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The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has

been widely applied as an efficient and reliable free energy simulation method to model

molecular recognition, such as for protein-ligand binding interactions. In this review,

we focus on recent developments and applications of the MMPBSA method. The

methodology review covers solvation terms, the entropy term, extensions to membrane

proteins and high-speed screening, and new automation toolkits. Recent applications in

various important biomedical and chemical fields are also reviewed. We conclude with a

few future directions aimed at making MMPBSA a more robust and efficient method.

Keywords: molecular recognition, binding affinity, free energy simulation, MMPBSA, continuum solvation model

INTRODUCTION

It is widely accepted that high-level quantum mechanical (QM) methods provide the most
detailed and accurate description of molecular structures, dynamics, and functions. However, for
many biochemical systems that are often too complex, and/or biochemical processes that are too
long, classical approaches are more commonly employed due to their efficiency and reasonable
accuracy. To model biochemical systems classically, both long-range polar and short-range non-
polar interactions are important for accurate and transferrable models (Perutz, 1978; Davis and
McCammon, 1990; Honig and Nicholls, 1995). Among the classical simulation methods, the
Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach (Srinivasan et al.,
1998; Kollman et al., 2000; Gohlke and Case, 2004; Yang et al., 2011; Miller et al., 2012; Wang C. H.
et al., 2016) has emerged as an efficient and reliable method to model molecular recognition, such
as for protein-ligand binding interactions.

The development of binding free energy calculation methods has been a central focus in
molecular simulations. Indeed, theoretically rigorous, but computationally expensive, free energy
perturbation, and thermodynamic integration methods were both proposed much earlier than the
MMPBSA method (Zwanzig, 1954; Bennett, 1976; Straatsma and McCammon, 1991). For simple
and small systems where they can be reliably applied, these “exact” methods have been shown to
be more accurate than the MMPBSA method. However, their applications to typically large and
complex biomolecular recognition problems are quite limited. This is due to low efficiency and
slow convergence. There are several key approximations utilized in the MMPBSA method that
allow it to be used as an efficient and reasonable approximation for free energy simulations. The
PBSAmodel is used so that the solvation contribution to the free energy is approximated by using a
continuum solvent model. In addition, the method separately approximates enthalpy and entropy
contributions to the free energy, with varying degrees of success as discussed below. There are other
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approximate methods that are similar to MMPBSA, such as the
Mining Minima (M2) method and the Linear Interaction Energy
(LIE) method. These are all categorized as end-point methods
that focus on the end states of processes to compute the free
energy changes (Head et al., 1997; Luo et al., 1999, 2001; Luo
and Gilson, 2000; Aqvist and Marelius, 2001; Chen et al., 2004;
Chang et al., 2007; Moghaddam et al., 2011; Mikulskis et al., 2012;
Muddana and Gilson, 2012; Muddana et al., 2014).

In this review, we focus on recent developments and
applications of the MMPBSA method that have been reported
since 2014, which was roughly the time when the last major
MMPBSA review was published (Genheden and Ryde, 2015).
In the following, we first review the improvements made to the
MMPBSA method over the last few years. This is followed by
recent applications of the method in various fields, with a focus
on biomedical applications.

IMPROVEMENTS OF MMPBSA

Overview of MMPBSA
The MMPBSA method is most often applied to the calculation of
binding free energies (1Gbind) of small molecule ligands bound
to large biomolecule receptors, although large inter-biomolecular
recognitions are also often reported as reviewed below. The
binding free energy of the bound ligand-receptor complex in an
aqueous solvent (1Gbind,aq) can be approximated as (Srinivasan
et al., 1998; Kollman et al., 2000):

1Gbind,aq = 1H− T1S ≈ 1EMM + 1Gbind,solv − T1S,(1)

1EMM = 1Ecovalent + 1Eelectrostatic + 1EvdW, (2)

1Ecovalent = 1Ebond + 1Eangle + 1Etorsion, (3)

1Gbind,solv = 1Gpolar + 1Gnon−polar, (4)

where 1EMM, 1Gbind,solv, and − T1S represent the gas-phase
molecular mechanical energy change, the solvation free energy
change, and the conformational entropy change upon binding,
respectively. All of these changes are computed via ensemble
averaging over a large set of sampled conformations. 1EMM

includes three terms calculated using molecular mechanics
(MM): the covalent energy change (1Ecovalent), the electrostatic
energy change (1Eelectrostatic), and the van der Waals energy
change (1EvdW). 1Ecovalent consists of changes in the bond
terms (1Ebond), the angle terms (1Eangle), and the torsion
terms (1Etorsion). The solvation free energy change (1Gbind,solv)
is usually separated into polar and non-polar contributions
(1Gpolar and 1Gnon-polar). The entropy term is the most difficult
to compute, and it is often approximated with a normal mode
method using a few selected snapshots.

To compute all the ensemble averages in Equations (1–4) for a
binding affinity calculation, the MMPBSAmethod usually begins
with a molecular dynamics (MD) simulation of the complex
using the single-trajectory approach, or three separate MD
simulations of the complex, receptor, and ligand, respectively,
in the multi-trajectory approach. A snapshot of a structure is
taken at various time points during the production portion of
the MD simulations. These snapshots are then used to calculate

average values and uncertainties of various quantities of interest.
The MD simulations are almost always conducted in an explicit
solvent model to obtain the most accurate snapshots possible
before carrying out any calculations that make use of them. It is
important to obtain many different conformations, or snapshots,
over a suitable timeframe for use in later statistical analysis as it
is often not trivial to observe converged averaging, even in the
relatively easier single-trajectory approach (Wang C. H. et al.,
2016).

