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Abstract: A proton exchange membrane fuel cell (PEMFC), as an efficient energy conversion device,
has many advantages, such as high energy conversion efficiency and environmentally friendly
zero emissions, and is expected to have great potential for addressing the uneven distribution of
global green energy. As a core component, the performance of the proton exchange membrane
(PEM) directly affects the overall output of the fuel cell system. At present, Nafion membranes with
good, comprehensive properties are the most widely used commercial proton exchange membrane
materials. However, Nafion membranes demonstrate a great inadaptability with an increase in
operating temperatures, such as a rapid decay in proton conductivity. Therefore, enhancing the
overall performance of Nafion membranes under high temperatures and low relative humidity (RH)
has become an urgent problem. Although many efforts have been made to solve this problem, it
is difficult to find the balance point between high-temperature conductivity and overall stability
for researchers. In this paper, we summarize the recent approaches to improving the operating
temperature of Nafion membranes from the following two perspectives: (1) using different materials
for the modification of Nafion membranes, and (2) applying different modification methods to
the Nafion membranes. Based on the structural and functional characteristics of Nafion, the non-
destructive targeted filling of fillers and the efficient synergy of the two-phase region are two vital
research directions for the preparation of high-performance composite membranes.

Keywords: Nafion membranes; proton conductivity; modification materials and method; fuel cell;
relative humidity

1. Introduction

Throughout the development of human society in the past century, traditional fossil
energy, including coal, oil, and natural gas, became an important driving force for social
development [1]. However, the consumption of traditional fossil energy is the main
source of greenhouse gases, and its large-scale use has caused the current, serious global
environmental crisis. Presently, with the promotion of the sustainable development model
and harmonious co-existence between humanity and nature, an increasing number of clean
energy sources are attracting attention, such as solar, wind, geothermal, microbial cell, and
hydrogen energy [2–5]. However, some renewable energies are unstable and intermittent
during the power supply generation, and it is therefore difficult for those generators to
provide valuable electricity for the grid in a continuous and stable manner. Hence, the
additional employment of energy storage/generators is needed to improve the utilization
rate and stability of renewable energy. Therefore, as an efficient energy conversion device,
fuel cells have great potential to address the uneven distribution of global green energy.
Moreover, the operation of fuel cell power generation is obviously simpler. After a long-
term of technological accumulation, hydrogen technology has made great progress and
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has been applied in some fields. Meanwhile, as efficient energy conversion devices, fuel
cells play an important role in the practical application of hydrogen energy. For the last
30 years, fuel cells have been used primarily to replace internal combustion engines and
to supply power for stationary and portable applications [6]. However, the history of
research on the fuel cell does not only span 30 years; the investigation spans nearly two
centuries. Since the first scientific report on the principle of fuel cells was written in 1838
by German chemist Christian Friedrich Schonbein [7], several types of fuel cells have been
developed, including the alkaline fuel cell (AFC) [8–10], proton exchange membrane fuel
cell (PEMFC) [11–13], phosphoric acid fuel cell (PAFC) [14–16], molten carbonate fuel cell
(MCFC) [17–19], and the solid-oxide fuel cell (SOFC) [20–22], shown in Figure 1. Since 1970,
the development of fuel cells have had the following characteristics: a reduced catalyst
cost, an improved performance, and a prolonged service life. At present, the PEMFC has
the most potential as an alternative generator to the traditional internal combustion engine.
Currently, PEMFCs have an energy conversion rate of 60%: three times that of on-board
internal combustion engines (~20%). PEMFCs have become one of the keys to the future
“hydrogen economy” [23].
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A PEMFC consists of several main parts: a proton exchange membrane (PEM), cat-
alytic layer (CL), gas diffusion layer (GDL), bipolar plate (BPP), and the outermost end
plate (EP) [24,25]. Together, the proton exchange membrane, catalyst, and gas diffusion
layer form the membrane electrode assembly (MEA) in which the electrochemical reactions
take place. PEMFCs are fed by hydrogen/oxygen and are catalyzed mainly by precious
metal alloy compounds containing Pt [26]. Based on these characteristics, PEMFCs have
many advantages. Firstly, the separator of the anode and cathode is a solid polymer mem-
brane (planar structure), and the cell operates at relatively low temperatures, so aspects
such as handling, assembly, or tightness are less complex than in most other types of cells.
Additionally, PEMs are usually non-corrosive polymer materials [12]. This improves safety
by avoiding the need to handle acids or any other corrosive substances in the fuel cell.
Additionally, the disposal of waste electrolytes is also easier to handle. Finally, the cell
system adapts well to the low pressure of reactants (1 or 2 bar) and CO2, allowing for the
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direct use of the atmosphere. On the other hand, many disadvantages also hinder the
further application of PEMFCs. The chemical reactions of the anode and cathode require the
assistance of precious metal catalysts; these catalysts are not only expensive, but also have
a poor tolerance to CO and H2S. Moreover, catalyst poisoning will reduce the efficiency of
electrode reactions in the fuel cell. Most importantly, conventional membrane materials,
such as Nafion membranes, are highly dependent on water, and their performance deterio-
rates severely under high-temperature and low-humidity conditions [27–29]. As a result, a
water management component needs to be added, which further increases the complexity
of the fuel cell system [30]. These problems must be solved if further applications of fuel
cells are to be realized in light electric vehicles and portable electronic equipment.

