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Abstract

In recentyears,severalnewparametricand nonparametricbootstrapmeth-

ods have been proposed for time seriesdata. Which of these methods should

applied researchersuse? We provide evidence that for many applicationsin

time serieseconometricsparametricmethods are more accurate,and we iden-

tify directionsfor future researchon improving nonparametricmethods. We

explicitly addressthe important, but often neglectedissue of model selection

in bootstrapping. In partictiartwe emphasizethe advantagesof the AIC over

other lag order selectioncriteriaand the need to account for lag order uncer-

tainty in resampfing.We also showthat the block size playsan importantrole

in determiningthe successof the block bootstrap, andwe propose a data-based

block size selectionprocedure. Our discussionalso highlightsthe importance

of accountingfor small-samplebias in autoregressionsand some shortcomings

of the standardpercentileand percentile-tintervalsin the time seriescontext.
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1 Introduction

In recent years, many exciting developments have taken place

series. Advances have proceeded along a number of distinct

in bootstrapping time

paths. Some authors

have focused on adapting the familiar residual-based resampling approach of Efron

(1979) to finite-order ARMA models. More recently, the focus has shifted toward

residual based nonparametric methods such as the sieve bootstrap and the Cholesky

factor bootstrap, which treat the underlying population model as unknown. Other

researchers have explored resampling blocks of time series data. Still another ap-

proach has been to develop algorithms which operate in the frequency domain. The

advantage of this approach is that in the frequency domain there are iid variables

which can be exploited for bootstrapping even when the original data are non-iid.

Given this array of alternative bootstrap methods, which method should applied

econometricians use? We observe that these algorithms differ in the extent to which

they impose parametric structure on the data. Algorithms which make few paramet-

ric assumptions are relatively likely to encompass the true model. However, methods

which condition on a particular parametric model afford higher precision. We provide

evidence that suggests that for many applications in time series econometrics para-

metric methods may be preferable. Rather than rejecting nonparametric methods,

we identify directions for future improvements.

An important, but often neglected issue in evaluating the performance of bootstrap

algorithms is model selection. For lag order selection in autoregressive models, we

stress the advantages of the AIC compared to more parsimonious criteria as well

as the need to explicitly account for lag order uncertainty. Similar problems arise

in nonparametric resampling. In particular, we show that the block size plays an

important role in determining the success of the block bootstrap, and we propose an

automatic data-based selection procedure. We also discuss the choice of bandwidth

selection criteria for

Another concern

frequency domain bootstraps.

in applied work is the presence of nonstationarities. We arguezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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that the asymptotic bootstrap theory for nonstationary data is more fully developed

for the parametric case. In particular, parametric resampling methods have recently

been shown to be valid, even for processes with some explosive roots (Datta (1995)).

Nevertheless, care must be taken in applying parametric bootstrap algorithms.

In particular, we emphasize the importance of accounting for small-sample bias in

autoregressive models. We also stress that in the time series context percentile-t

intervals may perform poorly and their use should be supported with Monte Carlo

evidence. In addition, standard percentile intervals may also require modifications.

In contrast to the discussion in L6ger, Politis and Romano (1992), Carlstein (1992),

Jeong and Maddala (1993), Young (1994) and Horowitz (1995), our main focus is on

inference in the linear stochastic regressormodel. Our discussion complements recent

work by Li and Maddala (1996). Section 2 reviews parametric and nonparametric

residual-based bootstrap algorithms. Section 3 discussesthe block bootstrap. Section

4 presents bootstrap algorithms for the frequency domain. Section 5 focuses on the

treatment of nonstationary data. Section 6 contains a Monte Carlo study which

compares these three approaches to bootstrapping. Section 7 concludes.

2 Residual Based Resampling

Efron’s (1979) original bootstrap algorithm required resampling from data which are,

in population, independent and identically distributed.

artificial repeated samples by random

the data display heteroskedasticity or

data will not preserve these properties,

resampling with

In the iid case, one can create

replacement from the data. If

serial correlation, a randomly resampled set of

so that statistics calculated from the resampled

data (or from transformations of resampled data) will be inconsistent. Thus, the iid

bootstrap fails for time-dependent data. One way to reduce time dependent data to

an iid structure is to fit a parametric model.
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2.1 Parametric Methods

Early applications of the bootstrap algorithm to

the underlying process follows a stationary finite

A(L)gt = Et

where Et- iid with E(~t) = Oand E(~2) < co. Y

time-dependent data assumed that

order autoregression of the form:

(1)

= (Y1) ... ) y~)~ denotes the observed

data. A(L) is an invertible polynomial in the lag operator. For example, Efron and

Tibshirani (1986) and De Wet and van Wyk (1986) bootstrapped the AR(1) model.

Stine

finite

1.

2.

3.

(1987) extended the analysis to the AR(p) model and RunNe (1987) to the

order VAR(p) model. The AR(p) model may be boot strapped as follows:

Determine the order of the AR(p) process.

Estimate the parameters A(L).

Generate bootstrap innovations E; by resampling with replacement from

the empirical residuals Et= A(L)yt.

4. Generate a random draw for the vector of p initial observations

Y: = (y;, ..., y;)’.
.

5.

6.

7.

Generate pseudo-data: A(L)y~ = S; conditional on Y;.

Calculate the bootstrap parameter estimates: A*(L).

Repeat steps 3-6 many times and build up the empirical distribution of

interest.1

Under some additional regularity conditions, Bose (1988) proves that the boot-

strap approximation improves the asymptotic accuracy of the OLS estimates in the

AR(p) model from O(T-$) to o(T-~) almost surely.

In practice, AR(p) models are almost always estimated by least-squares. If no

intercept is included in the regression model, the residuals ;t must be recentered

prior to resampling to ensure that their bootstrap population mean is zero. It is also

1 For a discussion on choosing the number of bootstrap replications, see Efron and Tibshirani

(1993).
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common to rescale the empirical residualsby a factor of [~ —p/(~ —p —d)]l’2, where

d denotes the number of estimated coefficients. The aim is to give the E: the desired

variance (see Stine (1987), Peters and Freedman (1984)).

The p initial conditions Y. = (gl, ...,~P)’ like all observations for g~are stochastic.

While the effect of conditioning on a particular set of initial conditions is asymp-

totically negligible, it is not appropriate to condition on Y. in order to generate the

bootstrap replicates. One way to randomize Y; is to set Y; = ~-1/2(~;l/2e~), where

~ is the estimate of ~(YtY~) defined by A(L) and Yt = (g~,g~-l, ..., y~-P+l)’ (Lutkepohl

(1991), p. 496). This procedure will preserve the second moment structure in the

data. The problem with this method is that it requires the estimated process to

be stationary. For nonstationary coefficient estimates, the procedure breaks down

because r is noninvertible. Even for borderline stationary processes, there is a posi-

tive probability that some least-squares estimates will be explosive. A method which

does not require matrix inversion is to pick arbitrary values for Y; in the recursion

A(L) y; = e; and to discard the start-up transients for {y;}. Alternatively, one could

build up the initial observations from the estimated moving average representation

Y; = A-l(L)ej as in Rayner (1990), but this requires the truncation of an infinite

sum. A third approach which avoids the truncation of an infinite sum and does not

require start-up transients is to divide the observed data into T – p + 1 overlapping

blocks of length p and randomly select one block with replacement for Y;. This block

initialization has been used for example in Stine (1987).

