
Recent Applications of
Nirenberg’s Classical Ideas
Communicated by Christina Sormani
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Louis Nirenberg teaching at the Courant Institute of
Mathematical Sciences, New York University.

In 2015, Louis Nirenberg and John F. Nash Jr. were
awarded the Abel Prize “for striking and seminal
contributions to the theory of nonlinear partial dif-
ferential equations and its applications to geometric
analysis.” While many an article has been written

describing Nirenberg’s greatest works, here we have
asked mathematicians to describe how they have applied
Nirenberg’s ideas in new and exciting ways.

We begin with Xavier Cabré, a former student of Niren-
berg, who describes extensions of the Gidas-Ni-Nirenberg
results on the symmetries of solutions to nonlinear elliptic
partial differential equations. Alice Chang then describes
recent work on Nirenberg’s problem: prescribing the
Gauss curvature on a sphere. Gregory Seregin discusses
recent work on the Navier-Stokes problem applying the
work of Caffarelli-Kohn-Nirenberg. Eric Carlen andAlessio
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Figalli describe the stability of the GNS inequality and
recent applications of this result. Mu-TaoWang and Shing-
Tung Yau describe applications of Nirenberg’s solution
of the Weyl problem to general relativity.

Of course there are many, many more important
applications of Nirenberg’s work that we cannot touch
on in this article. In fact, Nirenberg has been cited over
10,000 times by over 5,000 authors. We hope just to give
a flavor of the new directions being taken with his work.

Xavier Cabré
The Gidas-Ni-Nirenberg Theorem
In 1979, Gidas, Ni, and Nirenberg [4] established an impor-
tant result on monotonicity and symmetry of solutions
to nonlinear second order elliptic PDEs (see Figure 1):

Theorem 1. Let Ω be a bounded smooth domain of ℝ𝑛 =ℝ × ℝ𝑛−1 which is symmetric with respect to {(𝑥1, 𝑥′) ∶ 𝑥1 =0}:
if (𝑝1, 𝑥′) ∈ Ω, then the reflected point (−𝑝1, 𝑥′) ∈ Ω

Figure 1. Students at the City University of New York
discussing the symmetries of solutions as described
in the Gidas-Ni-Nirenberg Theorem.
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and is convex in the 𝑥1-direction:
if 𝑝 = (𝑝1, 𝑥′) ∈ Ω and 𝑞 = (𝑞1, 𝑥′) ∈ Ω,
then the line segment 𝑝𝑞 ⊂ Ω.

Let 𝑓 be a locally Lipschitz function and 𝑢 be a bounded
positive solution of

(1) − Δ𝑢 = 𝑓(𝑢) in Ω with 𝑢 = 0 on 𝜕Ω.
Then 𝑢 is symmetric with respect to {𝑥1 = 0}:𝑢(𝑝1, 𝑥′) = 𝑢(−𝑝1, 𝑥′) ∀(𝑝1, 𝑥′) ∈ Ω,

and 𝑢 is monotone for 𝑥1 > 0:𝜕𝑥1 𝑢 < 0 in Ω ∩ {𝑥1 > 0}.
In particular, if Ω = 𝐵𝑅 is a ball, then 𝑢 is radially symmet-
ric and 𝜕𝑟𝑢 < 0 ∀𝑥 ∈ 𝐵𝑅\{0} where 𝑟 = |𝑥|.

The proof uses the maximum principle and is very
flexible. It allows for extensions to some unbounded
domains (in particular, all of ℝ𝑛), to fully nonlinear elliptic
equations, to some nonlinearities 𝑓(𝑥, 𝑢) depending also
on the variable 𝑥 ∈ Ω, as well as to some elliptic systems
of equations. As a consequence, this is Louis Nirenberg’s
most cited paper. As he once said, “I made a living off the
maximum principle.”

If for a certain nonlinearity function, 𝑓 , one knows
that there is uniqueness of positive solution to the above
boundary value problem (this happens for instance when𝑓 is nonincreasing, since then the energy functional is
convex), then the solution 𝑢 must be symmetric as an
immediate consequence of the uniqueness. However, in
many interesting applications (certain ground states in
mathematical physics, curvature equations in conformal
geometry), uniqueness does not hold, and the symmetry
result requires a proof. Note also that positivity of
the solution is needed in the assumptions. Indeed, the
second Dirichlet eigenfunction of the Laplacian in a ball
(like sin(𝑥) on [−𝜋, 𝜋]) satisfies −Δ𝑢 = 𝜆2𝑢, but it is not
radially symmetric. In fact, it is odd with respect to one
hyperplane through the center of the ball.

x1

x2

Σλ

Tλ

Ω

Figure 2. In the Alexandrov method, one reflects
domains Σ𝜆Σ𝜆Σ𝜆 across vertical hyperplanes 𝑇𝜆𝑇𝜆𝑇𝜆 that move
continuously from the right to the middle.
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Sophus Lie and Niels Henrik Abel, the two Norwegian
mathematicians who inspired the Abel Prize.