The Polar Solvation Term
For the calculation of the solvation free energy change
(1Gbind,solv), the explicit solvent is removed and replaced with
an implicit continuum solvent to greatly speed up the calculation
time. The polar solvation term (1Gpolar) in Equation (4) is
calculated using a finite-difference solution or a Generalized
Born (GB) pairwise approximation of the Poisson-Boltzmann
equation (PBE) (Warwicker and Watson, 1982; Bashford and
Karplus, 1990; Jeancharles et al., 1991; Gilson, 1995; Edinger
et al., 1997; Luo et al., 1997, 2002; Lu and Luo, 2003; Tan et al.,
2006; Cai et al., 2009, 2010, 2011; Wang et al., 2009, 2010, 2012,
2013; Ye et al., 2009, 2010; Wang and Luo, 2010; Hsieh and
Luo, 2011; Botello-Smith et al., 2012; Liu et al., 2013; Wang C.
H. et al., 2017). In addition to modeling binding interactions,
PBE methods have also been applied to the prediction of
pKa values for ionizable groups in biomolecules (Luo et al.,
1998; Georgescu et al., 2002; Nielsen and McCammon, 2003;
Warwicker, 2004; Tang et al., 2007), solvation free energies
(Nicholls et al., 2008; Shivakumar et al., 2009), and protein
folding and design (Hsieh and Luo, 2004; Wen and Luo, 2004;
Wen et al., 2004; Lwin and Luo, 2005, 2006; Marshall et al.,
2005; Lwin et al., 2006; Korman et al., 2008; Tan and Luo, 2008,
2009).

The PBE is based on the more fundamental Poisson equation:

∇ · ε (Er)∇φ (Er) = −4πρf (Er) , (5)

where ε (Er) is a predefined dielectric distribution function for
the solvated molecular system, φ (Er) is the potential distribution
function, and ρf (Er) is the fixed atomic charge density. To model
the electrostatic interaction due to the additional presence of salt
in the aqueous solution, the electrostatic potential φ(Er) can be
described by the PBE as:

∇ · ε (Er)∇φ (Er) + λ (Er) f (φ (Er)) = −4πρf (Er), (6)

with

f (φ (Er)) = 4π
∑

N
i zieci exp

(

−
zieφ (Er)

kBT

)

. (7)

Here, λ(Er) is a predefined ion-exclusion function with a value of
0 within the Stern layer and the molecular interior and a value
of 1 outside the Stern layer. The salt-related term f (φ (Er)) is a
function of the potential, φ (Er) , the valence, zi, of ion type i, and
the bulk concentration, ci, at a given temperature T. When both
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the ionic strength and electric field are weak, the PBE can be
linearized for easier numerical solutions:

∇ · ε (Er)∇φ (Er) = −4πρf (Er) + ενκ
2φ (Er) , (8)

where κ2 = 8πe2I
εvkBT

. Here εν denotes the solvent dielectric
constant, and I represents the ionic strength of the solution.

Over the past few years, a few new algorithm developments
were reported for the numerical solution of the PBE (Xie,
2014; Fisicaro et al., 2016; Xie and Jiang, 2016). To deal with
the singularity and nonlinearity of the PBE, Xie proposed a
new decomposition and minimization scheme, together with
a new proof on the existence and uniqueness of the PBE
solution. A new PBE finite element solver was developed based
on these solution decomposition and minimization techniques
(Xie, 2014). Fisicaro et al. presented a preconditioned conjugate
gradient technique to solve the generalized Poisson problem,
and the linear regime of the PBE, in some 10 iterations. In
combination with a self-consistent procedure, this technique was
able to solve the non-linear Poisson–Boltzmann problem in a
formulation including ionic steric effects (Fisicaro et al., 2016).
Later Xie et al. incorporated nonlocal dielectric effects into the
classic PBE for a protein in ionic solvent to derive a nonlocal
modified Poisson–Boltzmann equation (NMPBE) and developed
a finite element algorithm with a related package for solving the
NMPBE (Xie and Jiang, 2016). Their results demonstrate the
potential for the NMPBE to be a better predictor of electrostatic
solvation and binding free energies compared to the standard
PBE. It is worth noting that there has been a community
wide push to explore alternative hardware for biomolecular
simulations, such as the graphics processing units (GPU), which
have a parallel architecture and are suited for high-performance
computation with dense data parallelism (Colmenares et al.,
2014a,b; Qi R. et al., 2017). A finite difference scheme with
the successive over-relaxation method was implemented on the
CUDA-based GPUs in the DelPhi package, which achieved
a speedup of ∼10 times in the linear and non-linear cases
(Colmenares et al., 2014b). More recently, Qi et al. implemented
and analyzed commonly used linear PBE solvers on CUDA
GPUs for biomolecular simulations, including both standard
and preconditioned conjugate gradient (CG) solvers with several
alternative preconditioners (Qi R. et al., 2017). After extensive
testing, the optimal GPU performance was observed using the
Jacobi-preconditioned CG solver with a significant speedup that
was up to 50 times faster than the standard CG solver on CPU.
These progressive efforts on efficient numerical PBE solvers show
great potential for accelerating MMPBSA computation.

Since the prior review (Genheden and Ryde, 2015), the
numerical procedure and related factors for the widely used
finite-difference method were also investigated for their impact
on the MMPBSA method (Wang C. H. et al., 2016). This
study showed that the impact of grid spacing on the quality
of MMPBSA calculations is small in protein-ligand binding
calculations; the agreement with experiment changed by a
negligible amount when the grid spacing was changed from 0.50
to 0.25 Å. This indicated that the widely adopted default value
of 0.50 Å used by the community was sufficient. The impact

of different atomic radius sets and different molecular surface
definitions was also analyzed, and weak influences were found
on the agreement with experiment (Wang C. H. et al., 2016).
This is probably due to the use of high protein dielectrics for the
often-charged ligands and/or active sites as discussed below.

The effect of the solute dielectric constant was also
investigated. A higher solute dielectric constant (using 2 or
4 instead of 1) was found to perform better in the virtual
screening of ligands for tyrosine kinases (Sun et al., 2014a).
Our own analysis of six groups of receptors reached a similar
conclusion; the binding affinities using high dielectric constants
(4 and 20) agreed better with experiment. The difference between
calculations using dielectric constants of 4 and 20 was not very
apparent except for the case of a highly charged binding pocket
in one receptor (Wang C. H. et al., 2016). Aside from the study of
higher solute dielectric constants, a residue-dependent dielectric
model was also developed for use in an alanine scanning protocol
with the MMPBSA method (Simoes et al., 2017). An attempt
to modify the solute dielectric environment by incorporating
structurally important, explicit water molecules in protein-ligand
pockets for MMPBSA calculations was also reported, and it was
found to improve the modeling of binding affinities for a series of
JNK3 kinase inhibitors (Zhu Y. L. et al., 2014).