An alternative class of parametric models are stationary MA(q) models:

y~ = B(L)et (2)

where B(L) denotes a lag polynomial and Etand yt are defined as above. MA(q) mod-

els are rarely bootstrapped in econometric practice, but it is straightforward to adapt

the bootstrap algorithm for AR(p) models to the present context. Simulation results

for the bite order stationary MA(1) model can be found in De Wet and van Wyk
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(1986) and Bose (1990). Under further regularity conditions, Bose (1990) proves that

the bootstrap approximation of the parameter estimates in moving average models is

accurate to the order o(T–~ ). In contrast, the asymptotic normal approximation is

accurate only to the order O(T–* ).

Chatterjee (1986) applies the bootstrap algorithm to general ARMA(p,q) models

of the form:

A(L)yt = B(L)~t (3)

where Et and yt are defined as above. A(L), B(L) are invertible polynomials in the

lag operator, satisfying the assumption that together they imply var(yt) < M. The

ARMA bootstrap algorithm proceeds as follows:

1. Determine the order of the ARMA(p,q) process.

2. Estimate the parameters: A(L), B(L).

3. Resample from: tt = B-l(L) A(L)yt (after recentering the ;t around zero).

4. Choose a large positive integer ~, set y; = Ofor t < –~ and generate iid

draws for e; for t = –T, ..., T.

5. Generate pseudo-data: y; = A-l(L) B(L)Ej for t = –T, ...,T and retain the

last T values of y;.

6. Calculate the bootstrap parameter estimates: A*(L), B*(L).

7. Repeat steps 3-6 many times and build up the empirical distribution of

interest.

Under regularity conditions, Kreiss and Franke (1989) prove the asymptotic validity of

the bootstrap approximation for ML estimators in the finite-order stationary ARMA

model.2

zThe parametric bootstrap may be robustified against possibleserialcorrelationin Et bY ‘e-

nsamplingblocks of residuals using the block methods discussed in section 3 (e.g., Li and Maddala

(1993)), or by explicitly modeling the error term (e.g., Lamoureux and Lastrapes (1990)).



2.1.1 Generating Bootstrap-Data in VAR Models

Superficially, the bootstrap algorithm for VAR models is similar to the familiar al-

gorithm for the regression model with fixed regressors. However, in autoregressive

models the OLS estimates of the slope coefficients are systematically biased away

from their population values. As a result, the standard bootstrap algorithm used by

Runkle (1987) may be misleading in small samples. The size of the bias depends

on the sample size, the persistence of the data generating process and whether a

deterministic time trend is included in the regression.

The tendency of the bootstrap to intensify the deficiencies of the OLS estimator

was first observed by Kiviet (1984) in a linear regression model with lagged depen-

dent variables. Pope (1987) and Nicholls and Pope (1988) suggest bias-correcting the

slope coefficients “prior to bootstrapping)) in order to improve the bootstrap approx-

imation in the vector autoregressive model. They develop closed form expressions for

the asymptotic first-order bias of the slope coefficients in the VAR model without

a deterministic time trend. Recent work by Kilian (1995) implements and extends

Nicholls and Pope)s (1988) proposal. Kilian uses resampling to estimate the first-order

coefficient bias in the VAR model with and without deterministic time trends.

2.1.2 Pitfalls in Constructing Confidence Intervals in VAR Models

Even if we bias-correct the autoregressive coefficients A(L) prior to resampling the

data, small-sample bias may cause additional problems in bootstrap inference. This

is because the bootstrap estimates A*(L) themselves will be subject to stochastic

regressor bias. This bootstrap bias tends to undermine the coverage accuracy of

bootstrap confidence intervals for statistics that are functions of A(L), regardless of

the type of confidence interval used.

There is a widespread perception (e.g, Horowitz (1995), Li and Maddala (1996))

that more accurate finite-sample confidence intervals can be obtained by bootstrap-
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ping asymptotically pivotal statistics. A statistic is said to be asymptotically pivotal

if its limiting distribution does not depend on any unknowns. Many statistics of in-

terest based on AR(p) and ARMA(p,q) models are asymptotically normal and can be

studentzzed to make them asymptotically pivotal. Consider a statistic ~. Percentile-t

bootstrap intervals are based on the bootstrap approximation (~” – e)/S~(#*) of the

studentized statistic, (e – O)/SD(b) .

Unfortunately, in many time series models reliable measures of scale, SD(#*),

do not exist. In particular, the distribution of the slope coefficients in the VAR

model may undergo drastic changes as the dominant root of the process approaches

unity. Bias in A*(L) tends to move the estimate @*(A*(L)) away from its true value,

changing its variance. As a result, the percentile-t bootstrap interval is unlikely

to perform well without a suitable bias correction prior to estimating the variance.

For example, Kilian (1995) reports that the percentile-t interval for VAR impulse

response estimates tends to fail spectacularly in small samples. Similar results for the

correlation coefficient are well known in the bootstrap literature (Efron (1987)). While

the percentile-t interval promises higher order asymptotic accuracy, the asymptotic

behavior may be a poor indicator of its accuracy in finite samples.

Note that in the context of hypothesis testing, this pitfall is effectively overcome by

resampling under the null (e.g., Zivot and Andrews (1992)) and/or using restricted

estimation techniques (e.g., Nankervis and Savin (1996)). Li and Maddala (1996)

provide an extensive discussion.

Unfortunately, for interval estimation there is no specific null to refer to. In

principle, it is possible to improve the small-sample performance of the percentile-t

interval with variance stabilizing transformations, but these transformations are not

generally known and have to be simulated. This adds another layer of bootstrapping

and makes the percentile-t method computationally burdensome (Efron and Tibshi-

rani (1993)). We conclude that the percentile-t method should not be used blindly

without supporting Monte Carlo evidence of its small-sample properties.
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Why not directly bootstrap the unstudentized statistic of interest? As with the

percentile-t, the percentile interval requires the statistic to be unbiased and scale

invariant. This assumption is asymptotically valid for many statistics based onVAR

slope coefficients, but it is not reasonable for their small-sample distribution. As a

result, the percentile interval can be expected to perform poorly. The bias-corrected

(BC) percentile interval discussed in Efron and Tibshirani (1993) does not necessarily

remedy this problem either, because it ignores scale effects. Intuitively, shifting the

interval endpoints to account for median bias in a scalar distribution fails to account

for the changes in the shape of the distribution across the parameter space. The more

general

for bias

BCQ percentile interval of Efron and Tibshirani (1993) is designed to account

and changes in the variance of the statistic of interest. However, its adaptation

to time-dependent data has not been investigated. To date empirical evidence on

the coverage accuracy of the percentile and BC intervals is scant. Kilian (1995)

finds that these

He also explores

intervals perform erratically for VAR impulse response estimates.

an alternative approach to removing bias and scale effects prior to

bootstrapping.