The proof of the Gidas-Ni-Nirenberg result uses the
powerful Alexandrov moving planes method. Alexandrov
developed this method circa 1955 in a series of papers
to establish (among other results) that spheres are the
only embedded, bounded, and connected hypersurfaces
of ℝ𝑛 with constant mean curvature. In 1971, J. Serrin
[6] used the method to prove that balls are the only
bounded smooth domains that admit a solution to certain
overdetermined boundary value problems.

In the Alexandrov method, one considers the planes𝑇𝜆 = {𝑥1 = 𝜆}, the domains Σ𝜆 = Ω ∩ {𝑥1 > 𝜆}, and the
reflected function 𝑢𝜆(𝑥) = 𝑢(2𝜆 − 𝑥1, 𝑥′) (the reflection of 𝑢
across 𝑇𝜆) as in Figure 2. One shows that 𝑢 < 𝑢𝜆 in Σ𝜆 for
all 0 < 𝜆 < 𝜆∗ ∶= supΩ 𝑥1. One starts proving this for 𝜆 close
to 𝜆∗ and then showing, through a continuity argument,
that the same holds all the way down to 𝜆 = 0. The two
ingredients used here are the Hopf boundary lemma and
the strong maximum principle. They are applied to the
difference 𝑢𝜆 − 𝑢, which satisfies a linear equation, since𝑢𝜆 solves the same nonlinear equation as the one for 𝑢.
Sidebar 1. Abel Prize Winners

2015: John Forbes Nash, Jr. and Louis Nirenberg
2014: Yakov Sinai
2013: Pierre Deligne
2012: Endre Szemerédi
2011: John Milnor
2010: John Tate
2009: Mikhail Leonidovich Gromov
2008: John G. Thompson and Jacques Tits
2007: S. R. Srinivasa Varadhan
2006: Lennart Carleson
2005: Peter Lax
2004: Michael Atiyah and Isadore Singer
2003: Jean-Pierre Serre
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The use of the Hopf boundary lemma required some
regularity of the domain Ω in the original paper of Gidas-
Ni-Nirenberg, and thus symmetry in domains such as
a square in the plane was left open. A new approach
was then developed by Berestycki and Nirenberg in 1991.
It replaced the use of the Hopf lemma by a maximum
principle in “small domains”, domains such as Σ𝜆 when 𝜆
is very close to 𝜆∗ or Σ𝜆\𝐾, where 𝜆 is arbitrary and 𝐾 is a
sufficiently large compact set inside Σ𝜆. In this way, they
succeeded in proving symmetry in nonsmooth domains
such as cubes. In addition, Berestycki and Nirenberg
[1] introduced the sliding method: a new and powerful
tool leading to the monotonicity of solutions in certain
problems (and sometimes to their uniqueness or to their
oddness). It consists of comparing the solution 𝑢 with the
slided (or translated) solutions 𝑢𝜆(𝑥) ∶= 𝑢(𝑥1 + 𝜆, 𝑥′).

Within elliptic PDEs there has been great activity in
these last years on equations involving fractional Lapla-
cians or related nonlocal operators, for instance, the
generators of Lévy stable diffusion processes. They arise
when studying anomalous diffusions in plasmas, chemical
reactions in liquids, geophysical fluid dynamics, popu-
lation dynamics, and finance. The Gidas-Ni-Nirenberg
result has recently been extended to many of these frac-
tional operators. For example, Birkner, López-Mimbela,
and Wakolbinger [2] extended it to the Dirichlet prob-
lem in a ball for the fractional Laplacian, which reads(−Δ)𝑠𝑢 = 𝑓(𝑢) in 𝐵𝑅 and 𝑢 = 0 in ℝ𝑛\𝐵𝑅 (the complement
of 𝐵𝑅).

In 2010, Jinggang Tan and I [3] used the moving
planes method to show symmetry and monotonicity for
the spectral square root of the Laplacian on a bounded
domain with zero Dirichlet boundary conditions. That is,
we considered positive solutions to

(2) 𝐴1/2𝑢 = 𝑓(𝑢) in Ω with 𝑢 = 0 on 𝜕Ω.
To define 𝐴1/2, we took the eigenvalues, 𝜆𝑘, and eigen-
functions, 𝜑𝑘, of the Laplacian in Ω:−Δ𝜑𝑘 = 𝜆𝑘𝜑𝑘 in Ω with 𝜑𝑘 = 0 on 𝜕Ω.
Then, given the expansion 𝑢 = ∑∞𝑘=1 𝑐𝑘𝜑𝑘, we set 𝐴1/2𝑢 =∑∞𝑘=1 𝑐𝑘𝜆1/2𝑘 𝜑𝑘.

