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Abstract

Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the

topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability

makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be

considered.

A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past

few years, with a focus on network inference, network intervention and control. With respect to areas of applications,

PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal

transduction, metabolic, and also physiological networks. At the same time, a number of computational tools,

facilitating the modelling and analysis of PBNs, are continuously developed.

A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a

comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to

their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis

of complex biological systems, ranging from molecular to physiological levels.
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Background
A large number of formal representation types that exist

in Systems Biology are used to construct distinctive math-

ematical models, each with their own strengths and

weaknesses. On one hand, deciphering the complexity

of biological systems by quantitative methods, such as

ordinary differential equation (ODE) based mathemat-

ical models, yields detailed representations with high

predictive power. Such an approach is however often

hampered by the low availability and/or identifiability

of kinetic parameters and experimental data [1]. These

limitations often result in the generation of relatively

small quantitative network models. On the other hand,

qualitative modelling frameworks such as the Boolean

Networks (BNs), allow for describing large biological net-

works while still preserving important properties of the

systems [2]. The models pertaining to this latter class
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fail nevertheless to offer a quantitative determination of

the system’s dynamics due to their inherent qualitative

nature.

Probabilistic Boolean networks (PBNs) were introduced

in 2002 by Shmulevich et al. as an extension of the

Boolean Network concept and as an alternative for mod-

elling gene regulatory networks [3]. PBNs combine the

rule-based modelling of a BN, as introduced by Kauff-

man [4-7], with uncertainty principles, e.g., as described

by a Markov chain [8]. In terms of applications, anal-

ogously to the case of traditional BNs, the qualitative

nature of state and time in a PBN framework allows

for modelling of large-scale networks. The integrated

stochastic properties of PBNs additionally enable semi-

quantitative properties to be extracted. Existing analytic

methods on PBNs allow for gaining a better under-

standing of how biological systems behave, and offer

in addition the means to compare to traditional BNs.

Examples are the calculation of influences which rep-

resent the quantitative strength of interaction between

certain genes [3], or the determination of steady-state
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distributions to quantitatively predict the activity of cer-

tain genes in steady state [8].

It has been shown in the past years that the use of

PBNs in the biological field is not limited to the molecu-

lar level, but also can potentially be linked to applications

in clinic. To name a few, Tay et al. constructed a PBN

to demonstrate the interplay between dengue virus and

different cytokines which mediate the course of disease

in dengue haemorrhagic fever (DHF) [9]. Ma et al. pro-

cessed functional Magnetic Resonance Imaging (fMRI)

signals to infer a brain connectivity network comparing

between Parkinson’s disease patients and healthy subjects

[10]. Even though the research efforts on PBNs in this

direction are just sprouting, the results from such PBN

studies can provide a first clue on a disease’s etiology and

progression. As PBNs are highly flexible for data integra-

tion and as there exist a number of computational tools

for PBN analysis, PBN is a suitable modelling approach

to integrate information and derive knowledge from omic

scale data which should in turn facilitate a physician’s

decision-making process in clinic.

For the past decade, PBNs were the object of extensive

studies, both theoretical and applied. Among theoretical

topics, there are steady-state distribution, e.g., [11-13],

network construction and inference, e.g., [14-16], net-

work intervention and control, e.g., [17-19]. Several minor

topics were investigated as well, including reachability

analysis [20] or sensitivity analysis [21]. Other studies

dealt with PBNs in biological systems at multi-level such

as gene regulatory networks [22-24], signal transduction

networks [25], metabolic networks [26], and also physi-

ological networks [9,10] which could potentially link to

medicine as previously mentioned. In parallel, a number

of computational tools which facilitate the modelling and

analysis of PBNs are also continuously developed [27-29].

Given the continuous development in this area due to

the broad on-going range of research on PBNs, we offer

a state-of-the-art overview on this modelling framework.

A comparison of PBN to other graphical probabilistic

modelling approaches is also enclosed, specifically with

respect to Bayesian networks. Last but not least, a view

of the theoretical and applied research on PBNs as mod-

els for the study of multi-level biomedical networks is

included.

In order to provide a coherent overview of the recent

advances on PBN, we start with several theoretical

aspects, organised as follows: an introduction to PBNs and

associated dynamics are given in Section ‘Introduction to

probabilistic Boolean networks and their dynamics’, the

construction and inference of PBNs as models for gene

regulatory networks are presented in Section ‘Construc-

tion and inference of PBNs as models of gene regulatory

networks’, structural intervention and external control are

discussed in Section ‘Structural intervention and con-

trol of PBNs’, ending with the relationship between PBNs

and other probabilistic graphical models in Section ‘Rela-

tionship between PBNs and other probabilistic graphical

models’. Later, in Section ‘PBN applications in biological

and biomedical studies’ we present a broad summary of

PBN applications as a representation of biological net-

works followed by a discussion on the future applications

of PBN in Systems Biology and Systems Biomedicine. A

short conclusion is given in Section ‘Conclusion’.

Introduction to probabilistic Boolean networks
and their dynamics
Boolean networks

A Boolean Network (BN)G(V , F), as originally introduced

by Kauffman [4-7], is defined as a set of binary-valued

variables (nodes) V = {x1, x2, . . . , xn} and a vector of

Boolean functions f = (f1, . . . , fn). At each updating

epoch, referred to as time point t (t = 0, 1, 2, . . .), the

state of the network is defined by the vector x(t) =

(x1(t), x2(t), . . . , xn(t)), where xi(t) is the value of variable

xi at time t, i.e., xi(t) ∈ {0, 1} (i = 1, 2, . . . , n). For each

variable xi there exists a predictor set {xi1 , xi2 , . . . , xik(i)}

and a Boolean predictor function (or simply predictor) fi
being the i-th element of f that determines the value of xi
at the next time point, i.e.,

xi(t + 1) = fi(xi1(t), xi2(t), . . . , xik(i)(t)), (1)

where 1 ≤ i1 < i2 < · · · < ik(i) ≤ n. Since

the predictor functions of f are time-homogenous, the

notation can be simplified by writing fi(xi1 , xi2 , . . . , xik(i)).

Without loss of generality, k(i) can be defined to be

a constant equal to n for all i by introducing ficti-

tious variables in each function: the variable xi is ficti-

tious for a function f if f (x1, . . . , xi−1, 0, xi+1, . . . , xn) =

f (x1, . . . , xi−1, 1, xi+1, . . . , xn) for all possible values of

x1, . . . , xi−1, xi+1, . . . , xn. A variable that is not fictitious is

referred to as essential. The k(i) elements of the predictor

set {xi1 , xi2 , . . . , xik(i)} are referred to as the essential pre-

dictors of variable xi. The vector f of predictor functions

constitutes the network transition function (or simply the

network function). The network function f determines the

time evolution of the states of the Boolean network, i.e.,

x(t + 1) = f (x(t)). Thus, the BN’s dynamics is determin-

istic. The only potential uncertainty is in the selection of

the initial starting state of the network.

Given an initial state, within a finite number of steps,

the BN will transition into a fixed state or a set of states

through which it will repeatedly cycle forever. In the first

case, each such fixed state is called a singleton attractor,

whereas in the second case, the set of states is referred to

as a cyclic attractor. An attractor is either a singleton or
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a cyclic attractor. The number of transitions required to

return to a given state in an attractor is the cycle length of

that attractor. The attractor structure of the BN is deter-

mined by the particular combination of singleton and

cyclic attractors, and by the cycle lengths of the cyclic

attractors. The states within an attractor are called attrac-

tor states. Non-attractor states are called transient and are

visited at most once on any network trajectory. The states

that lead into an attractor constitute its basin of attrac-

tion. The basins form a partition of the state space of the

BN. For example, in Figure 1 the state transition diagrams

of four different Boolean networks with three variables

are given (in fact all these Boolean networks constitute a

probabilistic Boolean network — the framework of prob-

abilistic Boolean networks is presented in Section ‘5’). For

each of these networks attractor states and transient states

are indicated and the cyclic- and singleton attractors are

given.

A Boolean Network with perturbations (BNp) is a BN

with an introduced positive probability for which, at any

transition, the network can depart from its current tra-

jectory into a randomly chosen state, which becomes an

initial state of a new trajectory. Formally, the perturba-

tion mechanism is modelled by introducing a parameter

p, 0 < p < 1, and a so-called perturbation vector γ =

(γ1, γ2, . . . , γn), where γ1, γ2, . . . , γn are independent and

identically distributed (i.i.d.) binary-valued random vari-

ables a such that Pr{γi = 1} = p, and Pr{γi = 0} = 1 − p,

for all i = 1, 2, . . . , n. For every transition step of the net-

work a new realisation of the perturbation vector is given.

If x(t) ∈ {0, 1}n is the state of the network at time t, then

the next state x(t + 1) is given by either f (x(t)) or by
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Figure 1 State transition diagrams of the four constituent Boolean networks of the PBN in Figure 2. For each constituent BN the attractor

states and the transitions between them are indicated with solid circles and arrows, respectively. The remaining transitions and transient states are

indicated with dashed arrows and circles, respectively. (a) The constituent BN of the PBN in Figure 2corresponding to transition function f 1 . There is

only one attractor, i.e., {011, 111}, which is a cyclic attractor. (b) The constituent BN of the PBN in Figure 2 corresponding to transition function f 2 .

There are two cyclic attractors: {011, 111}, {001, 101} and one singleton attractor: {110}. (c) The constituent BN of the PBN in Figure 2 corresponding

to transition function f 3 . {001, 110, 111} is the cyclic attractor. (d) The constituent BN of the PBN in Figure 2corresponding to transition function f 4 .

There are two attractors: a cyclic one, i.e., {001, 111} and a singleton one, i.e., {110}.
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x(t) ⊕ γ (t), where ⊕ is component-wise addition modulo

2 and γ (t) ∈ {0, 1}n is the realisation of the perturbation

vector for the current transition. The choice of the state

transition rule depends on the current realisation of the

perturbation vector. Two cases are distinguished: either

γ (t) = 0 or at least one component of γ (t) is 1, i.e.,

γ (t) �= 0. In the first case, which happens with probability

(1 − p)n, the next state is given by f (x(t)). In the second

case, given with probability 1 − (1 − p)n, the next state

is determined as x(t) ⊕ γ (t): if γi = 1, then xi changes

its value; otherwise it does not (i = 1, 2, . . . , n). Since

γ (t) �= 0, at least one of the nodes flips its value.

The attractors of a Boolean network characterise its

long-run behaviour [8]. However, if random perturbations

are incorporated, the network can escape the attractors.

In particular, perturbations allow the system to reach

any of its states from any current state in one transi-

tion. In consequence, the dynamics of the BNp is given

by an ergodic Markov chain [30], b having a unique sta-

tionary distribution which simultaneously is its steady-

state (limiting) distribution. The steady-state probability

distribution, where each state is assigned a non-zero

probability, characterises the long-run behaviour of the

BNp. Nevertheless, if perturbation probability is very

small, the network will remain in the attractors of the orig-

inal network for most of the time, meaning that attractor

states will carry most of the steady-state probability mass

[8]. In this way the attractor states remain significant for

the description of the long-run behaviour of a Boolean

network after adding perturbations. Thus, a BNp inherits

the attractor-basin structure from the original BN; how-

ever, once an attractor has been reached, the network

remains in it until a perturbation occurs that throws the

network out of it [31].