Depending on the operating temperature of a PEMFC, researchers classify it as a
low-temperature proton exchange membrane fuel cell (LT-PEMFC, <100 ◦C) or a high-
temperature proton exchange membrane fuel cell (HT-PEMFC, >100 ◦C) [31]. As research
on PEMFC progressed, researchers found it important to raise the operating temperature
of the fuel cells to improve their performance during operation. The research has shown
that raising the operating temperature of a PEMFC to above 100 ◦C can solve the “two-
phase flow” problem caused by the coexistence of two gas–liquid phases in the fuel cell
system [32,33]. At the same time, a high operating temperature is helpful for improving the
dynamics of the related chemical reactions; a high temperature can improve the catalyst’s
tolerance to carbon monoxide, hydrogen sulfide, and other toxic gases and simplify the
hydrothermal management components of the fuel cell system [34–36]. These properties
also imply a reduced Pt loading in fuel cells, allowing even non-Pt catalysts to be used [37].
As a result, HT-PEMFCs are expected to achieve large-scale applications in hydrogen fuel
vehicles and combined heat and power systems [38].

Although increasing the operating temperature is beneficial to the overall output
performance of PEMFCs, it also raises some key issues that hinder the further develop-
ment of HT-PEMFCs. These problems include: (1) possible corrosion and a decrease Iin
the mechanical stability of the bipolar plate under high-temperature conditions [39,40];
(2) a performance decrease and an insufficient high-temperature resistance of the cata-
lysts [41–43]; and (3) low proton conductivity and a lessened stability of PEM materials
under high-temperature conditions [44–46]. Overall, HT-PEMFCs need to reach the three
major objectives of low cost, high performance, and excellent durability for further com-
mercial system development. To achieve these goals, the research on the optimization of
the core component—PEM—is essential. In other words, PEM needs to meet at least two re-
quirements: (1) have a high proton conductivity under high-temperature and low-humidity
conditions; and (2) have a comprehensive stability that can maintain long-term operation,
including good mechanical properties, a high chemical stability, and so on.

On the anode catalytic layer side of the proton exchange membrane in a PEMFC
system, the hydrogen breaks into electrons and protons on the surface of the catalyst. On
the cathode catalytic layer side, the oxygen then splits into oxygen ions to produce water
and protons, followed by a wasting of heat. As a result, the PEM should be specially
designed for the rapid and selective diffusion of the H+ generated at the anode to the
cathode. The main membrane material categories for HT-PEMFC applications include the
following four: (1) sulfonated, hydrocarbon-based polymer membranes, such as sulfonated
polyether ether ketone (SPEEK) and sulfonated polyether sulfone (SPES), which generally
has good mechanical stability, fine thermal resistance, and high water absorption over a
wide temperature range [47–49]. However, the main issue of membrane degradation is poor
thermal stability at high temperatures. At the same time, water absorption and desorption
can also cause catalyst-stripping and membrane-thinning problems [50]. (2) Phosphoric
acid-doped polybenzimidazole (PBIs) membranes: this type of membrane material is inex-
pensive and maintains good chemical and thermal stability in the temperature range of
100–250 ◦C [15,51]. Most importantly, the proton conduction of an acid-doped PBI mem-
brane has nothing to do with water molecules and can achieve efficient proton conduction
without humidification. However, hardware corrosion and performance degradation
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caused by phosphoric acid leakage should not be ignored [52–54]. (3) Acid–base mem-
branes: an acid–base proton exchange membrane uses non-aqueous solvents such as acidic
proton ionic liquid to replace water as a proton carrier [55–57]. Meanwhile, some solid ma-
terials can also function as proton-conducting mediums. Therefore, acid–base membranes
have high thermal stability and proton conductivity under low humidity and even dry
conditions [58–60]. (4) Modified perfluorinated sulfonic acid membranes (PFSAs): PFSAs,
with highly developed technology and wide commercial application, exhibit a high proton
conductivity and good chemical and mechanical stability at low temperatures [61–63].
At present, the most representative PFSA is the Nafion membrane produced by DuPont.
Although it has many drawbacks under high-temperature conditions, we cannot ignore
its inherent, excellent, comprehensive performance and the vast scope of its performance
improvement space. However, comprehensive review papers on this subject are still very
limited. In this paper, we will review this topic from three perspectives in combination
with the recent research: (1) proton conduction mechanisms and the structural charac-
teristics of Nafion membranes; (2) the modification materials used in the refinement of
Nafion membranes, including hygroscopic materials, high-temperature proton conductive
materials, materials modified by functional groups, and proton conductor materials; and
(3) the modification methods used in the improvement of Nafion membranes, including
the solution-cast method and swelling-filling method. In addition, we propose future
directions for the high-temperature modification of Nafion membranes.

2. Proton Conduction Mechanism and Structural Characteristics of Nafion Membranes

In order to improve the proton conduction in Nafion membranes, the first step is to
understand the mechanism of proton conduction in the membrane. The mechanism of
proton conduction in the membrane is shown in Figure 2. Taking hydrogen fuel as an
example, H2 loses its electron to form a proton when it hits the catalyst. Since there is no
electron layer around the proton, it is easier to generate electrostatic attraction with the
outer electrons of surrounding atoms or ions to form hydrogen bonds: this is an important
basis for proton transmission in the membrane [64–67]. Currently, there are two widely
recognized mechanisms for proton conduction in Nafion membranes: The first is the “Vehic-
ular mechanism”. As the transport medium, water molecules will first form H3O+ with H+,
which is then transported through the channel of hydrophilic clusters formed by sulfonic
acid or through the free volume inside the membrane under the action of the concentration
gradient. This transport mechanism, which shows a strong dependence on water molecules,
is the dominant mode of proton conduction at medium and low temperatures [68–70]. An-
other conduction mechanism is the “Grotthus mechanism”. In this mechanism, protons
form H3O+ with water molecules or otherwise form hydrogen bonds with other groups
(sulfonic acid groups). Then, driven by electrostatic attraction and potential difference, H+