A hybrid QM/MM solute was also used in MMPBSA
applications for predicting the binding affinities of FabI inhibitors
(Su et al., 2015). The study suggested that the prediction results
are sensitive to radii sets, GB methods, QM Hamiltonians,
sampling protocols, and simulation length. The finding here
appears to contradict our prior discussion. This is because the
solute dielectric constant is set to 1 (vaccum) due to the explicit
consideration of polarization in QM/MM studies. In the study of
(Wang C. H. et al., 2016), a high solute dielectric constant was
used to mimic polarization implicitly. In general, the use of high
dielectric constants washes out the sensitivity to radii and surface
definitions.

The Non-polar Solvation Term
The non-polar (non-electrostatic) solvation free energy
contribution (1Gnon-polar) to the solvation free energy change
(1Gbind,solv) arises from the solute cavity formation within
the solvent and van der Waals interactions between the solute
and the solvent around the cavity (Weeks et al., 1971; Smith
and Tanford, 1973; Pratt and Chandler, 1977, 1980; Widom,
1982; Kang et al., 1987; Floris and Tomasi, 1989; Floris et al.,
1991; Ashbaugh et al., 1999; Hummer, 1999; Lum et al., 1999;
Gallicchio et al., 2000, 2002; Levy et al., 2003; Zacharias, 2003;
Gallicchio and Levy, 2004; Su and Gallicchio, 2004; Dzubiella
et al., 2006; Wagoner and Baker, 2006; Tan et al., 2007). Until
recent times, the non-polar solvation free energy has been simply
estimated to be proportional to the solvent accessible surface
area (SASA) of the solute:

1Gnon - polar = γ∗SASA + b. (9)

This is referred to as the classical approach below. The surface
tension γ and the correction term b are usually set to be constant
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for all solute molecules; for example, these are 0.00542 kcal/mol-
Å2 and 0.92 kcal/mol, respectively, in the AMBER package (Case
et al., 2016).

In more modern approaches (Tan et al., 2007), the cavity
formation free energy and van derWaals (dispersion) free energy
are modeled as separate terms because they scale differently
vs. solute size. One way to correlate the cavity formation free
energy is to use the volume (SAV) enclosed by the solvent
accessible surface. A solvent accessible volume integration, or a
solvent accessible surface integration, can be used to compute the
dispersion term (1Gdispersion), so the total non-polar solvation
free energy can be estimated as:

1Gnon - polar = 1Gdispersion + 1Gcavity

= 1Gdispersion + γ∗SAV + b. (10)

These scaling factors apparently depend on the choices of atomic
and solvent probe radii, for example, they are set to 0.0378
kcal/mol-Å2 and −0.569 kcal/mol in the AMBER package (Case
et al., 2016). It is interesting to note that the coefficient is much
higher compared to the classical model since the dispersion
term in solvation is always a negative term. The overall non-
polar solvation free energies are similar between the classical and
modern models, at least for small molecules where all atoms are
exposed. The performance of both the classical and modern non-
polar solvation models was analyzed, and it was found that the
modern approach reduced the root-mean-square deviations of
computed binding affinities (both relative and absolute) from
experimental values while the correlations changed little from
those computed using the classical approach (Wang C. H. et al.,
2016).

The Entropy Term
The configurational entropy (S) in Equation (1) is often
approximated by normal mode or quasi-harmonic analysis.
Many proposed methods exist to calculate entropy (Kassem
et al., 2015), but it is notoriously difficult to obtain a converged
quantity. Thus, further approximations are often utilized; for
example, usually only residues within a small sphere (radius of 8–
12 Å) centered at the ligand and a limited number of snapshots
(<100) are used for normal mode analysis. Furthermore, the
single trajectory approach (i.e., that for the complex) is most
often used inMMPBSA studies that do not consider any binding-
induced structural changes. In such an approach, configurational
entropy computed by the normal mode analysis is often omitted
completely in the ranking of relative binding affinities as its
inclusion often does not improve the agreement with experiment
(Yang et al., 2011).

A few new ideas to approximate entropy were reported
recently. For example, a new method termed BEERT (Binding
Entropy Estimation of Rotation and Translation) was proposed
to approximate configurational entropy changes in terms of the
reduction in translational and rotational freedom of the ligand
upon protein-ligand binding, starting from the flexible molecule
approach (Ben-Shalornit et al., 2017). An interaction entropy
(IE) method was also proposed to investigate the entropy change
upon binding (Duan L. et al., 2016; Duan et al., 2017). The

interaction entropy (IE) contribution to binding free energy was
defined as

− T1S = kBT ln
〈

e
βEint

pl

〉

, (11)

where 1Eint
pl

is the fluctuation of the protein-ligand interaction

energy for both electrostatic and van der Waals interactions.

The ensemble average of
〈

e
β1Eint

pl

〉

can be extracted from MD

simulations, avoiding normal mode calculations. Both developers
of BEERT and IE claim that these methods are highly efficient.

Extension to Membrane Proteins
The development of implicit membranemodels based on existing
continuum solvent approaches has advanced, making it possible
to extend theMMPBSAmethod to biological membrane systems.
The presence of an implicit membrane adds a complication to
the numerical solution of the underlying PBE that is brought
about by dielectric inhomogeneities that appear on the boundary
surfaces of the computation grid. This issue can be alleviated by
employing the periodic boundary condition, which is a common
practice for electrostatic computations in MD simulations. The
conjugate gradient and successive over-relaxation methods can
be adjusted to take into account periodic calculations, but the
convergence rate using either method is quite low. This limits
their application to MMPBSA calculations which require that
a large number of conformations be processed. To improve
the convergence rate for use in biomolecular applications, the
Incomplete Cholesky preconditioning method and the geometric
multigrid method were both extended to incorporate periodicity
(Botello-Smith and Luo, 2015). Applications to protein-ligand
binding utilizing the newly developed membrane MMPBSA
method were also reported (Greene et al., 2016; Xiao et al., 2017).

