 and, particularly, Z2.5260

are, however, difficult to obtain because they require knowing the shear-wave261

velocity down to hundreds or thousands of meters. Consequently, empirical262

relationships to estimate these parameters from Vs,30 have been proposed263

(Boore et al., 2011) to center the predictions at an average Z1.0 or Z2.5.264

PSHA is often conducted for a rock site with Vs,30 equal or larger than265

760m/s [the NEHRP B/C boundary (National Earthquake Hazard Reduc-266

tion Program, 1994)] (see Section 4.4). At high Vs,30 the site amplification267
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modeled in the GMPE will be low and any nonlinearity in modeled response268

weak. One of the largest changes in PSHA for such sites in the past decade269

has been the appreciation that site amplification related to shear-wave ve-270

locity is not the whole story but that high-frequency attenuation, generally271

modeled by κ (Anderson and Hough, 1984), also needs to be considered.272

The effect of an average κ is implicitly captured within empirical GMPEs273

through the data that are used. The average κ implied by the shape of the274

short-period spectra of GMPEs evaluated for high Vs,30 is, however, often275

much higher than the κ measured at rock sites. Consequently, as discussed276

in Section 4.5, a host-to-target adjustment for κ is required when these277

GMPEs are used in a site-specific study. In an attempt to overcome this278

requirement, Laurendeau et al. (2013) introduce a term for κ directly into279

a GMPE developed from Japanese data. Use of such a model means that280

κ needs to be known for a site of interest. This is the apparent drawback281

of introducing new variables into GMPEs: the requirement for the user to282

know their value and their uncertainty for their study. In the past, however,283

the user generally assumed that the implicit average value within the data284

used to derive the GMPE was appropriate for their site.285

4. Regional models286

With the rapidly-growing quantity of data from digital strong-motion287

networks, which accurately record earthquakes down toM3 and below, there288

has been a move towards the development of GMPEs for small geographical289

regions (e.g. national or sub-national) and partially away from models cov-290

ering large tectonic regimes, e.g. shallow crustal earthquakes globally. An291

idea of the utility of this approach for the development of empirical GMPEs292
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Table 1: The number of years required to record fifty Mw ≥ 5 shallow earthquakes as-

suming dense strong-motion network covering whole territory (country or state) based on

the International Seismological Centre’s earthquake catalog from 1992 to 2012.

Country Number of years

Japan 7

Turkey 9

Greece 12

California 20

Italy 31

Iceland 140

Spain 250

France 1000

United Kingdom ≫ 1000

given only data from a country or state can be gained from Table 1. For293

some highly seismically active areas this goal of purely-national GMPEs is294

feasible but for less active (e.g. Spain) or smaller countries (e.g. Iceland) lo-295

cal records would have to be used in conjunction with simulations or foreign296

data to derive robust models.297

As discussed in Section 4.2, there are difficulties in developing regional298

models for use within standard seismic hazard assessments unless the models299

are derived using data from large events. Therefore, to account for potential300

regional dependency some GMPE developers derive a robust model using301

data from a variety of regions within a single tectonic regime (e.g. shallow302

crustal) and then add terms when required to account for observed regional303

differences. For example, Boore et al. (2014) include terms to model differ-304

ences in anelastic attenuation in China/Turkey and Japan/Italy to other ar-305
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eas (predominantly California). In addition to regional variations in median306

predictions, the variability of ground motion may be regionally-dependent.307

For example, Abrahamson et al. (2014) differentiate between variability in308

Japan and elsewhere.309

Regional dependence of ground-motion models is, therefore, still a topic310

of ongoing research. The issue is somewhat complicated by the sweeping311

terms typically used to classify tectonic regions: stable continental, shallow312

active crustal and so forth. Within each of these groups significant variabil-313

ity in both structure and geology exists – meaning that systematic variability314

in ground motion may be obscured if only looking at differences within or315

between these classes. Nevertheless, it is generally acknowledged that at dis-316

tances larger than around 50 km, regional variations in geology and tectonic317

structure lead to significant differences in ground motion attenuation (e.g.318

Boore et al., 2013; Kotha et al., 2016b,a). On the other hand, differences319

at shorter distances are less well understood due to limited data and the320

complexity of earthquake sources. Regional differences in stress fields due321

to factors such as tectonic loading and structure (Gölke and Coblentz, 1996),322

or, at smaller scales, due to fault structure and maturity (Manighetti et al.,323

2007) may lead to differences in earthquake stress drop that can be observed324

at national (e.g. Goertz-Allmann and Edwards, 2014) or local scales (e.g.325

Allmann and Shearer, 2007). The resolution of such analyses is, however,326

debated due to the trade-off with attenuation, which is typically assumed to327

be homogeneous. Addressing the issue of regionalization of ground-motion328

models requires more data, particularly at short distances. In the meantime,329

hazard analysts can use hazard disaggregation to understand, to a first or-330

der, the sensitivity of possible regional ground motions on seismic hazard.331

For instance, hazard is often primarily driven by relatively close earthquakes332
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(< 50 km) and, hence, regional differences in geology will be less important333

to understand than differences in fault-rupture kinematics, for example.334

4.1. Testing of GMPEs335

When conducting a seismic hazard assessment for a region that is not336

covered by a selected GMPE it has been increasing common to undertake337

a quantitative comparison between predictions and the ground motions ob-338

served in the region (Stewart et al., 2015). This has only become possible339

for many parts of the world since the advent of digital ground-motion net-340

works in the past couple of decades. Various methods have been developed341

to undertake this testing but they are invariably based on ‘residuals’2, either342

total or, more correctly, separated into between- and within-event compo-343

nents (Stafford et al., 2008), between predictions and observations. The344

most employed techniques are those by Scherbaum et al. (2004), Scherbaum345

et al. (2009) and Kale and Akkar (2013). A more informative approach is to346

consider plots of the residuals with respect to magnitude, distance and other347

variables to understand what parts of the model are causing any misfits (e.g.348

Scasserra et al., 2009).349

A difficulty with such testing is that it is difficult to judge how much350

weight should be given to a good or poor match as the available data are351

often sparse and/or only available for magnitude and distance ranges of352

limited engineering interest (Beauval et al., 2012). If a poor match is found353

between observations and predictions and this is judged to be robust then354

adjustment factors can potentially be derived to modify the GMPE so that355

2They are not strictly residuals because generally the data compared were not used for

the derivation of the tested GMPE.
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it provides better predictions (Bommer et al., 2006). This approach has356