transitions from H3O+ or -SO3H to the adjacent H2O or -SO3. During this process, protons
complete the process of passing through the membrane [71–73]. When compared with the
“Vehicular mechanism”, proton conduction through the “Grotthus mechanism” tends to
have a higher energy barrier. Therefore, the “Grotthus mechanism” is more active under
high-temperature and low-humidity conditions. At the same time, the free path of proton
jumping is usually smaller than the distance between the carriers, so protons need to be
transferred into the hydrated proton network prior to jumping to the next carrier. The
participation of water molecules in the “Grotthus mechanism” is still required. As a conse-
quence, water molecules are an important medium for proton conduction. Furthermore,
water evaporation caused by a high operating temperature is the main reason for the decay
of proton conductivity.
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In fact, various possible proton conduction mechanisms in Nafion membranes are di-
rectly related to their unique microstructures [67]. Nafion is a perfluorosulfonic acid proton
exchange membrane material, and its macromolecular structure has a strong, hydropho-
bic, fluorine-containing main chain and a strong, hydrophilic sulfonic acid group [66].
Therefore, a clear hydrophilic/hydrophobic phase separation can be observed in Nafion
membranes. As is shown in Figure 3, sulfonic acid groups form hydrophilic, spherical mi-
celle clusters in Nafion membranes. Based on the observation and estimation, the diameter
of each cluster is approximately 4–6 nm, and the spacing between clusters is approximately
5 nm. There is also a connecting channel, which has a diameter of approximately 1 nm,
between each cluster [74–76]. This is the strong hydrophilicity of sulfonate, which provides
water molecules for proton conduction. Although the hydrophobic region formed by the
fluorine-containing main chain has a limited contribution to the proton conduction, it is the
basis of the good mechanical and chemical stability of Nafion membranes and plays a key
role in maintaining the overall stability of the membrane materials.
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According to the transport mechanism of protons in a Nafion membrane and the
structural characteristics of the Nafion membrane, the main approaches for improving the
high-temperature proton conductivity of Nafion membranes are as follows: (1) improve
the proton exchange capacity, i.e., increasing the number of sulfonic acid groups. This is
the most direct and common method for improving the proton conductivity under low-
temperature conditions. However, with the increase in working temperature, the thermal
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stability of sulfonic acid becomes worse, and the proton conduction efficiency is greatly
reduced due to water loss. Therefore, the improvement of the proton exchange capacity on
the conductivity of high-temperature proton is very limited. (2) Another approach is to
improve the water retention performance of the membrane materials. Since water loss is the
main cause of high-temperature conductivity attenuation, improving the water retention
performance of the membrane materials will effectively enhance the high-temperature pro-
ton conduction. This is one of the most effective high-temperature modification strategies
for preparing composite membranes, involving using Nafion as the matrix and choosing
fillers with good moisture retention properties. (3) A third approach to improving the high-
temperature proton conductivity is to utilize a high-boiling-point proton conductor. As
an important proton transport conductor in Nafion membrane, water is extremely volatile
at high temperatures due to its low boiling point, resulting in the attenuation of proton
conductivity. If a proton conductor with a high boiling point is selected, the influence
of the high-temperature environment on proton conduction will be greatly reduced. At
present, phosphoric acid, phosphotungstic acid, and other low-volatility conductors are
widely used. Based on the above modification approaches, different modification materials
and strategies will have different effects on proton conductivity, mechanical and chemical
stability, and fuel cell performance.

3. Modifying Agent

The high-temperature modification of Nafion membranes should first consider im-
proving the proton conductivity while reducing or avoiding the influence of the modifier
on the stability of the membrane material. Therefore, the modifying agent should meet
the following requirements: (1) have good hygroscopicity to improve the water-retaining
capacity of the Nafion composite membrane under high-temperature and low-humidity
conditions; or (2) demonstrate good high-temperature proton conductivity and thermal
stability, both of which can improve the proton conduction efficiency in a Nafion mem-
brane; (3) be composed of functional-group-modified materials, so that it may form rich
hydrogen bonding with Nafion matrix; (4) as a proton transport conductor, have no or low
dependence on water molecules and maintain a high proton conduction efficiency under
high-temperature conditions; and (5) have good compatibility with the Nafion matrix.

3.1. Hygroscopic Materials

The preparation of inorganic–organic hybrid membranes with hygroscopic materials
is the most direct and effective way to improve the high-temperature proton conductiv-
ity of Nafion membranes. After introducing the hygroscopic materials into the Nafion
matrix or filling in the proton transport channel, the water retention capacity and the
high-temperature proton conductivity of the composite membranes are significantly im-
proved. Meanwhile, due to the physical barrier effect of the fillers, the methanol resistance
performance of the composite membranes is also enhanced. Modification materials with
good hygroscopic properties mainly include SiO2 [77–79], TiO2 [80–82], ZrO2 [83–85], and
other inorganic oxides.