2.1.3 Lag Order Uncertainty in Parametric Models

The bootstrap can only be expected to perform well when the parametric model

provides a good approximation to the true model. Determining the correct orders

of an ARMA or AR model is thus a crucial issue. Chatterjee (1986), for example,

reports simulation results for ARMA(l ,1), ARMA(2,0) and ARMA(0,2) models. He

compares bootstrap and asymptotic estimates of standard errors. Chatterjee regards

the bootstrap results as quite satisfactory, but observes that much of the attraction

of this method depends on selecting the right order. He notes that the bootstrap

performs poorly if the selected order is not correct.

Recent work by Kilian (1996a) offers some guidance on selecting the lag order.

For the AR(p) model, the lag order selection criterion need not be consistent for
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the lag order for the bootstrap algorithm to be asymptotically valid. However, it is

necessary that the probability of underestimating the true lag order is aspptotically

zero. Provided that the range of lag orders considered includes the true lag order, this

suggests that a wide range of information-based lag order selection criteria including

the Akaike Information Criterion (AIC) are potentially valid criteria.3

Kilian (1996a) also points out that the consequences of bootstrapping an over-

parameterized VAR model may be very different from those of bootstrapping an

under-parameterized model. This suggests that lag order selection criteria such as the

SchwarzInformation Criterion (SIC), which are known to be biased downward in small

samples, will result in poor bootstrap estimates. Kilian)s simulation results confirm

that in small and moderate samples the coverage accuracy of bootstrap confidence

intervals for VAR impulse response estimates is much closer to nominal coverage for

the AIC than for more parsimonious criteria such as the SIC or the Hannan-Quinn

Criterion.

Once it is explicitly recognized that the lag order must be estimated, another ma-

jor difference between bootstrapping a fixed design model and a stochastic regressor

model becomes apparent. The standard bootstrap algorithm for AR(p) models con-

ditions on the lag order estimate as though it were the true lag order. Even if the lag

order is estimated correctly, the standard algorithm ignores the sampling uncertainty

about the lag order estimate and may lead to misleading inferences. Masarotto (1990)

and Kilian (1996b) therefore propose a generalization of the bootstrap algorithm for

VAR(p) models which reflects the true sampling uncertainty of the lag order estimate.

This “endogenous lag order” bootstrap algorithm does not condition on the initial lag

order estimate, but re-estimates the lag order in each bootstrap iteration. Extensions

of this idea to ARMA(p,q) models are straightforward.

sThe ~~ymptotic validity of the AIC for bootstrapping followsfrom resultsin paulsenand

Tj@theim (1985) and Quinn (1988). Also see Potscher (1991, p. 179).
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2.1.4 Conditional Bootstrap Prediction

Applied researchersare often interested in the distribution of forecasts conditional on

the last p observations of the sample path. Bootstrapping the conditional distribution

requires the last p observations in each bootstrap sample to be identical to the last

p observations in the original data. The standard bootstrap algorithm for the AR(p)

model is not appropriate for this purpose, because it does not constrain the values

of the last p bootstrap observations. To solve this problem, Thombs and Schucany

(1990) propose initializing the AR(p) with the last p observations and backcasting

the time series using the ‘backward representation’:

A(L-l)yt = W~

where the backward noise wt is the sequence defined by:

A(L-l)

‘t= A(L) ‘t

(4)

(5)

If et is normally distributed, one can use iid resampling of the backward residuals,

tit, based on (4) to generate conditional bootstrap sample paths. However, this

algorithm is not valid for non-Gaussian innovations St. Findley (1986) shows that

in the non-Gaussian AR(1) model, wt (though uncorrelated) is not iid. Breidt and

Davis (1991) prove this result for the AR(p) model.

Breidt, Davis, and Dunsmuir (1992, 1995) observe that the distribution and the

dependence structure of wt are complicated, but that the sequence can be simulated

if we rewrite 5 as:

A(L)wt = A(L-l)st, (6)

where wt is an ARMA (p,p) process driven by the iid sequence et. They propose the

following algorithm:
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1. Determine the lag order of the AR(p) process.

2. Estimate the parameters A(L) for the observed data {gt}, t = 1,..., T.

3. Compute ;t = A(L)yt for t = p + 1,...,T.

4. Generate a bootstrap realization w: of the backward noise Wtvia:

A(L)W; = A(L-l)E;,

using standard bootstrap techniques for ARMA(p,q) models.

5. Generate a bootstrap realization {g;} of {yt} passing through the last

p observations of the sample path via:

Y; = Yt

Y; = A(L-l)y; + W;

using the sequence of observations

t = T, T – 1,...,T – p + 1

t = T – p, T – p – 1,...,1

for w; from step 4.

(7)

6. Calculate the bootstrap estimates A*(L).

7. Repeat steps 4-6 many times and buildup the conditional empirical distribution

of the h-step ahead forecasts ~~+~.

McCullough (1994) finds that the conditional forecast distributions implied by the

Thombs and Schucany (1990) procedure are very different from those implied by the

Breidt et al. procedure.

Kabaila (1993) shows that the conditional sample paths generated by the Breidt

et al. procedure are not entirely correct.

based on an estimate of the pdf of Et.

(1995) point out, estimating the density

He proposes

However, as

an exact bootstrap procedure

Breidt, Davis, and Dunsmuir

in small samples may be problematic, and

the gains from using exact rather than approximate conditional sample paths appear

small.
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2.1.5

ARMA

Bootstrapping State Space Models

processes can also be cast in state-space form and consistently estimated us-

ing Kalman filter techniques (e.g., Harvey (1989)). Stoffer and Wall (1991) propose a

bootstrap algorithm for linear state space models. They show that their algorithm de-

livers consistent bootstrap standard errors under some regularity conditions . Define

the state-space model as:

St+l = Fst + Gxt + wt

Yt = ~st + Dxt + vt,

(8)

where yt is a q x 1 vector of observed data, st is a p x 1 unobserved state vector and

xt is an r x 1 vector of exogenous variables. F, G, H, and D are coefficient matrices.

The innovations wt and vt are iid with zero mean and nonnegative definite covariance

matrices. E(vtvt) = R, E(wtwt) = Q, and E(wtvt) = O. The model coefficients and

correlation structure are assumed to be uniquely parameterized by the vector 0.

The model (8) may, alternatively, be represented in innovations form. Let st+llt

denote the best linear predictor of st+l. Then the forecast errors are et = yt–~ stlt-l –

Dxt with covariance matrix Zt = H Ptlt_lH’ + R . The innovations form is:

St+llt = Fstlt_l + Gxt + FKt~t

Yt = ~stlt-l + ~xt + Et,

where Kt = Ptlt_lH’Z~l (the Kalman gain) and where Ptlt–l is the covariance matrix

of St—st[t_l.