This is a nonlocal problem, but we transformed it into
a local problem in one more dimension by viewing it as
a Dirichlet-to-Neumann operator: given 𝑢 in Ω, find its
harmonic extension 𝑤 in Ω × [0, ∞) with zero Dirichlet
condition on 𝜕Ω × [0, ∞). Then we have 𝐴1/2𝑢 = 𝜕𝑤𝜕𝜈 |Ω×{0}.
We were then able to apply the moving planes method,
combined with a maximum principle in domains of small
measure, to obtain the Gidas-Ni-Nirenberg type symmetry
results for locally Lipschitz nonlinearities 𝑓 . In particular,
if Ω is a ball, we proved that any positive solution 𝑢 to (2)
is rotationally symmetric and 𝑢𝑟 < 0 within the ball.
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Xavier Cabré with Louis Nirenberg in 2015.
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Sun-Yung Alice Chang
Nirenberg’s Problem
In 1970, Louis Nirenberg proposed the problem of “pre-
scribing Gaussian curvature on the sphere.” This question
has led to one of the most active and exciting subfields
of geometric analysis. The penetrating question raised by
Nirenberg is,What are the functions, 𝐾, which can arise as
the Gaussian curvature function, 𝐾𝑔, for some Riemannian
metric, 𝑔, on the sphere?

On the standard two-dimensional sphere, by the Gauss-
Bonnet formula, one has

(3) ∫𝑆2 𝐾𝑔𝑑𝑣𝑔 = 4𝜋.
Thus any such Gaussian curvature function 𝐾𝑔 must be
positive somewhere on the sphere. See Figure 4 for a
surface with positive Gaussian curvature everywhere and
this issue’s article, “WHAT IS...Gauss Curvature?” (page
144), for more information about Gaussian curvature.

At the time that Nirenberg’s problem was originally
posed, it was considered that this might be the only
restriction on the function 𝐾 = 𝐾𝑔. Then in 1974, Kazdan-
Warner ([4]) indicated that this is not the case, that 𝐾 = 𝐾𝑔
must satisfy another condition:

(4) ∫𝑆2 ⟨∇𝐾, ∇𝑥𝑖⟩𝑑𝜇𝑔 = 0,
Sun-Yung Alice Chang is Eugene Higgins Professor of Mathe-
matics at Princeton University. Her email address is chang@
math.princeton.edu.
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Louis Nirenberg, Alice Chang and Paul Yang in 2015.

where 𝑥𝑖, 𝑖 = 1, 2, 3, are the coordinate functions of the
sphere. In particular, the Nirenberg problem has no
solution for 𝐾(𝑝) = 𝑓(𝑥1(𝑝)) where 𝑓 is monotone.

Nirenberg’s problem was first studied in the 1971
doctoral thesis of D. Koutroufiotis, a PhD student of
Nirenberg. Here 𝑔 was assumed to be conformal to the
standard metric, 𝑔0, on the two-dimensional sphere, 𝕊2.
If one writes 𝑔 = 𝑒2𝜔𝑔0, then the problem is equivalent to
solving
(5) − Δ𝜔 + 1 = 𝐾𝑒2𝜔 on 𝕊2,
where Δ is the Laplacian with respect to the standard
metric 𝑔0 on 𝕊2. Koutroufiotis proved that when 𝐾 is
antipodally symmetric and sufficiently close to 1, then
there is a solution, 𝑔, to the problem 𝐾 = 𝐾𝑔.

In 1973 Moser proved that for any antipodally sym-
metric function 𝐾 which is positive somewhere, there is a
solution to this original version of the Nirenberg problem.
This important breakthrough was founded upon Moser’s
inequality, a sharp version of a limiting Sobolov imbed-
ding result by Trudinger. To prove his result, Moser first
observed that solutions 𝜔 to (5) are the critical points of
the functional𝐹𝐾 [𝜔] = log 14𝜋 ∫𝕊2 𝐾𝑒2𝜔𝑑𝜇0 − 14𝜋 ∫𝕊2 (|∇𝜔|2 + 2𝜔) 𝑑𝜇0.

Figure 3. An ellipsoid shaded by Gaussian curvature.

Moser’s inequality provides a bound on the terms in the
right-hand side of this inequality. One may then find a
solution to the Nirenberg problem as a limit of a sequence
of functions via a minimax procedure using this bound
to prove the sequence converges. This method has led
to many additional partial solutions of the Nirenberg
problem, including results by the author with P. Yang,
K. C. Chang with J. Q. Liu, Z. C. Han, and others.

In particular, the author and Paul Yang proved the
following theorem in 1987: Let 𝐾 be a positive smooth
function with only nondegenerate critical points. Suppose
there are at least two local maxima of 𝐾 and suppose that
at all saddle points, 𝑝, of 𝐾, we have Δ𝑔0 𝐾(𝑝) > 0. Then 𝐾
is the Gauss curvature 𝐾𝑔 of a metric 𝑔 conformal to 𝑔0.
In joint work with Gursky and Yang appearing in 1993,
the author provided an “index formula” for 𝐾 to be the
Gaussian curvature of a metric 𝑔 conformal to 𝑔0. In 2005,
Michael Struwe re-proved our 1987 theorem using flow
methods and produced an example demonstrating that
the hypotheses are in some sense the best possible. More
precisely, Struwe constructed functions, 𝐾, having exactly
two local maxima and one saddle point, 𝑝, where Δ𝐾(𝑝) <0, which cannot be realized as curvature functions of
conformal metrics on the two-dimensional sphere.