Ke et al. [86] prepared Nafion/SiO2 composite membranes and studied the effects of
different particle sizes of SiO2 on the performance of the composite membranes and fuel
cells. When compared with pristine Nafion membranes, the water retention capacity of the
composite membranes was significantly improved, mainly because the SiO2 nanoparticles
themselves have good hygroscopic qualities. The results showed that the composite
membrane had the highest proton conductivity when the particle size of SiO2 was 10 nm.
In a single cell test at 110 ◦C and 59% RH, the performance of the composite membrane
was significantly enhanced in the medium-to-high current density range. Sacca et al. [87]
prepared a composite membrane using TiO2 powder and Nafion solution which showed
better single-cell performance under the test conditions of 80–130 ◦C. Vincenzo et al. [88]
prepared Nafion/TiO2 composite membranes and applied them to high-temperature direct
methanol fuel cells. At 145 ◦C, the power density of the composite membranes with 5%
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mesoporous titania reached 335 mW/cm2. Santiago et al. [81] prepared a Nafion/TiO2
composite membrane and tested it using electrochemical impedance spectroscopy (EIS).
They found that the adding TiO2 improved the water management, lowered polarization
resistance, and enhanced the performance of fuel cells under high-temperature and low-
humidity conditions. At the same time, the addition of the inorganic phase was helpful in
improving the overall thermal stability of the composite electrolyte, enabling it to work
at higher temperatures. In Figure 4, Janchai et al. [89] studied the effect of a quantitative
silica addition on the microscopic properties of Nafion composite membranes using a
molecular dynamics simulation. Under high-temperature or low-humidity conditions,
the addition of silica can greatly affect the diffusion coefficient of water molecules or the
proton conductivity. In addition to particles or powders, nanofibers of such inorganic
materials are also commonly used in the high-temperature modification research of Nafion
membranes. Wang et al. [90] synthesized a series of biofunctionalized silica nanofibers and
further prepared composite membranes with Nafion. Their results showed that the addition
of nanofibers can effectively improve the proton conduction efficiency in the composite
membranes. Xu et al. [91] prepared Nafion composite membranes using silica nanofibers
prepared by electrospinning. The addition of silica nanofibers not only improved the
high-temperature conductivity of the composite membrane but also significantly enhanced
the mechanical stability of the composite membrane.
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To summarize the above work, it can be seen that the addition of highly hygroscopic
inorganic oxides such as SiO2 and TiO2 can significantly improve the high-temperature
water retention performance of Nafion composite membranes. Additionally, a physical
barrier of inorganic particles can reduce the penetration of fuel. By adjusting the filling ratio
reasonably, the composite membrane can obtain excellent comprehensive performance.

In addition to the single component modification, the preparation of a composite
membrane through the modification of two components is another common strategy. The
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synergistic effect of the two components is conducive to further improving the compre-
hensive performance of the modified composite membrane. Considering the convenience
of functionalization and preparation, SiO2-TiO2 nanoparticles are commonly used as two-
component modifications, which have the following advantages: (1) Two components tend
to have a higher thermal stability than one component [92]; (2) due to the unbalanced
charge distribution on the Si-O-Ti bond, more acidic sites are exposed on the surface of the
binary nanoparticles, which is conducive to efficient proton transport [93]; and (3) in binary
nanoparticles, one component may affect the alignment of another component, thereby
adjusting the particle size, increasing the surface area, and facilitating the absorption of
water molecules [94]. Therefore, the two-component system provides more possibilities
for functional modification [95]. Sayeed et al. [96] prepared a sulfonated TiO2-SiO2, rein-
forced Nafion composite membrane for which the water retention capacity and methanol
resistance of the composite membranes were significantly improved. Yin et al. [97] syn-
thesized SiO2-TiO2 nanoparticles by a one-step method. The binary nanoparticles were
further treated with sulfonation and amino functionalization. The strong interaction be-
tween nanoparticles and the Nafion matrix led to a new phase-separated structure in
the composite membrane, and the nanoparticles modified with acid–base functions were
more likely to form hydrogen bonds with water. There were two modes of proton con-
duction in the composite membrane: “transport” and “jump”. The activation energy of
proton conduction decreased. At 80 ◦C and 26.1% RH, the proton conductivity reached
0.0137 S/cm. When compared with the recast, pristine Nafion membrane, the maximum
power density of a single cell at 60 ◦C was increased by 51.3%. Lee et al. [98] prepared a
high-temperature composite proton exchange membrane using phosphoric-acid-modified
TiO2-ZrO2 nanofibers, which improved the high-temperature performance and durability
of the composite membrane.