Extension to the High-Speed Screening of

Ligands
The MMPBSA method has also been utilized as a rescoring
method for docking applications. In protein-protein docking,
it was found that MMPBSA rescoring was more capable at
distinguishing correct complex structures from decoys than
ZDOCK scoring in a test set of 46 protein-protein complexes
for certain combinations of force fields, solvation models, and
dielectric constants (Chen et al., 2016). A new binding affinity
estimator, PBSA_E, that is based on MMPBSA inputs, was also
optimized for protein-ligand binding. The optimization made
use of a training set consisting of high-quality experimental
data that was gathered from 145 complex structures. When
the predicted binding affinities using PBSA_E were compared
with the predicted binding affinities using other popular scoring
functions such as GlideXP, GlideSP, and SYBYL_F, the PBSA_E
method exhibited improved accuracy in terms of both achieving
higher correlations with measured binding affinities and lower
root-mean-square deviations (Liu X. et al., 2016). A study on
MMPBSA in hierarchical virtual screening (HVS) was reported.
This study demonstrated the predictability and validity of using
the MMPBSA method for lead discovery as it identified novel
inhibitors of the p38 MAP kinase by employing a physics-based
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scoring function combined with a knowledge-based structural
filter (Cao et al., 2014).

A study on the performance of MMPBSA in docking
applications found that it depends on the choice of the solvent
models among many factors that were analyzed. Specifically, the
authors found that the choice of solvent models plays a minor
role for one-protein-family/one-ligand cases which represent the
unbiased protein–ligand complex sampling. However, for the
total dataset with biased sampling, where some proteins and
their homologs have an overabundant presence in the dataset,
they found that numerical PB solvent methods do not perform
as well as GB solvent methods. In addition, they showed that
numerical PB methods were more sensitive to whether MD
simulations were used for averaging. Such methods may be
currently more suitable for individual protein binding free energy
rankings where MD simulations can be easily conducted. This
study also demonstrated that the numerical noise from screening
applications that utilize only one or a few structures should be
addressed in future developments of the dielectric model for
numerical PB methods (Sun et al., 2014b).

Extension to Other High-Performance

Analyses
MMPBSA was also adapted for high-performance mutational
analysis. Single Amino Acid Mutation based change in Binding
free Energy (SAAMBE) was developed to predict changes
in binding free energy that are brought about by point
mutations. SAAMBE utilized 3D structures of protein-protein
complexes in a sequence- and structure-based approach. The
method was centered around two components: a MMPBSA-
based component, and a set of statistical terms obtained from
the physico-chemical properties of protein complexes. A better
agreement with experimentally determined binding free energy
changes over a set of 1,300 mutations in 43 proteins indicated
a significant improvement for predictions made using SAAMBE
(Li M. H. et al., 2014; Petukh et al., 2015).

Additionally, MMPBSA was adapted into a novel structure-
based multiscale approach to identify the key specificity
determining residues (SDRs) of PDZ domains that appeared
in explicit solvent MD simulations on PDZ-peptide complexes.
SDRs were then used together with knowledge-based scoring
functions in a proteome-wide search to locate their interaction
partners (Tiwari and Mohanty, 2014).

New Toolkits
Over the past few years, several new toolkits were released
to facilitate the use of MMPBSA calculations. A free energy
workflow tool, FEW, was developed for AMBER to assist
in the setup of molecular dynamics simulations in explicit
membrane environments. FEW also assists in the setup and
execution of effective binding free energy calculations for a
single-trajectory implicit solvent/implicit membrane MMPBSA
approach that involves multiple ligands binding to the same
membrane protein (Homeyer and Gohlke, 2015). g_mmpbsa was
developed for GROMACS, and it implemented the MMPBSA
approach using subroutines written in-house or sourced from
the GROMACS and APBS packages (Kumari et al., 2014).

GMXPBSA is another user-friendly suite of Bash/Perl scripts
for streamlining MMPBSA calculations for GROMACS users
(Paissoni et al., 2014). An easy-to-use pipeline tool named
Calculation of Free Energy (CaFE) was published to facilitate
both MMPBSA and LIE calculations. CaFe is capable of handling
numerous static structure and molecular dynamics trajectory file
formats generated by different molecular simulation packages,
and it also supports various force field parameters (Liu and Hou,
2016).

APPLICATIONS OF MMPBSA

Protein-Ligand Binding Interactions
Since the last comprehensive review of MMPBSA applications in
2015 (Genheden and Ryde, 2015), MMPBSA has continued to
see its role in pharmaceutical research and development increase.
MMPBSA was widely applied in the development of anticancer
compounds where kinases were identified as the most promising
targets. Recent inhibitor design includes the epidermal growth
factor receptor kinase domain (Li et al., 2015; Moonrin et al.,
2015; Zhao et al., 2017), anaplastic lymphoma kinase (Kong
et al., 2015), cyclin-dependent kinases (Li X. L. et al., 2014;
Czelen, 2016; Dong et al., 2016a,b, 2017; Arba et al., 2017),
extracellular signal-regulated kinase 2 (Chen, 2017), casein kinase
2 (Wang X. W. et al., 2014), sphingosine kinases (Fang et al.,
2016), Src/Abl tyrosine kinases (Fong, 2015; Ma et al., 2015), RET
tyrosine kinase (Gao et al., 2015), PRK1 (Slynko et al., 2014),
Akt kinase (Lu et al., 2015), phosphatidylinositol 3 kinase (Bian
et al., 2014), and Myt1 kinase (Wichapong et al., 2014). As an
illustration of the method’s performance, Slynko et al. observed
a correlation coefficient of 0.78 between the experimental pIC50

