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Recent developments in

barycentric rational interpolation

Jean–Paul Berrut, Richard Baltensperger and Hans D. Mittelmann

Abstract

In 1945, W. Taylor discovered the barycentric formula for evaluating the
interpolating polynomial. In 1984, W. Werner has given first consequences
of the fact that the formula usually is a rational interpolant. We review some
recent advances in the use of the formula for rational interpolation.
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1 Introduction: polynomial interpolation in

barycentric form

Interpolation is one of the central tools of (numerical) mathematics: analysis prob-
lems are being solved by first choosing from the infinite complexity of an arbitrary
function a few of its (possibly unknown) values and replacing it with an interpolant
of these values. The solution of the original problem is then approximated with
the solution of the corresponding problem for the interpolant. Examples abound:
differentiation, integration, multistep methods for ordinary differential equations,
collocation methods for partial differential equations and other functional equa-
tions, etc. Interpolation is therefore a core subject of any course in numerical
analysis and most books devote a chapter to it. They usually start with Lagrange
interpolation, before enumerating its supposed practical drawbacks [Ber-Tre] and
going over to presumably better methods.

This view of Lagrange interpolation contrasts with its ubiquity in practice
and research: almost every volume of a numerical analysis journal contains some
application of Lagrange cardinal functions. The present paper reviews some of the
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recent advances in the practical use of interpolation in the form of the so–called
barycentric formula.

We will focus on the simplest case, namely interpolation in one dimension
between distinct points in an interval I. Many extensions, e.g., interpolation using
information on derivatives at some or all interpolation points [Bul-Rut, Hen1] as
well as interpolation in several dimensions [Bul-Rut, Bal-Ber2, She] can be handled
in the barycentric setting as well.

Let thus N +1 distinct interpolation points (nodes) xj , j = 0(1)N , be given,
together with corresponding numbers fj , j = 0(1)N , which can be values of a
function f

(
fj := f(xj)

)
or not. Our aim is to find an infinitely differentiable

interpolant of f between the xj . We will denote by Pm the linear space of all
polynomials of degree at most m. The simplest problem is that of finding p ≡
pN ∈PN for which

p(xj) = fj , j = 0(1)N

and its solution is given by the Lagrange interpolation formula

p(x) =

N∑

j=0

fjℓj(x), ℓj(x) :=

∏

k 6=j

(x − xk)

∏

k 6=j

(xj − xk)
. (1.1)

As mentioned already, many books list drawbacks of this representation of the
(unique) interpolating polynomial, in particular the fact that each evaluation of
p at some x requires O(N2) floating point operations (flops). However, if one has
first computed the denominators of the Lagrange fundamental polynomials ℓj as

wj :=
1∏

k 6=j

(xj − xk)
, j = 0(1)N, (1.2)

in O(N2) flops, then every evaluation of p written as

p(x) = ℓ(x)

N∑

j=0

wj

x − xj

fj , (1.3)

where
ℓ(x) := (x − x0)(x − x1) . . . (x − xN ),

needs only O(N) flops [Hen1, Ber-Tre]. ℓ is often denoted by ω or Ω in the litera-
ture. wj is called the weight corresponding to the point xj . For particular sets of
points, such as equidistant or Chebyshev ones, the weights can be computed ana-
lytically [Hen1]. Nodes like Chebyshev’s, distributed like 1

/√
1 − x2 , are especially

important since they lead to exponential convergence for holomorphic functions
(see [Ber-Tre] for citations). Exponential convergence is a special case of spectral
convergence, i.e., faster than polynomial.
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N. Higham [Hig] has just shown that (1.3) is the formula of choice if one
wishes to evaluate p as stably as possible (even when p is a very bad approximant
of f). 20 years ago already, W. Werner [WeW] has given an algorithm for updating
the weights wj in O(N) operations when a point is added. Werner’s algorithm
contains an unstable expression for the weight corresponding to the new point.
In [Ber-Tre], the first author∗ and N. Trefethen have suggested to use (1.2) for
this point also, that way maintaining the stability of the formula. Their algorithm
used with formula (1.3) sweeps up the last arguments against scalar Lagrange
interpolation: (1.3) is the formula to use if one wishes the result to be as close as
possible to the value of the interpolating polynomial.

Higham has also proven the stability of the so–called barycentric formula
[Hen1, Ber-Tre]

p(x) =

N∑

j=0

wj

x − xj

fj

N∑

j=0

wj

x − xj

(1.4)

when the set of nodes is such that interpolating constant functions is as well-
conditioned a problem as the original one of interpolating f . (1.4) is obtained
from (1.3) by dividing by the corresponding interpolant for the function 1 and
simplifying ℓ(x). Since interpolating with nodes leading to ill-conditioned interpo-
lation of constant functions is seldom indicated (see however [Gau] for an example),
the barycentric formula is usually the method of choice for evaluating p.

(1.4) indeed has several advantages over (1.3) [Ber-Tre], some of which we
will encounter on our way. First of all, the weights now arise in the denominator
as well as in the numerator, so that any common factor independent of j may
be ignored, leading to so-called simplified weights w∗

j [Hen1]. Most important in
practice (see [Mul-Hua-Slo, Tre, Bat-Tre] and below) are the so-called Chebyshev
points of the second kind

xj = cos j
π

N
, j = 0(1)N, (1.5)

for which one simply has [Sal]

w∗
j = w

(2)
j := (−1)jδj , δj =

{
1/2, j = 0 or j = N ,
1, otherwise,

(1.6)

∗When authors are not specified we mean “of the present work”.
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so that the barycentric formula reads

p(x) =

N∑

j=0

′′

(−1)j

x − xj

fj

N∑

j=0

′′

(−1)j

x − xj

, (1.7)

where the double prime means that the first and last terms of the sum should be
halved. These factors 1/2 at the extremities of the interval come from the fact
that Chebyshev interpolation is in fact even trigonometric interpolation between
equidistant points, and that on the circle the interior points arise twice, the ex-
tremal points a single time [Ber1]. Polynomials interpolating between Chebyshev
points may also be evaluated rapidly and stably by means of the fast Fourier
transform, albeit less transparently and more expensively for a small number of
evaluation points x. Since Chebyshev nodes are located in the interval [−1, 1], the
interpolation problem is often considered to have been moved there, something we
will also assume in most of what follows.

