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More than half of the solar energy absorbed by land surfaces is
currently used to evaporate water1. Climate change is expected to
intensify the hydrological cycle2 and to alter evapotranspiration, with
implications for ecosystem services and feedback to regional and
global climate. Evapotranspiration changes may already be under
way, but direct observational constraints are lacking at the global
scale. Until such evidence is available, changes in the water cycle on
land—a key diagnostic criterion of the effects of climate change and
variability—remain uncertain. Here we provide a data-driven estim-
ate of global land evapotranspiration from 1982 to 2008, compiled
using a global monitoring network3, meteorological and remote-
sensing observations, and a machine-learning algorithm4. In addi-
tion, we have assessed evapotranspiration variations over the same
time period using an ensemble of process-based land-surface models.
Our results suggest that global annual evapotranspiration increased
on average by 7.1 6 1.0 millimetres per year per decade from 1982 to
1997. After that, coincident with the last major El Niño event in 1998,
the global evapotranspiration increase seems to have ceased until
2008. This change was driven primarily by moisture limitation in
the Southern Hemisphere, particularly Africa and Australia. In these
regions, microwave satellite observations indicate that soil moisture
decreased from 1998 to 2008. Hence, increasing soil-moisture lim-
itations on evapotranspiration largely explain the recent decline of
the global land-evapotranspiration trend. Whether the changing
behaviour of evapotranspiration is representative of natural climate
variability or reflects a more permanent reorganization of the land
water cycle is a key question for earth system science.

Land evapotranspiration (ET) is a central process in the climate
system and a nexus of the water, energy and carbon cycles. Global
land ET returns about 60% of annual land precipitation to the atmos-
phere5. Terrestrial ET can affect precipitation6, and the associated
latent heat flux helps to control surface temperatures, with important
implications for regional climate characteristics such as the intensity
and duration of heat waves7,8.

Acceleration or intensification of the hydrological cycle with global
warming is a long-standing paradigm in climate research2, but direct
observational evidence of a positive trend in global ET is still lacking. A
global network (FLUXNET) of continuous in situ measurements of

land–atmosphere exchanges, including of water vapour, has been
established over the last decade3, and these data can be used to estimate
global ET dynamics. We have designed an approach to assessing the
temporal behaviour and global spatial distribution of ET over the past
27 years. It integrates point-wise ET measurements at the FLUXNET
observing sites with geospatial information from satellite remote sens-
ing and surface meteorological data in a machine-learning algorithm
(the model tree ensemble or MTE; ref 4). The approach is data-driven
and thus largely independent of theoretical-model assumptions.

We estimate a mean annual global land-surface ET value from 1982
to 2008 of 65 6 3 3 103 km3 per year, with the spatial distribution
shown in Fig. 1a. This estimate is consistent with the value reported
in ref. 5 (65.5 3 103 km3 per year), and falls within the model range
(58 3 103–85 3 103 km3 per year) estimated by the Global Soil
Wetness Project 2 (GSWP-2; ref. 9). The validity of our data-driven
ET product is supported by internal cross-validation at FLUXNET
sites (Fig. 1b), corroboration against independent ET estimates from
112 catchment water balances (Fig. 1c), and the simulations of 16 land-
surface models participating in GSWP-2 (Fig. 1d and Supplementary
Methods Section 6; ref. 9).

Our global land-ET estimate, derived from FLUXNET, remote sens-
ing and meteorological observations, suggests that the rate of land ET
increased from the early 1980s to the late 1990s with a linear trend of
7.1 6 1 mm per year per decade for 1982–1997 (P , 0.01 according to
the Mann–Kendall test). The positive ET trend shown in Fig. 2 is
consistent with the expected ‘acceleration’ of the hydrological cycle
caused by an increased evaporative demand associated with rising
radiative forcing10 and temperatures. Indeed, interannual variability
in temperature correlates well with ET variability from 1982 to 1997
(Pearson’s correlation coefficient 0.84, P , 0.01). This trend of rising
land ET disappears after the last big El Niño event in 1998, and the
subsequent decline of the global terrestrial ET trend is consistent with
estimates from nine process-oriented ET land-surface models (see
Supplementary Table 5) driven by meteorological fields and vegetation
states (Fig. 2 and Supplementary Discussion Section 2). The trend of
the median global land-ET anomalies derived from these models
becomes negative during 1998–2008 (27.9 mm per year per decade,
P , 0.05). We are cautious regarding the robustness of this recent ET
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slowdown, given that the ensemble median is based on only relatively
few models towards the end of the period.