Probabilistic Boolean networks

PBNs were introduced in order to overcome the deter-

ministic rigidity of BNs [3,32,33], originally as a model for

gene regulatory networks. A PBN consists of a finite col-

lection of BNs, each defined by a fixed network function,

and a probability distribution that governs the switching

between these BNs.

Formally, a probabilistic Boolean network G(V ,F) is

defined by a set of binary-valued variables (nodes)c V =

{x1, x2, . . . , xn} and a list of sets F = (F1, F2, . . . , Fn). For

i = 1, 2, . . . , n the set Fi is given as {f
(i)
1 , f

(i)
2 , . . . , f

(i)
l(i)},

where f
(i)
j , 1 ≤ j ≤ l(i), is a possible Boolean predictor

function for the variable xi, with l(i) the number of pos-

sible predictors for xi. In general, each node xi can have

l(i) different sets of essential predictors, each specified for

a particular predictor function in Fi. A realisation of the

PBN at a given instant of time is determined by a vec-

tor of predictor functions, where the ith element of that

vector contains the function selected at that time point

for xi. For a PBN with N realisations there are N possible

network transition functions f 1, f 2, . . . , f N of the form

f l = (f
(1)
l1

, f
(2)
l2

, . . . , f
(n)

ln
), l = 1, 2, . . . ,N , 1 ≤ lj ≤ l(j),

f
(j)

lj
∈ Fj, and j = 1, 2, . . . , n. Each network function f l

defines a constituent Boolean network, or context, of the

PBN.

Let f = (f (1), f (2), . . . , f (n)) be a random vector taking

values in F1 × F2 × · · · × Fn; in other words, f is a random

vector that acquires as value any of the realisations of the

PBN. The probability that the predictor f
(i)
j , 1 ≤ j ≤ l(i),

is selected to determine the value of xi is given by

c
(i)
j = Pr{f (i) = f

(i)
j } =

∑

l:f
(i)
li

=f
(i)
j

Pr{f = f l}. (2)

It follows that
∑l(i)

j=1 c
(i)
j = 1. The PBN is said to be

independent if the random variables f (1), f (2), . . . , f (n) are

independent. Assuming independence, there are N =∏n
i=1 l(i) realisations (constituent BNs) of the PBN and the

probability distribution on f governing the selection of a

particular realisation is given by Pr{f = f l} =
∏n

i=1 c
(i)
li
.

An example of a PBN with three nodes is given in

Figure2.

At each time point of the PBN’s evolution, a decision

is made whether to switch the constituent network. This

is modelled with a binary random variable ξ : if ξ =

0, then the current constituent network is preserved; if

ξ = 1, then a context is randomly selected from all the

constituent networks in accordance with the probability

distribution of f . Notice that this definition implies that

there are twomutually exclusive ways in which the context

may remain unchanged: 1) either ξ = 0 or 2) ξ = 1 and

the current network is reselected. The functional switch-

ing probability q = Pr(ξ = 1) is a system parameter. Two

cases are distinguished in the literature: if q = 1, then

a switch is made at each updating epoch; if q < 1, then

the PBN’s evolution in consecutive time points proceeds

in accordance with a given constituent BN until the ran-

dom variable ξ calls for a switch. If q = 1, as originally

introduced in [32], the PBN is said to be instantaneously

random; if q < 1, it is said to be context-sensitive. The

former models uncertainty in model selection, the lat-

ter models the situation where the model is affected by

latent variables outside the model [34]. As an example let

us consider the PBN given in Figure 2. Let the PBN be

instantaneously random, i.e., q = 1. The four constituent

BNs associated with the four transition functions f 1, f 2,

f 3, and f 4, are given in Figure 1. Further, let us assume

that the initial state is the state 101 and that the con-

secutive realisations are f 1, f 2, f 4, f 3, f 2, f 2, f 3, f 4, f 4, . . ..
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x 1x 2x 3 f
(1)

1 f
(2)

1 f
(2)

2 f
(3)

1 f
(3)

2

000 0 1 0 1 1

001 1 0 1 0 1

010 1 0 0 1 0

011 1 1 1 1 1

100 0 0 1 0 1

101 0 0 1 1 1

110 1 1 1 1 0

111 0 1 0 1 1

c
( i )

j 1 0.3 0.7 0.4 0.6

101

100

111

110

011

001000

010

A =

0 c3 + c4 0 c1 + c2 0 0 0 0

0 0 0 0 c1 c2 c3 c4

0 0 0 0 c2 + c4 c1 + c3 0 0

0 0 0 0 0 0 0 1

c1 c2 c3 c4 0 0 0 0

0 c1 + c2 0 c3 + c4 0 0 0 0

0 0 0 0 0 0 c2 + c4 c1 + c3

0 c3 + c4 0 c1 + c2 0 0 0 0

Figure 2 An example of truth table, state transition diagram, and transition probability matrix of a PBN. The truth table, the state transition

diagram, and the transition probability matrix A of a PBN without perturbations consisting of three variables V = {x1 , x2 , x3} andF = (F1 , F2 , F3),

where F1 = {f
(1)
1 }, F2 = {f

(2)
1 , f

(2)
2 }, and F3 = {f

(3)
1 , f

(3)
2 }. Since there is one predictor function for node x1 and two predictors for nodes x2 and x3 ,

there are 1 · 2 · 2 = 4 realisations of the PBN given by four network transition functions f 1 = (f
(1)
1 , f

(2)
1 , f

(3)
1 ), f 2 = (f

(1)
1 , f

(2)
1 , f

(3)
2 ),

f 3 = (f
(1)
1 , f

(2)
2 , f

(3)
1 ), and f 4 = (f

(1)
1 , f

(2)
2 , f

(3)
2 ) with associated probabilities c1 = 0.12, c2 = 0.18, c3 = 0.28, and c4 = 0.42, respectively. For example,

c3 = c
(1)
1 · c

(2)
2 · c

(3)
1 = 1 · 0.7 · 0.4 = 0.28. The edges in the state transition diagram are labelled with the transition probabilities. As can be seen from

the state transition diagram, the underlying Markov chain is irreducible and aperiodic, thus ergodic. The steady-state (limiting) distribution for the

chosen ci values, i = 1..4, is given by [ 7
1609 ,

3640
14481 ,

49
4827 ,

716
4827 ,

175
4827 ,

238
4827 ,

2548
14481 ,

4696
14481 ] (the states are considered in the lexicographical order from 000

to 111).

Then, the corresponding time evolution of the PBN (tra-

jectory) is given by the following sequence of state tran-

sitions: 101 → 001 → 110 → 110 → 111 → 011 →

111 → 001 → 100 → 011 → . . .. Irrespective of which

constituent network (realisation) is selected next, the con-

secutive state in the trajectory is going to be 111 as the

probability of moving from 011 to 111 is c1+c2+c3+c4=1.

A Probabilistic Boolean Network with perturbations

(PBNp) is the variant of the PBN framework in which

each constituent network is a BNp with a common per-

turbation probability parameter p, 0 < p < 1, and a

perturbation vector γ . If x(t) ∈ {0, 1}n is the current state

of the network and γ (t) = 0, then the next state of the

network is determined according to the current network

function f l, i.e., x(t + 1) = f l(x(t)). If x(t) ∈ {0, 1}n is

the current state and γ (t) �= 0, then x(t + 1) = x(t) ⊕

γ (t). Whereas a context switch in a PBNp corresponds

to a change in latent variables, resulting in a structural

change in the functions that govern the PBNp, a random

perturbation reflects a transient value change that leaves

the network wiring unmodified, as for example in the

case of gene activation or inactivation caused by external

stimuli such as stress conditions or small molecule

inhibitors [8].

The relationship between the four frameworks, i.e.,

Boolean networks, Boolean networks with perturbations,

probabilistic Boolean networks, and probabilistic Boolean

networks with perturbations is schematically depicted in

Figure 3.

Dynamics of PBNs

A Boolean network with perturbations can be viewed as

a homogenous irreducible Markov chain Xt , with state

space X = {0, 1}n, where n is the number of nodes in the

BNp. Let Py(x) = Pr[Xt0+1 = x|Xt0 = y] be the Markov

chain transition probability from state y to state x at any

instant t0. This probability is a weighted sum of two tran-

sition probabilities, one for the BN, with probability (1 −

p)n, and the other for the perturbations, with probability

1 − (1 − p)n, i.e.,

Py(x) = 1[f (y)=x](1−p)n+(1−1[x=y])p
η(x,y)(1−p)n−η(x,y),

(3)

where p is the perturbation probability, 1 is the indicator

function (1[P] = 1 if the proposition P is true, and 1[P] = 0

otherwise), and η(x, y) is the Hamming distance between

the binary vectors x and y.



Trairatphisan et al. Cell Communication and Signaling 2013, 11:46 Page 6 of 25

http://www.biosignaling.com/content/11/1/46

BN

BNp PBNp

PBN

P
e

rt
u
rb

a
ti
o

n
 

(p
,

)
Probability distribution

on constituent BNs

Probability distribution

on constituent BNps 

P
e

rt
u
rb

a
ti
o

n
 

(p
,

)

Figure 3 Relationships between the frameworks of Boolean and

probabilistic Boolean networks. A Boolean network (BN) can be

converted to a Boolean network with perturbations (BNp) by

introducing a probability parameter p, 0 < p < 1, and a perturbation

vector (γ ). A probabilistic Boolean network (PBN) is built upon a

number of constituent BNs and a probability distribution governing

the choice of the Boolean network in accordance with which the next

transition is made. Analogically, a PBN can be converted to a

probabilistic Boolean network with perturbations (PBNp) by

introducing a probability parameter p, 0 < p < 1, and a perturbation

vector (γ ). A probabilistic Boolean network (PBN) is built upon a

number of constituent BNps and a probability distribution governing

the choice of the BNp in accordance with which the next transition is

made.

The Markov chain Xt is ergodic, which follows from

the fact that it is aperiodic, irreducible, and defined on

a finite state space. In other words, it possesses a unique

stationary distribution, being simultaneously its steady-

state (limiting) distribution. If P
(t)
y (x) is the probability

that the system transitions from y to x in t time steps, i.e.,

P
(t)
y (x) = Pr[Xt0+t = x|Xt0 = y], then the steady-state

distribution π of Xt is defined by π(x) = limt→∞ P
(t)
k (x)

for any initial state k ∈ X . For a set of states B ⊆ X the

steady-state probability is given by π(B) =
∑

x∈B π(x) =

limt→∞ P
(t)
k (B) for any initial state k ∈ X . For exam-

ple, the steady-state distribution of the Markov chain

given by the transition probability matrix in Figure 2 is

[ 7
1609 ,

3640
14481 ,

49
4827 ,

716
4827 ,

175
4827 ,

238
4827 ,

2548
14481 ,

4696
14481 ] (the states

are considered in the lexicographical order from 000 to

111).