Formula (1.7) is extremely stable: it has been used with N up to tens of
thousands [Ber2, Bat-Tre], whereas MATLAB’s polyfit does typically not even
handle N = 50 with the same points.

Another sign of the importance of Chebyshev points is the fact that they
are clustered at the extremities of the interval of interpolation in just the right
way for the corresponding linear projection to have a small norm — see [Ber-Tre]
for a short description of such norms, called Lebesgue constants, and books on
interpolation [Dav, Sza-Vér, Phi] for a more thorough treatment. Chapter 6 of
[Mas-Han] contains further results on interpolation between Chebyshev nodes.

In this context, we draw the reader’s attention to the new MATLAB soft-
ware for functions, called @chebfun and due to Battles and Trefethen [Bat-Tre],
in which an object is not a vector of the standard MATLAB, but a vector of val-
ues of a function f at enough Chebyshev points of the second kind for f to be
approximated with machine precision by the corresponding interpolating polyno-
mial. The subroutines then perform the classical operations of calculus such as
differentiation, integration, etc., by Chebyshev methods.

2 From polynomial to rational interpolation

What about the barycentric formula (1.4) with points for which interpolating
constant functions is ill-conditioned ? The formula will likely be unstable, the
computed p̃ far away from p. Is that bad ? Not necessarily! Indeed, the condition
of p itself will likely be poor and p should not be used for solving problems. This

is the case when the weights vary enormously, i.e., when the quotient
max |wj |
min |wj |

is

large [Ber-Tre]. In particular, the computed denominator (multiplied back by ℓ)
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will not be the function 1, but another polynomial in PN . The right hand side of
(1.4) becomes a rational function r ∈ RN,N , where Rm,n denotes the set of all
rationals with numerator in Pm and denominator in Pn. By the following lemma,
r interpolates the value fj at xj whenever wj 6= 0.

Lemma 2.1 Let {(xj , fj)}, j = 0(1)N , be N + 1 pairs of real numbers with xj 6=
xk, j 6= k, and let {uj} be N + 1 real numbers. Then

a) if uk 6= 0, the rational function

r(x) =

N∑

j=0

uj

x − xj

fj

N∑

j=0

uj

x − xj

∈ RN,N (2.1)

interpolates fk at xk: limx→xk
r(x) = fk;

b) conversely, every rational interpolant r ∈ RN,N of the fj may be written as
in (2.1) for some uj.

Proof. Statement a) is just an immediate calculation. For b), let q denote the
denominator of r and let qj := q(xj), j = 0(1)N . Lagrange formula (1.3) then

permits to write q as q(x) = ℓ(x)
∑N

j=0
wjqj

x−xj
. Moreover, the qj determine the

numerator as the polynomial p ∈PN with p(xj) = qjf(xj). (2.1) with uj := wjqj ,
all j, then is a representation of r.

a) expresses a second advantage of the barycentric formula: interpolation is
warranted even when the wj are computed with errors. This opens a wide field of
research: whereas polynomial interpolation merely permits the choice of the nodes
xj , rational interpolation allows for that of the uj also. The proof further shows
that the rational interpolation problem is completely solved once the values of q
at the nodes are known.

Why use rational interpolation? For two reasons, at least:

– when one cannot choose the nodes, polynomial interpolation may di-
verge even for well-behaved functions. An especially important case is
when the fj are the result of sampling at equidistant points. Then the
sequence of p for increasing N will not converge if the fj are the values
of a function with singularities not too far from the interval of interpo-
lation, as in Runge’s example [Epp].

– even when one can choose nodes with a good distribution on the inter-
val, such as those of Chebyshev and Legendre, polynomial interpolation
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may not be the answer for it may converge much too slowly for practi-
cal purposes. Indeed, Markov’s inequality implies that a polynomial of
moderate degree cannot have a large slope on an interval where it does
not take large values. On the interval [−1, 1] the inequality says that
any polynomial q of degree at most n satisfies

‖q′‖∞ ≤ n2‖q‖∞,

where ‖ · ‖∞ denotes the maximum or L∞–norm. It follows that, for
a polynomial p of degree n to be a good approximation of f with p′ a
good approximation of f ′, one must have

n ≥
√

‖f ′‖∞/‖f‖∞.

Approximating a function that behaves like erf(δx), where erf denotes
the error function, therefore requires too large an N with very large δ
(see Figure 3 in [Ber-Mit2]).

The classical answer to these difficulties is to use piecewise functions as ap-
proximants. Our interest here, however, is to stay with analytic functions. They
are simpler to program and often converge faster, i.e., exponentially or spectrally
[Ber-Tre]. Rational interpolation is the next such possibility, and the function
1/(1 + ax2) for large a shows that no limitation such as Markov’s inequality is in
the way there.

3 Classical rational interpolation

The problem here is to find r ∈ Rm,n that interpolates the fj , i.e., p ∈Pm and
q ∈Pn such that

r(xj) =
p(xj)

q(xj)
= fj , j = 0(1)N. (3.1)

In the canonical representation, p and q together have m + n + 2 coefficients,
of which one may be set to 1 by dividing both polynomials by it. The N + 1
interpolation conditions (3.1) thus are equally numerous as the coefficients when

N = m + n. (3.2)

This condition characterizes the classical rational interpolation problem, see [Sto]
(or [Gut] for a more general treatment). Grosse’s catalogue [Gro] contains a long
list of papers on rational interpolation.

The problem need not have a solution (see the examples in [Sto, p. 50] or
[Ber-Mit1, p. 367]), but it usually does and, if so, then the solution is unique [Sto,
p. 51] and may be written in barycentric form (Lemma 2.1).
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3.1 Classical rational interpolation in barycentric form

Schneider and Werner [Sch-Wer] have been the first to determine barycentric rep-
resentations of rational interpolants. Their method uses a classical way of deter-
mining the Newton form of the interpolant before applying an algorithm of Werner
to pass from the Newton to the barycentric form. In [Ber-Mit1], the first and last
authors have given a method for directly finding the corresponding weights uj

when n ≤ m.

Theorem 3.1 If a solution r of the classical rational interpolation problem (3.1)–
(3.2) with n ≤ m exists, then u = [u0, u1, . . . , uN ] is a vector of weights in one of
its barycentric representations (2.1) iff u belongs to the kernel of the N × (N +1)–
matrix

A :=




1 1 1 · · · 1
x0 x1 x2 · · · xN

x2
0 x2

1 x2
2 · · · x2

N

...
...