Let e denote the Gaussian ML estimate, and define the (p+q) x 1 vector &t=

[s~+llt,g;]’. Stacking the equations in (9) and evaluating at ~ results in:
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(10)

where A =

1Ho
Stoffer and Wall

F07‘=[:1) c’=[F:$Y~:)l
1991) devise the following bootstrap procedure:

1. Calculate 0 = argmax~ [- ~1 {logl~,(o)l +~t(~)~~;l(~)~t(o)}]. This

A
implies a set of forecast errors, &t(0)and the forecast error covariance

matrix St(e).

2. Generate e; by sampling with replacement from the normalized residuals

2,= fi;l/2(e);,(e).

3. Generate pseudo-data, y~, by substituting e: for ;t in equation (10),

holding fixed the exogenous variables Zt and the initial conditions.

4. Calculate bootstrap parameter estimates, d“.

5. Repeat steps 2-4 many times and build up the empirical distribution of

interest.

2.2 Nonparametric Methods

The bootstrap algorithms discussed above assume that the true model is a finite order

ARMA process with iid innovations. However, these models are at best viewed as

approximations. A broader class of models are linear autoregressionsof infinite order.

If the true model is not finite-ordered, the asymptotic justification of the bootstrap

approximation proposed by Bose (1988) and Kreiss and I?ranke (1992) is no longer

valid. We will discuss two bootstrap algorithms designed for this class of processes:

the sieve bootstrap and the Cholesky factor bootstrap.
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2.2.1 The Sieve Bootstrap

Buhlmann (1995, 1996a) considers a class of linear, infinite dimensional process which

can be approximated by a sequence of finite-dimensional autoregressive approxima-

tions of order p (T) where p (T) ~ 00 and p (T) = o (T) as T + m. He argues

that the standard OLS bootstrap for the AR(p) model may be given a nonparamet-

ric interpretation. In particular, he proposes estimating an AR(p(T)) model using

the AIC and generating a bootstrap sample by resampling the residuals of the fitted

model. This so-called sieve bootstrap is model free within the class of linear MA(oo)

processes with polynomial decay. Buhlmann (1996a) proves that the sieve bootstrap

gives correct approximations to the distribution of smooth functions of linear statistics

of the data. Under the more restrictive assumption of exponential decay, Paparoditis

(1996) proved that this bootstrap procedure delivers an asymptotically valid boot-

strap approximation for the autoregressive coefficients and for the moving average

representation of the VAR(p) model. Similar procedures have also been proposed

in Swanepoel and Van Wyk (1986), Paparoditis and Streitberg (1992), and Kreiss

(1992). In related work, Bickel and Buhlmann (1996) propose a smoothed sieve boot-

strap for nonlinear, nonregular statistics. Their proposal involves resampling from

the smoothed distribution of the empirical residualsof the approximating autoregres-

sive model. Buhlmann (1996b) studies the sieve bootstrap for autoregressive models

including a deterministic time trend.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.2.2 The Cholesky Factor Bootstrap

While the sieve bootstrap effectively reinterprets the familiar parametric AR model

as a device for nonparametric estimation, Diebold, Ohanian and Berkowitz (1995)

formulate a bootstrap algorithm which does not require conditioning on any partic-

ular parametric model of the VARMA type. The context is the vector covariance

stationary MA(oo). Any finite realization of length T thus has representation:
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Y = PE, (11)

where P is rT x rT and e is rT x 1. The nonparametric bootstrap proceeds as follows:

1. Consistently estimate COV(Y)=E, by applying a suitable truncation

lag rule.

2.

3.

4.

5.

6.

Take the Cholesky decomposition: PP’= ~.

Resample from the normal distribution: e“ w N(o,5).

Generate pseudo-data: Y* = ~~”.

Calculate bootstrap statistics: 8( y“).

Repeat steps 3-5 many times and build up the empirical distribution of

interest.

Alternatively, in step 3 the residuals may be resampled without imposing Gaus-

sianity by drawing from the empirical distribution of ; = P–lY, after resealing the 2

so that they have a variance of 1.

This “Cholesky factor” algorithm is a model-free method for generating pseudo-

data focusing on the second moment properties of the observed data. Note that the

ARMA(p,q) parametric bootstrap generates pseudo-data from:

Y; = A-l(L) B(L) E;. (12)

The Cholesky factor bootstrap replaces the parametric estimates A-l(L)~(L) with a

non-parametric estimate of the dynamics. Specifically, P = fili2 is lower triangular

so that,
T

(13)
j=l

In order to consistently estimate P, the number of autocovariances being estimated

must grow with (but slower than) the sample size. This can be achieved by dOw n-

weighting the off-diagonal elements of ~. Selecting a particular sequence of weights
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amounts to choosing a bandwidth. This choice will, of course, affect the performance

of the bootstrap. Severe downweighting induces bias, while too little downweighting

reduces efficiency. Thus, in place of the lag order selection problem in parametric

models, the nonparametric Cholesky factor bootstrap requires a bandwidth choice.

Data-based bandwidth selection procedures for consistent covariance matrix estima-

tion may be found, for example, in Andrews (1991), Andrews and Monahan (1992)

or Newey and West (1994).

3 Resampling Blocks of Data

The bootstrap algorithms discussed in section 2 all transform stationary time series

data in a way that gives rise to iid residuals. These residuals may then be resam-

pled with replacement. A different strategy has focused on resampling ‘blocks’ of

contiguous time series observations. Throughout this paper we focus on methods for

resamplingoverlapping blocks of data (moving blocks). Resampling overlapping blocks

may provide somewhat higher bootstrap estimation efficiency than non-overlapping

blocks, although the available evidence indicates that the efficiency gain is small (e.g.,

Hall, Horowitz and Jing (1995)).

Given a set of observations, yt, t = 1,..., T, define b = T – k + 1 blocks of

data Xt = (yt, ...,Yt+~-1) of length k. Kunsch (1989) and Liu and Singh (1992)

independently propose resampling with replacement from the blocks (zl, Z2, ..., x~)

to form pseudo-data, (z~, z~, ..., z;) of length T = Zk. The statistic of interest is then

calculated for each of many sets of pseudo-data. The distribution of the bootstrap

statistic approximates the asymptotic distribution, as long as the size of the blocks

increases with sample size.

Under some conditions

(1989) proves that the block

on the mixing coefficients of the data process, Kunsch

bootstrap provides a valid approximation to the unknown

distribution of the normalized univariate sample mean. Liu and Singh (1992) prove
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the optimal block size tends to increase with the persistence of the time series as

measured bythe dominant root. Third, figure 1 suggests that the performance of the

moving blocks bootstrap tends to be fairly stable in the neighborhood ofthe optimal

block size. This suggests that even afairly coarse grid for k will provide valuable

information.