of 26 PRK1 inhibitors and computational MMPBSA binding
affinities. They also utilized a quantitative structure activity
relationship (QSAR) model to improve the correlation to 0.88,
combining affinities from MMPBSA, QM/MMGBSA, and Glide
scoring (Slynko et al., 2014). There were other attractive targets
including indoleamine 2,3-dioxygenase 1 (Zou et al., 2017),
translationally controlled tumor protein (Kumar R. et al., 2017),
estrogen receptor (Anbarasu and Jayanthi, 2017), MutT homolog
1 (Zhou et al., 2016), survivin (Sarvagalla et al., 2016), CD44
(Nguyen et al., 2016), calmodulin (Gonzalez-Andrade et al.,
2016), androgen receptor (Liu H. L. et al., 2016), human
topoisomerase I (Guruge et al., 2016), Mcl-1 (Zhao et al.,
2015), vascular endothelial growth factor receptor-2 (Wu et al.,
2015), tubulin (Liao et al., 2014a,b; Santoshi and Naik, 2014;
Suri and Naik, 2015; Suri et al., 2015), the Hsp70 protein
family (Bhattacharjee et al., 2015; Schneider et al., 2016), the
Hsp90 protein family (Arba et al., 2015), glucose 6-phosphate
dehydrogenase (Obiol-Pardo et al., 2014; Zhao et al., 2014),
lysozyme (Zhan et al., 2015), p53 (Verma S. et al., 2016), wheat
germ agglutinin (Parasuraman et al., 2014), bromodomains
(Muvva et al., 2014), matrix metalloproteinases (Zhou et al.,
2014), protein argininemethyltransferases (Hong et al., 2014; Yan
et al., 2014), human arsenic methyltransferase (Abro and Azam,
2016), Atox1 proteins (Wang X. L. et al., 2014), tyrosyl-DNA
phosphodiesterase 2 (Kossmann et al., 2016), and urokinase-type
plasminogen activator (Sa et al., 2014).
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Applications in the development of antibacterial, antiviral,
and antiparasitic drugs are also common, including inhibitor
designs to targets such as enoyl reductase (Kamsri et al., 2014;
Yang et al., 2017), succinate-ubiquinone oxidoreductase (Zhu X.
L. et al., 2014; Xiong et al., 2015), thymidylate kinase (Biswas
et al., 2017), peptidoglycan recognition proteins (Sahoo et al.,
2014a), Mycobacterium tuberculosis pantothenate synthetase
(Ntie-Kang et al., 2014), glutamine synthetase (Moreira et al.,
2016), FtsZ protein (Zhang H. et al., 2015), and the cytochrome
bc1 complex (Zhu et al., 2015). Other efforts focused on HIV
viruses, including HIV-1 protease (Li D. et al., 2014; Tzoupis
et al., 2014; Chen J. Z. et al., 2015; Meher and Wang, 2015;
Chen, 2016; Hu et al., 2016; Sroczynski et al., 2016; Xanthopoulos
et al., 2016), gp120 (Wang J. H. et al., 2015), gp41 (Song
et al., 2014), reverse transcriptase (Bernardo and Silva, 2014),
HIV integrase (Quevedo et al., 2014; Han et al., 2016), and
a comparative analysis of inhibitors for HIV-1 and HIV-2
proteases (Chen et al., 2014a). Wright et al. studied 9 inhibitor-
bound HIV-1 proteases and compared the absolute binding
free energies computed via MMPBSA and MMGBSA with and
without normal mode-derived configurational entropy. They
found only the values of MMPBSA using the normal mode
method were close to experimental values (Wright et al., 2014).
Influenza was also an important research topic in antiviral
compounds, with targets such as neuraminidase protein (Wang
and Chen, 2014; Tran et al., 2015; Chintakrindi et al., 2016;
Yang et al., 2016), non-structural proteins (Ai et al., 2014),
H7N9 neuraminidase (Phanich et al., 2016), and the M2 proton
channel (Homeyer et al., 2016). Other antiviral targets were
also examined, such as RNA-dependent RNA polymerase (Yu
et al., 2014; Wang J. H. et al., 2016), NS3/4A hepatitis C
virus protease (Xue et al., 2014; Fu and Wei, 2015; Meeprasert
et al., 2016), human furin (Omotuyi, 2015), and the capsomere
of virus-like particles (Li Y. Y. et al., 2014). The method
was additionally applied to the identification of novel protease
targets for antiviral compounds (Pethe et al., 2017). Studies
of antimalarials were also reported. For example, the reduced
effectiveness of pyrimethamine, and its relationship to mutation
in Plasmodium falciparum dihydrofolate reductase, was studied
(Mokmak et al., 2014; Abbat et al., 2015). Falcipain-2, a papain
family cysteine protease, was also examined as an antimalarial
drug target (Omotuyi, 2014).

A third common group of applications are for studies of
targets in neural disorders. Targets such as dopamine D2
receptor (Salmas et al., 2017), monoamine oxidase enzymes
(Marsavelski and Vianello, 2017), and opioid G protein-coupled
receptors (Leonis et al., 2014) were analyzed as antipsychotic
compounds. Here, Leonis et al. employed the recently reported
crystal structure of the human κ-opioid receptor (κ-OR) to
explain the binding mechanism with its antagonist JDTic and
agonist SalA. Both JDTic and SalA show that they are capable
of forming a favorable complex in the MMPBSA analysis,
which was later confirmed by experiment (Leonis et al., 2014).
For Parkinson’s disease, ligand-binding to the SUR1 receptor
(Santos et al., 2016) and the adenosine receptor (Zhang L.
H. et al., 2014) was analyzed. Many targets were studied for
Alzheimer’s disease including β-secretase (Koukoulitsa et al.,

2016), angiotensin-converting enzyme (Bhavaraju et al., 2016),
acetylcholinesterase and butyrylcholinesterase (Kurt et al.,
2017), and inhibitors directly targeting amyloid aggregation
(Berhanu and Masunov, 2015). Ataxin-2 protein was studied
for the treatment of spinocerebellar ataxia (Sinha et al., 2017),
superoxide dismutase for amyotrophic lateral sclerosis (Zhuang
et al., 2016), and Niemann-Pick type Cl and C2 proteins
(Poongavanam et al., 2016) that occur in rare neurodegenerative
diseases.