been formalized in the so called referenced-empirical technique by Atkinson357

(2010) and variants of it have been applied in various projects, particularly358

to adjust models for small and moderate events (e.g. Bourne et al., 2015).359

4.2. Scaling of ground motions for small and large earthquakes360

In the past decade there has been a push to derive GMPEs to predict361

accurately ground motions from earthquakes with M < 5. Until the estab-362

lishment of digital strong-motion networks, which started in many regions363

in the late 1990s, ground-motion databases generally became sparse below364

about M5. In addition, for high seismicity areas, where most of the available365

data are from, the dominant earthquake scenarios for engineering purposes366

are generally at M > 5.5. Consequently there was little call for GMPEs367

that could be used confidently for small earthquakes.368

The development of such models in the past decade has been driven369

by the availability of large sets of records from digital networks with good370

coverage down to often M3 for many parts of Europe and elsewhere. Often371

these data are used to derive regional GMPEs (see Section 4) generally372

without the inclusion of data from larger earthquakes. When applying a373

GMPE in a different geographical region than for which it was originally374

derived it is important to check it against local data. As shown by, for375

example, Douglas (2003b), unless the GMPE was derived using data from376

small events and an appropriate functional form was used there will likely377

be a large discrepancy between predictions and observations. This has been378

used as an argument for a strong regional dependency in ground motions379

but, as shown by Cotton et al. (2008) amongst others, it is likely due to the380

differing magnitude ranges of the observations and model. Another recent381
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driver in the development of GMPEs that cover the range below M5, even382

for high seismicity zones, is the need for such models to estimate components383

of the ground-motion variability that require many records from the same384

site (see Section 5.3).385

As shown by Douglas (2003b, Figure 4), Douglas and Jousset (2011)386

and Baltay and Hanks (2014), empirical GMPEs derived from data from387

small earthquakes generally show higher dependency on magnitude, partic-388

ularly for short-period IMs, than those models derived for moderate and389

large events. This means that extrapolation of these models beyond the390

magnitude range for which they were derived often leads to over-prediction.391

Fukushima (1996), Douglas and Jousset (2011) and Baltay and Hanks (2014)392

demonstrate that a simple stochastic model (Boore, 2003) with a single-393

corner source spectrum (Brune, 1970) and high-frequency attenuation (An-394

derson and Hough, 1984) reproduces the observed magnitude-scaling of em-395

pirical GMPEs and demonstrates why extrapolation of such models is so396

problematic. Algorithmic differentiation (Molkenthin et al., 2014) can be397

used to study the scaling of GMPEs with respect to its input parameters,398

which aids understanding of how the models behave and extrapolate.399

As well as magnitude-scaling being different for ground motions from400

small and large earthquakes, the decay with distance also differs. Earth-401

quake magnitude has two effects on the distance dependence of ground-402

motion attenuation. The first is due to near-field saturation: as one ap-403

proaches a finite source, the contribution from the far ends of the source404

become increasingly small due to the distance that the energy must propa-405

gate to reach you (attenuation effects) and the time which this takes (scat-406

tering and dispersion effects). At short and moderate structural periods,407

therefore, the peak amplitudes of a M7 event are similar to an M8. The408
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primary difference is the duration and spatial extent over which the mo-409

tions occur, being significantly longer and more widespread in the latter410

case. The second effect is the distance dependence of the ground motion411

decay. For increasingly large events the finite nature of the source means412

that ground motion does not decay as quickly as for small (roughly point)413

sources, since the motion at distance is increased by constructive interfer-414

ence from later arrivals along the finite fault (e.g. Boore, 2009). In fact,415

even for point-source models, Cotton et al. (2008) showed that the decay416

of response spectral ordinates is magnitude-dependent due to the influence417

of spectral shape. To capture this, functional forms of GMPEs in the past418

decade have often used magnitude-dependent decay terms.419

4.3. Non-tectonic earthquakes420

Although the vast majority of GMPEs are still derived for tectonic earth-421

quakes, a growing number of models are available for earthquakes of other422

types, e.g. those induced by mining (e.g. McGarr and Fletcher, 2005) or423

fluid injection (e.g. Douglas et al., 2013). Seismic hazard assessments for424

human-activity-related, induced or triggered earthquakes require ground-425

motion models that are adapted to this type of event and it is not a priori426

clear that shaking from such shocks is similar to that from natural earth-427

quakes. In addition, the magnitude, source-to-site distance and focal depth428

range of importance for induced seismicity is generally smaller than the fo-429

cus of hazard assessments for natural earthquakes. Hence, as discussed in430

Section 4.2, this leads to the need to develop models to account for this dif-431

ference. The finding of Douglas et al. (2013) that motions from induced and432

natural shallow seismicity are statistically similar means that the more abun-433

dant data banks of records from small natural shallow earthquakes could be434
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used to derive GMPEs for use within hazard assessments for induced seismic-435

ity (e.g. Atkinson, 2015). It could also be argued that with an appropriate436

correction for depth [i.e. for distance and stress-drop (Hough, 2014)], data437

from deeper natural seismicity could be used to determine ground-motion438

fields of larger induced events.439

4.4. Prediction for a reference velocity horizon440

Ground motion within PSHA is typically estimated for a reference site,441

circumventing the geological heterogeneity of the uppermost layers. This442

is often at or around the NEHRP class B/C boundary of 760m/s or the443

Eurocode 8 class A/B boundary of 800m/s (e.g. Delavaud et al., 2012).444

Subsequently, the results of microzonation or site-specific response analyses445

can be applied in conjunction with these estimates. The reason for this is the446

significant variability of resolution, reliability and availability of site-specific447

data. Practitioners are, in this way, free to apply their own site specific448

corrections to a regionally-consistent hazard map for reference rock.449

Site response terms within GMPEs are included for two reasons. Firstly,450

to enable ground-motion records from all site conditions (including non-451

rock stations, which comprise the majority of most strong-motion networks)452

to be used to derive GMPE that would be statistically more robust than453

using only rock records. A few developers (e.g. Idriss, 2014) exclude records454

from sites with low Vs,30 because they believe that it is not possible to455

capture site response by means of a simple site term. Consequently such456

models are generally based on far fewer records but the risk of bias from457

site amplification is reduced. The second reason for including site terms in458

GMPEs is that such models allow seismic hazard assessments for a variety459

of sites (including non-rock sites) to be easily conducted, which could be460
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useful when high accuracy is not a requirement.461

In a similar way, recent PSHAs (e.g Bommer et al., 2015) predict the462

ground motion initially at a subsurface reference rock horizon, choosing a463

depth below which lateral variability is considered insignificant (usually at a464

wave velocity consistent with ‘engineering’ or hard rock). Site-specific non-465

linear amplification is then applied during the hazard calculation based on466

site-response analyses. This approach has the benefit of potentially reducing467

the site-to-site variability in predicted ground motion. If one assumes the468

full range of site variability is captured through this process then the GMPE469

component of site-to-site variability φS2S (see Section 5.3) can be set to zero,470

leading to non-ergodic single-station sigma (Atkinson, 2006). Practitioners471

must be careful in this case that the modeled variability of the site response472

is sufficient, but at the same time not so high that ergodic σs are exceeded473

due to uncertainty in site response analyses.474

The move towards reference-site hazard and reference horizons to make475

best use of site-response analyses means that GMPEs are being increasingly476

evaluated for relatively high Vs,30 (e.g. ≥ 760m/s). This is one of the factors477

driving the derivation of new GMPEs. Sites with high Vs,30, however, are478

poorly represented in strong-motion databases because many stations are479

installed in urban environments on soft and stiff soils (e.g. Akkar et al.,480

2010).481

4.5. Host-to-target adjustments482

Ground motion is dependent on the shear-wave velocity and attenuation483

characteristics of the upper layers of soil and rock. When modifying site484

conditions, e.g. changing predictions relevant for California to a site-specific485

target in the United Kingdom, hazard analysts must consider the effect of486
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this change on the predicted ground motion. This is done through host-to-487

target adjustments.488

As stated above, GMPEs are typically developed using site descriptors489

such as class (e.g. rock, stiff soil and soft soil) or Vs,30. It is important490

to note, however, that when using a GMPE estimates are implicitly tied491

to a range of possible site types that fall within the site descriptor and492

this may be biased by a particular geology. Even GMPEs using Vs,30 will493

cover a range of site types because many velocity profiles are possible for a494

given Vs,30. While different velocity profiles can lead to the same Vs,30, they495

may lead to significantly different amplifications (e.g. Castellaro et al., 2008;496