3.2. High-Temperature Proton Conductor Materials

As the proton conduction medium, high-temperature proton conductors can make up
for the attenuation of proton conductivity of a Nafion membrane under high-temperature
and low-humidity conditions, playing an auxiliary role. However, they cannot completely
replace the proton conduction of the Nafion membrane itself. The majority of proton
conductors are heteropoly acids such as silotungstic acid and phosphotungstic acid (PWA).
Among these options, PWA has been studied more. Heteropoly acid materials, represented
by PWA, usually have strong Bronsted acidity (being more acidic than 100% sulfuric acid
and Nafion) [99], high proton conductivity (0.02–0.1 S/cm) [100], and good thermal sta-
bility. In addition to enhancing the high-temperature proton conductivity of the Nafion
membrane, heteropoly acid materials are also widely used to improve the methanol re-
sistance and water retention capacity of membrane materials [101–104]. due to its good
proton conductivity, PWA has great value in the field of proton transport, especially under
high-temperature conditions. Lu et al. [105] used PWA and mesoporous silica to prepare a
novel, inorganic membrane material with a proton conductivity of 0.045 S/cm at 150 ◦C.
Shao et al. [106] prepared a PWA-doped, Nafion-based composite membrane and found
that, when compared with pristine Nafion, the crystallinity, thermal stability, and water
absorption of the composite membrane were improved, and while the conductivity of the
two were comparable under low-temperature conditions, the composite membrane had
higher conductivity under high-temperature conditions. Although it has become a general
consensus among researchers that PWA enhances the high-temperature conductivity of
Nafion membranes, there is still a serious problem in Nafion/PWA composite membranes—
the leakage of PWA. Due to its good water solubility, PWA dissolves and leaks during the
actual operation of the fuel cell, which not only affects the performance of the composite
membrane but, more seriously, the overflowing PWA corrodes the fuel cell plate and other
components, directly affecting the service effect and life of the fuel cell. Therefore, in addi-
tion to realizing the efficient doping of PWA in the Nafion/PWA composite membrane, it
is more important to improve the stability of PWA and avoid the harm caused by PWA dis-
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solution. At present, in order to improve the stability of PWA in composite membranes, the
most studied method is to introduce materials such as porous silica, carbon nanotubes, and
other materials into the composite system to limit the molecular movement of PWA. There
are two possible mechanisms of action: (1) the introduction of silica with an appropriate
pore structure and carbon nanotubes with an appropriate scale. The pore structure of silica
locks the PWA in carbon nanotubes, restricting its movement and reducing its dissolution.
The other method (2) involves the introduction of silica by an in situ sol–gel method, in
which silica is coated on the surface of PWA to improve its stability. Xu et al. [107] prepared
a Nafion/silica/PWA composite membrane by the sol–gel method, and the test results
found that the stability of PWA in the composite membrane was significantly improved.
As PWA is catalyzed in the hydrolysis of silica precursor, the resulting silica immobilizes
the PWA molecule. Therefore, the PWA is not easily dissolved and leaked. Bose et al. [103]
prepared a silica-fixed PWA packing using the sol–gel method and then introduced the
fillers into the Nafion membrane and catalytic layers, respectively. The results showed
that, under high-temperature and low-humidity conditions, the water retention capacity
of the MEA was enhanced, which enhanced proton conduction and charge transfer. The
addition of PWA/SiO2 will not poison the catalyst. Mohammad et al. [108] filled PWA
into one-dimensional carbon nanotubes to form efficient proton transport nanowires, and
further prepared composite membranes with Nafion. They believed that the free H on PWA
in proton transport nanowires could improve the proton conduction efficiency of Nafion.
At the same time, the proton conduction in the nanowires is affected by temperature. The
higher the temperature is, the more active the proton conduction will be. The maximum
output power of the prepared composite membrane was almost four times that of the pris-
tine Nafion membrane at 120 ◦C and 40% RH. In addition to the common silica and carbon
nanotubes, the stability of PWA in composite membranes can also be improved by loading
PWA on the nanofibers prepared by electrospinning. Through hydrogen bonding between
the PWA and Kevlar nanofibers, Yang et al. [109,110] prepared composite membranes with
Kevlar nanofibers supported by PWA and Nafion. The loading of PWA on the nanofibers
can effectively avoid the agglomeration of PWA molecules.

3.3. Functional-Group-Modified Materials

The functional-group modification of material is different from the direct doping of
the above-modified materials. Generally, the characteristic groups with proton transport
are grafted onto the support in the form of chemical bonds. the use of the proton transport
of functional groups, combined with the relevant characteristics of the carrier material, are
used for the high-temperature modification of the Nafion membrane as a whole. Common
functional group modifications include sulfonic acid or phosphorylation, amongst others.
These materials usually have high proton conductivity; commonly used carrier materials are
mainly carbon-based materials, including graphene oxide (GO), carbon nanotubes (CNT),
and graphene quantum dots (GQD), which have good thermal stability. As is shown in
Figure 5, Zhang et al. [111] prepared high-temperature Nafion composite membranes with
phosphoric-acid-functionalized GO. GO prepared by the Hummers method was coated
with polydopamine, and the phosphate functional group was grafted onto the surface of
GO. Phospho-functionalized GO doped into the composite membrane can not only provide
more proton transport sites but also improves the water absorption and retention capacity of
the composite membrane. At the same time, the phosphate groups are evenly distributed on
the surface of GO, and the unique layer structure of GO helps to form new proton transport
channels, especially under high-temperature and low-humidity conditions. Finally, the
proton conductivity of the composite membrane was 6.6 times that of the pure Nafion film
at 80 ◦C and 40% RH. Ahmed et al. [112] prepared Nafion/GO composite membranes and
tested them at high temperatures (100–120 ◦C) in fuel cells. The results showed that the
composite membranes demonstrated better water absorption and mechanical stability. The
single-cell performance and battery durability were significantly improved. Yin et al. [113]
made use of sulfonated carbon nanotubes (Su-CNTs) and Nafion to prepare a composite
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membrane, shown in Figure 6. When the sulfonated carbon nanotubes were doped into
the Nafion matrix, the microstructure in the membrane changed, forming a large number
of proton transport channels, especially under the conditions of high temperature and
low humidity. Carbon nanotubes effectively connect isolated, water-containing clusters,
greatly improving proton transport efficiency. Wu et al. [114] used graphene quantum
dots (GQD) and other quantum dot materials to modify the hydrophilic and hydrophobic
regions of Nafion membranes, respectively, at the molecular level. The modification
of the hydrophobic backbone by graphene quantum dots reduced the crystallinity and
increased the water absorption of the composite membrane. Aiming for the commonly used
phosphorylation and sulfonic acid modification at high temperature, Firouz et al. [115]
studied the synergistic effect of sulfonic acid groups and phosphoric acid groups on
the proton conductivity and the performance of high-temperature fuel cells. Theoretical
calculations found a synergistic effect of the amphoteric and hygroscopic properties of the
phosphoric acid group on the conductivity of the sulfonic acid groups. Meanwhile, the
highly sulfonated side chain could improve the free volume in the membrane and form a
hydrophilic channel.
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In addition to carbon-based materials, other functional-group-modified materials are
often used in the high-temperature modification of Nafion membranes. Maiti et al. [116]
prepared a Nafion composite membrane using an imidazole ionic liquid functionalized by
dihydrogen phosphate. The thermal stability of the composite membrane was improved,
and its proton conductivity reached 0.061 S/cm at 110 ◦C without humidity. Its maximum
output power was 13 times that of the commercial Nafion117 membrane. Klose et al. [117]
prepared Nafion composite membranes with high durability using sulfonated polyether
ketone nanofibers prepared by electrospinning. The current density of the nanofiber-
reinforced composite membranes did not increase appreciably in the humidity cycle test
while an open circuit voltage was maintained. The degradation rate of the nanofiber-
reinforced composite membrane was about 1.0 mV/h in the chemical accelerated stress test
(90 ◦C, 30% RH).