MMPBSA was also widely applied in studies of many other
major diseases. For blood disorders, targets included human
serum albumin (Roy et al., 2015; Kragh-Hansen et al., 2016;
Yu et al., 2016a,b), collagen-binding alpha 2 beta 1 integrin
(Zhang and Sun, 2014), and human alpha-thrombin (Duan L.
L. et al., 2016). In the latter study, Duan et al. investigated
the binding affinity between human alpha-thrombin and ligand
L86 by employing a nonpolarizable AMBER force field and the
polarized protein-specific charge (PPC) force field. They found
that the PPC binding affinity was closer to the experimental
value reported by Nantermet et al. (2003). For immune disorders,
studies on Janus kinases (Zhang W. et al., 2016; Wang J.
L. et al., 2017), interleukin 10 cytokine (Ni et al., 2017),
and receptor-related orphan receptor-gamma-t (Wang F. F.
et al., 2015), were reported. For inflammatory disorders, targets
such as COX-2 (Chaudhary and Aparoy, 2017), interleukin 6
(Verma R. et al., 2016), toll-like receptors (Shen et al., 2016),
human leukocyte antigen (Kongkaew et al., 2015), chymase
enzyme (Verma et al., 2017), tumor necrosis factor (Ivanisenko
et al., 2014), and Nalp3 (Sahoo et al., 2014b) were studied.
For diabetes, analyses of targets included phosphorylase kinase
(Begum et al., 2015), glycogen synthase kinase (Arfeen et al.,
2015), protein kinase C beta II (Grewal and Sobhia, 2014),
and dipeptidyl peptidase-4 enzyme (Gu et al., 2014; Sneha and
Doss, 2016). In a search for compounds for the treatment of
chronic kidney disease, Vitamin D receptor and cytochrome
P450 were analyzed (Nagamani et al., 2016). Malonyl-CoA
decarboxylase (Ling et al., 2016), sirtuins (Karaman and Sippl,
2015), adipocyte fatty-acid binding protein (Chen et al., 2014b),
11β-hydroxysteroid dehydrogenase type 1 (Qian H. Y. et al.,
2016), and protein tyrosine phosphatase 1B (Kocakaya, 2014)
were reported for treatments of other metabolic diseases.
For other diseases and disorders, targets such as pyrroline-5-
carboxylate reductase for cutis laxa (Sang et al., 2017), renin
complexes for hypertension (Tzoupis et al., 2015), and the type
1 receptor of TGF beta for wound healing (Gesteira et al., 2017)
were examined.

There were a wide range of applications to targets outside the
scope of pharmaceutical research. Although these studies are not
related to drug discovery, accurate modeling of protein-ligand
binding is also important in a wide variety of other contexts. For
example, Starovoytov et al. calculatedMMPBSA binding affinities
of BPA-A, BPA-C, and BPA-D bound to human estrogen-
related receptor γ in their toxicology research. Their analysis
showed that BPA-A was the strongest binder to the receptor
(Starovoytov et al., 2014). Other similar studies include globin,
for its catalytic mechanism in the hydrolysis of substituted phenyl
hexanoates (Ercan et al., 2014), the role of conserved residues in
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substrate binding to Brassica rapa auxin amidohydrolase (Smolko
et al., 2016), the effect of hydrophobic interactions in substrate
binding to recombinant enzyme carboxylesterase (Shao et al.,
2014), the substrate-enzyme interactions of endo-1,4-β-xylanase
(Zhan et al., 2014), azoreductase protein for the biodegradation
of azo dyes (Dehghanian et al., 2016; Haghshenas et al.,
2016), cytochrome P450 2A6 for nicotine addiction (Lu et al.,
2014), Cel48F for producing bioethanol via fiber degradation
(Qian M. D. et al., 2016), rubisco for biofuel production
(Siqueira et al., 2016), streptavidin-biotin complex in biochemical
sensing (Liu F. J. et al., 2016), sorotidine 5-monophosphate
decarboxylase for its impressive rate enhancement (Jamshidi
et al., 2014), tyrosyl-tRNA synthetases for genetic encoding of
unnatural amino acids (Ren et al., 2015), T7 RNA polymerase
for generating RNA labels (Borkotoky et al., 2016), AF9 in
the YEATS family for the recognition of H3K9ac (Wang Q.
et al., 2016), cysteine protease 1 precursor from Zea for the
hydrolysate of corn gluten meal (Liu et al., 2014), folate receptor
alpha for producing milk with high folate concentration (Sahoo
et al., 2014c), and both acid amido synthetase (Wang X.
et al., 2015) and brassinosteroid (Lei et al., 2015) for plant
growth.

Protein-Protein Binding Interactions
There are many applications of MMPBSA that involve the
calculation of protein-protein or protein-peptide binding
affinities. For anti-cancer applications, we saw studies on
complexes of an ankyrin repeat with integrin-linked kinase
binding to PINCH1 (Gautam et al., 2014, 2015), cyclin-
dependent kinase 8 with cyclin C (Xu et al., 2014), Hsp90
with Cdc37-derived peptides (Wang L. et al., 2015), and p53
with MDMX (Shi et al., 2015). As an illustration, Wang et al.
designed an eleven-residue peptide that was able to bind
to Hsp90 with a predicted affinity of 6.9mM, which was
comparable to the experimental value of 3.0mM (Wang L. et al.,
2015).