Other work on block selection includes Hall, Horowitz and Jing (1995) and Buhlmann

and Kunsch (1996) . Hall et al. propose an iterative empirical procedure for deter-
.

mining the optimal block size. Starting with an initial guess for k, they first determine

the optimal block size for a subseries of the original data of length m < T. Using

asymptotic expressions for the optimal block length, the result for the subseries is re-

calibrated, so that it applies to the original full sample size. This procedure may then

be iterated until convergence is achieved. However, an important issue not discussed

in Hall et al. is the selection of the tuning parameter, m.

Buhlmann and Kunsch (1996) propose a data-driven procedure based on the equiv-

alence of the block size to the inverse of the bandwitdh of a lag weight estimator of

the spectral density at frequency zero. This allows them to apply an iterative plug-

in method to select the optimal block size. In practice, their method requires an

estimate of the influence function of the statistic of interest.

4 Resampling in the Frequency Domain

A different approach to bootstrapping time series data is to resample in the frequency

domain. This research is motivated by noting that, even for non-iid data, there are

iid relationships in the frequency domain which can be exploited for bootstrapping.

The algorithms considered in this section require the data to be covariance stationary

or appropriately detrended prior to bootstrapping.

Ramos (1984) makes use of the fact that taking the discrete Fourier transform of
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the covariance stationary data gives rise to iid normal variables. Specifically,

1 T–1

E
d’T ,=,

Yt exp(~wjt) = a(wj) + b(wj)i (14)

where a(wj) and b(wj) are known as the Fourier coefficients. For any finite number

of frequencies,

CL(Wj)

m

= iid N(O, 1/2)
Wj

(15)

b(wj) asy

m ~iid N(O, ~fz),
Wj

where ~(w) is the spectral density function (e.g., Brillinger (1981)). The independence

holds across frequencies and between the two coefficients at each frequency.

Ramos makes use of the asymptotic independence in the following algorithm:

1. Consistently estimate the spectral density function (s.d.f).

2. Generate pseudo-Fourier coefficients:

b*(Wj) = ~f(wj)~~(uj)

with z~(w) iid N(O,l/2), z~(w) iid N(O,l/2).

3. Calculate pseudo-data by taking the inverse Fourier transform:

T–1

y: =x [a*(wj) Cos(wjt) + b“(wj) Sin(Wjt)]
j=()

4. Calculate the statistic of interest from the pseudo-data.

5. Repeat many times and build up the empirical distribution of
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the validity of the block bootstrap for m-dependent data. Buhlmann (1994) proves the

asymptotic validity of the block bootstrap for statistics given by smooth functional

of sample means of vector valued observations. Related results can be found in Naik-

Nimbalkar and Rajarshi (1994). In related work, Lahiri (1995) proposes a modified

block bootstrap procedure for normalized sums of heavy-tail dependent variables.

While these results establish asymptotic validity, Lahiri (1991, 1992), Gotze and

Kunsch (1993), and Davison and Hall (1993) prove that the block bootstrap is second

order correct for a wide class of studentized statistics based on sample means in

the multivariate setting. That is, this bootstrap algorithm corrects for the second

order term in the Edgeworth expansion which the asymptotic approximation cannot.

However, the asymptotic refinements cannot in general be obtained by applying the

usual formula for the test statistic to the block-bootstrap data. In fact, without

suitable modifications, the rate of convergence by Kunsch)s method may be worse

than the rate of normal approximation (e.g. Hall and Horowitz (1996)).

Politis and Romano (1992a) extend the idea of the block bootstrap to estimates

of parameters of the infinite-dimensional joint distribution of a stationary time series.

Their procedure is as follows:

1. Resample blocks of data (x~,x~, ..., x;) from the original blocks (ZI, Z2, ..., Zb).

of statistics

2. Define a function T(z~) on each block, such that the statistic of interest ~

can be written, ~=~ ~ T(x~).
i=l

3. Define blocks of statistics, Bj = (T(xj), T(xj+l), ..., T(x~+~)) .

4. Resample with replacement from the Bj which gives a sequence

(TAT, ..., T(x~)) .

5. Calculate the bootstrap statistic T“=+ 5 T(x;).
i=l

Politis and Romano (1992a) motivate this ‘blocks of blocks’ bootstrap in part by

showing that Kunsch’s (1989) original block bootstrap fails in the case of spectral

density estimators. The ‘blocks of blocks’ bootstrap, in

bootstrap distribution. Related work can be found in

contrast, delivers a consistent

Politis and Romano (1992b),
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Politis, Romano and Lai (1992), and Buhlmann and Kunsch (1995).

Kunsch and Carlstein (1990) and Carlstein et al. (1995) observe that pseudo-data

generated by concatenating resampled blocks of data will not preserve the dependence

structure of the original data near block ‘endpoints’. They propose linking the blocks

in a way designed to deliver a more natural transition from one block to the next.

Even if the true data process is stationary, a particular draw of pseudo-data may

not be. Politis and Romano

tees stationary pseudo-data

tuning parameters.

(1994) propose the ‘stationary bootstrap’ which guaran-

However, their method requires the choice of additional

Usually, theoretical work on the moving block bootstrap assumes short-range de-

pendence; that is, the observations are assumed to satisfy some form of mixing condi-

tions with a rapidly decaying mixing coefficient. Lahiri (1993) relaxes this assumption

and investigates the behavior of the moving block booststrap when the data exhibit

long-range dependence.

3.1 How to Select the Block Size

Moving blocks bootstrap algorithms require the researcher to choose a block size. Li

and Maddala (1996) discuss several rules for block size selection based on specific

models or on asymptotic mean-squared error (MSE) considerations. In this section,

we propose a data-based procedure for choosing the block size in finite samples.

We observe that choosing a block size involves a tradeoff. As the block size be-

comes too small, the moving blocks bootstrap destroys the time dependency of the

data and its average accuracy will decline. As the block size becomes too large, there

are few blocks and pseudo-data will tend to look alike. As a result, the average ac-

curacy of the moving blocks bootstrap also will decline. This suggests that there
.

exists an optimal block size k which maximizes accuracy. The proposed procedure

automatically selects this block size for a given series and statistic of interest, regard-
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less of the sample size, persistence or lag structure of the underlying process. We will

effectively use the bootstrap as an aid in block size selection. Consider a stationary

series

1.

or

2.

3.

{Yt}of length T:

Approximate the underlying MA(m) process by a parametric ARMA(p,q)

AR(p) model.

Generate many Monte Carlo trials of length T from this fitted model.

For each Monte Carlo trial generate moving blocks bootstrap data {y;} for

alternative block sizes k.

4. Calculate the statistic of interest for {g:(k)}.

5. Select the block size k which on average produces the most accurate test

statistic, point estimate, or confidence interval across Monte Carlo trials.

6. Use that block size ~ to apply the fully nonparametric moving blocks

algorithm to the original data {gt}.