...
...

xm−1
0 xm−1

1 xm−1
2 · · · xm−1

N

f0 f1 f2 · · · fN

f0x0 f1x1 f2x2 · · · fNxN

f0x
2
0 f1x

2
1 f2x

2
2 · · · fNx2

N

...
...

...
...

f0x
n−1
0 f1x

n−1
1 f2x

n−1
2 · · · fNxn−1

N




. (3.3)

In order to save space, we introduce some notation: VP,Q, P ≤ Q, will be the
matrix made up of the first P rows of the transposed Vandermonde matrix corre-
sponding to the Q + 1 values x0, . . . , xQ, and FQ = diag(f0, . . . , fQ) ∈ IRQ+1,Q+1

will be the diagonal matrix of values f0, . . . , fQ. Then A in (3.3) may be written

A = [VT
m,N ,FNVT

n,N ]T .
The proof of Theorem 3.1 consists in showing that the first m equations

express that the degree of the denominator written in the form ℓ(x)
∑N

j=0
uj

x−xj
in

(2.1) is at most n, the last n equations that the numerator degree is at most m.
Lemma 2.1 a) implies that r in (2.1) interpolates in xj if uj 6= 0; the latter is not
necessary, though.

As a corollary, Theorem 3.1 delivers the kernel of the matrix VN−1,N : it is
just the space spanned by the vector of the polynomial barycentric weights wj .

The customary way of coping with the case n > m is to determine the
reciprocal of r by interpolating the values 1/fj . This requires a special treatment
in case some of the fj vanish. Brimmeyer [Bri] has discovered how to stay within
the barycentric context by considering the corresponding xj as poles and using
the method given in [Ber5] and described below to preassign such poles in the
determination of the weights of 1/r.

In our experience, the algorithm given in [Ber-Mit1] for computing the kernel
of A in (3.3) is much more efficient than computing the singular value decom-
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position of A with MATLAB’s routine svd. It consists in triangulating (3.3) in
two steps: one analytical, which leads to divided differences, the other numerical,
through Gaussian elimination with column pivoting. Though, in contrast with p,
r is a good approximation even with equidistant interpolation points for N large
enough, Chebyshev nodes again lead to much better conditioned problems. Note,
however, that these nodes must be reordered for a stable computation of the di-
vided differences. The algorithm is then extremely stable, see the examples in
[Ber-Mit1].

As with the interpolating polynomial, the degrees of p and q may be smaller
than m and n. This manifests itself in the kernel of A having dimension larger
than 1. A way of coping with this, suggested in [Ber-Mit1], is to decrease n by 1,
restart the computation, and repeat until a kernel of dimension 1 is obtained for
some n∗ < n. u then yields the barycentric representation (2.1) of a reduced r, i.e.,
one in which the linear factors corresponding to common zeros of p and q have
been simplified. We will denote it by r∗. If uk = 0 for some k and r∗(xk) 6= fk, then
xk is an unattainable point [Sto] and the problem does not have a solution. This
is the first part of the following theorem, due to Schneider and Werner [Sch-Wer,
Ber-Mit1], which allows an easy detection of two drawbacks of classical rational
interpolation directly from the weights.

Theorem 3.2 Let u be barycentric weights of a reduced rational interpolant r∗ =
p∗/q∗. Then

a) a point xk is unattainable iff uk = 0;

b) if uk 6= 0 for all k, if the interpolation points have been ordered as x0 < x1 <
. . . < xN and if sign uj = sign uj+1, then r∗ has an odd number of poles
between xj and xj+1.

Proof. a) follows from the above discussion and Lemma 2.1a, b) from noticing
that q∗ changes sign, thus has a zero, between xj and xj+1, and p∗ does not at
the same place, for otherwise r∗ would not be reduced.

uk = 0 in (2.1) simply means that the node xk is ignored. One may then
eliminate the pair (xk, fk) and solve the problem in Rm,n, m+n = N−1, n = n∗−1
[Ber5]. (Such elimination of data might be problematic if several uj vanish.)

Zhu and Zhu [Zhu-Zhu] have recently suggested an equivalent, and maybe
even more elegant way of finding r by directly determining the values q :=
[q0, q1, . . . , qN ]T of its denominator. Let W := diag(w0, w1, . . . , wN ) be the di-
agonal matrix of the polynomial weights (1.2) to x0, x1, . . . , xN . Then the proof
of Lemma 2.1 shows that one has the bijective map u = Wq; the kernel equation
Au = 0 may thus be written AWq = 0.

Corollary 3.3 [Zhu-Zhu] If a solution r of the classical rational interpolation
problem (3.1)–(3.2) with n ≤ m exists, then the vector q of its denominator values
belongs to the kernel of the N × (N + 1)–matrix AW.

The elements of AW are given in [Zhu-Zhu].
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3.2 Reduced complexity barycentric rational interpolation

Besides its many advantages, the barycentric representation of r ∈ Rm,n also has
some disadvantages in comparison with the canonical r(x) = (amxm + . . . + a1x +
a0)/(bnxn+. . .+b1x+b0). One of them is the fact that its evaluation at a particular
point x requires about twice as many flops.

In [Ber6], the first author has suggested a method for improving upon this.
Since the numerator and the denominator have degrees at most L := max{m, n},
they may both be written as interpolating polynomials between any number of
points larger than L. Let therefore M with L ≤ M ≤ N be given. By Lemma
2.1b, the solution of problem (3.1) may be written as

r(x) =
M∑

j=0

uj

z − zj

fj

/
M∑

j=0

uj

z − zj

. (3.4)

(3.4) has been called a reduced complexity barycentric representation of r in [Ber6].
With it, only M + 1 unknown uj , j = 0(1)M , are to be determined, but interpo-
lation is guaranteed by Lemma 2.1b only at the corresponding xj , called primary
nodes in [Ber6]. The degree conditions that make up the matrix A in Theorem 3.1
are also less numerous, since the denominator, respectively numerator degree must
be decreased merely by M −n, resp. M −m units. In total, N −M less weights are
to be determined, but 2(N − M) less degree diminishing conditions hold. The re-
maining N −M equations are the interpolation conditions at the secondary nodes
xM+1, xM+2 . . . , xN . Interpolation is warranted at any of these xk by [Ber6]

M∑

j=0

f [xj , xk]uj = 0, (3.5)

where, as usual, f [xi0 , . . . , xis
] denotes the divided difference of order s for the

points xi0 , . . . , xis
.