For anti-viral applications, research efforts were focused
on analyzing interactions for ankyrin and domain III of the
envelope protein of dengue virus II (Chong et al., 2015; Dubey
et al., 2017), a modular capsomere of a murine polyomavirus
(MPV) VLP designed to protect against influenza (Zhang L.
et al., 2014), antibody recognition of immunoglobulin 2D1 for
influenza virus H1N1 (Leong et al., 2015), differential structural
dynamics and antigenicity of two HA-specific CTL epitopes
binding to HLA-A∗0201 for influenza virus H5N1 (Sun and
Liu, 2015), a complex of histone deacetylase 6 and ubiquitin-
specific protease 5 for influenza virus A (Passos et al., 2016),
and for a complex of an antibody and epitope variant of HIV-
1 p24 capsid protein (Karim et al., 2015). For antibacterial
applications, there were studies of salamander PGRP1 with its
splice variant adPGRP1a for the innate immune system (Qi Z.
T. et al., 2017), and an adsorption mechanism of human beta-
defensin-3 on bacterial membranes (Lee et al., 2016). Based
on their MMPBSA analysis, Lee et al. found that the binding
affinity of human beta-defensin-3 bound to a gram-positive
membrane is over 3 times higher than when it is bound
to a gram-negative membrane. Interestingly, this difference

is mostly derived from electrostatic interactions, consistent
with a net charge that is three times larger for gram-positive
membranes compared to gram-negative membranes (Lee et al.,
2016).

Studies of protein-protein interactions were also found for
other diseases and disorders including serum paraoxonase 1 with
high-density lipoprotein for antiatherosclerotic activity (Patra
et al., 2014), vascular endothelial growth factor A with binding
domains of anti-angiogenic agents for retinal neovascular
degenerative diseases (Platania et al., 2015), angiotensin-
converting enzyme with Angiotensin-II for hypertension
(Guan et al., 2016), titin with T-cap/telethonin for dilated
cardiomyopathy (Kumar D. T. et al., 2017), CC chemokine
ligand 5 (CCL5) with human neutrophil peptide-1 (HNP1)
for chronic inflammatory diseases (Wichapong et al., 2016),
and ANKS6 with ANKS3 for polycystic kidney disease (Kan
et al., 2016). In the study of CCL5 binding with human HNP1,
Wichapong et al. reported a correlation coefficient of r = 0.66
between experiment andMMPBSA results for different species of
CCL5. In addition, they confirmed that the entropy change upon
binding was negligible in this study, so the entropy term could
be ignored when a relative binding free energy was considered
(Wichapong et al., 2016).

In addition, there were research efforts that focused on
basic mechanisms such as protein stability and conformational
dynamics (Bhavaraju and Hansmann, 2015; Getov et al., 2016).
Many other studies were also reported, including an analysis of
full length amylin oligomer aggregation (Berhanu and Masunov,
2014), effects of single point mutations on amyloid formation
(Bhavaraju and Hansmann, 2015; Getov et al., 2016; Petukh et al.,
2016), interactions between methylated histone H3 and effector
domains of the PHD family in pursuit of a molecular mechanism
of epigenetics (Grauffel et al., 2015), the binding mechanism
of actin-depolymerizing factor 1 and G-actin (Du et al., 2016),
the interaction between phosphotyrosine binding domains and
peptides for neuronal development, immune responses, tissue
homeostasis, and cell growth (Sain et al., 2016), the cognate
transducer complex srII-htrII for the downstream signaling
mechanism of sensory rhodopsin (Sahoo and Fujiwara, 2017), the
binding of CBP to c-Myb for understanding the exact function
of CBP and its interaction with c-Myb (Odoux et al., 2016),
the catalytic stability of the tetrameric complex of cystathionine
gamma-lyase (El-Sayed et al., 2015), the study of the mechanism
of a molecular chaperone using acid-stress chaperone HdeA and
its substrate protein (Zhou et al., 2017), and the binding of
thiopeptide to a ribosomal subunit in order to understand the
structure–activity relationship of thiostrepton derivatives (Wolf
et al., 2014).

There are also several non-biomedical applications such
as a study on the interactions between two adjacent gamma
tubulins within the gamma-tubulin ring complex for growing
yeast (Suri et al., 2014), between beta-sheet regions in
corneous beta proteins of sauropsids to explain its stability
and polymerization into filaments (Calvaresi et al., 2016), and
the recognition of Avr protein by eukaryotic transcription
factor xa5 of rice to understand the gene-for-gene mechanism
that governs the direct interaction of R-Avr protein (Dehury
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et al., 2015). In the study by Suri et al. computational alanine
scanning was employed to determine hotspot contributions
in the interaction between gamma tubulins. Their analysis
showed that most hotspot mutations reduce affinity by 1.16
kcal/mol, while for very crucial amino acids, such as Asp252
and Arg341, the affinity was decreased by more than 10
kcal/mol, which correlated well with experiment (Suri et al.,
2014).

Complexes Involving Nucleic Acids
For DNA-protein interactions, there were mechanistic studies
involving proteins such as HU, one of the major nucleoid-
associated proteins for stabilizing DNA bending (Kim et al.,
2014), highly conserved chromatin protein Cren7 for cellular
processes such as transcription, replication, and repair (Chen
L. et al., 2015), MutS, which recognizes mismatched DNA in
DNA repair using ATP (Ishida and Matsumoto, 2016), copper
nucleases for predicting electrostatic interactions with B-DNA
(Liu C. M. et al., 2016), and metallopeptides binding to the
Drew-Dickerson dodecamer (Galindo-Murillo and Cheatham,
2014). For RNA-protein interactions, the binding of toll-like
receptor 3 and 22 was studied in relation to fish viral diseases
(Sahoo et al., 2015), and the RNA-recognition motif of RNA-
binding protein was analyzed for anti-cancer actitivies (Chang
et al., 2016). Two studies on DNA-DNA interactions were
also reported, including the calculation of binding affinities
of short double stranded oligonucleotides (Yesudas et al.,
2015), of three-quartet intramolecular human telomeric DNA
G-quadruplexes (Islam et al., 2016), and of strand-strand
interactions in a human telomeric tetrameric quadruplex
(Chaubey et al., 2015). Yesudas et al. studied oligonucleotides
(9–20 mers DNA) with the “3-trajectory” approach, without
counter ions, by using GBSA, PBSA, and 3D-RISM-KH methods
to calculate binding free energies. They showed that the 3D-
RISM-KHmethod was in better agreement with the experimental
data for larger oligonucleotides while the GBSA method
performed better for smaller oligonucleotides (Yesudas et al.,
2015).