In the case of a probabilistic Boolean network, the tran-

sition probabilities Py(x) of the underlying Markov chain

Xt depend on the probability of selecting a network tran-

sition function f k , k = 1, 2, . . . ,N , that determines the

transition from y to x i.e.,

Py(x) = Pr[Xt+1 = x|Xt = y]=

N∑

k=1

1[f k(y)=x]·Pr{f = f k},

(4)

whereN, as before, is the number of constituent BNs and f

is a random vector determining the PBN’s realisation. Let-

ting x and y range all states inX , the transition probability

matrix A of size 2n × 2n can be formed and expressed as

A =

N∑

k=1

Ak · Pr{f = f k}, (5)

where Ak is the transition matrix corresponding to the

k-th constituent BN.

Now, adding perturbations with probability p makes

the underlying finite-space Markov chain Xt of the PBNp

aperiodic and irreducible, hence ergodic. This allows the

network dynamics of a PBNp to be studied with the use

of the rich theory of ergodic Markov chains [30]. In par-

ticular, in the case of instantaneously random PBNps, the

transition probability matrix Ã is given by

Ã = (1 − p)n · A + P̃, (6)

where P̃ is the perturbation matrix of the form

P̃y,x = (1 − 1[x=y])p
η(x,y)(1 − p)n−η(x,y), (7)

where, as before, 1 is the indicator function and η is the

Hamming distance. As in the case of BNps, the ergod-

icy of the underlying Markov chain ensures the existence

of the unique stationary distribution being the limiting

distribution of the chain.

By definition, the set of attractors of a PBN is the union

of the sets of attractors of the constituent networks [8].

Notice that whereas in a BN two attractors cannot inter-

sect, attractors from different contexts can intersect in

the case of a PBN. Similarly as in the case of Boolean

networks, attractors play a major role in the characterisa-

tion of the long-run behaviour of a probabilistic Boolean

network. If, however, perturbations are incorporated, the

long-run behaviour of the network is characterised by its

steady-state distribution. Nevertheless, if both the switch-

ing and perturbation probabilities are very small, then the

attractors still carry most of the steady-state probability

mass [8]. From a biological point of view attractors of such

networks are interesting as they can be given a clear bio-

logical interpretation: they can be used to model cellular

states [31]. For example, in the context of gene regulatory

networks, it is believed that attractors can be interpreted

as cellular phenotypes [7,8]. Thus, the long-run behaviour

of the network given by its steady-state probabilities is

of a special interest. Specifically, the attractor steady-

state probabilities, i.e., π(A), where A is an attractor, are

important. There are a number of approaches towards the

determination and analysis of the steady-state distribution

of a PBNp. We review them shortly.

First, one approach to the steady-state analysis is to con-

struct the state transition matrix in some form or another

and then apply some numerical methods, e.g., iterative,
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decompositional or projection methods [35]. A transi-

tion matrix based approach in which the sparse transition

matrix is constructed in an efficient way and the so-

called power method, which is applied to compute the

steady-state probability distribution, is proposed in [36].

Unfortunately, the size of the state space grows expo-

nentially in the number of nodes (genes) and becomes

prohibitive for matrix-based numerical analysis of larger

networks [11]. In [12], an approximation method for com-

puting the steady-state probability distribution of a PBNp

is derived from the approach of [36]. Thismethod neglects

some constituent BNps with very small probabilities dur-

ing the construction of the transition probability matrix.

An error analysis is given to demonstrate the effective-

ness of this approach. Further, in [13] and [37] a matrix

perturbation method for computing the steady-state

probability distribution of PBNps is proposed together

with its approximation variant. The proposed meth-

ods make use of certain properties of the perturbation

matrix, P̃.

Second, Markov chain Monte Carlo methods [38] rep-

resent a feasible alternative to numerical matrix-based

methods for obtaining steady-state distributions. Given an

ergodic Markov chain, a Monte Carlo simulation method

has been proposed: the probability of being in state x in

the long run can be estimated empirically by simulating

the network for a sufficiently long time and by count-

ing the percentage of time the chain spends in that state

regardless of the starting state [8]. A set of examples of

Monte Carlo simulations from the PBN example in Figure

2 is shown in Figure 4. However, the question that remains

is how to judge whether the simulation time is sufficiently

long? The key factor here is the convergence, which in the

case of a PBNp is known to depend to a large extent on

the perturbation probability p [11]. Several approaches for

determining the number of iterations necessary to achieve

convergence were developed. A typical class consists of

methods based on the second-largest eigenvalue of the

transitions probability matrix, but due to reasons already

mentioned above, these approaches can be impractical

for larger networks. Another method utilises the so-called

minorisation condition for Markov chains [39] to provide

a priori bounds on the number of iterations. However, the

usefulness of this approach is also limited (see [11] for

details). There exist a number of methods for empirically

diagnosing convergence to the steady-state distribution

[40,41]. In [11] two of them are considered: one, based

on the Kolmogorov-Smirnov test, a nonparametric test

for the equality of continuous, one-dimensional proba-

bility distributions, and, second, the approach proposed

in [42] which reduces the study of convergence of the

chain to the investigation of the convergence of a two-

state Markov chain. For illustration of application of these

approaches to PBNs, we refer to [11] where the joint

steady-state probabilities of combinations between two

genes in human glioma gene expression data set were

analysed.

Finally, as shown in [31], analytical expressions for the

attractor steady-state probabilities can be derived both

for BNps and PBNps. The obtained formulas are fur-

ther exploited to propose an approximate steady-state

computation algorithm.

We just shortly mention here that in the case of

probabilistic Boolean networks without perturbations the

dynamics is given by a Markov chain that does not nec-

essarily be ergodic, specifically the Markov chain may

contain more than one so-called ergodic set of states, also

referred to as a closed, irreducible set of states in the lit-

erature. An ergodic set of states C in a Markov chain

is defined as a set of states where all states communi-

cate and no state outside C is reachable from any state

in Cd. The notion of an ergodic set of the correspond-

ing Markov chain in probabilistic Boolean networks is the

stochastic analogue of the notion of an attractor in stan-

dard Boolean networks [32]. Notice, however, that the

ergodic sets and the attractors of a PBN or PBNp may dif-

fer. In the case of probabilistic Boolean networks without

perturbations where the underlying Markov chain con-

tains more than one ergodic set, considering the ergodic

sets rather than the attractors may be more significant

for understanding the long-run behaviour of the net-

work. For example, in the context of modelling biolog-

ical processes with PBNs, cellular phenotypes may in

fact be represented by the ergodic sets. For more details

see [32,43,44].

A number of other issues related to probabilistic

Boolean network dynamics have been considered in the

literature. We briefly list them here. In [45,46], the

ordering of network switching and state transitions in

context-sensitive PBNs are considered and its influence on

the steady-state probability distributions is investigated.

Algorithms for enumeration of attractors in probabilistic

Boolean networks are discussed in [47]. Stability and sta-

bilisation issues of PBNs are covered in [48]. Further, net-

work transformations from one to another without losing

some crucial properties, e.g., the steady-state probability

distribution, are considered in [49]. For this purpose the

concepts of homomorphisms and ǫ-homomorphisms for

probabilistic regulatory networks, in particular PBNs, are

developed.

Construction and inference of PBNs as models of
gene regulatory networks
One approach to the dynamical modelling of gene regula-

tion is based on the construction and analysis of network

models. Generally, in the study of dynamical systems,

long-run behaviour characteristics are of utter impor-

tance and their determination is a main aspect of system
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Figure 4 Dynamical simulations of node x2 of the example network in Figure 2, with initial state k = 000. (a) Dynamics of x2 governed by

the constituent BN corresponding to the transition function f 1 , where c1 = 1, c2 = c3 = c4 = 0. Starting from 000 the periodic attractor {011, 111}

is reached. The probability of {x2 = 1} given by the stationary distribution is 1. (b) Dynamics of x2 governed by the constituent BN corresponding to

the transition function f 4 , where c4 = 1, c1 = c2 = c3 = 0. Starting from 000 the periodic attractor {001, 111} is reached. The probability of {x2 = 1}

given by the stationary distribution related to the reached attractor, i.e., [ 0, 12 , 0, 0, 0, 0, 0,
1
2 ] (the states are considered in the lexicographical order), is

0.5. (c,d) Examples of x2 dynamics in the full PBN as given in Figure 2. Starting from 000 different trajectories are obtained for different simulation

runs. The underlying Markov chain is ergodic and a unique stationary distribution, being the steady state (limiting) distribution, exists therefore. The

steady state probability of {x2 = 1} is 0.66.

analysis. Reversely, the task of constructing a network

possessing a specific set of properties is a subject of sys-

tem synthesis. However, this inverse problem is usually

ill-posed, i.e., there may be many models, or none, with

the given properties [50]. Here we concentrate on the

problem of inference from data in the framework of prob-

abilistic Boolean networks, an inverse problem in which

a network is constructed relative to some relationship

with the available data. An outline of the workflow in

network inference in the PBN framework is shown in

Figure 5.

A data-driven approach for model construction con-

sists of inferring the model structure and model param-

eters from measurement data, which in the case of gene

regulation most commonly are gene expression measure-

ments obtained with microarray technology. However,

such data are continuous in nature. Thus, prior to the

inference of Boolean or other discrete-type models (e.g.,

ternary) the measurements are usually discretised. The

most common discretisation is binary (0 or 1) or ternary

(usually -1, 0, 1) [8]. Discretisation is often justified as

biological systems commonly exhibit switch-like on/off

behaviour. Moreover, there are also a number of prag-

matic reasons for quantising the measurements, e.g., it

reduces the level of model complexity implying less com-

putation and lower data requirements for model identi-

fication, provides a certain level of robustness to noise

in the data, and has been shown to substantially reduce

error rates in microarray-based classification [8,51-53]. A

number of methods for discretisation of gene expression

data exist, many of them having their origin in signal pro-

cessing. One approach to quantisation was proposed in

[54]: given some thresholds τ1 < τ2 < . . . (e.g., cor-

responding to limiting cases of a sigmoidal response), a

multilevel discrete variable x is defined as x = ϕ(x) = rk
for τk < x ≤ τk+1. As mentioned in [8], the thresh-

olds can either come from prior knowledge or be chosen

automatically from the data. In fact, there are various

ways for optimal selection of the thresholds τk . One of

the most popular methods is the Lloyd-Max quantizer,

which amounts to minimising a so-called mean square

quantisation error, see [55] for details. Approaches spe-

cific to binarising gene expression data can be found

in [56-58]. Recently, Hopfensitz et al. [58] proposed a
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one-bit predictor function 
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perturbation based on general 
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chains, such as the SMV 
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Feature: apply external 

perturbation to modulate the 

network dynamic, possibly via 

auxiliary input variables

Existing methods: random gene 

perturbation; finite-horizon 

control for modifying  the 

network dynamic over a 

transient period of time; 

infinite-horizon control to 

change the steady-state 

distribution.