In another direction, the problem of prescribing Gauss-
ian curvature further developed into the problem of
“prescribing 𝑄-curvature”. The connection of 𝑄-curvature
to the Gauss curvature was first pointed out by T. Branson
in 1995. For example, on 4-spheres, through the Gauss-
Bonnet formula, one has ∫𝑆4 𝑄𝑔𝑑𝑣𝑔 = 32𝜋2. It turns out
that 𝑄-curvatures on compact manifolds of even dimen-
sions share many of the same analytic properties as the
Gaussian curvature on compact surfaces, and the tool
introduced by Moser can be effectively applied. Study of𝑄-curvature has become an important topic in confor-
mal geometry, with applications to problems in Ads/CFT
theory (by Graham-Zworski and Fefferman-Graham) and
geometry (by Chang-Gursky-Yang and others). The field
is active and developing (with important papers in 2013
by Branson-Fontana-Morpurgo and by Case-Yang).

On a Personal Note:
My relationship with Louis began as that of a mentor
and later a respected, well-admired friend. All the time I
have spent with him—either discussing mathematics or
just chatting—has been wonderful. It is like the saying in
Chinese, “You are enjoying the breeze of the spring,” a
wonderful experience in life.
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Louis Nirenberg (center) and Luis Caffarelli (right) at
the Joint Prize Ceremony of JMM 2014, Baltimore.
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Gregory Seregin
Caffarelli-Kohn-Nirenberg and the Navier-Stokes
Problem
One of the main problems in the field of mathematical
hydrodynamics is a global well-posedness of the initial
boundary value problem for the Navier-Stokes equations:
(6) 𝜕𝑡𝑢 + 𝑢 ⋅ ∇𝑢 − Δ𝑢 + ∇𝑝 = 𝑓 and div𝑢 = 0 on Ω × [0, ∞),
with the value of 𝑢 prescribed on Ω×{0} and on 𝜕Ω×[0, ∞).
Here 𝑢 is the velocity field of the fluid and 𝑝 is the pressure.
See Figure 4.

The conceptual
novelty of this
paper is their

explicit
introduction of a
new notion of
suitable weak
solutions to the
Navier-Stokes
equations

One of the possi-
ble ways to attack
this question is to
consider the so-called
weak Leray-Hopf solu-
tions. Such solutions
have finite energy and
exist globally, and, as
observed by J. Leray
in 1934, their unique-
ness would follow
from their smooth-
ness. In the 1970s
Scheffer proved the
existence of such so-
lutions, 𝑢, for all time,
such that thevorticity,∇ × 𝑢, is continuous
outside a set of fi-
nite one-dimensional

Hausdorff measure in space.

Gregory Seregin is professor of mathematics at St. Hilda’s Col-
lege, University of Oxford. His email address is seregin@maths.
ox.ac.uk.

The 1982 Caffarelli-Kohn-Nirenberg paper is one of the
most important steps toward understanding whether or
not the Navier-Stokes equations provide a deterministic
description of the flow of a viscous incompressible fluid.
The conceptual novelty of this paper is their explicit
introduction of a new notion of suitable weak solutions to
the Navier-Stokes equations in space-time domains. Louis
Nirenberg and his co-authors focus on differentiability
properties of these suitable weak solutions rather than
consider a global setting with initial and boundary condi-
tions. This makes the problem of regularity in a sense a
local one.

Observe first that the Navier-Stokes equations are
invariant under parabolic rescalings. That is, if 𝑢(𝑥, 𝑡)
and 𝑝(𝑥, 𝑡) solve (6) for 𝑓(𝑥, 𝑡), then 𝑢𝜆(𝑥, 𝑡) = 𝜆𝑢(𝜆𝑥, 𝜆2𝑡)
and 𝑝𝜆(𝑥, 𝑡) = 𝜆2𝑝(𝜆𝑥, 𝜆2𝑡) also satisfy (6) for 𝑓𝜆(𝑥, 𝑡) =𝜆3𝑓(𝜆𝑥, 𝜆2𝑡). Thus it is natural to consider parabolic
cylinders:𝑄𝑟(𝑥, 𝑡) = {(𝑦, 𝜏) ∶ |𝑦 − 𝑥| < 𝑟, 𝑡 − 𝑟2 < 𝜏 < 𝑡}.
Then one may define the one-dimensional Hausdorff
measure using these parabolic cylinders, 𝑃 1.

Caffarelli-Kohn-Nirenberg prove that their suitable
weak solutions are smooth away from a singular set𝑆 with 𝑃 1(𝑆) = 0. They consider a pair 𝑢(𝑥, 𝑡) and 𝑝(𝑥, 𝑡) to
be a suitable weak solution on 𝑄𝑟(𝑥, 𝑡) ifsup𝜏∈(𝑡−𝑟2,𝑡) ∫𝐵𝑟(𝑥) |𝑢(𝑦, 𝜏)|2𝑑𝑦 + ∫𝑄𝑟(𝑥,𝑡) |∇𝑢|2𝑑𝑦𝑑𝜏 < ∞,
if 𝑝 ∈ 𝐿 54 (𝑄𝑟(𝑥, 𝑡)), and if 𝑢 and 𝑝 satisfy the classical
Navier-Stokes system in the sense of distributions on𝑄𝑟(𝑥, 𝑡):2 ∫𝑄𝑟(𝑥,𝑡) |∇𝑢|2𝜑𝑑𝑦𝑑𝜏