We illustrate this procedure for the quarterly time series on the S&P common

stock earnings-price ratio (CitiBase code: FSEXP) for 1947.2-1994.3. Based on the

AIC, we fit an AR(2) model with intercept to this series. After bias-correcting the

autoregressive coefficients using the closed-form expression of Pope (1990) we obtain

the estimate:

y~= 0.3814+ 1.2514 y~-~– 0.2902 y~-~+ ~t, o: = 0.6105

Our statistic of interest is

deviation shock. We will

after the initial shock.

the response of the earnings-price ratio to a one-standard

trace out this impulse response function for 16 quarters

We generate 1,000 Monte Carlo trials from this model to evaluate the probability

content of the 90 percent moving blocks bootstrap confidence intervalsfor the statistic

of interest. For each

replications of length

Monte Carlo trial we generate 1,000 moving blocks bootstrap

T = 190 for alternative block sizes k c {4, 12,24,36,48,60,72,
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84,96,108,120,136, 144} using Kunsch’s (1989) algorithm. For each bootstrap repli-

cation, we resample the data conditional on k, fit an AR(@*) model to {g;} based on

the AIC lag order estimate, and construct the implied impulse response function for

up to 16 quarters after the initial shock. Then we build up the empirical distribu-

tions of the impulse response coefficients and construct nominal 90 percent bootstrap

confidence intervals for each time horizon. The probability content of these intervals

is evaluated across the 1,000 Monte Carlo trials.

Rather than compare the coverage accuracy of the intervals for each block size

by visual inspection of the coverage plots across the time horizon z = O,...,16, we

construct a simple statistical summary measure. Assuming a quadratic loss function

and equal weights for all time horizons of the impulse response function, we average

the squared deviations from nominal coverage across the time horizon and tabulate

them as a function of the block size. Then the optimal block size is:

1 = argmin
[

1

1fi~(coverage(k, i) – 0.9)2 .
k 2—0

Figure 1 plots the mean squared deviations from nominal coverage as a function of

k. As expected the curve follows a U-shape. The global minimum is at ~ = 48

(quarters).

This result is of interest for several reasons. First, it shows that the performance

of the moving blocks bootstrap can be highly sensitive to the choice of the block

size. Second, figure 1 indicates that appropriate block sizes are much larger than

some illustrative examples in the literature would suggest. For example, Efron and

Tibshirani (1993) consider block sizesof 3 and 5 for bootstrapping the slope coefficient

in an AR(1) model with T = 48. For the same model, Kunsch (1989) considers k = 4

for a data set of length T = 120. Our procedure indicates that the optimal block size

for macroeconomic time seriesmay be up to 12 times higher than the values sometimes

considered for similar models in the literature. Additional examples suggest that
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interest.

Despite the frequency domain setting, this algorithm is a generic method for

generating pseudo-data. Ramos (1984) and Stine (1985) also discuss a version of this

method which does not impose normality.

Ramos (1988) provides a general and thorough treatment of frequency domain

resampling plans for linear functional of the spectral density,

o~=Jo(w)f(w)d(w)> (16)

where O(w) is an even periodic function satisfying some regularity conditions and

~(~) is the s.d.f. of the process. Examples of statistics of this form include the vari-

ance and autocovariances. The corresponding estimates must be a linear functional

of the periodogram: ~y = f O(w)IY(w)d(w). Ramos therefore proposes the following

procedure:

1. Obtain a consistent estimate ~(w).

2. Generate pseudo-data y: from the Gaussian distribution described by ~(w).

Since a Gaussian distribution is completely characterized by its s.d.f. (ignoring

the mean of the process for convenience), N(O,fi) may be equivalently written

as N(O, ~(w)). How can we draw from data from N(O, ~(w))? Ramos

suggests: Take the first, say, m terms in the Fourier series expansion of

f(w): ‘y,, ..., ~~. These are the first m covariances of the process, with which the

covariance matrix may then be constructed. In Ramos) notation,

~ = Top(yl, ..., y~). Pseudo-data is then drawn from N(O,~).

3. Calculate ey. = ~ O(w)IV.(w)d(w).

4. Repeat many times and build up the empirical distribution of

interest.
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Ramos’ main result is that under some regularity conditions, including normality,

(17)

that is, the bootstrap principle holds.

Note that in both the Ramos (1988) and Gaussian Cholesky factor procedures,

the pseudo-data are drawn from y* ~ N(O, ~). Ramos estimates S by inverting

a consistently estimated spectral density function. In contrast, the Cholesky fac-

tor procedure generates consistent estimates E in the time domain by setting ~ =

Top(Aoyo, ..., ~~-1~~-1), where Top(”) is the operator which creates a toeplitz matrix

from a single row of covariances, and where At are decreasing weights. One can show

that, if the At form a Bartlett window, the Cholesky factor procedure is equivalent to

inverting the s.d.f estimated with a Fejer spectral window in Ramos) procedure.

An algorithm explicitly designed to bootstrap the spectral density function itself

is given in Franke and Hardle (1992). They make use of the same as~ptotic rela-

tionships as Ramos (1984), but in a different way. Equations (15) immediately imply

that,

and so

(& a(w)

mw

2 /.

2

( )d

b(u) 2 ~
+&

m

x;
u

(18)

(19)

But from the definition of Fourier coefficients, equation (19) implies that

where I(w) is the

Thus, Franke and

periodogram.

Hardle (1992)

2
—I(w ) L x;,
f( )w

(20)

Equation 20 holds approximately in finite samples.

suggest the following bootstrap algorithm:
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1. Compute the periodogram, 1(w), and consistently estimate the s.d.f., ~(u).

2a. Resample from E*= x~/2 or

2b. Resample from the empirical distribution: ~“ = ~, where the number

of estimated residuals equals the number of frequencies.

3. Calculate the bootstrap periodogram ordinates: 1(w)* = &*~(w).

4. Calculate bootstrap spectral density estimates: ~“(w) =x k(w)l”(u), by

smoothing the periodogram ordinates.

5. Repeat steps 2-4 many times and build up empirical distribution of

interest.

Franke and Hardle (1992) prove the consistency of the bootstrap distribution of

the pivoted s.d.f. They also report the results of a simulation study for an AR(5)

model at five discrete frequencies. They find that the bootstrap performs favorably

relative to the asymptotic in capturing the finite sample skewnessof the distribution

of the s.d.f. estimates.

Berkowitz and Diebold (1996) describe a multivariate generalization of the Franke

and Hardle (1992) procedure. Equation 20 is, in fact, a special case of the more general

result:

(see, for example, Brillinger (1981)). IVV(U)is the r x r periodogram matrix and

FYV(W)is the r x r spectral density matrix of an r-dimensional vector random variable,

Yt. The asymptotic distribution is complex Wishart. A multivariate version of the

bootstrap is implemented by noting that

Thus, step 2 above is replaced with
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2a. Resample horn the empirical distribution: ~“ w F&l/2(w)Iyy(u)Fy;’/2(w)

or 2b. from the parametric distribution: E*~ W~(l, I.).