Structural intervention External control

Goal: to increase the probability of reaching 
desirable states in an inferred PBN 

Figure 5 An outline of the workflow in network inference and control in the PBN framework.Microarray data, either from steady-state or

time-course measurements, are typically binarised or discretised into discrete values. A heuristic approach, such as using genetic algorithms, is

generally applied to identify constituent Boolean networks of the inferred PBN. Regularisation methods can be further applied to improve the

accuracy of the inference with use of prior information on the network structure or dynamical rules. A number of well-established methods are

subsequently applied to determine the predictor probability of each constituent Boolean network, thus the PBN is inferred. The inferred PBN can

subsequently be perturbed with the methods on structural intervention or external control. The goal of network control is to increase the

probability of reaching desirable states in the corresponding PBN.

new approach to binarisation which incorporates mea-

surements at multiple resolutions. The method, called

Binarization across Multiple Scales, is based on the com-

putation of a series of step functions, detection of the

strongest discontinuity in each step function and the esti-

mation of the location and variation of the strongest

discontinuities. Two variants of the method are proposed

which differ in the approach towards the calculation of

the series of step functions. The proposed method allows

thresholds determination even with limited number of

samples and simultaneously provides a measure of thresh-

old validity – the latter can further be used to restrict

network inference only to measurements yielding rele-

vant thresholds. An example of application of binarisation

to real data in the context of modelling with PBNs can

be found in [10], where a brain connectivity network of

Parkinson’s disease is analysed. Binarisation is performed

on fMRI real-valued data along the method recently

proposed in [59].

One of the most straightforward inferential approaches

is the consistency problem (also referred to as the extension

problem), that entails a search for a rule from experimental

data [8,60-62]. The problem amounts to finding in a spec-

ified class of Boolean functions one that complies with
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two given sets of “true" and “false" Boolean vectors, i.e.,

a function that takes the value 1 for each of the “true"

vectors and 0 for each of the “false" vectors.

In the case of real experimental data, a consistent exten-

sion may not exist either due to measurement noise or

due to some underlying latent factors or other external

influences not considered in the model [8]. In such case

instead of searching for a consistent extension a Boolean

function that minimises the number of misclassifications

(errors) is considered. This problem is known as the

best-fit extension problem [61] and is computationally

more difficult than the consistency problem, since the

latter is a special case of the former.

The application of PBN for modelling of large-scale

networks is often impeded by limited sample sizes of

experimental data. As mentioned in [63], main challenges

in automated network reconstruction arise from the expo-

nential growth of possible model topologies for increasing

network size, the high level of variability in measured

data often characterised by low signal to noise ratios, and

the usually large number of different components that

are measured versus relatively small number of differ-

ent observations under changing conditions, e.g., number

of time points or perturbations of the biological system.

Together these problems lead to non-identifiability and

over-fitting of models [63]. In such cases any prior infor-

mation on the network structure or dynamical rules is

likely to improve the accuracy of the inference [8,64].

This information usually pertains to model complexity

and is used to penalise excessively complex models. For

this purpose, the so-called regularisation methods can

be employed. The most popular regularisation assump-

tion in gene regulatory modelling is that the inferred

models should be sparse, i.e., the number of regulators

acting on a gene is low [65-68] or that the node degree

in biological networks is often power law distributed,

with only few highly-connected genes, and most genes

having small number of interaction partners [63,69]. Reg-

ularisation is a well-established inference approach in the

framework of Bayesian networks (see, e.g., [63,70,71]) and

can be also used in the framework of BNs and PBNs.

For example, in the case of inference of Boolean net-

works, the so-called sensitivity regularisation method has

been proposed [64]. Due to limited sets of data, the

estimates of the errors of a given model in the best-

fit extension problem, which themselves depend on the

measurements, may be highly variable [64]. The regu-

larisation is built on the observation that the expecta-

tion of the state transition error generally depends on

a number of terms, among others the sensitivity devi-

ation which is a difference in the sensitivities of the

original and the inferred networks. In consequence, as

argued in [64], the sensitivity deviation can be incorpo-

rated as an additional penalty term to the best-fit objective

function, reflecting the hypothesis that the best inference

should have a small error in both state transition and

sensitivity.

In order to infer a PBN, strong candidates for regu-

lar Boolean networks need to be identified first. This

can be performed with generic methods mentioned in

[72] such as literature data compilation, the gene associ-

ation networks approach [73,74] or by applying a heuris-

tic approach, e.g., a genetic algorithm, which searches

through the model space to find good candidates for

the network structure with respect to a specified fitness

function. Next, the candidates’ predictor functions are

combined into a set of network transition functions for the

PBN. An example of PBNmodel selection using heuristics

can be found in [75].

A common strategy for determining the predictor prob-

abilities relies on the coefficient of determination (CoD)

between target and predictor genes [8,32,72,76]. The CoD

is a measure of relative decrease in error from estimat-

ing transcriptional levels of a target gene via the levels

of its predictor genes rather than the best possible pre-

diction in the absence of predictor genes [8]. The CoDs

can be then translated to the predictor probabilities. How-

ever, as pointed out in [77], for each gene, the maximum

number of possible predictors as well as the number of

their corresponding probabilities is equal to 22
n
, where

n is the number of nodes. This implies that the number

of parameters in the PBN model is O(n22
n
)e. Therefore,

the applicability of the CoD approach is significantly lim-

ited due to the model complexity or imprecisions owing

to insufficient data sample size. This hindrance is often

surpassed by imposing some constraints on the maximum

size of admissible predictors for each gene.

In [50] the authors consider the attractor inverse prob-

lem, that involves designing Boolean networks given

attractor and connectivity information. Two algorithms

for solving this problem are proposed. They are based

on two assumptions on the biological reality: first, the

biological stability, i.e., that most of the steady-state prob-

ability mass is concentrated in the attractors and, second,

the biological tendency to stably occupy a given state,

i.e., attractors are singleton attractor cycles consisting of

a single state. The first algorithm operates directly on the

truth table, while taking into account simultaneously the

information on the attractors and predictor sets. There is

however no control on the level-set structure. The sec-

ond algorithm works on the state transition diagram that

satisfies the design requirements on attractor and level-

set structures and checks whether the associated truth

table has predictor sets that agree with the design goals.

The proposed algorithms can be further used in a pro-

cedure for designing PBN from data. In the approach

described in [50], a collection of BNs is generated by

the first algorithm, then some of the BNs are selected
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based on the basin sizes criterion and combined in a

PBN whose steady-state distribution closely matches the

observed data frequency distribution. This design pro-

cedure has been applied to gene-expression profiles in a

study of 31 malignant melanoma samples in [50].

An inverse PBN construction approach is also described

in [78]. This work relies on expressing the probabil-

ity transition matrix as a weighted sum of Boolean

network matrices. A heuristic algorithm with O(m2n)

complexity is proposed, where n, m stand for the

number of genes, respectively the number of non-zero

entries in the transition matrix. The authors also intro-

duce an entropy based probabilistic extension, both

algorithms being analysed against random transition

matrices.

Usually, the optimal predictor for a gene will not be

perfect as there will be inconsistencies in the data. In

[79] it is proposed to model these inconsistencies in

a way that mimics context changes in genomic regu-

lation, with the intention to view data inconsistencies

as caused by latent variables. The inference procedure

of [79] results in PBNs whose contexts model the data

in such a way that they are consistent within each

context. The key criterion for network design is that

the distribution of data states agrees with the distribu-

tion of expected long-term state observations for the

system.

The probabilities of the system being in a particular

context and the number of constituent networks are deter-

mined by the data. The approach of [79] can be seen as

imposing a structure on a probabilistic Boolean network

that resolves inconsistencies in the data arising from mix-

ing of data from several contexts. It should be noted that

in this approach the contexts are determined directly by

the data, whereas in [32] and [80] constituent networks

depend on the number of high-CoD predictor sets or

high Bayes-score predictor sets, respectively, and these

in turn depend on the designer’s choice of a threshold.

Moreover, the number of constituent networks is deter-

mined by how inconsistencies appear in the data, not

the number of states appearing in the data (see [8] for

an example). The contextual-design method of [79] has

been applied to expression profiles for melanoma genetic

network.

We just mention here that also information theoretic

approaches were considered for inference of PBN from

data. Probably the most widely studied methods are based

on the minimum description length (MDL) principle [81].

Descriptions of inference algorithms that utilise this prin-

ciple can be found, e.g., in [8,82,83].

The manner of inference depends on the kind of exper-

imental data available. There are two cases: 1) time-series

data and 2) steady-state data. We proceed with presenting

them briefly.

Time-course measurements

It is assumed that the available data are a single temporal

sequence of network states. In this case, given a suffi-

ciently long sequence of observations, the goal is to infer

a PBN that is one of plausible candidates to have gener-

ated the data. Usually, an inference procedure for this type

of problem constructs a network that is to some extent

consistent with the observed sequence.

In [84,85], the inference in case of context-sensitive

PBNs with perturbations is considered, where the proba-

bility of switching from the current constituent Boolean

network to a different one is assumed to be small. The

proposed inference procedure consists of three main

steps: first, identification of subsequences in the tempo-

ral data sequence that correspond to constituent Boolean

networks with use of so-called ‘purity functions’; sec-

ond, determination of essential predictors for each subse-

quence by applying an inference procedure based on the

transition counting matrix and a proposed cost function;

finally, inference of perturbation, switching, and selec-

tion probabilities. However, the amount of temporal data

needed for inference with this approach is huge, especially

due to the perturbation and switching probabilities: if they

are very small, then long periods of time are needed to

escape attractors and if they are large, estimation accu-

racy is harmed. As stated in [85], if one does not wish to

infer the perturbation, switching, and selection probabili-

ties, then constituent-network connectivity can be discov-

ered with decent accuracy for relatively small time-course

sequences.

A more practical way of inferring PBN parameters

from time-course measurements is presented in [77]. The

authors propose a multivariate Markov chain model to

infer the genetic network, develop techniques for esti-

mating the model parameters and provide an efficient

method of estimating PBN parameters from their multi-

variate Markov chain model. The proposed technique has

been tested with synthetic data as well as applied to gene

expression data of yeast.

Further, in [86] the problem of PBN context estimation

from time-course data is considered. The inference is con-

sidered with respect to minimising both the conditional

and unconditional mean-square error (MSE). The author

proposes a novel state-space signal model for discrete-

time Boolean dynamical systems, which includes as spe-

cial cases distinct Boolean models, one of them being

the PBN model. A Boolean Kalman Filter algorithm is

employed to provide the optimal PBN context switch-

ing inference procedure in accordance to minimisation of

MSE.

Steady-state data

Here we consider a long-run inverse problem in the

context of probabilistic Boolean networks as models for
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gene regulation. On one hand, in the case of microarray-

based gene-expression studies it is often assumed that

the data are obtained by sampling from a steady state.

On the other hand, attractors represent the essential

long-run behaviour of the modelled system [31]. Thus,

in the modelling framework of Boolean networks it is

expected that the observed data states are mostly the

attractor states of amodel network. In consequence, much

of the steady-state distribution mass of the model net-

work should lie in the states observed in the sample

data [50,80,87]. In the case of Boolean networks with

perturbations or probabilistic Boolean networks with per-

turbations, the underlying dynamical system is an ergodic

Markov chain, hence possesses a steady-state distribution.