Papaspiliou et al., 2012). If a particular velocity structure (e.g. low velocity497

soils over a high velocity basement) is characteristic of a region, then ground498

motion at a Vs,30 in one region may be systematically different to that in499

another with a different average structure. As discussed previously, some of500

this site variability can be captured by using additional site parameters, such501

as Z1.0 or Z2.5. Recent PSHA studies have, however, moved towards fully502

accounting for the effect of site-specific characteristics, by taking advantage503

of the wealth of information often available for site-specific hazard analyses.504

Such differences are accounted for by using host-to-target adjustments. The505

same approach can be used to modify ground-motion predictions made at a506

particular Vs,30 and provide them at another. This approach is particularly507

useful in the case that GMPE predictions are considered unreliable at the508

target Vs,30.509

Since earthquake engineering generally uses SA, direct adjustments of the510

Fourier amplitude spectra (FAS) cannot be used to perform host-to-target511

adjustments. This is because ground motion at a given oscillator period is512

dependent not only on the FAS at that period but also other values around513

23



it (e.g. Bora et al., 2015). The host-to-target ratio is, therefore, dependent514

on the input ground motion in addition to the different site properties. The515

hybrid-empirical method (HEM) based on Campbell (2003) is commonly516

used to make host-to-target adjustments. HEM uses stochastic simulations517

[typically using random-vibration theory (RVT) (Cartwright and Longuet-518

Higgins, 1956)] to generate FAS-compatible response spectra for the host519

and target sites, which can then be used to calculate the ratio in terms of520

SA.521

Using RVT through the HEM allows transformations from the Fourier522

domain into the response spectral domain. HEM, however, requires a full523

seismological model (for source, path and site) of the host and target re-524

gions. Because of this Al Atik et al. (2013) developed a method based on525

inverse RVT (IRVT) (Vanmarcke and Gasparini, 1976) that can be used to526

modify response spectra for host-to-target adjustments in the Fourier do-527

main. The method has the advantage that no assumptions on the form528

of the host model (GMPE) are required. Working in the Fourier domain529

has the advantage that adjustments are independent of the input motion530

unlike when working in the response spectral domain. For a given signal531

duration (often defined based on simple regional models), IRVT transforms532

the response spectrum into a compatible FAS. FAS based host-to-target533

conversion can then be applied to the response-spectrum-compatible FAS534

before being returned to the response domain through the standard RVT535

approach. A limitation of the IRVT approach is that the response spectrum536

becomes less sensitive to the FAS as oscillator period decreases. This results537

in significant non-uniqueness of the response-spectrum-compatible FAS at538

short periods (roughly T < 0.05 s). Nevertheless, an advantage of this ap-539

proach is that one can directly estimate seismological parameters from the540
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GMPE-compatible FAS, such as κ.541

Figure 2 shows an application of the Vs-κ0 corrections to GMPEs used542

in the Swiss National Seismic Hazard Maps (Edwards et al., 2016). The543

selected target Vs profile (Poggi et al., 2011, Vs,30 = 1105m/s) and κ0 value544

(Edwards et al., 2011, κ0 = 0.016 s) define the reference rock for the seismic545

hazard map. For each GMPE two possible host Vs profiles were selected546

(with defined Vs,30 where the GMPE’s developers considered the best data547

coverage for rock). Four κ0 values were also selected for each GMPE using548

either Vs,30-κ0 correlations or direct measurement using IRVT. The resulting549

eight Vs-κ0 corrections for each GMPE were considered to represent the550

epistemic uncertainty involved in adjusting GMPEs to the regional reference.551

Small but significant differences arise at long periods due to differences in552

amplification of the host-Vs profiles. Far more significant, however, is the553

epistemic uncertainty evident in the correction at short periods (T < 0.1 s),554

which is due to the uncertainty in defining κ0 (e.g. Edwards et al., 2015).555

Similar observations are made by Rodriguez-Marek et al. (2014) for a site-556

specific hazard assessment.557

5. Aleatory variability558

Over the past decades there has been a growing realization that predict-559

ing shaking in future earthquakes is associated with large uncertainties and560

that this uncertainty must be captured within seismic hazard assessments.561

It has become standard to split these uncertainties into two components:562

those of inherent randomness, referred to as aleatory variability (this sec-563

tion) and those relating to a lack of knowledge or understanding, referred564

to as epistemic uncertainty (Section 6).565
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Figure 2: Vs-κ0 corrections proposed for the Swiss National Seismic Hazard Maps by

Edwards et al. (2016). Blue/Red indicate different host Vs profiles (two for each GMPE),

line types indicate different κ0 (four for each GMPE) resulting in eight possible corrections

per GMPE. AB10: Akkar and Bommer (2010); CF08: Cauzzi and Faccioli (2008); CY08:

Chiou and Youngs (2008); and Zetal06: Zhao et al. (2006). The target properties are

Vs,30 = 1105m/s and κ0 = 0.016 s.
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The definition of aleatory (and consequently epistemic) variability in-566

evitably leads to disagreement and confusion. It could be argued, for in-567

stance, that given a perfect model, aleatory variability is, by definition,568

zero. However, in current understanding we can at least separate the vari-569

ability into parts that can be quantified in terms of scientific uncertainty (e.g.570

using different models to predict the same phenomena, such as site ampli-571

fication), and those for which there is (at least currently) no scientifically-572

based predictive capability (e.g. the stress-drop of the next earthquake). A573

more appropriate terminology may therefore be apparent aleatory variabil-574

ity with respect to a chosen model (written communication, J. J. Bommer,575

2016). The advantage of splitting uncertainty into constituent components576

is that the logic-tree approach (Kulkarni et al., 1984) can then be used577

to branch through the epistemic uncertainty space (e.g. by selecting and578

weighting different models) and allowing site or region-specific selections to579

be made along with sensitivity studies and analyses (e.g. disaggregation) at580

a branch-by-branch level. The distinction between aleatory and epistemic581

is particularly important, for example, in the case of a fully probabilistic582

seismic risk (or safety) assessment for a safety critical structure such as a583

nuclear power plant. Such assessment requires the fractiles of the hazard584

to be defined, which can only be correctly calculated with an appropriate585

separation of aleatory and epistemic uncertainty.586

Following Douglas (2003a), Strasser et al. (2009) observe that σ associ-587

ated with GMPEs has shown little or no decrease since the 1970s despite588

the increasing complexity of models. This fact and the importance of σ on589

the results of PSHAs at long return periods, has encouraged attempts to590

increase the complexity of models to account for other effects than simply591

magnitude, distance and site class (see Section 3). To date these attempts592
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have not led to significant reductions in σ because GMPEs remain simple593

representations of complex physical phenomena. Improvements to metadata594

do, however, lead to slight reductions in assessed σ. For example, the model595

of Chiou and Youngs (2014) is associated with a smaller σ when measured596

Vs,30 is used for a site than when an estimate of this site parameter is em-597

ployed.598

One of the major areas of engineering seismology research in the past599

decade has been in separating σ into its different components (Al Atik et al.,600