3.4. Promote Proton Conduction Materials

Promote proton conduction materials usually have the following characteristics:
(1) they may have a proton conduction capacity; or (2) the proton transport channel can be
reconstructed through a special treatment or structural design. Phosphoric acid and some
ionic liquids have been investigated among this type of material.

Yan et al. [118] studied the proton conductivity of Nafion composite membranes
doped with phosphoric acid by molecular simulation. The calculated results showed that
phosphoric acid is a good solvent to promote the proton ionization of the sulfonic acid
group, and only two phosphoric acid molecules were needed for the dissociation of a
sulfonic acid group. The transfer of protons between phosphoric acids is called the “jump-
ing mechanism”. When the concentration of phosphoric acid is lower than the swelling
concentration in the Nafion membrane, the phosphoric acid cannot form a continuous sub-
phase in the membrane and the proton jumping path is interrupted; therefore, the proton
conductivity of a composite membrane is lower than that of the original phosphoric acid.
As the concentration of phosphoric acid is further increased, the main chain of hydrophobic
polytetrafluoroethylene (PTFE) tends to gather to form a hydrophobic phase. Phosphoric
acid and hydrophilic sulfonic acid groups can form a continuous proton transport channel,
and the proton can be transferred uninterruptedly, such as in pure phosphoric acid, which
is expected to obtain a high proton conductivity. Molecular dynamics studies also show
that phosphoric acid and sulfonic acid anions have similar hydrogen bond characteristics.
In the high-temperature modification of Nafion with phosphoric acid, PBI is usually in-
troduced to prepare a binary composite membrane. Aili et al. [119] prepared a series of
phospho-doped Nafion, PBI, and Nafion/PBI binary composite membranes. The exper-
imental results showed that when the mass fraction of Nafion was 88%, the adsorption
capacity of the composite membrane on phosphoric acid was at its minimum. The authors
suggested that this may be related to the complete ion cross-linking between Nafion and
PBI polymers. Polymers with a high viscosity show a very high swelling resistance. Since
Nafion is more acidic than phosphoric acid, the ionic interaction between Nafion and PBI
would not be affected by phosphoric acid. Therefore, the complex formed by Nafion and
PBI remains intact. Zhai et al. [120] prepared a phosphorus-doped Nafion/PBI binary
composite membrane and conducted a study on the durability of the composite membrane
in high-temperature fuel cells. The study showed that the existence of Nafion enhanced
the mechanical properties of the composite membrane, so the durability of the composite
membrane was also improved. Kim et al. [121] systematically studied the high-temperature
properties of Nafion/phosphoric acid composite membranes containing imidazoles (e.g.,
benzimidazole, 1,2,3-bentriazole, pyrazole, and isopyrazole) with a proton conductivity
of 0.23 S/cm at 150 ◦C. Yin et al. [122] loaded phosphoric acid molecules into the cova-
lent organic frameworks (COFs) and prepared a composite membrane with Nafion. The
acid–base pairs formed between the phosphoric-acid-loaded COF material and the Nafion
can optimize the interface interaction and the hydrophilic region. Phosphoric acid pro-
vided abundant proton transfer sites and the proton transfer energy barrier was further
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reduced. The composite membrane showed an excellent proton conduction efficiency
under low-humidity conditions. In recent years, ionic liquid materials as high-temperature
electrolytes are often used to prepare composite membranes with Nafion due to their high
proton conductivity, good thermal stability, and fine physical properties. Yang et al. [123]
used 1-butyl-3-methylimidazole ionic liquid to prepare a Nafion composite membrane.
Under the condition of 160 ◦C without humidification, the proton conductivity of the com-
posite membrane reached 0.0109 S/cm and the tensile stress was 5.3 MPa. Lu et al. [124]
prepared Nafion composite membranes with a series of methylimidazolide ionic liquids.
The ionic conductivity was 0.006 S/cm at 130 ◦C without humidification. The authors
believed that the ionic conductivity would be affected by whether the ionic liquids were
evenly filled in the Nafion matrix, and the composite membrane would have better stability.
Sunda et al. [125] used an amino ionic liquid and Nafion matrix to prepare a composite
membrane. A molecular dynamics simulation was used to study the structure and kinetic
characteristics of the composite membrane with different doping amounts of ionic liquid.
The results showed that hydrogen bonding mainly existed between the amino cationic acid
site N-H and the sulfonic acid group of the Nafion. The distribution of sulfonic acid groups
around amino cations improved with the increase of the ionic liquid concentration.