However, by imposing somemild stability constraints that

reflect biological state stability, also in these frameworks

most of the steady-state probability mass is carried by the

attractors [31].

There are however inherent limitations to the con-

struction of dynamical systems from steady-state data.

Although the steady-state behaviour restricts the net-

work dynamics, it does not determine the steady-state

behaviour: there may be a collection of compatible net-

works with a given attractor structure. In particular, it

does not determine the Boolean network’s basin structure.

As a consequence, obtaining good inference relative to the

attractor structure does not necessary entail valid infer-

ence with respect to the steady-state distribution as the

steady-state probabilities of attractor states depend on the

basin structure [50,80]. In fact building a dynamical model

from steady-state data is a kind of over-fitting [88].

Although the CoD has been used for inference of PBNs

from steady-state data in [32], a fundamental problem is

that the CoD cannot provide information on the direc-

tion of prediction without time-course data. The resulting

bidirectional relationships can affect the inferred graph

topology by introducing spurious connections. Moreover,

they can lead to inference of spurious attractor cycles that

do not correspond to any biological state [8]. As a conse-

quence, this suppressed the use of the CoD as a inference

method for steady-state data.

The inference methods that replaced the CoD approach

are primarily based on the attractor structure [50,79] or

graph topology [89]. In the former case, the key concern

is to infer an attractor structure close to that of the true

network. In the latter case, the focus is on the agree-

ment between graph connections, e.g., as measured by

the Hamming distance between the regulatory graphs [8].

In [16], an approach that achieves both preservation of

attractor structure and connectivity based on strong gene

prediction has been proposed.

Another approach to the problem of constructing gene

regulatory networks from expression data using the PBNs

framework is proposed in [90]. The key element of this

method is a non-linear regression technique based on

reversible-jump Markov chain Monte Carlo (MCMC)

annealing for predictor design. The network construc-

tion algorithm consists of the following stages. First, for

each target gene xi (i = 1, 2, . . . , n) in the network of

n genes a collection of predictor sets is determined by

applying a clustering technique based on mutual informa-

tion minimisation. Optimisation f is performed with use

of the simulated annealing procedure. This step reduces

the class of different predictor functions available for

each target gene. Next, each predictor set is used to

model a predictor function f
(i)
k by a perceptron con-

sisting of both a linear and a nonlinear term, where

k = 1, 2, . . . , l(i), with l(i) the number of predictor sets

found in the previous step for target gene xi. A reversible

MCMC technique is used to calculate the model order

and the parameters. Finally, the CoD is used to compute

the probability of selecting different predictors for each

gene. For a detailed description of this algorithm and its

application to data on transcription levels in the context

of investigating responsiveness to genotoxic stresses see

[90]. It should be noticed that the proposed reversible-

jump MCMC model for predictor design extends the

binary nature of PBNs allowing for a more general model

containing non-Boolean predictor functions that operate

on variables with any finite number of possible discrete

values [72].

As an alternative to the technique of [90], a fully

Bayesian approach (without the use of CoD) for con-

structing probabilistic gene regulatory networks, with an

emphasis for network topology, is proposed in [80]. In

this approach, the predictor sets of each target gene are

computed, the corresponding predictors are determined,

and the associated probabilities, based on the nonlinear

perceptron model of [90], are calculated by relying on

a reversible jump MCMC. Then, a MCMC method is

used to search for the network configurations that max-

imise the Bayesian scores to construct the network. As

stated in [8], this method produces models whose steady-

state distribution contains attractors that are either iden-

tical or very similar to the states observed in the data.

Moreover, many of the attractors are singleton attractors,

which reflect the biological propensity to stably occupy

a given state. The approach of [90] has been applied to

gene-expression profiles resulting from the study of 31

malignant melanoma samples presented in [91].

In [92] the inverse problem of constructing instanta-

neously randomPBNs from a given stationary distribution

and a set of given Boolean networks is considered. Due

to large size of this problem, it is formulated in terms of

constrained least squares and a heuristic method based on

Conjugate Gradient is proposed as a solution.

In [93], the inverse problem of PBNs with perturba-

tions is considered, where a modified Newton method is
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proposed for computing the perturbation probability p

where the transition probability matrix Ã and the steady-

state probability of the PBNp x̃ are known. The new

algorithm makes use of certain properties of the set of

steady-state nonlinear equations, i.e., Ãx̃ − x̃ = 0, with

p as the unknown variable. Considering these proper-

ties improves the computational efficiency with respect

to a direct approach in which every of the 2n equations

(n being the number of nodes) is solved and common

solutions are reported.

Structural intervention and control of PBNs
Using PBNs for the modelling and analysis of biological

systems can lead to a deeper understanding of the dynam-

ics and behaviour of these systems (see Section ‘Dynamics

of PBNs’), paving the way for different methods used for

system structure inference and data measurement (see

Section ‘Construction and inference of PBNs as models

of gene regulatory networks’). Another major objective of

such studies is to predict the effect a perturbation or an

intervention has on the system structure, e.g., allowing to

identify potential targets for therapeutic intervention in

diseases such as cancer. Intervention strategies in PBNs,

e.g., as to change the long-run behavior of networks in

order to decrease the probability of entering some unde-

sired state, rely on two different kinds of direction –

structural intervention [8,33] and external control [8,18].

While the first approach can alter the underlying network

structure permanently, the second one uses external con-

trol to modulate the network dynamics. A classification of

network control methods in the PBN framework is shown

in Figure 5.

Structural intervention

The problem of performing a structural intervention in

a PBN looks at how the steady-state probability of cer-

tain states can be changed with only minimal structural

modifications [8,33]. A more formal description is offered

in the following. Given a PBN and two subsets A and

B of its states, the associated steady-state probabilities

π(A), π(B), have to be modified such as to approach some

given values λA, respectively λB. This can be achieved by

replacing the predictor function fik (of gene i in context

k) with a new function gik , while keeping all other net-

work parameters unchanged. We denote the steady-state

distribution of the resulting PBN as μ. Then, it is possi-

ble to interpret the problem as an optimisation one: given

the state sets A, B, and two values λA ≥ 0, λB ≥ 0,

with λA + λB ≤ 1, find a context k, a gene i, and a func-

tion gik to replace fik , such as to minimises ǫ(A,B) =|

μ(A) − λA | + | μ(B) − λB |, with respect to all contexts,

genes, and predictor functions. Note that A and B can

be used to represent both desirable as well as undesirable

states. While this approach allows changing one predictor

function at a time, a generalisation can be made by allow-

ing a number of predictor functions or by adding more

constraints on the selected functions, only to give a few

examples.

Shmulevich et al. [33] proposed using genetic algo-

rithms to deal with the above optimisation problem.

Later, Xiao and Dougherty [94] provided a construc-

tive algorithm for structural intervention and applied it

to a WNT5A network. The proposed algorithm focuses

on the impact one-bit predictor function perturbations

have on state transitions and attractors. Their approach,

however, does not directly characterise the steady-

state distribution changes that result from (structural)

perturbations of a given probability. In order to solve this

problem, Qian and Dougherty [95] derived a formal char-

acterisation of optimal structural intervention, based on

the general perturbation theory in finite Markov chains.

Specifically, they gave an analytical solution for comput-

ing the perturbed steady-state distribution by looking at

function perturbations. Their work mainly focused on

one-bit function (or rank-1 matrix) perturbations, imply-

ing that for more general perturbations, one needs to

consider an iterative approach. The associated complexity

of such an approach is of O(23n), where n is the num-

ber of genes in the network. Their results have been

applied to a WNT5A network and a mammalian cell

cycle related network, respectively. More recently, Qian

et al. [96] extended their previous result in [95] to a

more efficient solution that uses the Sherman-Morrison-

Woodury (SMW) formula [97] to deal with rank-k matrix

perturbations. Thus, they managed to reduce the com-

putational complexity of the approach from O(23n) to

O(k3), where k ≪ 2n (k is much smaller than 2n).

The application of the derived structural intervention

method to a mutated mammalian cell cycle network

shows that the intervention strategy can identify the

main targets to stop uncontrolled cell growth in the

network.

Qian and Dougherty [98] also looked at how long-run

sensitivity analysis can be used in PBNs, in terms of

difference between steady-state distributions before and

after perturbation, and with respect to different elements

of the network, e.g., probabilistic parameters, regulatory

functions, etc.

External control

While structural intervention focuses on a permanent

change in the network dynamics, external control relies on

Markov decision processes theory for driving a network

out of an undesired state, i.e. as to reach a more desirable

one [8,18].

The first approach to deal with PBNs was proposed by

Shmulevich et al. [18]. They studied the impact of ran-

dom gene perturbations g on the long-run behavior of a
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network. The main idea of Shmulevich et al. [18] is to

construct a formulation of the state-transition probability

that relies on the probability of a gene perturbation and on

Boolean functions for finding bounds for the steady-state

probability. Their particularly interesting finding is that

these states (which in terms of mean first-passage times

(MFPT) are easy to reach from other states) are more sta-

ble with respect to random gene perturbations. In gene

regulatory networks, it is important to identify what genes

are more likely to lead the network into a desirable state

when perturbed. MFPT naturally captures this idea – a

few other methods developed by Shmulevich et al. [18]

work, for example, by maximising the probability to enter

some particular state in some fixed maximum amount

of time, or by minimising the time needed to reach

that state.

Gene perturbation works by single flips of a gene’s

state, providing a natural platform for external interven-

tion control via auxiliary input variables. It makes sense

from a biological perspective, for example, to model aux-

iliary treatments in cancer such as radiation. The value

of these variables can be thus chosen such as to make

the probabilistic distribution vector of the PBN evolve in

some desired manner.

More formally, given a PBN with n genes and k

control inputs, u1,u2, . . . ,uk , the vector u(t) =

(u1(t),u2(t), . . . ,uk(t)) is used to denote the values of all

control inputs at a given time step t. Let P denote the tran-

sition probability matrix of the PBN, evolving according

tow(t+1) = w(t)·P(u(t)). It is obvious to see that, at each

time step t, P depends not only on the initial probability

distribution vector, but also on the values of the control

inputs. External control is essentially about making the

network evolve in some desired manner by choosing, at

each time step, input control values. The sequence of con-

trol inputs, referred to as a control policy or strategy, can

be associated to a cost function which has to beminimised

over the entire class of allowed policies. Such functions

capture the cost and benefit of using interventions, and

are normally application dependent. For the sake of sim-

plicity, we use Jω(z(0)) to denote the cost with respect to

a control policy ω and an initial state z(0). Then, an opti-

mal PBN control problem can be defined as a search for a

control policy ω that minimises the cost Jω(z(0)). External

control in PBNs can be classified into the following two

groups.

Finite-horizon external control

The finite-horizon external control problem is about mod-

ifying over a transient period of time the network dynam-

ics of some given PBN, without changing its steady-state

distribution. In other words, external control is only

applied over a finite number of M time steps, using

policies of the form ω = (μ0,μ1, . . . ,μM−1). The first

optimal finite control formulation in PBNs, and a solu-

tion based on Dynamic Programming [99], were given by

Datta et al. [100]. Working assumptions implied known

transition probabilities and horizon length, later removed

in [101] by making use of measurements, thought to be

related to the underlying Markov chain states of the PBN.