≤ ∫𝑄𝑟(𝑥,𝑡) [|𝑢|2(𝜕𝜏𝜑 + Δ𝜑) + 𝑢 ⋅ ∇𝜑(|𝑢|2 + 2𝑝)]𝑑𝑦𝑑𝜏
for any nonnegative smooth function 𝜑 compactly sup-
ported in 𝑄𝑟(𝑥, 𝑡). The space for pressure can be taken
slightly differently in order to simplify statements, and

Figure 4. A numerical implementation of
Navier-Stokes by Florian de Vuyst. Complete videos
of the flow can be found linked from his webpage
devuyst.perso.math.cnrs.fr.
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such a space is 𝐿 32 (𝑄𝑟(𝑥, 𝑡)). With this minor simplifica-
tion and the assumption 𝑓 = 0, one important theorem in
Caffarelli-Kohn-Nirenberg may be restated as follows:

Theorem 2. If 𝑢 and 𝑝 are a suitable weak solution to the
Navier-Stokes equations in 𝑄𝑟(𝑥, 𝑡), then there exist positive
universal constants 𝜀 and 𝑐𝑘, 𝑘 = 0, 1, … , such that if1𝑟2 ∫𝑄𝑟(𝑥,𝑡) (|𝑢|3 + |𝑝| 32 )𝑑𝑦𝑑𝜏 < 𝜀,
then |∇𝑘𝑢(𝑦, 𝜏)| ≤ 𝑐𝑘/𝑟𝑘+1 for any (𝑦, 𝜏) ∈ �̄�𝑟/2(𝑥, 𝑡) and any𝑘 ∈ ℕ.

In fact, the linear theory implies that all functions ∇𝑘𝑢
are Hölder continuous in the closure of 𝑄𝑟/2(𝑥, 𝑡). The
exponent of Hölder continuity is related to the choice of
a functional space for the pressure.

Letmegive a simple applicationofTheorem2 that arose
when proving the Ladyzhenskaya-Prodi-Serrin condition
of regularity by rescaling around a possible singular point.
After a certain rescaling, there are sufficiently smooth
functions 𝑢 and 𝑝 that satisfy the Navier-Stokes equations
in ℝ3×] − ∞, 0[. Suppose that ‖𝑢‖𝐿5(ℝ3×]−∞,0[) is bounded.
Let us prove a Liouville-type theorem saying that 𝑢 = 0.
Given 𝜇 > 0, we can find 𝐴 < 0 such that𝐴∫−∞ ∫ℝ3 (|𝑢|5 + |𝑝| 52 )𝑑𝑥𝑑𝑡 < 𝜇.
Fix any 𝑧0 = (𝑥0, 𝑡0) with 𝑡0 ≤ 𝐴. Then for any 𝑅 > 0,1𝑅2 ∫𝑄𝑅(𝑧0) (|𝑢|3 + |𝑝| 32 )𝑑𝑥𝑑𝑡

≤ 𝑐( ∫𝑄𝑅(𝑧0) (|𝑢|5 + |𝑝| 52 )𝑑𝑥𝑑𝑡) 35 ≤ 𝑐𝜇 25 .
If 𝜇 25 ≤ 𝜀, then one can use Theorem 2 and conclude
that |𝑢(𝑧0)| ≤ 𝑐0/𝑅. Taking 𝑅 → ∞, we can deduce that𝑢 = 0 in ℝ3×] − ∞, 𝐴[. We then split the interval ]𝐴, 0[
into sufficiently small pieces and sequentially exclude the
corresponding layers in order to complete the proof that𝑢 = 0.

A more sophisticated application of this theorem
appears in my 2012 paper on the potential blowup for
Navier-Stokes equations and in an earlier paper of mine
with Escauriaza and Šverák appearing in 2003. In the
more recent paper, which improves upon the work in the
earlier paper, one considers weak Leray-Hopf solutions
to Navier-Stokes equations on ℝ3 × [0, 𝑇 ) with initial data𝑢(𝑥, 0) = 𝑢0(𝑥) smooth with compact support. If the finite
energy solution arising from 𝑢0 blows up at time 𝑇 < ∞,
then lim𝑡→𝑇 − ||𝑢(𝑥.𝑡)||𝐿3(ℝ3) = ∞.
In order to prove this result, one needs to apply a
backward uniqueness theorem for a certain parabolic
differential inequality. We need to provide a decay at the
spatial infinity for some ancient (backward) solution to the
Navier-Stokes equations. Recall that an ancient solution
is one which is well defined for all time 𝑡 ∈ (−∞, 0)

and is found by taking a parabolic rescaling around the
developing singularity. In particular, having in our hands
a finite global 𝐿3-norm, we can make the tails of the
corresponding integrals small enough and then apply the
Caffarelli-Kohn-Nirenberg theorem stated above.