2010; Lin et al., 2011; Rodriguez-Marek et al., 2013) and using the appro-601

priate components when conducting a hazard assessment (e.g. Walling and602

Abrahamson, 2012). There has also been a move from using whatever data603

were available towards selecting to: limit bias, exclude unreliable data, make604

analysis easier, and obtain more reliable σ estimates. As noted above, it has605

become standard to use random-effects/maximum-likelihood methods to es-606

timate between-event (τ) and within-event (φ) components.607

Records from nearby sites are correlated, which has been recognized by608

Jayaram and Baker (2010) when developing a regression technique to ac-609

count for spatial correlations and by Boore et al. (1993), who choose only610

a single record per site class within a radius of 1 km. These spatial corre-611

lations are also important when conducting PSHA for infrastructure with612

considerable spatial extent or when computing group earthquake risk over613

an extended area.614

5.1. Between-event variability615

Aleatory variability within a given GMPE is usually separated into616

between- and within-event components (τ and φ, respectively). Between-617

event terms (random-effects in the context of random-effects regressions),618
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which are source-specific, are thought to be mainly related to stress drop619

(Cotton et al., 2013). Using stochastic simulations, Drouet and Cotton620

(2015) showed that the between-event variability was strongly controlled621

by the stress parameter (as noted previously, ‘stress parameter’ is used to622

avoid physical interpretation in terms of pure ‘stress drop’ and rather in-623

dicate the proportion of high-frequency energy radiated by an earthquake).624

The between-event term can, therefore, be thought of as describing how625

energetic the rupture was compared to the average for a given magnitude626

(all other things being equal). Such features are not possible (currently)627

to predict and, therefore, fall into the category of aleatory variability. The628

standard deviation of these event terms is described by τ .629

One of the main ways GMPEs are improving is related to the record-630

ing of each earthquake by an increasing number of stations (in particular,631

fewer singly-recorded events) so that the source terms (and τ) are better632

constrained. This is particularly true for models based on predominantly633

Californian or Japanese data but much less so for models derived from data634

from Europe and the Middle East (Table 2 and Figure 3). This shows635

that despite recent improvements in strong-motion networks in Europe and636

Middle East, strong motion databases there remain dominated by poorly-637

recorded events. For models based on data with low record-to-event ratios638

the source terms (e.g. style-of-faulting factors) and τ are poorly constrained.639

Additionally, the small number of well-recorded events have a strong influ-640

ence on the model.641

τ is often found to be heteroscedastic, with decreasing variability as mag-642

nitude increases (e.g. Youngs et al., 1995) (Figure 4). Estimated ground-643

motion variability from small events (M < 5) is often significantly larger644

than at moderate and large magnitudes, with many GMPE developers avoid-645
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Figure 3: Number of records (bottom axes, different scales for all three subplots) and

percentage of total (top axes, same scales for all three subplots) from earthquakes con-

tributing to the top third of total number of records to three recent GMPEs: Campbell and

Bozorgnia (2014) (predominantly Californian data), Cauzzi et al. (2015) (predominantly

Japanese data) and Bindi et al. (2014) (European and the Middle Eastern data).
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Table 2: Ratio (R/E) of number of records (R) per event (E) for four generations of

‘Californian’ and ‘European’ models.
‘Californian’ model R E R/E ‘European’ model R E R/E

Joyner and Boore (1981) 182 23 8 Ambraseys and Bommer (1991) 529 219 2

Boore et al. (1997) 271 20 14 Ambraseys et al. (1996) 422 157 3

Boore and Atkinson (2008) 1574 58 27 Ambraseys et al. (2005) 595 135 4

Boore et al. (2013) ∼15000 ∼350 43 Akkar et al. (2014a) 1041 221 5

ing using data from small earthquakes. This is despite the need for models646

at lower magnitudes, e.g. for seismic hazard assessment from induced seis-647

micity, to examine the applicability of a GMPE in a new region and to648

study the various components of ground-motion variability. While models649

of ground-motion variability have improved significantly in recent years, we650

must be careful not to over-interpret features of these models due to the651

limitations of separating the different contributions. In Figure 4 there is652

a peak at 0.1 s for several models which is difficult to understand in terms653

of source variability. During the Hanford PSHA (Hanford.gov, 2014) this654

was demonstrated to be an effect of sampling different ranges of site re-655

sponse from event to event. The site variability is, therefore, mapped into656

between-event terms leading to the peak at 0.1 s.657

Arguments for observing lower variability at large magnitudes include658

the fact that meta-data for large events (e.g. magnitude, depth and mech-659

anism) are more reliable. While this is, in general, true, there has been660

significant work in recent years to develop reliable earthquake catalogs for661

smaller events. Another argument is that, due to large earthquakes having662

large rupture sizes, the sensitivity of ground motion to, for example depth or663

magnitude, is less. For example, M < 5 events can generally be assumed to664

be point sources, with amplitudes decaying in proportion to the reciprocal of665

hypocentral distance. On the other hand, M > 6 events emit waves from a666
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range of sources along several kilometers of rupture. Increasing the depth or667

size of this fault, whilst changing the distance over which some of the seismic668

energy must propagate, will, therefore, have a reduced effect. This is evident669

in the saturation of ground-motion amplitudes for increasing magnitude in670

GMPEs. Having reliable meta-data for larger events is, therefore, arguably671

less important than for small earthquakes for sites not close to major active672

faults. For other locations, reliable information on fault geometry and other673

properties (e.g. rupture mode) is vital when estimating near-source ground674

motions.675

The limited number of events at large magnitudes leaves τ open to under-676

sampling (with each event only contributing a single data-point to the esti-677

mate of τ). Given that strong-motion databases often include only a handful678

of well-recorded events with M > 7, the reliability of heteroscedastic τ can679

be called into question. Comparing values from different GMPEs we can see680

that the variability in τ estimates is rather high (Figure 4). In reality, τ is681

likely to be heteroscedastic, but caution should clearly be applied in using682

low values at M > 7.5 coming from extrapolation of trends from smaller683

magnitudes (Musson, 2009). Models developed with constant τ estimates684

for M < 5 and M > 7 connected by a linear trend (e.g. Abrahamson et al.,685

2014) are an appropriate compromise in this sense.686

5.2. Within-event variability687

Ground-motion variability with respect to a given GMPE for single event688

is described by within-event variability (φ). It can be interpreted as describ-689

ing the standard deviation of the misfit between GMPE and data after ac-690

counting for the between-event terms. In terms of the random-effects frame-691

work, φ describes the standard deviation of within-event random-effects.692
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Figure 4: Comparison of the τ models of six recent GMPEs: Abrahamson et al. (2014),