Pal et al. [17] extended the results of Datta et al. [100,101]

to context-sensitive PBNs with perturbation. The results

have been used to devise a control strategy that

reduces the WNT5A gene’s action in affecting biological

regulation.

Optimal finite-horizon dynamic programming based

control, assuming a fixed number of time steps M and

a fixed number of controls k, has a computational com-

plexity of O(22
n
), where n is the number of genes in the

network. Namely, the problem is limited by the size of

the network as one needs to compute the transition prob-

ability matrix. In particular, Akutsu et al. [102] proved

that the problem is NP-hard.h Chen and Ching [103] used

dynamic programming in conjunction with state reduc-

tion techniques [104,105] to find an optimal control policy

for large PBNs. They managed to reduce the computation

complexity to O(| R |), where | R | is the number of states

after state reduction.

Kobayashi and Hiraishi [106] proposed an integer pro-

gramming based approach that avoids computing the

probability matrix in optimal finite-horizon control. Later,

they extended their work to context-sensitive PBNs

[107,108], focusing on the lower and upper bounds of the

cost function. Furthermore, Kobayashi and Hiraishi [109]

proposed a polynomial optimisation approach where a

PBN is first transformed into a polynomial system, sub-

sequently allowing to reduce the optimal control to a

polynomial optimisation problem. In the above papers,

only small examples are used to illustrate the proposed

approaches.

Ching et al. [110] looked at hard constraints for an upper

bound on the number of controls, and proposed a novel

approach that requires minimising the distance between

terminal and desirable states. They also gave a method to

reduce the computational cost of the problem by using

an approximation technique [12]. Cong et al. [111] made

one step further by considering the case of multiple hard

constraints, i.e., the maximum numbers of times each

control method can be applied, developing an algorithm

capable of finding all optimal control policies. A heuris-

tic approach was developed by the same authors in order

to deal with large size networks [111]. A different and

more efficient algorithm, using integer linear program-

ming with hard constraints, was presented later by Chen

et al. [112]. The WNT5A network is a typical example

used in [111,112].

Instead of minimising the cost, Liu et al. [113] investi-

gated the problem of how control can be used to reach
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desirable network states, with maximal probability and

within a certain time. Later, Liu [19] imposed another

new criterion for the optimal design of PBN control

policies, namely the expected average time required to

transform undesired states into desirable ones. In both

papers, the optimal control problem can be solved by

minimising the MFPT of discrete-time Markov decision

processes.

The controllability problem of PBNs was studied by

Li and Sun [114]. A semi-tensor product of matrices, as

described in their work, allows to convert a probabilistic

Boolean control network into a discrete time system. They

provided some conditions for the controllability of PBNs

via either open or closed loop control.

Infinite-horizon external control

Infinite-horizon external control implies working with

external auxiliary variables, over an infinite period of time,

the steady-state distribution being also changed. Policies

in this case have the form of ω = (μ0,μ1, . . .).

In the finite-horizon case, the optimal control policy

is calculated by (essentially) using a backward dynamic

programming algorithm, ending once the initial state is

reached. However, this approach cannot be applied to

infinite-horizon control directly due to the non-existence

of a termination state in the finite-horizon case, poten-

tially leading to an infinite total cost. Pal et al. [115]

extended the earlier finite-horizon results to the infinite-

horizon case for context-sensitive PBNs. They solved

the above two problems by using the theory of average

expected costs and expected discounted cost criteria in

Markov decision processes. For applications, they consid-

ered a gene network containing the genes WNT5A, pirin,

S100P, RET1, MART1, HADHB, and STC2.

A robust control policy can be found in Pal et al.

[116], devised via a minimisation of the worst-case

cost over the uncertainty set, with uncertainty defined

with respect to the entries of the transition probability

matrix.

Due to the computational complexity of O(22
n
), sev-

eral greedy algorithms have been proposed in the lit-

erature. Vahedi et al. [117] developed a greedy control

policy that uses MFPT. Their main idea is to reduce

the risk of entering undesirable states by increasing (or

decreasing) the time needed to enter such a state (or,

respectively a desirable state). Performance of the MFPT-

based algorithm was studied on a few synthetic PBNs

and a PBN obtained from a melanoma gene-expression

dataset, where the abundance of messenger RNA for

the gene WNT5A was found to be highly discriminating

between cells with properties associated with high or low

metastatic competence. Later, three different greedy con-

trol policies were proposed by Qian et al. [118], using the

steady-state probability mass. The first one explores the

structural information of a basin of attractors in order

to reduce the steady-state probability mass for undesir-

able states, while the remaining two policies regard the

shift in the steady-state probability mass of undesirable

states as a criterion when applying control. The identi-

fied three policies, together with the one based on MFPT

[117], were evaluated on a large number (around 1000) of

randomly generated networks and a mammalian cell cycle

network [119].

Some types of cancer therapies like chemotherapy, are

given in cycles with each treatment being followed by a

recovery period. Vahedi et al. [120] showed how an opti-

mal cyclic control policy can be devised for PBNs. Yousefi

et al. [121] extended the results in [120] to obtain opti-

mal control policies for the class of cyclic therapeutic

methods where interventions have a fixed-length dura-

tion of effectiveness. Both of the two approaches [120,121]

were applied to derive optimal cyclic policies to control

the behavior of regulatory models of the mammalian cell

cycle network [119]. While the goal of control policies

is to reduce the steady-state probability mass of unde-

sirable states, in practice it is also important to limit

collateral damage, to consider when designing control

policies. Based on this observation, Qian and Dougherty

[122] developed two new phenotypically-constrained con-

trol policies by investigating their effects on the long-run

behaviour of the network. The newly proposed policies

were examined on a reduced network of 10 nodes. The

network was obtained from gene expression data collected

for the study of metastatic melanoma (e.g, see [91]).

Relationship between PBNs and other probabilistic
graphical models
Probabilistic graphical models, commonly applied in com-

putational biology for network reconstruction, provide

the means for representing complex joint distributions.

Examples include PBNs, Bayesian networks and their vari-

ants, e.g., dynamic and hierarchical Bayesian networks,

hidden Markov models, factor graphs, Markov random

fields, conditional random fields, Markov logic networks,

etc. In this section we discuss the relationship between

the two of them which are usually employed to deal with

system dynamics: the PBNs and the dynamic Bayesian

networks, the latter generalising hidden Markov models.

A Bayesian network is essentially a graphical, com-

pact representation of a joint probability distribution.

The Bayesian network consists of two elements. First, a

directed acyclic graph (DAG) where the vertices of the

graph represent random variables and the directed edges

or lack thereof encodes the so-called Markovian assump-

tion, which states that each variable is independent of its

non-descendants, given its parents [8,123]. Second, a set

of local conditional probability distributions for each ver-

tex, given its parents in the graph. By the chain rule of
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probabilities, the joint probability distribution on the ran-

dom variables in the graph can be decomposed into a

product of the local conditional probabilities, i.e., if there

are n random variables Xi, i = 1, 2, . . . , n and Pa(Xi)

denotes the parents of Xi in the graph, then the joint

probability distribution factors as

Pr(X1,X2, . . . ,Xn) =

n∏

i=1

Pr(Xi|Pa(Xi)). (8)

Two different Bayesian networks can encode the same

set of independencies. Such networks are said to be equiv-

alent. Equivalent networks cannot be distinguished when

inferring the network from measurement data. One way

to bypass this difficulty is to perform targeted interven-

tion experiments which can narrow the range of possible

network architectures.

Dynamic Bayesian networks (DBNs) are extensions of

Bayesian networks to the temporal domain and can be

used to model stochastic processes [70]. DBNs generalise

hidden Markov models and linear dynamical systems by

representing the conditional dependencies and indepen-

dencies between variables over time. Contrary to Bayesian

networks, DBNs can be used to model feedback rela-

tionships, a ubiquitous element in genetic regulation. In

comparison to PBNs, dynamic Bayesian networks support

the assignment of quantitative state values, making this

modelling approach more flexible to handle various types

of data. DBNs are broadly applied to represent biologi-

cal networks such as gene regulatory networks [124-127],

signal transduction networks, e.g., [128-130], metabolic

networks [131], as well as networks in physiology and

medicine [132-136].

As shown in [137], PBNs and binary-valued DBNs

whose initial and transition Bayesian networks are

assumed to have only within and between consecutive

slice connections, respectively, can represent the same

joint probability distribution over their common variables.

This is true both for independent as well as dependent

variants of PBNs. However, there are many statistically

equivalent PBNs that correspond to a DBN. On one hand,

the PBN framework can be considered as redundant from

the probabilistic point of view. On the other hand, it is

richer from the functional point of view because it models

the regulatory roles of different gene sets in more detail

than the conditional probabilities in DBNs [137]. The

conversion algorithms between the two modelling for-

malism are presented in [137], both for independent and

dependent PBNs. Also the extensions of standard PBNs

to context-sensitive PBNp is discussed. The perturbations

and context switching can be introduced in the DBN for-

malism by adding additional hidden nodes to the dynamic

Bayesian network, as shown in [137].

In terms of applications, it has been shown that both

the PBN and the DBN approaches principally have good

performance on the inference of gene regulatory networks

from microarray data [138]. In addition, the connection

between PBNs and DBNs makes it possible to apply the

advancedDBNs to PBNs tools and vice versa. For example,

an abundant collection of learning theory and algorithms

for DBNs already exists and methods for the analysis

of temporal behaviour of DBNs are already established.

These techniques can be tailored to be applied directly in

the context of PBNs. Conversely, the tool for controlling

the steady-state behaviour of the networks, tools for net-

work projection, node adjunction, resolution reduction as

well as efficient learning schemes can be applied to DBNs.

As presented in [139], PBNs and dynamic Bayesian

networks can be viewed as consisting of a probabilis-

tic (Markov chain) and of a (Boolean) logic component.

In the case of a dynamic Bayesian network, the proba-

bilistic component is defined by a conditional probability

chain rule and a Markov chain while the logic component

is given by propositional logic with structural require-

ments. As shown in [139], Bayesian networks, with their

hierarchical and dynamic variants, as well as probabilis-

tic Boolean networks, are all generalised by Markov logic

networks. The same separation of components applies.

For a Markov logic network, the probabilistic compo-

nent is a Markov random field and the logic compo-

nent is the first order logic. We refer to [139] for more

details on this framework, its applications in biology and

medicine as well as the relationship with Bayesian net-

works.

PBN applications in biological and biomedical
studies
PBNmodels for the representation of biological networks

Even though a significant part of the research on PBNs is

theoretical, a large number of applied studies on the use

of PBNs for various biological systems can be found in

the literature. This is particularly the case with inference

of models for molecular and physiological networks (from

prior knowledge or data), with subsequent model analysis

that leads to novel knowledge in biology and medicine.