In a sense, the results of the Caffarelli-Kohn-Nirenberg
paper seem to be optimal for a local solution. To go
further, one needs additional information on the global
level, i.e., on the level of initial boundary value problems
for the Navier-Stokes system. In his interview with the
Notices of AMS in 2002, Nirenberg pointed out that further
applications of harmonic analysis could be useful toward
making additional advances.
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Eric Carlen and Alessio Figalli
Stability of the Gagliardo-Nirenberg Sobolev
Inequality
A central focus of Nirenberg’s research has been partial
differential equations. An important tool in their study
consists of using functional inequalities that control
some 𝐿𝑞 norm of a function in terms of the norm of its
derivatives.

The Sobolev inequalities are the classic example. Let‖𝑢‖𝑞 = (∫ℝ𝑛 |𝑢(𝑥)|𝑞d𝑥)1/𝑞 ,
for 1 ≤ 𝑞 < ∞, denote the 𝐿𝑞 norm of a function 𝑢. Then,
for 1 ≤ 𝑝 < 𝑛, there exists a constant 𝐶(𝑛, 𝑝) such that for
all smooth functions 𝑢 ∶ ℝ𝑛 → ℝ vanishing at infinity,‖𝑢‖𝑝∗ ≤ 𝐶(𝑛, 𝑝)‖∇𝑢‖𝑝, 𝑝∗ ∶= 𝑛𝑝𝑛 − 𝑝 .
The value of 𝑝∗ is determined by scaling: inserting 𝑢(𝜆𝑥),𝜆 > 0, into the inequality above, the 𝐿𝑝∗ norm is the only
one for which both sides are proportional to the same
power of 𝜆.

As useful as these inequalities are, in the late 1950s
mathematicians studying elliptic and parabolic regularity
understood the need for an extension of the Sobolev
inequalities. The first example in this direction appeared
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Figure 5. The Keller-Segel model of chemotaxis shows
the characteristic clumping. Numerical
implementation by Ibrahim Fatkullin.

in Nash’s famous paper about the regularity of solu-
tions to parabolic equations with measurable coefficients
[5], where he showed what is now called the “Nash
inequalities”:1‖𝑢‖22 ≤ 𝐶𝑛 ‖∇𝑢‖𝑛/(𝑛+2)2 ‖𝑢‖2/(𝑛+2)1 .
Basically at the same time as Nash, both Gagliardo
and Nirenberg independently proved a general family of
inequalities including both the Sobolev inequalities and
the Nash inequality as special cases. In their form, these
can be stated as follows.

Theorem 3 (Gagliardo-Nirenberg). Let 𝑢 ∶ ℝ𝑛 → ℝ be a
smooth function vanishing at infinity. Then, for any 1 ≤𝑝 ≤ 𝑛 and 1 ≤ 𝑟 ≤ 𝑞 ≤ 𝑝∗,‖𝑢‖𝑟 ≤ 𝐶(𝑛, 𝑝, 𝑟, 𝑠)‖∇𝑢‖𝜃𝑝‖𝑢‖1−𝜃𝑞 ,
where 𝜃 ∈ [0, 1] satisfies 1/𝑟 = 𝜃 (1/𝑝 − 1/𝑛) + (1 − 𝜃)/𝑞 .

Again, the relation beween the exponents and 𝜃 is
governed by scaling. Note that the Gagliardo-Nirenberg
Sobolev inequalities hold and were proved by them for
higher derivatives of 𝑢 and a larger set of exponents as
well. Here we stated only the most frequently used cases.

The initial applications of these inequalities to regu-
larity problems did not require knowledge of the sharp
constant 𝐶(𝑛, 𝑝, 𝑟, 𝑠). However, the Gagliardo-Nirenberg
Sobolev inequalities have since found many other ap-
plications for which this knowledge is useful and has
motivated work to determine the sharp constants and
optimizers.

While it is relatively easy to show that minimizers exist
and are radially symmetric, finding the sharp constants
and the explicit formof theminimizers has only beendone
in a few cases. Carlen and Loss [2] did this for the Nash
inequalities, and Del Pino and Dolbeault [3] did this for
the one-parameter family of inequalities corresponding
to the case 𝑝 = 2, 𝑞 = 𝑡 + 1, and 𝑟 = 2𝑡. The work in [2] was
motivated by a question raised by Kato concerning the
2-dimensional Navier-Stokes equation, while the authors
of [3] used the sharp form of these GN inequalities to
study nonlinear diffusions.

1In his paper, Nash thanks Elias Stein for the proof (using the
Fourier transform) of this inequality.

Recent works have shown that going beyond the
characterization of the optimizers and proving a stability
result can actually give further information on the rate of
approach to the equilibrium for such nonlinear diffusion
equations. For example, consider the Gagliardo-Nirenberg
Sobolev inequality in the particular case 𝑛 = 2, 𝑝 = 2, 𝑟 = 4,𝑠 = 6. In this case, the sharp form found by Del Pino and
Dolbeault takes the form𝜋 ‖𝑢‖66 ≤ ‖∇𝑢‖22‖𝑢‖44,
and there is equality if and only if, up to a dilation,𝑢(𝑥) = 𝑣𝜆,𝑥0 (𝑥) ∶= 𝜆1/3(1 + 𝜆2|𝑥 − 𝑥0|2)−1/2.