The frequency domain methods discussed in this section maybe distinguished by

the statistics they are designed to bootstrap. Whereas some algorithms are specifi-

cally designed for bootstrapping the s.d.f. or linear functional of the s.d.f., others

are omnibus procedures for generating pseudo-data. A common feature is that they

generally require a consistent estimate of the s.d.f. and thus a bandwidth choice.

However, the effect of the bandwidth choice on the performance of the bootstrap

remains an open question. For frequency domain bootstraps which require the cal-

culation of the entire spectral density function (rather than the spectral density at

frequency zero), the data-based bandwidth selection procedures of section 2 are not

appropriate. Automatic bandwidth selection procedures for the entire s.d.f. have

been suggested, for example, by Beltra6 and Bloomfield (1987).

5 Bootstrapping Nonstationary Data

If the true process is nonstationary, many of the standard results of the asymptotic

validity of the bootstrap approximation no longer apply. For example, the Cholesky

factor and the frequency domain bootstrap assume stationarity, as does nearly all

the work on moving blocks bootstraps. Lahiri (1992) shows that, under appropriate

conditions, the Kunsch procedure is second-order correct even for the sample mean

of nonstationary data. It is not known to what extent his results generalize to other

statistics. For the parametric AR(I) model, Basawa, Mallik, McCormick, Reeves, and

Taylor (1991) and Datta (1992) prove that the standard bootstrap algorithm for the

level autoregression is invalid if the true model is a random walk model. Intuitively,

this result arises because of the discontinuity of the asymptotic distribution at the

unit circle and generalizes to all exact unit root VAR models estimated in levels.

If the model is known to contain an exact unit root, resampling remains valid if
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we impose that unit root in estimation. In particular, in the absence of cointegration,

autoregressive I(1) processes can be estimated in first differences and the coefficients

converted to the level representation. Similarly, nonparametric methods continue to

be valid if resampling is based on first-differenced data. While nonparametric boot-

strap methods can easily deal with I(1) processes, there are no theoretical results

to show that nonparametric resampling preserves cointegration relationships in the

data. In fact, cointegration itself may be viewed as a parametric notion. Thus, if the

data are known to be cointegrated, parametric methods are preferable. For exam-

ple, if the true process were a cointegrated VAR, one would resample from the ML

estimate of a vector error correction model. Since the innovations in that model are

identical to the innovations in the level autoregression, the usual bootstrap algorithm

is valid. Kilian (1995) reports that in many cases the bootstrap algorithm is quite

accurate for vector error correction models, provided the cointegration rank is known.

However, the estimation of a linear time trend or the presence of additional roots of

large magnitude in the system may lead to similar bias problems as in stationary

autoregressions. Li and Maddala (1996) provide a detailed discussion of the special

problems involved in bootstrapping the cointegration relationship itself.

In applied work the existence of a unit root or cointegration is rarely known with

certainty. For some econometric questions this is not a problem. For example, if

we are interested in approximating the finite sample distribution of a test statistic

under the null hypothesis of a unit root, it is correct to simply impose the unit

root in estimation. However, not all inference problems involve a unit root null

hypothesis. For example, bootstrap confidence intervals do not involve a specific

null. Rather, the user faces the choice between ignoring the possible presence of

unit roots or relying on the result of pre-tests with low power. one would like to

think that the level bootstrap still provides a satisfactory approximation for roots

arbitrarily close to unity. Howevert there is little evidence to support that view. For

example, the accuracy of the bootstrap approximation for the level autoregression
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can be expected to deteriorate, as the persistence of the process rises (Bose (1988)).

Simulation evidence in De Wet and van Wyk (1986) for the AR(1) coefficient seemsto

confirm that conjecture. We conjecture that this result is largely due to small-sample

bias, and that, in light of the arguments in sections 2.1.1. and 2.1.2, the accuracy of

the bootstrap could be substantially improved by appropriate bias corrections.

What if the roots of the process are explosive? There are no known results for

nonparametric bootstrap methods involving explosive roots, but, interestingly, the

parametric bootstrap can be shown to be theoretically valid for such models. Ba-

sawa, Mallik, McCormick, and Taylor (1989) prove the validity of the bootstrap in

the explosive AR(1) model with finite error variance. Datta (1995) shows that the

limit of the bootstrap distribution in the AR(p) model converges to that of the OLS

slope coefficient estimate in probability without any additional moment restrictions.

In particular, Datta proves that the bootstrap approximation as measured by the

Kolmogoroff distance goes to zero almost surely provided E Ietl < m. Thus for the

explosive case the bootstrap principle works, even if the error distribution is heavy

tailed.

These results seem of limited practical relevance, but Datta (1995) takes the anal-

ysis one step further. He shows that for E le~l < m, the standard OLS bootstrap

offers an asymptotically valid approximation even in the partially explosive AR(p)

model (when the characteristic polynomial admits roots both inside and outside the

unit circle). Datta assumes that for some k, 1 < k ~ p, exactly k roots of the char-

acteristic polynomial lie inside and the remaining s = p —k roots lie outside the unit

circle. Note that for k = p the model is stationary and for k < p it is partially explo-

sive. Exact unit roots are ruled out by assumption. For the OLS estimator, Datta

proves that the error in bootstrap approximation (measured in sup norm) converges

to zero almost surely. His proof subsumes the stationary case, strengthening Kreiss

and Franke’s (1992) result about convergence in probability. Ignoring the possibility

of purely explosive AR(p) models, Datta’s result suggests that, at least asymptoti-

29



Cally,the standard bootstrap is valid for processes with roots arbitrarily close to unity,

both inside and outside the unit circle. It thus strengthens the case for bootstrapping

level autoregressions.

6 A Monte Carlo Comparison of Bootstrap

Methods

The various bootstrap algorithms of the previous sections differ in how much para-

metric structure they impose in estimation. For example, Cholesky factor, frequency

domain and block bootstrap procedures are completely nonparametric. They do not

use any particular model to generate pseudo-data. on the other hand, parametric

AR(p) bootstrap procedures make strong assumptions about the form of the time

dependency of the data. Which procedures should applied time series econometri-

cians use? We conjecture that for the sample sizes macroeconomists tend to work

with, parsimony is essential and thus parametric models may be the only reasonable

choice. To verify this conjecture, we compare the accuracy of the parametric AR(p)

bootstrap, the Cholesky factor bootstrap, the Ramos (1984) frequency domain boot-

strap, and the moving blocks bootstrap algorithm of Kunsch (1989) by Monte Carlo

simulation.

We consider confidence intervals for the responses of the T-bill rate to a one-

standard deviation shock over the subsequent 16 quarters. We believe that this ex-

ample is of broad interest to applied users. Impulse responses play an important role

in macroeconometrics. Further, they share many statistical properties with multi-step

ahead forecasts.