PBNs asmodels of gene regulatory networks

PBNs were originally developed as models for Gene Reg-

ulatory Networks (GRNs) [3,8]. As stated in [32], PBNs

1) incorporate rule-based dependencies between genes;

2) allow the systematic study of global network dynam-

ics; 3) are able to cope with uncertainty, both in the

data and model selection; and 4) permit the quantifica-

tion of the relative influence and sensitivity of genes in

their interactions with other genes. In the PBN modelling

framework, gene expression is quantised to two levels: ON

and OFF.
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The dynamical behaviour of PBNs can be used to model

many biologically meaningful phenomena, such as cellular

state dynamics possessing switch-like behaviour, hystere-

sis, stability, and etc. [32,140]. Often, the attractor cycles

are interpreted as functional states on physiological time

scales or as cellular phenotypes on developmental time-

scales [7,8]. This interpretation is fairly reasonable asmost

cell types are characterised by stable recurrent patterns of

gene expression [31].

In the past years, there were several studies which suc-

cessfully applied PBNs for the construction of GRNs from

high-throughput gene expression microarray experiment

data. In 2006, Yu et al. inferred a GRN of the inter-

feron pathway in macrophages using time-course gene

expression data [22]. The optimal network was identi-

fied applying the CoD approach. It was shown that the

respective selection probabilities are varying for different

biological conditions, e.g., after interferon treatment or

after viral infection on macrophage, while the structure of

the constituent network, i.e., predictor functions, remains

stable. With a similar approach, Nguyen et al. inferred a

GRN of hepatocellular carcinoma from microarray data

and compared it to a network derived from control non-

cancerous samples [141]. They indicated that certain

genes in tumour samples show activity in steady-state

periods while there is no activity for these genes in the

control (non-cancerous) samples. This allowed to distin-

guish different gene regulatory processes being realized

with the same set of genes.

Hashimoto et al. modelled the cell cycle of budding

yeast by using context-sensitive PBNs [23]. They showed

that the switching behaviour from stationary G1 phase

to excited G1 phase in the PBN model is more frequent,

when compared to the stochastic model of Zhang et al.

[142]. Recently, Todd et al. identified the ergodic sets of

states in PBNs that correspond to each phase of the bud-

ding yeast cell cycle, which in turn correspond to the

cellular phenotypes [44]. The analysis of the dynamical

behaviour gave additional insights on yeast cell cycle regu-

lation, e.g., the yeast cell cycle network showed robustness

both to external variable environments and to certain per-

turbations such as nitrogen deprivation, where yeast cells

proceeded through one round of division and arrest at G1

phase without appreciable growth.

In 2011, Flöttmann et al. modelled the regulatory pro-

cesses that govern the production of induced Pluripotent

Stem (iPS) cells by considering the interplay between gene

expression, chromatin modification, and DNA methyla-

tion [24]. As there is no clear guideline on how to assign

Boolean functions to represent the interactions of each

gene, their PBN model was designed to work by repre-

senting uncertainty via two assignments. First, a number

of possible functions were assigned to the corresponding

nodes with different probabilities. Second, the influences

of certain nodes were split into separated Boolean func-

tions with varied selection probabilities. A flexibility was

thus allowed for choosing Boolean functions that fit the

experimental data. With their PBN model, an extensive

analysis was performed, allowing to demonstrate epige-

netic landscape changes from differentiated cells to iPS

cells as a function of time step. In addition, by looking at

model variants of the core iPS regulation, it was shown

that an increased chromatin modification rate could

improve reprogramming efficiency while faster changes in

DNAmethylation could provide an enhanced rate though

at the price of trading-off efficiency.

PBNwithin signal transduction network andmetabolic

networkmodelling

To date, there is no study which specifically applied

PBN as a stand-alone framework for modelling sig-

nal transduction or metabolic networks. Nevertheless,

PBN was combined with other algorithms or modelling

frameworks. Fertig et al. presented GESSA, Graphically

Extended Stochastic Simulation Algorithm, a mechanis-

tic hybrid model which integrates the network model

of cell signalling with pooled PBN to a differential

equation-based model of transcription and translation

computed by a stochastic simulation algorithm [25].

The cell signalling PBN model is generated by simu-

lating individual protein copies with the correspond-

ing state transitions updated according to the rules in

the PBN. The sum of the resulting molecular states

across copies, i.e., of each individual species, is com-

pared to the initial state, the difference being afterwards

returned and the cellular state being updated. GESSA

was applied to the study of the cell fate decision of val-

val precursor cells in C. elegans, where model predic-

tions matched the experimental results even for mini-

mal parameterisations of the PBN. It was thus shown

that PBN could be an essential component when flexi-

bility is needed in multi-level data integration and model

construction.

In metabolic modelling, Chandrasekaran et al. pre-

sented an automated algorithm for the Probabilistic Reg-

ulation of Metabolism (PROM), allowing to reconstruct

a probabilistic GRN integrated with a metabolic net-

work from high-throughput data[26]. PROMmakes use of

conditional probabilities to model transcriptional regula-

tion, similar to the CoD concept in PBN inference. This

formalism permits the strength of transcription factor

(TF)-gene regulation as well as gene states to be rep-

resented in terms of probabilities. PROM was used to

generate a genome-scale integrative transcriptomic and

metabolomic network of Escherichia coli, where PROM

surpassed the state-of-the-art methods such as the regu-

latory flux balance analysis. PROM was also used to gen-

erate an integrative model ofMycobacterium tuberculosis.
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The results from the model analysis offered additional

details on known regulatory mechanisms and also helped

to uncover the function of less studied genes on metabolic

regulation.

Apart from these two studies, several other works also

made use of a probabilistic framework for analysing sig-

nal transduction and metabolic networks. Kaderali et al.,

for instance, developed an algorithm that reconstructs

signalling pathways from gene knockdown data (RNAi

data) [143]. In this work, pathway topologies are inferred

by using Bayesian networks with probabilistic Boolean

threshold functions. The algorithm was used to study

the Janus Kinase and Signal Transducers and Activators

of Transcription (JAK/STAT) pathway, correctly recon-

structing the core topology of the pathway along with

model variants. Similarly, Sauer et al. [144] used prob-

abilistic equations to determine flux ratios, allowing to

express the relative contribution of certain metabolites or

pathways as modulators in the network. This assignment

is more realistic than using flux absolute integer numbers,

given that the flux of each source can relatively contribute

to the production of certain metabolites.

PBN applications in the context of physiology

PBNs were also used in the recent years for studying net-

works in physiology, with a close link to medicine. Tay

et al. described a dengue hemorrhagic fever (DHF) infec-

tion model which contains the interplay between dengue

virus and different cytokines which are cross-regulated in

T-helper 1 (Th1) and Th2 cells [9]. In their work, a sin-

gle probabilistic Karnaugh-Map is generated, modelling

the inducement probability of each cell as to define the

overall influence of inducing nodes. Simulation results

matched clinical data for both synchronous and asyn-

chronous updating, with respect to the form and the

average duration-based attractors, respectively. In addi-

tion, by applying a genetic algorithm [145] to modulate

the DHF attractor basins to dengue fever (DF) basins (a

less severe form of DHF), Tay et al. also identified the

tumour growth factor beta (TGFβ), interleukine-8 (IL-8)

and IL-13, as sensitive intervention points.

Another example in this field can be found in the study

of Ma et al., where, based on functional Magnetic Reso-

nance Imaging (fMRI) data, the authors developed a brain

connectivity network model for Parkinson’s disease [10].

A method similar to the one of Yu et al. [22] was used

for probability inference selection, i.e., the calculation of

CoDs. Then the CoDs were subsequently used to gener-

ate an influence matrix representation of the brain sig-

nal connectivity among brain components. The obtained

results showed that a significant difference in connec-

tivity exists for many paired brain-components com-

paring between normal, Parkinson’s disease with drug,

and Parkinson’s disease with drug withdrawal conditions,

and this difference was expressed in terms of estimated

range of coefficient mean activity. This particular infor-

mation may allow to construct a new screening procedure

for Parkinson’s disease diagnose and to determine drug

trial responsiveness based on a non-invasive, fMRI-based

investigation in the future.

A certain number of the previously described (applied

research) articles on PBN have applications not only in

molecular biology, but also in physiology or medicine.

Only to name a few examples, being able to distinguish

among the regulatory networks of cancer and healthy

cells, as presented by Nguyen et al., could contribute to an

early detection of cancerous genes in susceptible popula-

tions [141]. A better understanding of dynamic processes

and the control of somatic cell programming, as proposed

by Fertig et al., may lead to a future use of iPS cells in cell

or tissue replacement therapies [25]. Last but not least,

the PROM algorithm, as introduced by Chandrasekaran

et al., is capable of predicting transcription factor drug

targets which are major hubs in the cellular network of

pathogenic organism such as Mycobacterium tuberculosis

[26]. A further development of drugs in this direction may

help in the treatment of different infectious diseases. This

new line of treatment could have a strong impact for third-

world countries where infectious diseases still remain a

major cause of death.

PBN for Systems Biology and Systems Biomedicine?

As previously discussed, the PBN framework is a topic of

intensive and continuous theoretical research with suc-

cessful applications in the biomedical area. To describe

and extend a vision on future PBNs’ applications, we sum-

marise additional arguments to support why this mod-

elling approach is suitable for future research in Systems

Biology and Systems Biomedicine.

Data integration

Different types of biological and clinical investigation

datasets, ranging from qualitative to high-throughput

quantitative experimental data, were successfully applied

in PBN inference and analysis. Yu et al. [22] and Nyugen et

al. [141], for instance, inferred GRNs of macrophages and

hepatocellular carcinoma using microarray gene expres-

sion data. Flöttmann et al. [24] built a comprehensive

epigenetic regulatory network of iPS cells based on gene

expression, chromatin modification and DNA methyla-

tion data generated frommultiple high-throughput exper-

iments. Ma et al. applied voxel selection on fMRI clinical

data to capture the activities of each brain’s compartment

as the inputs for learning a functional brain connectivity

network [10].

We have recently shown that the normalised activity of

signalling proteins from quantitative western blot exper-

iment can be compared to the steady-state probability
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of certain molecule to be ON in instantaneously-random

PBNs. In an ergodic model, the activities of signalling

proteins, usually given by their phosphorylated forms nor-

malised to the maximal signal, could be correlated with

the steady-state probability distribution on the state space

of the PBN model. With this regard, PBN could support

the integration of semi-quantitative experimental data.

Apart from quantitative western blot data, the profiles

of signalling proteins from alternative experiments such

as enzyme-link immunosorbent assay (ELISA) and high-

throughput protein array data are also compatible with

this framework (publication submitted).

The PBN framework also allows for the description

and analysis of large-scale models, for instance as in

the case of a Boolean model of apoptosis of Schlatter

et al. [146]. Therein, a PBN model was derived from

the original literature-based BN consisting of 86 nodes

and 125 Boolean interactions. Quantitative experimental

data in this study were normalised to the maximal sig-

nals across experiments and were used as input data for

the PBN model. We analysed the strengths of canoni-

cal pathways and crosstalk interactions between different

signalling components among apoptotic and related sig-

nalling pathways through the identification of selection

probability. It was possible to obtain these via optimi-

sation. Thereby a curated signal transduction network

topology was derived. The resulting PBN demonstrates

the correlation between UVB irradiation, NFκB, caspase

3, and apoptotic activities in a semi-quantitative manner

which could not be demonstrated by the original BN. The

analysis pointed at an inconsistent caspase 3 measure-

ment, which shows no activity for high UVB irradiation

while significant apoptosis is measured (see Figure 6,

publication submitted).