The matrix B with elements bij := f [xi, xj ], i = 0(1)M , j = M + 1(1)N , of
the divided differences in (3.5) is the Löwner matrix corresponding to the sets of
points {x0, . . . , xM} and {xM+1, . . . , xN}.

Theorem 3.4 If a solution r of the classical rational interpolation problem (3.1)–
(3.2) with n ≤ m exists, and if x0, . . . , xM are the primary nodes, then any vector
u = [u0, . . . , uM ] of its weights in a reduced complexity barycentric representation
(3.4) belongs to the kernel of the M × (M + 1)–matrix

A =




VM−n,M

VM−m,MFM

B


 ,

where B is the Löwner matrix given above.
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The partitioning of the nodes in primary and secondary ones is important.
Numerical experiments demonstrate in particular that the extreme points should
be primary nodes, for otherwise the interpolation at the secondary ones, enforced
by the equations Bu = 0, may not be accurate.

The decisive advantages of the reduced complexity representation are the
smaller number of points in the (often ill–conditioned) Vandermonde matrices and
the fact that the divided differences arising in the computation of the kernel of
A have only M − n + 2 arguments, as opposed to N − n + 1 when working with
the representation (2.1) and the matrix (3.3). The improvement in equidistant
interpolation may be spectacular, see Table 3 in [Ber6].

Steffen [Ste] has adapted the above reduced complexity rational interpolation
to the method of Zhu and Zhu, thereby computing only the M + 1 values of the
denominator at the primary nodes. Her numerical results are very close to those
of [Ber6].

3.3 Monitoring the poles

The poles are at the same time the curse and the blessing of classical rational
interpolation. Their bright side, mentioned above, is their capability of accomo-
dating large gradients of f . Their dark side is the fact that, for N small, they may
show up about everywhere in the plane, thus also in the immediate vicinity of,
or even on, the interval of interpolation when interpolating a perfectly innocuous
function (see Cordellier’s example in [WeH] or [Ber-Mit2]; one may also read p.
357 of [Ber-Mit1]). When more is known about f than just the interpolated points
in the plane, one should therefore try to incorporate the extra information into
the interpolant to monitor the poles.

Sometimes the location of some or all of the poles is known a priori (see §8
below for an example). The above method for determining the barycentric weights
may be modified to determine the rational interpolant in this case [Ber5]. Assume
that P poles of the denominator are prescribed; denote them by zk, k = 1, . . . , P
and their multiplicity by νk with ν :=

∑P

k=1 νk; assume further that zk 6= xj for all
j and all k. The problem is now to compute rational interpolants with prescribed
poles, i.e., to find

r = p/q ∈ Rm,n+ν , m + n = N, n + ν ≤ N,

such that (3.1) is satisfied and r has the ν preassigned poles. If the interpolant
exists, its denominator will contain as a factor the polynomial

d(z) := a
P∏

k=1

(z − zk), a 6= 0 ∈ C arbitrary. (3.6)

Let

dj := d(xj), j = 0(1)N, (3.7)
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be the values of d at the nodes. Then the part of r remaining to be determined,

r∗ = p∗/q∗ := r · d ∈ Rm,n, m ≥ n,

must take the values

r∗(xj) = gj , gj := fj · dj , j = 0(1)N, (3.8)

at the nodes. Accounting for the difficulties of unattainable points and/or multiple
solutions mentioned above, we are left with the following problem:

(R) Find the largest possible n∗ ≤ n and the corresponding unique r∗ ∈ Rm∗,n∗

with m∗+n∗ = N , n∗ ≤ m∗, that satisfies the interpolation conditions (3.8).

Theorem 3.1 implies as a corollary that, if such a r∗ exists, its barycentric
weights b = [b0, b1, . . . , bN ]T make up the one–dimensional kernel of the matrix

A =

[
Vm∗,N

Vn,NGN

]
,

where GN = diag(g0, g1, . . . , gN ). Once this kernel has been determined, e.g., by
the algorithm of [Ber-Mit1], barycentric weights of r in (3.1) are given by [Ber5]

uj = dj · bj ,

a result extended in the following theorem proven in [Ber5].

Theorem 3.5 If some r ∈ Rm,n+ν , n ≤ m ≤ N , n+ν ≤ N , exist with r(xj) = fj,
j = 0(1)N , and with poles of order νk at the points zk, k = 1(1)P , then one of
them is given by (3.1) with uj = djbj. On the other hand, if

N∑

j=0

∏

k 6=j

(xj − zk)fj 6= 0, (3.9)

r as in (2.1) with uj = djbj has a pole at zk.

The proof implies that, if the numerator has degree ≤ N − ν, the conditions
(3.9) are not satisfied, meaning that r cannot be guaranteed to display the pre-
scribed poles. This may reflect the fact that there is no r ∈ RN,N interpolating
the values fj and possessing those poles. For instance, for c ∈ IR constant there
is no r 6≡ c interpolating the values fj ≡ c ∀ j, since every r as in (3.1) with
constant fj is this same constant for all choices of uj . This is reasonable from an
approximation point of view. Whether (3.9) is necessary for the presence of a pole
at zk is an open question.

When all the poles are prescribed, one has n = 0, r∗ is the interpolating
polynomial and one gets the following corollary, which will be important in the
subsequent sections.
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Corollary 3.6 If r ∈ RN,ν , ν ≤ N , exists with r(xj) = fj, j = 0(1)N , and with

poles of order νk at zk, k = 1(1)P , ν :=
∑P

k=1 νk, then its barycentric weights are
given (up to a constant factor) by uj = wjbj, j = 0(1)N .

r is then the quotient of the polynomial of degree at most N interpolating
f ·d between the xj and the polynomial d [Ber-Mit2]. It cannot have any other pole
than the zk, which eliminates the potentially harmful free poles of classical rational
interpolation. The rational interpolants arising in the optimal approximation of
functionals in the Hardy space H2 make an interesting example [Ber3].

4 Optimal attachment of poles to the interpolat-

ing polynomial

Corollary 3.6 shows that, when one can prescribe all of the poles, rational inter-
polation is as simple as polynomial interpolation. Though in some cases the poles
can be obtained a priori (see below), this is usually not the case. In [Ber-Mit2],
the first and last authors have suggested a way of determining an optimal position
of the poles when the function f taking the values f(xi) = fi is known everywhere
on the interval I (as in the application of §9).