Distinguishing land-ET response due to atmospheric demand from
that due to terrestrial moisture-supply limitation is a classic ecohydro-
logical problem11,12. ET responds to changing atmospheric demand, for
example to changing radiation, or to changing vapour-pressure deficit,
which is often associated with temperature, if there is sufficient moisture
supply. In contrast, if the soils are too dry, ET becomes restricted by soil
moisture. We analysed the spatial pattern of ET-trend changes and
found that the largest regional contributions to the declining trend in
global ET since 1998 originate from the Southern Hemisphere in Africa
and Australia (Fig. 3). The largest trend declines seem to have occurred
in regions in which ET is limited by moisture (see Supplementary
Methods Section 7). In these regions, lower ET would in turn be
expected to feed back to the atmosphere and increase atmospheric dry-
ness. A recent decrease in atmospheric relative humidity detected over
Australia13 could be caused by declining ET on the Australian continent.

We wondered whether a soil moisture shortage could be the reason
for the decline of the ET trend since 1998. Satellite microwave remote
sensing provides consistent large-scale information on soil moisture,
although these sensors are only sensitive to the moisture of the upper
few centimetres of the soil and the associated uncertainties are large for
regions of dense vegetation14. The Tropical Rainfall Measuring
Mission’s (TRMM) microwave imager currently yields the longest
high-quality record of surface soil moisture since 1998 (ref. 15). The
TRMM imaging area is confined to latitudes between 38u S and 38uN,
but covers the regions in which the largest ET-trend changes occurred.
We found strong coherence between 1998–2008 ET trends derived
from FLUXNET data using the MTE approach, and trends in the
independent TRMM satellite-observed surface soil moisture in those
regions in which moisture supply is expected to control ET (Fig. 4a, b).
The Southern Hemisphere pattern of decreasing ET is matched by a
soil-moisture decrease over large parts of Australia, East Africa and
South America. The coherence between temporal ET and soil-mois-
ture variability remains even when they are averaged over the whole
TRMM domain (Fig. 4c). We can rule out the hypothesis that ET
changes are caused by changes in atmospheric demand in these
regions. Trends in atmospheric demand assessed with potential ET
are in the opposite direction to trends in actual ET (Supplementary
Figs 5 and 6), except in China and southern India, where potential ET
and ET both exhibit positive trends. In these regions ET and soil-
moisture trends are opposed, probably because ET remains primarily
demand-limited (see Supplementary Fig. 2). Hence, increasing ET due
to increasing atmospheric demand (see Supplementary Fig. 5) depletes
soil moisture, but not to the extent that it would in turn limit ET.