4. Modifying Methods Applied to Nafion Membranes

As with modifying agents, different modifying methods also have different effects on
the performance of composite membranes and even fuel cell systems. According to the
different application environments and performance requirements of Nafion composite
membranes, an appropriate modification strategy was selected. Modifying methods in
many types of research can be summarized into two categories: the “solution-casting
method” and the “swelling-filling” method.

4.1. The Solution-Casting Method

Solution-casting, also known as hybridization or blending, is the most common Nafion-
membrane-modification method. In order to improve the performance of Nafion, composite
membranes are usually prepared by modifying materials with certain characteristics and
a Nafion matrix. Mixing the modified material and Nafion solution using the solution-
casting method to prepare the composite membrane is the simplest and most effective
modification approach. For example, in the high-temperature modification of Nafion with
silica, materials with good hygroscopicity are usually used for the modified material, such
as silica and titanium dioxide. These are directly added to the Nafion solution, mixed
evenly, and directly cast to prepare a composite membrane. The water retention capac-
ity of composite membranes is usually significantly enhanced, and the high-temperature
performance is greatly improved. Lee et al. [126] prepared high-temperature composite
membranes by mixing functionalized, mesoporous silica with a Nafion solution by the
direct solution-casting method. The high-temperature conductivity of the composite mem-
branes was significantly improved, and the output power of fuel cells was also greatly
improved. Zhang et al. [127] prepared amino-functionalized, mesoporous silica by selec-
tive etching. The composite membrane was further prepared by solution casting. The
proton conductivity of the composite membrane reached 0.175 S/cm at 180 ◦C without
humidification. Ketpang et al. [128] prepared Nafion composite membranes by evenly
mixing porous zirconia nanotubes with Nafion solution. The excellent water retention
capacity and the tubular structure of the fillers made it easy for water to diffuse through the
membranes. Thus, the proton conductivity of the composite membranes was significantly
improved under both fully wet (100% RH) and anhydrous conditions. At 0.6 V, the fuel cell
assembled with the composite membrane showed 1.2 times the power density at 50% RH
when compared to the pristine membrane, and also demonstrated better durability.

In addition to the high-temperature modification of Nafion, the solution-casting
method is also widely used in other aspects, such as the improvement of the methanol
resistance of Nafion. The advantages of this method are that it is simple, efficient, and
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targeted, without complex physical or chemical processing processes, and it can compen-
sate for the defects of the membrane materials. However, after further study, it was found
that the simple mixing of the filler and matrix (mostly physical mixing, as it is difficult
to achieve blending at the molecular level) often caused a problem of poor compatibility
between the filler and matrix, especially in the preparation of Nafion composite mem-
branes with an inorganic filler. Due to the compatibility between matrix and filler, the
composite membrane undergoes an obvious phase separation, which has adverse effects
on the mechanical properties and thermal stability of the composite membrane and directly
affects its practical application in the fuel cell system. Even in the modification operation,
researchers consciously modify the inorganic filler, such as through sulfonation, which
can avoid the compatibility problem between the matrix material and the filler to a certain
extent. However, the distribution of the filler in the matrix is still worthy of attention. With
simple stirring and ultrasonic mixing it is difficult to achieve the uniform distribution of
the filler in the matrix, and some materials with small particle sizes are agglomerate easily,
which has an important impact on the modification effect.

4.2. The Swelling-Filling Method

Compared to the traditional “solution-casting” method, the advantage of the “swelling-
filling” method is that it can realize the non-destructive modification of the membrane
material; that is, minimize the impact on the matrix material. For Nafion, this modification
method can be divided into two processes: “swelling” and “filling”. Firstly, appropriate
solvents, such as water, alcohols, and mixtures, are selected to cause the Nafion to swell
in the solvent. By controlling the temperature and solvent ratio, the excessive swelling of
the membrane material is avoided and the long chain structure is fully opened, but the
molecular bonds are not broken. The filler molecules are then dispersed in the solvent to
fill the Nafion membrane under the action of a concentration gradient. Finally, the solvent
is dried, and the filling is evenly dispersed inside the membrane. The whole process does
not destroy the original macromolecular structure of the Nafion membrane, which further
avoids the separation of the hydrophobic and hydrophilic phases formed by recasting.
The uniform distribution of filler molecules can not only improve the specific properties
of Nafion membrane but also maintains the integrity of the original structure, so that the
performance of the composite membrane in other aspects will not be affected. Therefore, a
non-destructive, targeted modification of Nafion membranes can be achieved. Based on
the above “swelling” and “filling” processes, using the special phase separation and cluster
structure in Nafion membrane, fillers with certain special properties can be directionally
filled into the Nafion membrane to achieve molecular-level filling and greatly improve the
modification effect.

Li et al. [129] proposed the idea of “swelling-filling” reconstruction for the first time.
Polymer materials with proton conductivity were filled in situ into a Nafion membrane,
which realized the nanoscale filling of Nafion. The proton conductivity methanol resis-
tance and direct methanol fuel cell (DMFC) performance were significantly improved.
Li et al. [130] further used this method to nondestructively fill graphene quantum dots
into the Nafion membrane skeleton structure to achieve the physical barrier effect of
quantum dots on methanol molecules. The results demonstrated that the methanol re-
sistance performance of the composite membrane was significantly improved. Based
on the “swelling-filling” method, Li et al. [131,132] further investigated the influence of
different particle sizes of silica and different forms of organic polymer materials on the
application of Nafion composite membranes in DMFC. The “swelling-filling” modification
strategy has been successfully applied to improve the performance of Nafion membrane
in DMFC. However, it has not yet been tested in the high-temperature modification of
Nafion membranes.