Consider the (potential) poles zk, k = 1(1)P , as variables in a rational inter-
polant

r(x) =

N∑

j=0

wjdj

x − xj

fj

N∑

j=0

wjdj

x − xj

=

N∑

j=0

wj

P∏

k=1

(
1 − xj

zk

)

x − xj

fj

N∑

j=0

wj

P∏

k=1

(
1 − xj

zk

)

x − xj

(4.1)

with denominator d as in (3.6) (the second equality of (4.1) only holds when

zk 6= 0 ∀ k and is obtained by dividing by
∏P

k=1(−zk) — to simplify the notation,
we consider from here on a pole of multiplicity νk as νk separate poles). The goal
is to choose the zk in such a way that the interpolant r in (4.1) is as good an
approximation of f as possible. It has been suggested in [Ber-Mit2] to consider
functions continuous on I and to minimize the infinity norm of r− f , i.e., to solve
the following min–max, or nonlinear Chebyshev, approximation problem:

(A) Minimize ‖r − f‖∞ := maxx∈I |r(x)− f(x)|, with r as in (4.1), with respect
to the zk, k = 1(1)P .

Theorem 4.1 [Ber-Mit2] Problem (A) always has a solution.
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As mentioned in [Ber-Mit2], the solution is usually not unique (constant
functions are counterexamples). The more interesting question of the unicity of
the optimal interpolant r is open.

These interpolants have very nice properties. There can be no unattainable
point nor unwanted pole. r is always at least as good as the interpolating poly-
nomial, for the latter is the case when all zk are at infinity

(
see the right-hand

side of (4.1)
)
. Moreover, attachment of another pole never results in a worsening

of the approximation, since the already optimized poles constitute a feasible point
for the optimization.

The optimization problem has been numerically solved with success in [Ber-
Mit2] with standard modern optimization algorithms. The nice properties just
mentioned occur in practice, and the numerical results, e.g., with Cordellier’s ex-
ample, for which classical rational interpolation with small N is useless, are quite
impressive.

We mention that the authors of [Ber-Mit2] originally intended to solve the
more ambitious problem of minimizing ‖r−f‖∞ with respect to all uj in a represen-
tation (2.1) of r, but that they encountered difficulties, both theoretical (existence
of an optimum, of an alternating sequence, etc.) and practical ones (too many
parameters to optimize).

5 Differentiation of rational interpolants

Already in their 1986 paper [Sch-Wer], Schneider and Werner have given very
elegant general formulae for the derivatives of rational interpolants in the form
(2.1). These formulae, one for differentiation between the nodes and one at the
nodes, cover arbitrary orders of differentiation. Outside the nodes they are just
barycentric formulae with the values fi at the nodes replaced by divided differences
of the corresponding order. For simplicity, we give them here only for the first and
second order derivatives that will be needed in an application below:

r′(x) =





N∑

j=0

uj

x − xj

r[x, xj ]

/
N∑

j=0

uj

x − xj

, x 6= xi, i = 0(1)N,

−
( N∑

j=0
j 6=i

ujr[xi, xj ]
)/

ui, x = xi

(5.1a)

and

r′′(x) =





2

N∑

j=0

uj

x − xj

r[x, x, xj ]

/
N∑

j=0

uj

x − xj

, x 6= xi, i = 0(1)N,

−2
( N∑

j=0
j 6=i

ujr[xi, xi, xj ]
)/

ui, x = xi,

(5.1b)

with r[z, z, xj ] =
r′(z)−r[z,xj ]

z−xj
.
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6 From nonlinear to linear rational interpolation

With all approximants given in § 3 and 4 except that for which all the poles are pre-
scribed (Corollary 3.6), the barycentric weights uj , and therefore the denominator,
depend on the interpolated function: the approximation operator is nonlinear. In
practice, however, many problems are addressed by means of linear approximants:
also nonlinear ones are often solved with a sequence of linear approximations.

To every fixed set of nodes xj and every set of corresponding fixed weights
uj there corresponds a linear interpolant: for example, with uj = wj ∀ j this is
just polynomial interpolation. For Chebyshev points such as (1.5), the polynomial
weights (1.2) lead to a very well-conditioned polynomial interpolant, whereas this
notoriously is not the case with equidistant nodes. It seems therefore natural to
try finding good weights corresponding to a given set of nodes {xj}.

For a given vector of nodes, the vector of weights b = [b0, b1, . . . , bN ]T defines

the linear vector space R(b)
N of all rational interpolants (1.4) with these weights

[Bal-Ber2]. The set of rational functions

L
(b)
j (x) :=

bj

x − xj

/
N∑

k=0

bk

x − xk

, j = 0, 1, . . . , N, (6.1)

constitutes a basis of R(b)
N .

The first author has suggested in [Ber2] to use the weights (1.6), i.e., the
interpolant (1.7), for every set of nodes. This linear rational interpolant never has
poles in the interval of interpolation and is extremely well-conditioned in practice,
even with random points. Unfortunately, its convergence is not fast enough for
approximating higher order derivatives for many sets of nodes, in particular for
the very important equidistant grid (the first author will give a description of this
convergence in a forthcoming paper). There are, however, certain sets of nodes
for which it converges about as fast as the best polynomial interpolant: conformal
maps of Chebyshev nodes !

7 Conformal point shifts

Polynomial interpolation between Chebyshev points is trigonometric interpolation
of even functions between equidistant points [Ber1, Tre]. It has very nice proper-
ties: fast convergence for very smooth functions, small operator norm (Lebesgue
constant), very stable barycentric formula. It also has some drawbacks, in partic-
ular the O(N−2)–concentration of the nodes at the extremities of the interval of
interpolation, which results in (at least) three difficulties:

a) ill-conditioning of the derivatives near the extremities;

b) bad distribution of the information over the interval;
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c) mediocre approximation of functions with shocks close to the center, where
points are scarcer.

Several experts in the solution of differential equations by means of Cheby-
shev interpolants [Bay-Tur, Boy, Kos-Tal] have suggested to address these difficul-
ties by a conformal shift of the nodes toward the equidistant position. This does
not change the order of convergence of the interpolant.