Boore et al. (2014), Campbell and Bozorgnia (2014) and Chiou and Youngs (2014) (pre-

dominantly Californian data); Bindi et al. (2014) and Akkar et al. (2014a) (European and

the Middle Eastern data); and Cauzzi et al. (2015) (Japanese data), for M4, 6 and 7.5

with respect to response period.
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The logarithm of ground-motion variability is assumed to be normally dis-693

tributed. The total variability of a dataset with respect to a GMPE is then694

given by (assuming independence between the two components):
√

τ2 + φ2.695

Within-event variability is related to path and site phenomena in addition to696

any spatially-dependent source characteristics, such as radiation pattern or697

directivity effects. Because of the dominant effect of site amplification and698

the significant variability of site effects these are considered to be a signif-699

icant source of within-event variability (e.g. Rodriguez-Marek et al., 2011).700

In the most recent studies, φ is therefore split into components describing701

site-to-site variability (φS2S) and within-site variability (φ0). Drouet and702

Cotton (2015) showed that the within-event variability is controlled by a703

number of factors: the most significant being site amplification/attenuation704

effects (including κ) followed by path effects, such as geometrical and anelas-705

tic attenuation. Bindi et al. (2014) observe that certain stations contribute706

a large proportion of the soft soil (Eurocode 8 class D) sites for European707

GMPEs. Some often-triggered stations, therefore, have strong influence on708

the model and may reduce the apparent within-event variability.709

While φ is often considered a ‘site term’ it is also observed to be mag-710

nitude, distance and Vs,30 dependent (Figure 5). For instance, Boore et al.711

(2014) and Campbell and Bozorgnia (2014) show that φ decreases with mag-712

nitude at short periods and increases with magnitude at long periods. Due713

to the interaction of ergodic and non-ergodic components of variability it is714

difficult to know if this is truly a site-specific effect or due to site-to-site vari-715

ability (different sites having recorded different ranges of earthquake magni-716

tudes and distances). An effective magnitude-distance dependence of φ due717

to nonlinearity of soil response has been incorporated into GMPE develop-718

ment. For example, Abrahamson et al. (2014) account for soil non-linearity719

34



Figure 5: Comparison of estimates of the within-event variability φ from some recent

GMPEs, where ab10 corresponds to Akkar and Bommer (2010), ask14 corresponds to

Abrahamson et al. (2014), zetal06 corresponds to Zhao et al. (2006), cf08 corresponds to

Cauzzi and Faccioli (2008) and bssa14 corresponds to Boore et al. (2014).

reducing the variability of short-period motions. Focusing on non-ergodic720

sigma, Rodriguez-Marek et al. (2013) present models for single-station φ721

using data from various tectonic regions. They show a decrease of single-722

station φ over all periods, which differs from the observations of ergodic vari-723

ability, where long-period motions show increased φ for large earthquakes.724

An explanation for the different observations of φ’s dependency on dis-725

tance and magnitude may be found in the dependence of response spectral726

amplification on the input motion (e.g. Bora et al., 2016). Given that res-727

onance effects in site response depend greatly on the site type (e.g. long-728

period resonance for deep sedimentary basins and high-frequency resonance729
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for thin deposits of alluvium), whether or not input motions (broadly de-730

fined by magnitude and distance) excite a particular resonant frequency will731

make a difference to ground-motion variability. As a result, depending on732

the characteristic site type(s) in a strong-motion database, the sensitivity733

of φ to magnitude and distance will vary. Rock, or hard-rock sites, will be734

mostly independent of input motion, while soil and stiff-soil sites will be735

strongly dependent on the input motions, with nearby smaller-magnitude736

(higher-frequency) events strongly amplified by high-frequency resonance737

peaks.738

5.3. Single-station variability739

The ergodic assumption has been used to derive most GMPEs to date740

(Figure 6). This assumption is made to overcome the fact that limited data741

are available at individual stations and to provide average (e.g. azimuth-742

independent) predictions. The ergodic assumption assumes that spatial743

variability can be mapped into variability in time (Anderson and Brune,744

1999). Given that station-to-station variability is a significant component of745

aleatory variability captured in GMPEs, this assumption cannot be valid for746

a single site. To overcome this limitation, the concept of single-station vari-747

ability was introduced by Anderson and Brune (1999) and first estimated748

using a large set of data by Atkinson (2006). σSS describes the total vari-749

ability (within- and between-event) in SA expected at a single site. Provided750

ground-motion variability is separated into φ0 and φS2S then simply setting751

φS2S to zero will result in σSS . Rodriguez-Marek et al. (2013) showed that752

σSS shows remarkably little variability between regions thereby suggesting753

that it is the site-to-site variability that drives differences in ground-motion754

variability between regions. Although recent work by Al Atik (2015) evi-755
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denced slightly higher values of σSS based on data from the stable continen-756

tal region of central and eastern North America.757

While σSS reduces the variability to that consistent with what would758

be observed given sufficient recordings at a single site, we must be careful759

that the GMPE used for the single site is not biased. When GMPEs are760

derived using data from a variety of sites they invariably produce output761

that is consistent with the average site within a given site class or for a762

given Vs,30 in the dataset. φS2S then accounts for the variability between763

sites. However, if we are just looking at one site and using σSS we must764

ensure that the GMPE produces a median consistent with our study site.765

For this reason host-to-target adjustments (Section 4.5) may be used.766

Building on current practice of using mixed-effects regression to deter-767

mine GMPE coefficients (Abrahamson and Youngs, 1992), Stafford (2014)768

presents the use of crossed and nested mixed effects to determine robust769

models that are not subject to the short comings of multi-stage approaches770

often adopted to separate model components. Using this approach he shows771

how site- and region-specific effects can be accounted for within a single772

inversion.773

6. Epistemic uncertainty774

Despite rapidly increasing strong-motion databases and the consider-775

able improvements in our understanding and modeling of strong ground776

motions (see above) each new GMPE published invariably predicts different777

levels of average shaking and its variability for every scenario than previ-778

ous models. These differences arise from epistemic uncertainty, although779

generally this uncertainty is larger than these differences imply. If we had780
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Figure 6: Sketch of transition from ergodic to (partial) non-ergodic assumption. Earth-

quakes of the same magnitude but with different characteristics (e.g. stress parameter)

are indicated by different colored stars. Left: ideal scenario, with numerous events being

recorded at a single station. Full separation of uncertainties related to event characteristics

(τ ), and path and site characteristics (φ) is possible down to single-event-single-path σ.