We now define the quantity𝛿𝐺𝑁 [𝑢] ∶= ‖∇𝑢‖22‖𝑢‖44 − 𝜋 ‖𝑢‖66.
Note thatby theabove, 𝛿𝐺𝑁 [𝑢] isnonnegative. Furthermore,
if 𝛿𝐺𝑁 [𝑢] = 0, then 𝑢 is an optimizer. We say this last fact
is “stable” if 𝛿𝐺𝑁 [𝑢] < 𝜀 for 𝜀 > 0 sufficiently small implies
that 𝑢 is close to an optimizer in some suitable norm.

In 2013 we proved the following quantitative stability
estimate:

Theorem 4. Let 𝑢 ∶ ℝ𝑛 → ℝ be a smooth nonnegative func-
tion vanishing at infinity such that ‖𝑢‖6 = ‖𝑣1,0‖6. Then
there exist universal constants 𝐾1, 𝛿1 > 0 such that when-
ever 𝛿𝐺𝑁𝑆[𝑢] ≤ 𝛿1,
(7) inf𝜆>0,𝑥0∈ℝ2 ‖𝑢6 − 𝑣6𝜆,𝑥0 ‖1 ≤ 𝐾1 √𝛿𝐺𝑁 [𝑢].

In the same paper, we applied this result to obtain
a quantitative bound to the rate of convergence of
equilibrium for the critical mass Keller-Segel equation.

This equation was introduced by Evelyn Keller and
Lee Segel in 1970 to model the aggregation exhibited
by slime molds, a name for several types of eukaryotic
cells that, depending on environmental circumstances
and life cycle, either live freely as individual cells or else
aggregate into tightly boundunits. Themechanismdriving
aggregation in a population of free cells is chemotaxis: the
cells emit a chemical attractant that draws the population
together, while the diffusivemotion of free cells promotes
dispersion of the population (see Figure 5). The equation
is mathematically and biologically interesting because
there is a critical balance between the dissipative effects
of diffusion and the accretive effects of chemotaxis, and
a sharp Gagliardo-Nirenberg-Sobolev inequality together
with related inequalities determines what happens at the
threshold where these effects are balanced.

It is interesting that the papers of Gagliardo, Nirenberg,
and Nash all appeared in 1958, and their utility for
questions concerning rates of smoothing and decay of
norms for solutions of parabolic equations, which has
been the source of much of their continuing interest,
was already realized at this time. A posteriori, these
results had a tremendous impact in surprisingly many
applications and have inspired—and still do inspire—an
enormous number of authors.
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Mu-Tao Wang and Shing-Tung
Yau
Isometric Embeddings of Surfaces
In 1916, Weyl proposed the conjecture that every closed
surface with positive Gauss curvature can be isometri-
cally embedded into Euclidean 3-space. Moreover, this
embedding should be unique up to an isometry of the
Euclidean 3-space. Weyl’s problem can be considered as
an existence and uniqueness problem for a global elliptic
equation, and he contributed an important estimate of
the second fundamental form. This was a major global
problem in classical geometry in the first half of the
twentieth century. Lewy solved Weyl’s problem for real
analytic metrics in 1932.

It was not until 1954 that Nirenberg and Pogorelov
solved Weyl’s problem for smooth metrics independently
and using very different methods. While some of their
work depends on the works of Morrey in 1938 on the
general theory of elliptic equations, these are spectacular
papers. Nirenberg’s paper also includes a solution to the
Minkowski problem. Both results have inspired much of
the later work on global elliptic problems.

The work of Nirenberg-Pogorelov also has important
applications in general relativity. The question of defining
and understanding the concept of quasi-local mass had
been a central topic since the works of Hawking and
Penrose. The idea of defining mass in general relativity
went all the way back to Einstein. It was difficult because
the theory of general relativity is a nonlinear theory where
gravity is dictated by a tensor, while Newtonian gravity is
basically linear and depends on a scalar.

The concept of the mass of an isolated gravitational
system was defined by Arnowitt-Deser-Misner (ADM) in
1962 as an asymptotic value of the gravitational flux
through spheres expanding out to infinity. As a special
case, one may assume the spacelike manifold is time
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symmetric and asymptotically flat and satisfies the dom-
inant energy condition. So it is an asymptotically flat
three-dimensional Riemannian manifold with nonnega-
tive scalar curvature. The positive mass theorem of the
second author and Schoen, proven in 1979, states that
the ADM mass of such a manifold is nonnegative and if
the ADM mass is zero, then the manifold is flat Euclidean
3-space.2

A notion of quasi-local mass still needs to be defined
for bounded regions in a manifold. In fact, in the special
year in geometry of 1979 at the Institute for Advanced
Study, Penrose announced that the first major problem
in classical general relativity was the concept of quasi-
local mass. Ideally such a notion should take on positive
values on a three-dimensional manifold with nonnegative
scalar curvature unless the interior of the region is flat.
It should asymptotically approach the ADM mass for
spheres expanding to infinity. It should depend only
upon the local properties of the boundary surface of the
region,much as a flux depends only upon such properties.