To be more precise, consider, beside the x–space in which f is to be approx-
imated, another space, with variable y, and the N + 1 Chebyshev points of the
second kind yj = cosjπ/N , j = 0(1)N , on the interval J := [−1, 1] in this y–space.
Let further g be a conformal map from a domain D1 containing J (in the y–space)
to a domain D2 containing I (in the x–space). This defines new interpolation points
on I, xj := g(yj), and the conformal transplantation [Hen2] F (y) := f(x) of any
function in the x–space back into y–space. (The transplantation of an x–space–
function will be denoted by the corresponding upper case letter.) Then, one may
consider at least two approximants of a function f :

– the transplantation aN of the polynomial AN interpolating F between the
yj :

AN (y) :=

N∑

j=0

F (yj)Lj(y) =

N∑

j=0

f(xj)Lj

(
g−1(x)

)
=: aN (x); (7.1)

– the rational interpolant mentioned at the end of §6:

rN (x) =

N∑

j=0

w
(2)
j

x − xj

fj

/
N∑

j=0

w
(2)
j

x − xj

, w
(2)
j from (1.6). (7.2)

The most favorable case is that in which the function f to be interpolated
is analytic in a domain containing I. It follows from a classical result that, if
f : D2 7→ C is such that the composition f ◦ g : D1 7→ C is analytic inside and on an
ellipse Eρ with foci at ±1 and sum of its axes equal to 2ρ, ρ > 1, then [For, p. 28]

|aN (x) − f(x)| = |AN (y) − F (y)| = O(ρ−N ) for every x ∈ [−1, 1].

The corresponding result for rN in (7.2) has been proven in [Bal-Ber-Noë]:

Theorem 7.1 Let D1, D2 be two domains of C containing J = [−1, 1], respectively
I (⊂ IR), let g be a conformal map D1 → D2 such that g(J) = I, and f be a
function D2 → C such that the composition f ◦ g : D1 → C is analytic inside and
on an ellipse Cρ (⊂ D1), ρ > 1, with foci at ±1 and with the sum of its major
and minor axes equal to 2ρ. Let rN be the rational function (7.2) interpolating f
between the transformed Chebyshev points xk := g(yk). Then, for every x ∈ [−1, 1],

|rN (x) − f(x)| = O(ρ−N ).
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Conformal point shifts thus preserve exponential convergence. They may
markedly lessen (though not eliminate) the difficulties a)–c) enumerated at the
section’s onset. The ill-conditioning of the derivatives near extremal Chebyshev
points is due to the accumulation of points there, which for large N are so close
that a small change in a fj has a strong impact on the derivatives around xj .
(This may be quantitatively studied with the pseudospectrum, see [Tre, p. 108].)
Following Kosloff and Tal-Ezer, one may improve upon this by moving the points
closer to equidistant. With the approximation (7.1), the derivatives are given by

a′
N (x) = A′

N (y) ·
[
g−1(x)

]′
=

A′
N (y)

g′(y)
(7.3a)

and

a′′
N (x) =

1

[g′(y)]2
A′′

N (y) − g′′(y)

[g′(y)]3
A′

N (y), (7.3b)

in which A′
N (y) and A′′

N (y) may be computed by (5.1). With the approximation

(7.2), the derivatives are simply given by the formulae (5.1) with uj = w
(2)
j ∀ j.

Kosloff and Tal-Ezer have suggested the map

g(y) =
arcsin(αy)

arcsin α
, 0 < α < 1. (7.4)

In the limiting cases, α → 0 maintains the points at their Chebyshev position,
whereas α → 1 renders them equidistant. The derivatives of g to be used in (7.3)
are given by

g′(y) =
α

arcsin α

1√
1 − (αy)2

, g′′(y) =
α3

arcsin α

y√(
1 − (αy)2

)3
,

so that in (7.3b)
g′′(y)

[g′(y)]3
= (arcsin2 α)y.

The effect of this map upon the derivatives has been extensively studied,
see, e.g., [Red-Wei-Nor, Mea-Ren, Abr-Gar]. It is indeed significant. And the map
is even more successful in alleviating the drawbacks b) and c) mentioned above:
through the refurbishment of the center with nodes it approximates functions
with steep gradients or oscillations there much better than the simple polynomial
interpolating between Chebyshev points, see the examples in [Ber-Mit4].

One may combine such changes of variable with the optimal attachment of
poles of §4. In [Ber-Mit4], the first and last authors have done this by attaching
poles vk to AN in y–space, which corresponds to attaching poles zk := g(vk) to
aN in x–space. For a function with a steep gradient in the center of the interval,
such as Hemker’s example

f(x) = cos πx +
erf(δx)

erf(δ)
, δ =

√
250, −1 ≤ x ≤ 1,
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the improvement obtained by means of the poles is still more pronounced than
that coming from the change of variable. However, this is no longer the case with
a function oscillating in the center: the optimization problem with a number of
poles big enough to cope with a large number of oscillations seems beyond the
capability of existing optimization software.

The second author has just noticed that the pole attachment may usually also

be performed with rN from (7.2) by multiplying every weight w
(2)
j by

∏
k(xj −zk).

The resulting rational interpolant is the quotient of two rational functions with
the same denominator as rN , one interpolating f ·d, the other interpolating d from
(3.6). Contrary to the attachment via (7.1), further poles than the zk may arise
in C, but they move infinitely far as N → ∞. One advantage is the more elegant
formula (5.1) for the derivatives which avoids the chain rule. Exponential conver-
gence is maintained, as will be shown in further work. The numerical examples in
[Bal-Ber2] suggest that this interpolant should be just a little less good (no more
than one digit) than aN with the same attached poles.

8 An application: the linear rational pseudospec-

tral method for boundary value problems

In order to demonstrate the use of linear rational interpolation in practical prob-
lems we shall now solve the following simple boundary value problem: find u on
the interval [−1, 1] that satisfies the differential equation

u′′(x) + p(x)u′(x) + q(x)u(x) = h(x) (8.1a)

at every x ∈ (−1, 1) and takes the values

u(−1) = uℓ, u(1) = ur (8.1b)

at the boundary points. We assume that the functions p, q, and h are such that
the problem is well-posed.