Center: typical scenario, with events sparsely recorded on regional network with various

site types (e.g. Vs,30). An ergodic assumption is used: time equivalent to space to define τ

and φ. Right: advanced approaches correct sites to account for differing response (single-

site σ), while multiple events on the same source (e.g. fault) allow single site-single-path

σ to be defined.
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an infinite amount of data available from every earthquake scenario, travel781

path and site then the epistemic uncertainty would reduce to zero as there782

would be no need for models, simply selection of the strong-motion records783

from the database appropriate for the required scenario. There may still784

be aleatory variability in this case because of intrinsic randomness in earth-785

quake rupture, wave scattering and so forth but for a given scenario the786

true average ground motions and its variability should be defined exactly.787

Non-parametric methods (e.g. neural networks) are useful in investigating788

ground-motion scaling for well-sampled scenarios (e.g. Derras et al., 2014;789

Hermkes et al., 2014). Such data-mining approaches are likely to play an790

increasing role as strong-motion databases grow.791

The day of sufficient observations to no longer require models is many792

decades, or even centuries, away for most scenarios of engineering interest.793

As shown by Douglas (2010b, 2012) average predicted ground motions for794

scenarios close to the barycenter of available data (Mw ∼ 6, R ∼ 20 km) have795

remained roughly constant over the past few decades despite improvements796

to GMPEs. For well-observed regions such as western North America there797

has been some convergence in predictions (Douglas, 2010b). This is because798

the same data are used to tune the models. Predictions for scenarios closer799

to the edges of available observations (e.g. Mw > 7 and R < 10 km), how-800

ever, display larger differences. One question that is rarely raised is: how801

representative are the available data of ground motions in that region? For802

example, are the few well-recorded M > 7 crustal earthquakes in strong-803

motion databases representative of all future large events? Re-sampling and804

bootstrap techniques to assess the stability of the models to the removal of805

data could be useful in this context (e.g. Berge-Thierry et al., 2003; Bindi806

et al., 2014). These approaches, however, only provide guidance on the im-807
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pact of data that are already available and not on the stability of the models808

to future observations.809

Another way of understanding epistemic uncertainties is to examine the810

statistical confidence limits (e.g. Draper and Smith, 1998) in the median811

predictions from a given GMPE (Campbell, 1985). This has been done812

by Douglas (2010a), who examined the width of the confidence limits from813

three generations of GMPEs for western North America (Joyner and Boore,814

1981; Boore et al., 1997; Boore and Atkinson, 2008) and Europe and the815

Middle East (Ambraseys and Bommer, 1991; Ambraseys et al., 1996, 2005).816

Douglas (2010a) finds that the confidence limits for the western North Amer-817

ican models are narrowing (and hence epistemic uncertainty is reducing) but818

that this is not seen for the models from Europe and the Middle East, which819

he relates to making the models too complex given the number of records820

available. Recently, Al Atik and Youngs (2014) compute confidence limits821

for the NGA West 2 GMPEs and propose a method to include this uncer-822

tainty within a seismic hazard assessment. A third way of examining simi-823

larities between models is to use high-dimensional information-visualization824

techniques, such as Sammon’s maps (Scherbaum et al., 2010), that display825

models on a 2D graph thereby allowing identification of models that predict826

similar motions.827

As strong-motion networks become denser the average number of sta-828

tions that record a given earthquake increases, which means that model829

source terms (e.g. style-of-faulting factors) and the between-event variabil-830

ity (τ) are better constrained in recent GMPEs. Similarly a modern station831

generally records more earthquakes leading to better estimates of site terms832

and single-station σ. Site terms are now less biased since fewer stations con-833

tribute a large proportion of records to strong-motion databases, although834
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the number of records per station remains highly variable.835

The reduction of epistemic uncertainty (differences in predictions among836

models) remains a considerable challenge. It is vital that this uncertainty837

is not artificially reduced but that seismic hazard assessments correctly ac-838

count for the true uncertainty in ground-motion prediction. There is a839

trade-off to be made between including more and more independent vari-840

ables to seek to reduce σ but thereby increasing epistemic uncertainty in841

the model because these variables are difficult to predict before an earth-842

quake and because more variables require more data to constrain the free843

coefficients in the GMPE.844

Only a few GMPE developers (e.g. Douglas et al., 2013) estimate the845

epistemic uncertainty in their models. Estimates of the lower bound of the846

epistemic uncertainty can be made by comparing multiple models by the847

same developer team or by various teams using the same master database848

(Douglas et al., 2014a; Abrahamson et al., 2008; Gregor et al., 2014). These849

comparisons do not capture the part of uncertainty related to the question:850

for which parts of the models are changes likely in the future because of lack851

of understanding or knowledge? The motto of US General Colin Powell:852

‘Tell me what you know. Tell me what you don’t know. Then tell me853

what you think. Always distinguish which is which’ may be useful in this854

context. The first and third parts of this saying are remembered by all855

GMPE developers but the second and last parts are often forgotten in the856

development of ground-motion models.857

Logic trees (Kulkarni et al., 1984) are used within seismic hazard assess-858

ment to model epistemic uncertainty by assigning weights to each ground-859

motion model, for example, depending on the degree of belief that the haz-860

ard analyst has in that model being the appropriate one for the study (e.g.861
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Bommer et al., 2005). Consequently there should be a correlation between862

the level of understanding about earthquake shaking at the study site (or863

regions) and the spread in predicted median ground motions from the logic864

tree: wider spread in predictions where knowledge is limited and reinforc-865

ing predictions where knowledge is greater. There is, however, evidence866

for ‘group think’ in models. For example, many of the predictions from867

the NGA models changed in the same way from 2008 (NGA West 1) to868

2014 (NGA West 2), e.g. the predictions for earthquakes with M < 5.5869

change considerably [and in agreement with what would be expected (Bom-870

mer et al., 2007)] but those for M7.5 change very little (Figure 7). Will such871

large changes to predictions also occur when more large earthquakes have872

been well recorded? When there are few observations it is uncomfortable873

to be out on a limb and for your model to predict greatly different motions874

than the majority of models. Consequently, things have changed where new875

data (e.g. small magnitudes) are added to strong-motion databases but not876

where uncertainty remains high, e.g. close to large events. This leads to877

the apparently inconsistent observation made by Douglas (2010b) that the878

divergence in predictions of median ground motions from GMPEs for stable879

continental regions is lower for large magnitudes (for which there are very880

few observations) than for small magnitudes (where data exist).881

Since about 2010 there has been increasing use of the backbone approach882

(Atkinson et al., 2014) to model epistemic uncertainty in ground-motion883

prediction. In this approach, rather than use a suite of GMPEs to model884

epistemic uncertainty within a logic tree, a single GMPE (or sometimes two885

or three GMPEs) is scaled up and down by factors to generate a set of886

mutually-exclusive and collectively-exhaustive models. The backbone ap-887

proach has the advantage of always having an overall ground-motion model888
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Figure 7: Comparison of predicted median PGA from Campbell and Bozorgnia (2008)

(CB08) and Campbell and Bozorgnia (2014) (CB14) on a site with Vs,30 = 760m/s for

M4.5 to 7.5 from 45◦-dipping reverse fault. Figure taken from Campbell and Bozorgnia