There were also several studies involving small ligands
binding to nucleic acids. Interactions of anticancer compounds
with DNA, such as cisplatin and oxaliplatin (Jalili et al.,
2016), distamycin with the DNA minor groove (Jalili and
Maddah, 2017), and plant alkaloid chelerythrine with the
human telomere sequence (Ghosh et al., 2015) were reported.
Aminobenzimidazole binding to an internal ribosome entry
site was studied for its anti-hepatitis C virus effect (Henriksen
et al., 2014). The interactions of histone-derived antimicrobial
peptides buforin II and DesHDAP1 with DNA were also
investigated (Sim et al., 2017). Basic mechanistic studies
were carried out, including cationic porphyrin-anthraquinone
hybrids binding to DNA duplexes (Arba and Tjahjono, 2015)
and G-quadruplexes (Arba et al., 2016), as well as ligands
binding to riboswitches upon mutation (Hu et al., 2017). The
interactions of reactive metabolites of anticancer compounds
with DNA were also analyzed (Tumbi et al., 2014). In the
binding of ligands to riboswitches, Hu et al. analyzed the
relative binding free energies for a guanine riboswitch (GR)

and a GUA complex relative to three complexes: 6GU (3.4
kcal/mol), 2BP (5.48 kcal/mol), and XAN (6.19 kcal/mol). These
values were in good agreement with experimental observations
of 3.21, 4.12, and 5.47 kcal/mol, respectively (Hu et al.,
2017).

Guest-Host and Nano Systems
For guest-host systems, several studies were reported. Two octa
acid hosts complexed with six guest molecules were analyzed
by Bhakat and Soderhjelm for resolving the problem of trapped
water in binding cavities. They performed a well-tempered
funnel metadynamics (WT-FM) and MMPBSA analyses for
the two octa-acid hosts, OAH (without methyl groups) and
OAMe (with methyl groups), using both GAFF and OPLS
force fields. Their analyses showed that the binding affinities
of WT-FM are basically similar to experimental values while
MMPBSA results have errors in the range of 5–10 kcal/mol
due to its approximate nature (Bhakat and Soderhjelm, 2017).
A binding interaction was analyzed to show that electrostatic
interactions have the largest contribution to the stability of
the cucurbituril-pseudorotaxane complex (Malhis et al., 2015).
Complex stability was analyzed for multiple systems, such
as the 1:1 and 1:2 inclusion complexes formed by nor-Seco-
cucurbit[10]uril and 1-adamantanmethylammonium in water
(El-Barghouthi et al., 2015), cyclodextrin-Ibuprofen complexes
(Wang R. M. et al., 2015), E-selectin-oligosaccharide complexes
(Barra et al., 2017), and the naringenin-2,6-dimethyl β-
cyclodextrin inclusion complex (Sangpheak et al., 2014). Finally,
enantiomeric discrimination of chiral organic salts by chiral aza-
15-crown-5 ether with C1 symmetry was reported (Kocakaya
et al., 2015).

For nano systems, a mechanism explaining how C-60 can
block potassium ion channels was proposed (Calvaresi et al.,
2015). The authors showed that a new binding site for C-60
exists in the channel cavity at the intracellular entrance of the
selectivity filter. The escape barrier from the binding site is
∼21 kcal/mol as calculated via the umbrella sampling method,
in good agreement with the MMPBSA result. MMPBSA was
also used in the theoretical design of the cyclic lipopeptide
nanotube as a molecular channel in the lipid bilayer (Izadyar
et al., 2015; Khavani et al., 2015, 2017), in the study of the enzyme
immobilization mechanism of alpha-chymotrypsin onto carbon
nanotubes in organic media (Zhang L. Y. et al., 2015), and the
mechanism of carbon nanotube activation of subtilisin Carlsberg
in polar and non-polar organic media (Zhang L. Y. et al., 2016).

Monomer Stability
For single biomolecule stability research, we saw reports on the
structures and energies of the alternate frame folding calbindin-
D9k protein (Tong et al., 2015), the effect of copper ions in
the stability and structural change of human growth protein
(Tazikeh-Lemeski, 2016), and the role of potassium in stabilizing
the human telomeric intra-molecular G-quadruplex structure
(Wang Z. et al., 2015; Wang and Liu, 2017). In their study
of calbindin-D9k, Tong et al. found two transition states and
an intermediate state with a first rate-controlling barrier of 4.7
kcal/mol and a second barrier of 1.7 kcal/mol using MMPBSA,
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both of which are in good agreement with experiment (Tong
et al., 2015).

CURRENT LIMITATIONS AND FUTURE

DIRECTIONS

MMPBSA methods are widely applied to calculate binding
affinities at a reasonable computational cost. These
computational analyses have provided a large volume of
valuable predictive results in a wide variety of studies. Even
though MMPBSA is known to be less accurate than some
of the more computationally expensive methods, like the
free energy perturbation and thermodynamic integration
methods, the qualitative agreement is often good enough to
aid collaborative efforts involving both computational and
experimental researchers. Developers are also actively working to
improve MMPBSA methods for higher accuracy and efficiency
by introducing better solute and solvent models, by porting the
expensive energy computation (mostly involving the solvation
terms) to faster GPU platforms, and by improving entropy
estimations. Efforts are also needed to extend the MMPBSA
method for various screening purposes that involve a large

number of ligands and/or mutations to achieve a higher overall
level of accuracy and efficiency. It is apparent that applications
of the MMPBSA method have grown considerably in many
different areas of biomolecular study. Most of these applications
involve protein-ligand binding affinity calculations due to their
utility in drug discovery research efforts. There are also many
applications in the study of biomacromolecular complexes. It is
also noteworthy that a few guest-host and nano systems utilized
MMPBSA calculations, indicating a wider development space for
this method in the future.
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