Suppose first that one knows a good location for poles zk of an approximation
of u, e.g., because the equation is fuchsian or from an application of the WKB–
method [Wei, Bal-Ber-Dub]. To solve (8.1), one may then try substituting for u a
linear rational interpolant ũ written in the basis (6.1),

ũ(x) =

N∑

j=0

ujL
(b)
j (x), (8.2)

to obtain

∑

j

ujL
(b)
j

′′
(x) + p(x)

∑

j

ujL
(b)
j

′
(x) + q(x)

∑

j

ujL
(b)
j (x) = h(x). (8.3)
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Since the boundary values should enter the solution of the problem, one takes here
a set of nodes containing −1 and 1, e.g., Chebyshev points of the second kind. Then
(8.3) yields an equation for the unknown values u1, . . . , uN−1 of ũ at x1, . . . , xN−1

(u0 and uN being known from the boundary conditions). If the exact solution does

not miraculously happen to belong to R(b)
N , (8.3) does not have a solution (8.2)

and one may collocate, i.e., merely require that the two sides of (8.3) agree in as
many values xi of x as there are unknowns, here N − 1:

∑

j

ujL
(b)
j

′′
(xi)+p(xi)

∑

j

ujL
(b)
j

′
(xi)+q(xi)

∑

j

ujL
(b)
j (xi) = h(xi), i = 1(1)N−1.

(8.4)
This is a system of linear equations for the unknown values u1, . . . , uN−1, which
may be written as

Au = h (8.5)

with A := D(2) + PD(1) + Q and

u := [u1, u2, . . . , uN−1]
T

,

D(1) =
(
D

(1)
ij

)
, D

(1)
ij := L

(b)
j

′
(xi),

D(2) =
(
D

(2)
ij

)
, D

(2)
ij := L

(b)
j

′′
(xi),

P := diag
(
p(xi)

)
, Q := diag

(
q(xi)

)
,

h := [h(xi) − ur

(
L

(b)
0

′′
(xi) + p(xi)L

(b)
0

′
(xi)

)
− uℓ

(
L

(b)
N

′′
(xi) + p(xi)L

(b)
N

′
(xi)

)
]T ,

i, j = 1, . . . , N − 1.

An advantage of the barycentric representation of ũ is the simplicity of the
formulae for the elements of D(1) and D(2), which may be given as

D
(1)
ij =





bj/bi

xi − xj
, i 6= j,

− ∑
k 6=i

D
(1)
ik , i = j,

(8.6)

D
(2)
ij =





2D
(1)
ij

(
D

(1)
ii − 1

xi − xj

)
, i 6= j,

− ∑
k 6=i

D
(2)
ik , i = j.

The weights bj enter explicitly only through the remarkably simple formula for

the non-diagonal elements of D(1)! The use of these formulae was first advocated
in [Bal-Ber1] for the polynomial case, in [Bal-Ber2] and [Ber-Bal] for the rational
case. They may be obtained from (5.1); a simple direct proof is given in [Ber-Tre].

The matrix A in (8.5) is full, as opposed to those of the finite difference and
the finite element methods. The reason for the efficiency of the method, already
in the polynomial case, lies in the spectral convergence of ũ toward u — for good
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nodes — when all functions arising in the problem are analytic within ellipses
containing the interval [−1, 1] in their interior, see the examples in [Tre]. This
remains true when one takes bj = wjdj as in (4.1) to solve a problem whose
solution has the same poles zk:

Theorem 8.1 [Bal-Ber-Dub] Let the solution u of (8.1) be meromorphic with
poles at z1, . . . , zP . Then the linear rational collocation method with trial function
(8.2) for Chebyshev points of the second kind converges exponentially toward u,
and at least as fast as the corresponding polynomial collocation solution of an
associated boundary value problem for u · d.

The associated boundary value problem is explictly known [Pér-Cas-Hay, Ber-
Bal-Dub]. Of particular importance is the fact that prescribing the poles results
in a better solution for small N . Indeed, when using spectral elements in several
dimensions, one cannot increase N at will in each element since the system of
equations would become too large. The figure displays the solution of Example 2
of [Bal-Ber-Dub] with N = 17 together with the polynomial solution (left) and
the rational solution with the correct poles (right). Note in particular that the uj

(big dots) are very good approximations to u(xj) in the second case: they could be
interpolated with splines to avoid oscillations for N small. Weideman has proposed
in [Wei] a method that is mathematically equivalent to ours when all the poles are
fixed a priori but that does not employ the barycentric representation.

Polynomial Rational

Comparison of two pseudospectral solutions of a boundary value problem (8.1)

Every set of points xj and every set of bj determine another linear rational
collocation method. A natural choice are shifted points xj and the weights bj =

w
(2)
j ∀ j. R(b)

N then is the set of all interpolants (7.2) and takes advantage of the
improved condition of the derivatives and/or of the better approximation in the
center of I, see §7.

The better condition of the derivatives is not so important when solving (8.5)
directly, that is by Gaussian elimination, for this amounts to applying A−1, i.e.,
to integration [Ber4, Tan-Tru]. However, it might be important when solving (8.5)
for more complicated problems, and is definitely an advantage when one applies
A itself, e.g.:

— when solving time evolution partial differential equations with the pseu-
dospectral method of lines (pseudospectral discretization in space followed
by a time-stepping algorithm such as extrapolation or Runge–Kutta for solv-
ing the resulting system of ordinary differential equations in time). This is
the application that led Kosloff and Tal-Ezer to advocate their shift (7.4).
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The use of the corresponding points xj in the just mentioned R(b)
N has been

studied in [Bal-Ber2]. It decreases the number of time steps by a factor of two
to three without any noticeable change in the computing effort for spectral
discretization.

— when solving spatial systems of equations such as (8.5) by iteration [Ber-
Bal]: a good choice of the parameter α in (7.4) (about α = .99) may decrease
the number of iterations by a third, and this again with no change in the
computer code but the command computing the xj .

9 Back to nonlinear: adaptive point shifts and

poles

As already mentioned in §7, a side effect of Kosloff and Tal-Ezer’s point shift is the
improvement in the approximation of functions with steep gradients in the center
of I by polynomials interpolating between Chebyshev points; in many examples
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it becomes the most desirable effect. It is too blunt, however: it materializes only
when there is only one front and when the latter lies precisely in the center. This
is by no means the usual case: fronts may arise everywhere in I and there may be
several of them.