(2014).
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that allows the epistemic uncertainty to be defined directly by expert judg-889

ment, and which is explicitly definable. The multiple GMPEs approach,890

however, leads to varying modeled uncertainties, which may lead to pinch891

points for certain scenarios that may not be logical (e.g. where there are892

few data but the GMPEs coincide). The backbone approach, however, may893

lead to overestimation of epistemic uncertainties when data are abundant894

and it can be tricky to calibrate. On the other hand, the availability of895

abundant data is unfortunately not presently the case for all relevant sce-896

narios (e.g. large magnitude near-source) and using only published GMPEs897

without any scaling factors will likely lead to underestimation of the true898

epistemic uncertainty.899

7. Extensions to ground-motion models900

As noted above, the vast majority of GMPEs have been derived for PGA901

and linear elastic response spectral ordinates (particularly for 5% of critical902

damping). Because of its proposed use in liquefaction analysis, its better903

correlation with felt and damage reports and its use in some regulations (e.g.904

Bommer and Alarcón, 2006) PGV has also become a popular IM for ground-905

motion models. In the past decade or so, there has been a growing interest906

in deriving models for other IMs (Douglas, 2012), in particular Arias inten-907

sity (Arias, 1970) [commonly used in the analysis of earthquake-triggered908

landslides (e.g. Harp and Wilson, 1995)], relative significant duration (Tri-909

funac and Brady, 1975) and peak ground displacement. A handful of mod-910

els for other IMs (e.g. Fourier spectral amplitudes, Japanese Meteorological911

Agency seismic intensity, cumulative absolute velocity, mean spectral period912

and inelastic response spectral ordinates) have also been published (Douglas,913
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2016). Finally, there is a growing set of macroseismic intensity prediction914

equations (Cua et al., 2010). These allow PSHA to be conducted directly915

for IMs that have various engineering uses rather than having to conduct916

a seismic hazard assessment for PGA, for example, and then convert this917

to the required IM. This should lead to smaller overall uncertainties within918

risk assessments.919

Standard GMPEs predict independent scalar IMs. This is what is re-920

quired by PSHA to compute uniform hazard spectra, for example. Re-921

cent developments in earthquake engineering, e.g. conditional mean spectra922

(Baker, 2011), mean that it is important to know the correlation between923

spectral ordinates at different structural periods (e.g. Baker and Jayaram,924

2008) and between various IMs (e.g. Bradley, 2011). Consequently models925

for the estimation of these correlations have been derived. These provide a926

more complete assessment of earthquake ground motions.927

Another way in which the picture of earthquake shaking is becoming928

richer is through the derivation of models to estimate the spatial correlation929

of motions between neighboring geographical locations (e.g. Goda and Hong,930

2008). Such models improve the accuracy of earthquake loss predictions of931

spatially-distributed portfolios (e.g. Weatherill et al., 2015).932

8. Conclusions and ways forward for ground-motion prediction933

A number of multinational projects have, over the last decade, brought934

significant advances in ground motion characterization for seismic hazard935

analyses. These include the NGA West 1 and 2 (Power et al., 2008; Bo-936

zorgnia et al., 2014), NGA East (Pacific Earthquake Engineering Research937

Center, 2015) and RESORCE (Akkar et al., 2014b) projects. In addition to938
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these initiatives, numerous peer-reviewed articles have improved our knowl-939

edge and understanding of ground-motion prediction in a variety of regions,940

from active regions with high seismicity (mainly empirical GMPEs) to sta-941

ble continental regions with low seismicity (with focus on robust simula-942

tion approaches, such as stochastic methods). Despite the significant in-943

vestment over the last decades, the aleatory variability in ground-motion944

prediction for scenario events appears not to have decreased (e.g. Strasser945

et al., 2009). Nevertheless, our understanding of the source and behavior946

of ground-motion variability has improved dramatically, with articles barely947

mentioning it 20 years ago, to the current state where sometimes roughly948

half of a manuscript presenting a new GMPE is dedicated to its charac-949

terization. While the total variability is therefore not reduced, the way in950

which it is implemented in hazard models is now more realistic. The biggest951

improvement is arguably the shift from ergodic towards non-ergodic variabil-952

ity. This has reduced the σ used within site-specific (or reference-specific)953

hazard analyses by as much as 30%.954

Despite the great advances of recent years, ground-motion characteriza-955

tion is still very much a topic in development. Some authors (e.g. Atkinson,956

2012) have predicted that the goal is for numerical simulations to be per-957

formed to estimate ground motion and its variability. Despite the increase958

in computing power allowing the calculation of shorter-period ground mo-959

tions (with current limits around 0.3 to 1 s), the limitation of simulations is960

twofold. Firstly, they rely on geophysical characterization of the crust and961

shallow subsurface, but at short-periods (< 1 s) the resolution scale of most962

available geophysical models is simply insufficient. To overcome this lim-963

itation, so-called hybrid approaches are used, where stochastic simulation964

models are implemented to some cross-over period (e.g. Graves and Pitarka,965
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2010). Such methods clearly have the same limitations of existing empirical966

and stochastic models at short periods. Purely deterministic numerical sim-967

ulations are still, therefore, at least several years away. The second limita-968

tion of numerical simulations is the understanding of constituent parameters969

and their covariances. Engineering practice requires stable and repeatable970

models, which GMPEs provide. While numerical simulations can be cali-971

brated to provide predictions consistent with observed earthquake shaking,972

in practice the input parameters are poorly understood meaning that naive973

simulations may be incorrect.974

Before purely deterministic numerical scenario-simulations become pos-975

sible the most promising developments in PSHA lie with the understanding976

of ground-motion variability, which drives hazard at long return-periods.977

The conceptual approach of single-station (non-ergodic) sigma provides the978

framework for this. However, most datasets are still significantly lacking in979

data where they are of most relevance for long return-period hazard (records980

in the upper tails of the ground-motion distribution from moderate earth-981

quakes and large events recorded at near distances). The robustness of mod-982

els describing this variability is, therefore, called into question. Improved983

approaches for modeling data with mixed sampling in the model space, ob-984

taining additional empirical data, and the reliable simulation of such data985

is, therefore, of great importance.986

In some senses, seismology is analogous to economics in that we cannot987

do full-scale controlled experiments, e.g. we cannot replay an earthquake988

(seismology) or a recession (economics) with slightly altered input param-989

eters. Unlike economics, however, in seismology we generally do not have990

masses of data. Perhaps there are some statistical tools and approaches that991

are used in economics that could be applied to seismological data or models,992
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e.g. in the assessment of epistemic uncertainty. Although as noted by, for993

example, Kahneman (2012) experts in economics and in other fields find994

it challenging to correctly assess what they know and, equally important,995

what they do not know. There is clearly a need in ground-motion prediction996

to improve the calibration of the level of epistemic uncertainty modeled by997

GMPEs within seismic hazard assessments.998

Douglas et al. (2014b) find that often the more expensive, carefully-999

undertaken assessments for single sites model higher uncertainty than cheaper1000