One notion of quasi-local mass proposed by Brown-
York in 1991–93 applies the work of Nirenberg-Pogorelov.
The Brown-York quasi-local mass of a region is found
by taking the difference of the total mean curvature of
the surface’s unique isometric embedding into Euclidean
three-dimensional space and subtracting the total mean
curvature of the surface as it lies in the spacelikemanifold.
Brown-York made this important step towards the defini-
tion of quasi-local mass by finding a surface Hamiltonian
expression, which was derived from the Hilbert-Einstein
functional. Their original version of the definition ap-
peared to be gauge dependent (as it depended upon the
three-manifold the surface enclosed). Many important
works appeared immediately, including a key paper of
Hawking-Horowitz in 1996.

Shi and Tam proved in 2002 that the Brown-York
mass of a region in a three-dimensional manifold with
nonnegative scalar curvature is nonnegative. Moreover,
if the Brown-York mass is zero, then the region is iso-
metric to the region lying within the Nirenberg-Pogorelov
embedding into Euclidean space. It is interesting to note

2For simplicity we discuss only three dimensions here.
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that Shi-Tam were unaware of the work of Brown-York
and the applications to general relativity at the time and
were concerned only withmanifolds of nonnegative scalar
curvature and the work of Nirenberg-Pogorelov.

In general relativity it is essential to study a wide
class of spacelike manifolds, not just those which are
time symmetric and satisfy the positive energy condition
(and thus have positive scalar curvature). In general such
spacelike manifolds in spacetime have both a metric
tensor and a second fundamental form. They may be
viewed as initial data sets, and indeed Choquet-Bruhat
proved in 1952 the existence and uniqueness of solutions
to Einstein’s equation given such initial data. A notion of
quasi-local mass of a region in such a manifold should
depend only upon this data on the boundary surface of
the region. It should be zero when the manifold is a
spacelike submanifold of flat Minkowski space (which has
no matter field and no gravitation).

Liu-Yau introduced a quasi-local mass that was proven
to be positive using Shi-Tam’s proof and both Schoen-
Yau’s proof and Witten’s proof of the positive mass
theorem. However, a simple calculation shows that a
surface in the light cone of the Minkowski spacetime has
strictly positive Brown-York and Liu-Yau mass unless it
is a round sphere.

Examining this problem together, it became clear to us
that isometric embeddings into the Minkowski spacetime
need to be taken into account in order to obtain a mass
expression that satisfies the last criterion. By a simple
degree of freedom counting, this yields an underdeter-
mined problem, and an additional equation is needed to
expect any type of uniqueness. On the other hand, the sur-
face Hamiltonian expression relies on a definite choice
of gauge choice, without which the definition remains
ambiguous. We eventually came up with a variational
approach to tackle this problem.

Nirenberg-Pogorelov’s isometric embedding theorem
allowed us to identify the extra degree of freedom as the
time function. Returning to the derivation of Brown-York,
we discovered that there is indeed a canonical choice of
gaugewith respect to each time function, to which a quasi-
local energy (instead of mass) can be assigned. The choice
of this gauge is justified by the positivity of the quasi-local
energy, whose proof comprises ideas from Schoen-Yau,
Shi-Tam, Bartnik, Witten, and Liu-Yau. We later realized
the choice is closely related to a gravitational conservation
law which plays an important role in the study of the
dynamics of the Einstein equation.

With this positivity, we minimize the energy with
respect to different time functions and define the quasi-
local mass as the energy at critical points. This is very
much like the rest mass of special relativity which realizes
the minimal energy seen among all observers. The Euler-
Lagrange equation is a fourth-order nonlinear equation of
the time function. Together with the isometric embedding
equation, this gives a well-determined system of four
equations for four unknowns. This work was published
in 2009.

We do not yet have a general existence or uniqueness
theorem for this system. However, when the quasi-local

mass is positive, the system is elliptic and the linearized
equation can be solved. This is sufficient for studying
manyunsettledproblems for isolated gravitating systems,
on which most current study of general relativity focuses.
We expect more applications to come when this optimal
isometric embedding is better understood.

On a Personal Note by M. T. Wang
I was once invited to Professor Nirenberg’s apartment
more than ten years ago. I explained my work on higher
codimensional mean curvature flows andminimal surface
systems to him. He was quite surprised at first and was
very attentive to the detail of my explanation. Overall, it
was a very encouraging and inspiring experience for me.

On a Personal Note by S. T.-Yau
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Shing-Tung Yau.

In 1974, Calabi and Niren-
berg announced that they
had solved the bound-
ary value problem for the
real Monge-Ampère equa-
tion. S. Y. Cheng and I also
thought we had a solution.
Chern told us that he was
told that there was an error
in theCalabi-Nirenberg solu-
tion, so he met with us and
with Nirenberg to go over
our proof. Still it turned out
the boundary estimates were not strong enough to solve
the problem. Three years later I told Nirenberg that
Cheng and I could solve the problem without the strong
boundary estimate. We proved the solution exists and is
smooth in the interior of the domain while only 𝐶1,1 up
to the boundary. Nirenberg made a joke that we are like
“half defeated generals.” But for me, the solution is good
enough to solve our geometric problem on affine spheres.
After about eight years, Nirenberg finished the strong
boundary estimate with Luis Caffarelli and Joel Spruck. I
learned a lot from him in the process of those ten years,
and he has always been encouraging.
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