Furthermore, the PBN framework has a good poten-

tial to describe cellular dynamics at multiple levels.

Hybrid PBN-related models could be applied, as previ-

ously described, e.g., in the studies of Fertig et al. and

Chandrasekaran et al. [25,26]. As reviewed in detail by

Gonçalves et al. [147], bridging layers towards an inte-

gration of signal transduction, regulation and metabolism

into mathematical models still posts many challenges as

each of the biological layer has their own distinct char-

acteristics and therefore is suitable for only a subset of

modelling approaches. To address such challenges, an

integrative hybridmodel for flux balance analysis was pro-

posed, combining BN modelling for the gene regulatory

part, ODE modelling for the signal transduction part and

Normalised experimental data
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Figure 6 A comparative study of apoptotic signalling in the context of Boolean and probabilistic Boolean networks. Background

subtracted and normalised experimental data derived from Schlatter et al. is shown in the top box. The experimental data compare the activities of

downstream signalling molecules and apoptotic activity in the control setting (no stimulation) versus two intensities of UVB irradiation (UVB_low,

300 J/m2 and UVB_high, 600 J/m2). The activities of caspase 3 refer to the high caspase 3 activities of the original publication. The steady-state

values from the original BN and the steady-state probability of the molecules to be ON from the optimised PBN of one exemplifying run are shown

in brackets. (Note: The interactions between each node in the actual network are much more complex than the simplified diagram as shown.).
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flux balance analysis for the metabolic part. With this

regard, PBN could also be integrated as part of such a

hybrid model to describe GRNs and/or signalling net-

works to provide more details on modelling analysis and

interpretation comparing to traditional BNs.

Computational tools for PBNmodelling and analysis

Several PBN modelling and analysis tools were continu-

ously developed over the past recent years. The BN/PBN

MATLAB-based toolbox, introduced by Lähdesmäki and

Shmulevich in 2003 [27], deals with the simulation, analy-

sis (network statistics, state transitions and distributions),

visualisation and intervention analysis of both BN and

PBN models. The toolbox was specifically designed for

GRN inference and it makes use of CoD calculations.

State transition probabilities and influence values (the

indicators for interactive effect for each pair of genes)

are subsequently calculated based on these calculated

CoDs. Ma et al. successfully applied the BN/PBN tool-

box to infer and analyse the brain connectivity network

of Parkinson’s disease patients, as previously described in

Section ‘PBN applications in the context of physiology’.

Hinkelmann et al. introduced ADAM (Analysis of

Discrete Models of biological systems using computer

Algebra) [28], a web-based tool for rapid steady-state

identification in various discrete model types. The tool

automatically converts discrete models into polynomial

dynamic systems, allowing to run computer-based alge-

bra analysis. For probabilistic networks, ADAM generates

a graph of all possible (local rule) updates, thus being

capable to build an enumeration of all steady states. Bool-

net, as introduced by Müssel et al., is an R-package for

the generation, modelling, reconstruction and analysis

of both synchronous and asynchronous BNs or PBNs

[29]. The toolbox features time-series (experimental data)

based network inference, e.g., making use ofMarkov chain

simulations for attractor identification with subsequent

visualisation and robustness analysis via network pertur-

bation or heuristic search and random walks. We have

recently developed optPBN, a MATLAB-based toolbox

for PBN optimisation based on the BN/PBN toolbox.

PBNs can easily be constructed from Boolean rule-based

models. The toolbox also provides a flexible platform

for data integration (e.g., to integrate data from multi-

ple experiments). Different algorithms can be used to

address the resulting optimisation problem. Thus, based

on normalised protein activity at steady-state data, one

can identify a curated model structure from different can-

didate models. Subsequent analysis on the curated PBN

can be performed in the BN/PBN toolbox (publication

submitted).

We also discuss a few different algorithms and tools

which are not specifically designed for PBN but with

a high potential for the analysis of PBNs. PROM, for

example, offers a mean to calculate the flux activities

of a metabolic network in a probabilistic manner based

on gene expression data [26]. Specifically, this gives rise

to the applicability of the PBN framework for metabolic

models. Recently, Terfve et al. introduced CellNOptR, a

flexible toolkit for training protein signalling networks

based on a multiple logic formalism [148]. CellNOptR

offers support for optimisation with respect to multiple

modelling frameworks, ranging from logical to ODE (logic

rule derived) models. Extending CellNOptR towards a

probabilistic modelling framework is also foreseen for

future work.

A perspective on potential applications of PBNs in a clinical

setting

It has been a decade since the completion of the Human

Genome Project in 2003 that initiated the era of bio-

logical and medical investigation in omic scales [149].

Due to technology advancements, the costs of genome

sequencing and high throughput biomedical investiga-

tions are exponentially decreased and they might become

part of the routine medical investigations in a fore-

seeable time frame [150]. Datasets from omics exper-

iments usually consist of large lists of numbers that

represent genes, transcripts, proteins, or metabolites

depending on the method applied. In the near future

all these methodologies might be applied together rou-

tinely, even in time series examinations. The major

problem with such data is their high complexity and

the need to make them interpretable by the medical

staff. Therefore, there is a strong demand for reason-

able computational approaches to integrate multidimen-

sional “big data" [151]. In addition, given the rich sets

of information from individual patients that physicians

will acquire, smart approaches are mandatory to trans-

late and simplify these large-scale biomedical data. Such

approaches should facilitate a physician’s decision-making

process to provide more accurate diagnosis and optimal

treatment.

For these fields we identify the PBN framework as

a powerful tool. Recent applications of PBN modelling

of gene regulatory and signalling networks have been

described in the previous section. As previously sum-

marised, PBNs allow an effective visualisation of GRN

models [9,10], allowing to represent gene function and

activity [152]. These efforts foster the understanding of

gene-gene interactions, consequences of aberrant gene

function and targeted perturbations of such networks,

as well as finding out the least adverse effects of per-

turbations [9,153]. PBNs allow for the integration of

information from large data sets and for inferring log-

ical relationships between genes/networks. This feature

is of particular benefit as many relationships and struc-

tural connections among genes are not known. Unknown
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relationships between transcripts and proteins can also

be assessed. In a therapeutic perspective PBNs could be

used in a disease-relevant context because many, fore-

most chronic diseases, share probably common under-

lying mechanisms that are not elucidated so far [154].

Using PBNs in the study of disease-related networks could

enable us to take genetic interactions into account and

associations could be generated to identify comorbidities

sharing common causative factors. Skahanenko et al. for

instance have applied Markov logic networks, a proba-

bilistic logic modelling approach in the same category as

PBN, to explore gene-phenotype associations. Whereas

traditional statistical methods are employed to identify

the marker that associates the most with an observed phe-

notype, Markov logic networks can be used to identify a

subset of markers that predicts the phenotype.Within this

method, the relationship between the genetic markers and

phenotype(s) can be hypothesised andmodelled. All mod-

els can then be tested and their respective probability can

be derived [139].

In the context of a single, yet complex disease, the

study on brain connectivity in Parkinson’s disease by Ma

et al. [10] is a good example showing how a probabilistic

model such as PBN could translate large-scale biomedical

data into a potential application in clinic. fMRI princi-

pally measures blood oxygen level-dependent signals that

are correlated to the blood flow into different regions

of the brain, which in turn give physicians information

on the functional activity of specific areas of the brain

[155]. For some neurological disorders, such as Parkin-

son’s disease, the lesions mainly affect a specific area of

the brain such as basal ganglia, but have consequences

on the overall integrity of brain connectivity, especially

on the dopaminergic pathway-dependent motor and cog-

nitive control [156]. Therefore, considering the aetiology

and disease progression from only conventional MRI data

which demonstrate only structural information is cer-

tainly insufficient to yield a comprehensive understanding

on the course of disease. Considering diseases as net-

work perturbations [157], the PBN model from Ma et al.

demonstrated differences of brain connectivity networks

comparing healthy population and diseased cases with

and without medication. Such observations could pos-

sibly be further developed towards clinical biomarkers

which could then be added to physicians’ portfolio and in

turn facilitate diagnostic process, treatment design, and

follow-up strategy.

Generally, the incorporation of tentativeness and prob-

ability could be evolved into a valid concept in a clinical

setting, as routine medical investigation often provides no

conclusive data. Together with a comprehensive reduc-

tion and translation of large-scale and complex biomed-

ical data, the PBN framework might serve as a mean to

develop simplistic terms like a probability score for certain

condition, e.g., for having a disease or of being respon-

sive to treatment. Such a probabilistic score could serve

as a simple but powerful additional input for physicians

in order to improve their healthcare management. As a

whole, healthcare systems would benefit from reducing

costs related to unnecessary diagnostic investigations and

treatment failures.

Conclusion
Even though the concept of PBN for the modelling of

biological systems is still young compared to other mod-

elling approaches, a broad area of research activities on

this modelling approach such as network inference and

network control have been well-established and are con-

tinuously developed. For a meaningful comparison of dif-

ferent inference algorithms in the future, it is necessary

to quantify their performance. The prospective research

in the area of network inference is to develop a formal

framework for validation of network inference proce-

dures. Moreover, there is a demand for establishing the

properties of network inference procedures under vari-

ous conditions, e.g., model class, distance function, etc.

The current trend in structural intervention and exter-

nal control is to develop new methods to reduce their

computational complexity and to define the optimal con-

trol problems and find the corresponding optimal policies

for specific therapies. With its flexibility for data inte-

gration and the availability of supporting algorithms and

computational tools, PBN is one of the most suitable

modelling frameworks to describe and analyse complex

biological systems from molecular to physiological levels

with possible future application at clinical level.

Endnotes
aIn general, γ1, γ2, . . . , γn need not be independent and

identically distributed random variables, but for the

simplicity of presentation are assumed so.
bA state in a Markov chain is said to be ergodic if

returns to the state can occur at irregular times and the

state is positive recurrent. If all states in an (irreducible)

Markov chain are ergodic, then the chain itself is said to

be ergodic.
cIn a generalised PBN framework a network variable

can have any value in {0, 1, . . . , d − 1}, where d > 2.
dIn the graph-theoretical terminology the notion of an

ergodic set of states in a Markov chain corresponds to the

notion of a bottom strongly connected component in a

graph.
eIn computer science, the complexity of a function or

an algorithm is expressed or characterised using the big

O notation, namely, how the function or algorithm

responds to changes in its input size.
fOptimisation deals with a broad range of problems,

relying on, for example, convex programming, optimal
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control, combinatorial optimisation or evolutionary

computation paradigms; examples and additional

information can be found by referring to [158-165]
gA one-time gene perturbation changes the value of

one or more genes without modifying the rules or

probabilistic parameters of the network.
hIn computational complexity theory, NP-hard is

a class of problems that are at least as hard as the hardest

problems in NP (nondeterministic polynomial time).
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