Xu et al. [133,134] further explored the high-temperature and low-humidity modifi-
cation of Nafion based on the “swelling-filling” nondestructive modification strategy. In
the composite membrane, the original, ordered nanophase separation in the Nafion mem-
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brane was maintained, and the water retention capacity of the composite membrane was
significantly improved. At 110 ◦C and 60% RH, the proton conductivity of the composite
membrane reached 0.033 S/cm, which was 30% higher than that of the pristine Nafion
membrane. At the same time, the mechanical stability of the composite membrane was also
enhanced due to the rich hydrogen-bond attraction between the silica nanoparticles and
Nafion chains. In the above work, although the uniform filling of silica in Nafion can be
achieved, silica enters the Nafion framework structure when the Nafion membrane swells
in the solvent and will be dispersed throughout the membrane. However, it is the hy-
drophilic region of the membrane material that plays a crucial role in the high-temperature
conductivity of the composite membrane. Due to the evaporation of water molecules in
the cluster structure at high temperatures, the conductivity of protons decreases rapidly.
Therefore, if the cluster area can be filled accurately and directionally, the modification
effect of the composite membrane will be greatly improved.

Based on this consideration, the targeted filling of Nafion membranes was proposed.
Mauritz et al. [135,136] proposed an in situ sol–gel method with a sulfonic acid group on
Nafion as the catalytic site. This was used to modify the Nafion membrane with inorganic
fillers. Taking silica as an example, in this method, tetraethyl orthosilicate was used as a pre-
cursor of silica. Under the acidic catalysis of the sulfonic acid group, Tetraethyl orthosilicate
was hydrolyzed in situ to produce silica. Xi et al. [137] prepared a Nafion/silica composite
membrane using the in situ sol–gel method to reduce the permeability of vanadium ions in
vanadium flow cells. Chen et al. [138] made Nafion/zeolite composite membranes with
the same method, and the methanol permeability was significantly inhibited. However,
there are two drawbacks that hinder the practical application of this method. First, sil-
ica easily grows on the surface of Nafion, which blocks the proton transport channel in
Nafion, making the sol–gel reaction at room temperature uncontrollable. Secondly, an
uncontrolled sol–gel process reduces the mechanical strength of Nafion. This is because
many ethanol molecules are generated during the hydrolysis of silicon precursors (such
as tetraethylorthosilicate) and Nafion chains are damaged by swelling. In order to over-
come these shortcomings, Dresch et al. [66] tried to modify Nafion membranes by this
“sol–gel” method using different ethanol solvents. However, the growth of silica particles
was reported to occur in both the ionic and non-ionic domains of Nafion. This will destroy
the original nanophase separation structure, and the mechanical strength may also be
affected. Xu et al. [134,139–141] further realized the controllable filling of silica in Nafion
membranes based on the “swelling and filling” and “sol–gel” strategies, shown in Figure 7.
By controlling the in situ “sol–gel” reaction at low temperatures (0 ◦C), a tetraethoxysilane
(TEOS) solution was used as a precursor of silica, which was employed to fill the Nafion
skeleton with solvent and was introduced into the -SO3H ion clusters. Here, the -SO3H
group was used as the catalyst for the hydrolysis of TEOS instead of the added acid. Thus,
the silica network grew inside the ion cluster and was self-anchored as a “water reservoir”
by the -SO3H group.
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5. Summary and Outlook

It is difficult to enhance the overall high-temperature performance by improving the
molecular structure or proton conduction mode individually. Therefore, the addition of
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other components is an effective approach to further expanding the high-temperature appli-
cation potential of Nafion membranes. However, the compatibility of the filler with Nafion
matrix and the deterioration of the mechanical properties of the composite membrane still
require attention. The surface functional-group modification of fillers in a multi-component
composite and the application of nano-fiber materials effectively solve the above problems.
Of course, the composite mode and modification efficiency still need to be further explored.
In addition to the filler, the choice of modification method also has an important impact
on the performance of the composite membrane. “Solution-casting” has the advantages
of being a simple preparation process with an obvious modification effect, but it also has
the disadvantages of destroying the original nanophase separation structure and proton
transport channel. By employing the strategy of “swelling-filling”, these problems can be
avoided and doping at the molecular level can be achieved. The results have shown that
the destruction of the original phase-separation structure will cause serious damage to the
proton conductivity and mechanical properties of the composite membrane.

Based on the structural characteristics of hydrophilic/hydrophobic phase separation
and the functional characteristics of different phases leading to different properties, the
modified material was first filled in the hydrophilic cluster in situ to rebuild the proton
transport channel. Fractional synergy enhances the proton conduction efficiency. Secondly,
the non-destructive filling of modified material in the hydrophobic phase is achieved by
the swelling-filling method, which further improves the comprehensive stability of the
composite membrane. Finally, the efficient synergy of the two-phase region is confirmed
by the chromatography technology, electrochemical measurements, and morphology.

Although the application of Nafion membranes has been extensive and highly de-
veloped, it is still necessary to continue studying the Nafion membrane itself, including
relevant qualities such as cost control, environmental friendliness, glass transition tempera-
ture, and so on. Based on the material structure–performance relationship, the excellent
Nafion or composite membrane can be prepared to achieve a long-term operation in an
HT-PEMFC and promote the practical application of HT-PEMFC technology.
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