The strong spatial consistency of the patterns in the independently
estimated ET and soil-moisture trends suggests that decreasing soil
moisture supply in the Southern Hemisphere is the main mechanism
contributing to the cessation of the rising ET trend after 1998. Other
mechanisms that could be responsible for a stabilization of global land
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Figure 2 | Global land-ET variability according to MTE and independent
models. a, Annual global land ET anomalies based on MTE and an ensemble of
up to nine independent process-oriented models. Error bars indicate one s.d.
within the MTE. Numbers at the bottom show the number of models available
each year. b, Trends in ET based on MTE estimates and based on the median of
the independent models for three different time periods. ***, significance of the
trends at the 99% confidence interval; **, significance of the trends at the 95%
confidence interval; n.s., not significant.
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Figure 1 | Validation of global land ET product from MTE. a, Map of mean
annual ET (1982–2008) in mm per year from MTE. b, Performance of MTE in
predicting monthly ET at FLUXNET sites (n 5 4,678), based on internal ten-fold
cross-validation (units converted to millimetres per year for consistency). R2,
coefficient of determination. c, Comparison of mean annual MTE ET against
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stratified by bioclimatic zones (n 5 24) against the median GSWP-2 model
ensemble. All error bars are one s.d. See Supplementary Methods Section 6 for
details. Af, equatorial, fully humid; Am, equatorial, monsoonal; As, equatorial,
summer dry; Aw, equatorial, winter dry; BWk, cold arid desert; BWh, hot arid
desert; BSk, cold arid steppe; BSh, hot arid steppe; Cfa, humid, warm temperate,
hot summer; Cfb, humid, warm temperate, warm summer; Cfc, humid, warm
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Csb, summer dry, warm temperate, warm summer; Cwa, winter dry, warm
temperate, hot summer; Cwb, winter dry, warm temperate, warm summer; Dfa,
snow, humid, hot summer; Dfb, snow, humid, warm summer; Dfc, snow, humid,
cool summer; Dsb, snow, summer dry, warm summer; Dsc, snow, summer dry,
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summer; Dwc, snow, winter dry, cool summer; ET, polar tundra.
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ET seem to be less important; they include stomata closure caused by
increasing CO2 concentrations16, land-use change17, or decreasing
wind speed18. More-detailed analyses17,19,20 did not find a measurable
effect on the global land hydrological cycle caused by increased effi-
ciency of water-use in ecosystems under rising atmospheric CO2 con-
centrations, as was suggested in ref. 16. Land-use change is likely to
have an important role regionally, but is apparently too geographically
confined to govern the recent global ET trends. Decreasing surface
wind speeds have also been put forward as a possible cause for regional
decline of potential evapotranspiration18, but if lower surface wind
speeds were responsible for the recent levelling-off of actual evapo-
transpiration, we would not see the largest changes in supply-limited
regions.

In conclusion, we provide a data-driven, spatially explicit estimate
of global terrestrial evapotranspiration over the past 27 years by com-
bining in situ measurements, meteorology and remote-sensing
information. We infer a rising trend in land-surface ET between
1982 and 1997. This trend seems to have declined since then, probably
because of soil-moisture limitation. Owing to the relatively short time
period we cannot precisely date a ‘switch’ in behaviour, but our anal-
ysis suggests that the late 1990s mark a transition period in which the
global land-ET trend decreases. It is hard to evaluate whether this is
part of a natural climate oscillation, or a climate-change signal in
which land evapotranspiration becomes more and more supply-
limited in the long term. The latter would imply that there is a limit
to energy- and temperature-driven acceleration of the terrestrial
hydrological cycle, and that it may have been reached. The conse-
quences would be decreasing terrestrial productivity and a reduced
terrestrial carbon sink, preferential partitioning of energy fluxes at
the land surface into sensible, rather than latent, heat flux and thus
accelerated land-surface warming, and intensified regional land–
atmosphere feedback6.

METHODS SUMMARY
We processed half-hourly eddy covariance data from 253 globally distributed flux
towers3 using standardized gap-filling and quality-control algorithms21,22 and a
correction for incomplete energy balance closure23. This yielded a global data set
composed of monthly estimates of local ET and meteorological records from each
tower (a total of 4,678 site-months within the period 1997–2006), along with
satellite observations of the fraction of photosynthetically active radiation
absorbed by the canopy (FAPAR) at 2-km resolution from the sea-viewing wide
field-of-view sensor (SeaWiFS; ref. 24), and site-level information on vegetation
type and local climate (Supplementary Data Section 1). We used this global data
set to train the MTE to create maps of gridded monthly ET at 0.5u resolution
covering the whole period 1982–2008. Owing to a lack of measurements in cold
and dry deserts, we do not account for non-vegetated areas; this probably results in
a small underestimation of the global total ET value. We used an ensemble of 25
model trees to define a median best-estimate and uncertainty based on the spread
of the estimates among the individual trees in the ensemble4. We used a harmo-
nized FAPAR product from three sensors (AVHRR25, SeaWiFS24, MERIS26), a
remote-sensing-based global land-use map27, and observation-based products of
climate variables28,29 as forcing data. We estimated significance levels of trends on
the basis of Mann–Kendall tests. We estimated the slopes of the trends as described
in ref. 30.
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