regional assessments, which is a demonstration of an inconsistency in cap-1001

turing epistemic uncertainty. However, it should be noted that the primary1002

objective of more elaborate assessments, such as those following the SSHAC1003

guidelines (Budnitz et al., 1997), is to ensure the capture of epistemic uncer-1004

tainty. The higher study levels in SSHAC increase the likelihood of this ob-1005

jective being met. Therefore, it should not surprise us that the uncertainty1006

ranges from SSHAC Level 3 or 4 studies are greater than those in small1007

studies performed more informally by an individual or a small team. On1008

the other hand, epistemic uncertainty is reduced by data collection. In the1009

Thyspunt PSHA (Bommer et al., 2015), for example, without the historical1010

seismicity studies, geological investigations and extensive velocity measure-1011

ments at the site, the total uncertainty in the final hazard assessments would1012

have been considerably larger. More expensive studies are, therefore, forced1013

to undertake more analyses to assure that epistemic uncertainty is reduced,1014

as opposed to smaller studies that may simply make an assumption that the1015

overall epistemic uncertainty is at a given level.1016

The growth of unconventional gas and oil extraction and associated fluid1017

injection and, to a lesser extent, geothermal energy has led to a significant1018

increase in induced seismicity (Rubinstein and Mahani, 2015). This fo-1019
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cus has seen several GMPEs being published for the purpose of predicting1020

ground motion from small earthquakes at very short distances. While com-1021

mon wisdom would suggest that damage due to induced seismicity, which is1022

generally limited to events with M < 5, is negligible, there have been cases1023

of significant insured losses (Giardini, 2009), although what proportion of1024

damage is earthquake-related is debatable.1025

As noted above, some authors (Field et al., 2003; Atkinson, 2012) have1026

argued that GMPEs will soon be replaced by numerical simulations of earth-1027

quake shaking. Such simulations do provide a much richer representation of1028

the earthquake hazard to engineers (full time-histories rather than simply1029

intensity measures) and they allow source- and site-specific calculations, al-1030

though for a limited structural period range. For poorly-sampled magnitude-1031

distance ranges and unusual source (e.g. deep crustal sources), path (e.g.1032

strong velocity contrasts) and site conditions (e.g. nonlinear soils) simula-1033

tions are invaluable in guiding the development of GMPEs. The general1034

consensus is that full-waveform simulation approaches are currently not suf-1035

ficiently constrained, however, to form the basis of hazard analyses due to1036

their reliance on a full understanding of the physical system (including effects1037

such as plastic deformation, fault shape and roughness). They are at a stage,1038

however, where simulations provide valuable insight into the expected be-1039

havior of source effects and wave propagation in heterogeneous media, which1040

can be combined with empirical data and analyses. Although ground-motion1041

simulations show significant advances with the advent of high-performance1042

computing and the development of better procedures, GMPEs are likely to1043

remain a key component of hazard assessments for the foreseeable future.1044

One attractive approach to ground-motion simulation is ‘virtual earth-1045

quakes’ (Denolle et al., 2014), in which the Green’s functions measuring the1046
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Earth’s response to point impulses are derived from the ambient seismic field1047

(i.e. microtremors) and then these are used to predict ground motion from1048

a series of point sources to model fault rupture. This approach captures the1049

effect of travel path in the region, e.g. sedimentary basin effects, but it is1050

currently restricted to structural periods longer than 3 s. For long periods1051

it may be possible to simulate ground motions using this technique for the1052

derivation of ground-motion models but an outstanding issue is assessing1053

the variability and uncertainty associated with these simulations.1054

Treverton (2007) discusses the difference between a puzzle and a mys-1055

tery. To solve a puzzle you need more information while to solve a mystery1056

requires clever analysis of the information that is already available. Ground-1057

motion prediction currently is more of a puzzle, because data are limited,1058

whilst it is often seen as a mystery, where complex analysis is applied to1059

very little data. As noted by Atkinson (2004) for ‘every dollar that is spent1060

trying to quantify uncertainty, we should spend 10 dollars collecting and an-1061

alyzing data that would reduce uncertainty’. While we have seen significant1062

changes in many, if not most, recent PSHAs compared to earlier studies,1063

due to the advancement of state-of-practice, a significant contribution to1064

this can be put down to the availability of new data and better treatment of1065

it in PSHA. Collection of more strong-motion data and, equally important,1066

the associated metadata (e.g. local site conditions) is the only reliable way1067

of reducing uncertainty in ground-motion prediction and hence it should be1068

prioritized. With the rapid decrease in the cost of strong-motion instrumen-1069

tation and the ease-of-use of new sensors, there is hope that the era of only1070

recording a single near-source accelerogram from a M7.8 earthquake [as was1071

the case for the Gorkha (Nepal) earthquake of 25th April 2015] is coming1072

to an end. Strong-motion monitoring in seismic areas could be encouraged1073
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by, for example: providing instruments to schools for use as an educational1074

tool, installing sensors in public buildings, and requiring instrumentation1075

as part of the building code for infrastructure (e.g. power plants). Large1076

earthquakes occur infrequently and they present an opportunity to signifi-1077

cantly improve our knowledge of earthquake shaking, which is vital in the1078

reduction of seismic risk.1079

Our understanding of earthquake hazard has improved dramatically in1080

the past decades. Therefore, is it necessary to continue refining seismic1081

hazard assessments when the results are unlikely to change dramatically?1082

We argue that such refinement is required if not from a purely scientific1083

point of view but because it is important from the regulator’s viewpoint1084

that all avenues are explored and the best analysis is performed. Many drug1085

trials are conducted that demonstrate that a drug is not useful but it is1086

not then argued that the trial was a waste of money – why should seismic1087

hazard assessment be any different? The seismological community cannot1088

be seen to be resting on our laurels and not striving for improved knowledge1089

and understanding. In addition, while significant recent advances have been1090

made in education, it is necessary to continue to train the next generation1091

of engineering seismologists so that they can produce high-quality hazard1092

assessments and, equally important, to understand what such assessments1093

mean. Examples of this should focus on two important elements: a) hands-1094

on experience in real projects (most training is typically theoretical and in1095

the authors’ experience is not completely aligned with real projects), and b)1096

funding science and data collection underlying earthquake engineering and1097

engineering seismology.1098

Finally, while significant advances have been made in ground-motion1099

prediction over the past decade, we are continually surprised by unexpected1100

51



events. Recent examples include the high PGAs recorded during the M91101

Tohoku earthquake (2.7 g); the long-period (3-5 s) motions (over 4m/s)1102

recorded during the M7.8 Gorkha, Nepal event with recorded peak displace-1103

ments of up to 1.87m; and in lower seismicity areas the Market Rasen (M4.5,1104

UK) and St Die (M4.8, France) earthquakes (Ottemöller and Sargeant, 2010;1105

Scherbaum et al., 2004), which exhibited much higher than expected motions1106

than expected using local ground-motion models. It is clear, therefore, that1107

while advances are welcome in aspects such as median predictions and the1108

capture of uncertainty, we still lack full understanding of the fundamentals1109

of source-, path- and site-specific earthquake ground motion.1110
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