To cope with the first difficulty, Bayliss and Turkel [Bay-Tur] have studied
some two-parameter shifts, with one parameter for the location of the front, the
other for its intensity. The following observation then led the first and last authors
to a solution of the several fronts problem: with one steep front, the inverse change
of variable is itself steep at the front, but has very small slope away from it, so
that adding another inverse shift preserves both slopes. This naturally leads to the
inverse shift [Ber-Mit5]

y(x) = g[−1](x) = µ +
1

λ

Q∑

q=1

arctan[αq(x − βq)], (9.1)

where the parameters βq and αq determine location and intensity of the q–th
front, and where λ and µ ensure that g[−1](−1) = −1 and g[−1](1) = 1. Whenever
needed, the shift g(y) itself is obtained by inverting g[−1], a simple task in the two-
front case [Ber-Mit5]. In many instances, as in the solution of differential equations
below, only g[−1] (or, rather, its derivatives) arises in the solution of the collocation
problem; g is just needed for evaluating the final solution between the nodes.

For approximation, if one has some (possibly vague) information about lo-
calization and intensity of the front, one may try adjusting the parameters αq and
βq by trial and error; this can be quite effective in practice. In [Ber-Mit5], the
parameters were optimized in a more sophisticated way by minimizing

‖R − F‖∞ := max
y∈[−1,1]

|R(y) − F (y)|,

where R denotes the rational approximation in y–space, with modern simulated
annealing software. The effect of the shift is quite impressive for interior fronts,
much more pronounced than that of the optimized poles.

The latter are still useful, though. Firstly, they may bring a noticeable bit of
extra precision at the fronts. Secondly, and more importantly, they are necessary
for accomodating boundary layers. Indeed, by moving the points toward the in-
terior fronts, the shifts have the negative effect of depleting the extremities, thus
worsening the approximation of incidental boundary layers. Poles, which may be
located everywhere and in particular have real part outside I, remain efficient in
that case, as the results of [Ber-Mit5] demonstrate. We just reproduce here Table
1, whose captions should be self explanatory and may be found in [Ber-Mit5].
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β α Poles ‖r − f‖ ‖r′ − f ′‖ ‖r′′ − f ′′‖

∗ ∗ 1.867e − 1 2.361e + 1 3.454e + 3

∗ ∗ (−.4902,±2.011e − 2) 5.224e − 4 2.158e − 1 8.241e + 1
(−.5056,±2.228e − 2)
(−.5178,±5.613e − 2)

−.5185 7.408 9.447e − 9 5.012e − 6 1.138e − 2

−.4976 8.273 (−1.027,±3.147e − 3) 1.279e − 11 6.270e − 9 1.654e − 5

−.4981 8.519 (−1.030,±3.574e − 3) 2.495e − 12 1.754e − 9 5.659e − 6
(1.062,±5.346e − 3)

Effect of an optimized Bayliss–Turkel point shift on
rational approximation with and without optimized poles in an example with N=100

The advances in approximation brought by optimized poles and point shifts
may be used for improving solutions of problems. As an example we take again
the boundary value problem (8.1). By means of the chain rule one sees that the
point shift transplants (8.1a) into the equation

[y′(x)]2U ′′(y) + [y′′(x) + P (y)y′(x)]U ′(y) + Q(y)U(y) = H(y) (9.2)

in y–space, which will be solved by collocation at Chebyshev points of the second
kind yj .

The first and last authors have suggested in [Ber-Mit3] and [Ber-Mit6] the
following two-step recursive procedure for solving (9.2):

Step 1. Compute the approximate solution U(k) = [U
(k)
1 , . . . , U

(k)
N−1]

T of (9.2) —
with the boundary conditions (8.1b) — by the linear rational collocation

method with bj = wjdj , dj =
∏P

k=1(yj − vk), with the poles v1, . . . , vP

in y–space (dj ≡ 1 for k = 1) and the inverse point shift (9.1). This
amounts to solving a system (8.5) with matrix

A := G2
1D

(2) + (G2 + G1P)D(1) + Q,

where D1 and D2 are the Chebyshev differentiation matrices (8.6) and
where G1 and G2 denote the diagonal matrices of the derivatives of
g[−1] at the nodes xi,

G1 = diag
(
y′(x1), . . . , y

′(xN−1)
)
, G2 = diag

(
y′′(x1), . . . , y

′′(xN−1)
)
,

while P and Q contain the values P (yi) = p(xi), resp. Q(yi) = q(xi).

Step 2. Minimize the residual norm

‖[y′]2R′′ + [y′′ + Py′]R′ + QR − H‖∞
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of the differential equation for the rational interpolant

R(y) :=

N∑

j=0

w
(2)
j

P∏

ℓ=1

(
1 − yj

vℓ

)

y − yj

U
(k)
j

/
N∑

j=0

w
(2)
j

P∏

ℓ=1

(
1 − yj

vℓ

)

y − yj

with respect to the poles vk in y–space, k = 1, . . . , P , and the shift
parameters αq, βq, q = 1, . . . , Q. This changes the bj to yield a new

interpolant to the U
(k)
j .

The derivatives y′(x) and y′′(x) required in the computation of G1 and G2 are
given by the simple formulae

y′(x) =
1

λ

Q∑

q=1

αq

1 + s2
q

,

y′′(x) = − 2

λ

Q∑

q=1

α2
qsq

(1 + s2
q)

2
, sq := αq(x − βq).

In all the examples we tried [Ber-Mit6] the method approximates the solution
with an error merely about ten times as large as the direct approximation of the
exact solution in [Ber-Mit5] (one example of which is given in the table above),
a splendid performance. The convergence of the method has not been proven yet;
however, an L2–Galerkin version has been shown to reduce the energy norm of the
error at each step of the algorithm.

10 Conclusion

We hope that the present article has convinced the reader that applications of the
barycentric representation of rational interpolants brings interesting advances in
infinitely smooth practical approximation. Its use in classical rational interpolation
yields a very stable way of computing the interpolant and allows for a relatively
simple detection of unattainable points and poles. The latter may also be easily
monitored in the complex plane and their location optimized to yield new rational
interpolants which approximate a given function with an error that diminishes
with the number of the poles. In view of the globality of the interpolants, fronts
are handled with conformal shifts of variables which may be optimized as well.
Though expensive to determine, the resulting approximants display an impressive
accuracy. They may be used in the solution of problems such as differential and
integral equations.
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Université de Fribourg
CH–1700 Fribourg/Pérolles
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Université de Fribourg
CH–1700 Fribourg/Pérolles
Switzerland
E–mail address: Richard.Baltensperger@unifr.ch

Department of Mathematics and Statistics
Arizona State University
Tempe, Arizona 85287–1804
USA
E–mail address: Mittelmann@asu.edu