In the Monte Carlo experiment, we consider three sample sizes, corresponding

to 20 and 40 years worth of quarterly data and 40 years worth of monthly data:

T = 80,160,480. Our data generating process is based on quarterly U.S. T-bill data
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(CitiBase code: FYGM3) for 1971.4-1993.4. The AIC suggests an ARMA(2,4) data

generating process:

yt = 0.8871 + 0.3499 ~~-1+ 0.5231 y~-z + 1.0004 ~t-l – 0.1103 ~t_z

+ 0.0021 et-s + 0.3492 Et-4+ Et,

with ~z = ().7124. The innovations Etare normally distributed.&

An important concern in this study is model selection. The AR(p) estimate un-

derlying the parametric bootstrap is based on the minimum of the AIC for 1< p <8.

For the Cholesky factor bootstrap, we use the automatic bandwidth selection proce-

dure of Andrews (1991). For computational reasons, the bandwidth is not permitted

to exceed three quarters of the sample size. We use the algorithm of Beltra6 and

Bloomfield (1987) for the Ramos (1984) bootstrap. For the moving blocks bootstrap

we use the procedure outlined in the previous section to select the block size.4

For each bootstrap replication {y;} we use the AIC to estimate the lag order {p*},

fit an AR({p*}), and calculate the statistic of interest. The confidence intervals are

based on the 0.05 and 0.95 percentile interval endpoints of the empirical distribution

of the impulse response coefficient estimates.

Figures 2-4 plot the effective coverage rates of the nominal 90 percent intervals for

each method and sample size. For the sample sizes considered the parametric AR(p)

bootstrap (labeled AR) interval clearly dominates the other three bootstrap intervals.

The Cholesky factor (CHOL), the Kunsch (1989) block bootstrap (BLOCK) and the

Ramos (1984) frequency domain bootstrap (RAMOS) intervals perform erratically

AFOr~OmPUtatiOnal~ea~on~we determinethe optimalblocksizea prioribasedon the AR(P)

approximationof theactualdata. The AIC suggestsan AR(6) modelfortheT-Billratedata.We
bias-correcttheautoregressivecoefficientestimatesusingtheexpressionsinPope(1990).Conditional

on this DGP, we find k = 36 for T = 80 and k c {12, 24,36,48,60, 72}, k = 60 for T = 160

k G {12,24, 36,48,60,72,84, 96}, and k = 120 for T = 480 and k ● {80,120,160,200,240,280}.
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and are generally unreliable. However, the Cholesky bootstrap performs somewhat

better than the moving blocks bootstrap. The extremely poor performance of the

Ramos bootstrap may in part reflect the

also suggests that the Ramos procedure

interest.

bandwidth selection criterion employed.

may not be consistent for our statistic

It

of

With the exception of the Ramos bootstrap, coverage accuracy tends to improve

with sample size.

adequate. Even

However, in absolute terms none of the methods can be considered

the AR(p) bootstrap interval consistently falls short of nominal

coverage. This coverage deficiency is consistent with the arguments we presented in

section 2. Further improvements in coverage accuracy are likely to require interval

calibration (Breidt et al. (1995)) or some form of bias correction in the statistic of

interest (e.g., Rudebusch (1993), Andrews and Chen (1994)). To illustrate this point,

we added results for the same AR(p) bootstrap with additional bias corrections (AR-

BC) for the impulse

coverage accuracy is

response estimates based on Kilian (1995). The improvement in

sizable. Similar improvements are likely for the other methods.

7 Conclusion

We reviewed a range of alternative parametric and nonparametric bootstrap algo-

rithms for time-dependent data. These methods differ in the extent to which they

impose parametric structure on the data. In highly parsimonious models, parame-

ters are estimated with many degrees of freedom. Bootstrap estimates, in turn, are

comparatively accurate. However, parsimony is also likely to increase the ‘)distance”

between the fitted and the true model. Conditioning on a m.isspecifiedmodel may

cause the misspecification to be propagated (and possibly magnified) through resam-

pling. We provided some preliminary Monte Carlo evidence that for typical sample

sizes faced by macroeconomists, parsimony is essential and thus parametric models

may be the only reasonable choice. However, care must be exercised to overcome the
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drawbacks of bootstrapping parametric models in small samples. In particular, we

stressed the choice of lag order selection criteria, the treatment of lag order uncer-

tainty, and the need for bias corrections in small samples.

We also showed that the accuracy of the moving block bootstrap can be highly

sensitive to the choice of block size. We proposed an automatic data-based procedure

for selecting the block size. We successfully applied this procedure to several economic

time series and determined that for macroeconomic time seriesthe optimal block sizes

tend to be much larger than those sometimes used in the literature.

While our preliminary Monte Carlo evidence suggests that nonparametric boot-

strap methods may perform poorly in small samples, results for other statistics and

data generating processes would be useful. In particular, the use of an ARMA data

generating process may have biased the results in favor of parametric bootstraps.

Additional research is needed to determine whether nonparametric algorithms enjoy

special advantages for data generating processes that are not encompassed by the

ARMA framework. Moreover, it would be important to obtain a sense of the sample

sizes required for reliable inference based on nonparametric methods. That informa-

tion would be useful for the analysis of higher frequency financial data. However,

these caveats cannot obscure that nonparametric methods need to be improved to be

of much use in small and moderately large samples.

In particular, the comparatively poor performance of the Cholesky factor, the

block bootstrap and the frequency domain bootstrap for the sample sizes considered

is surprising. A partial explanation could be the slow rate of convergence of non-

parametric methods, but it would be premature to discard these methods. Indeed,

Diebold, Ohanian and Berkowitz (1995) present Monte Carlo evidence which suggests

that the Cholesky bootstrap delivers far better coverage for spectral density estimates

than the asymptotic approximation. The Ramos bootstrap does not appear suitable

for impulse

of statistics

response estimates. More theoretical work is needed to establish a class

for which this algorithm may be used.
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More research is needed to clarify how the choice of the bandwidth affects the

performance of these algorithms. We conjecture that their performance could be

improved by refining the bandwidth

Andrews (1991) and the Beltra6 and

tion criteria. It would be of interest

frequency domain methods to other

selection process. In this paper, we used the

Bloofield (1987) automatic bandwidth selec-

to systematically compare the performance of

data-based bandwidth selection criteria (e.g.,

Andrews and Monahan (1992), Newey and West (1994)) or parametric devices for

estimating the spectral density. For example, den Haan and Levin (1996) report that

autoregressive estimates of the spectral density at frequency zero outperform kernel-

based estimates. In addition, bootstrapping the bandwith selection process is likely

to improve small-sample performance.

Similarly, the performance of the Kunsch (1989) moving block bootstrap left much

to be desired. In the future, it would be valuable to study more sophisticated block

bootstraps such as the linked-block bootstrap of Kunsch and Carlstein (1990), the

stationary block bootstrap of Politis and Romano (1994) or the asymptotic refine-

ments proposed by Lahiri (1991, 1995) and Gotze and Kunsch (1993). Moreover! a

systematic comparison of the block size selection methods proposed in this paper and

elsewhere would be useful.
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Selecting the Optimal BlockSizeby Minimizing

Mean Squared Deviations from Nominal Coverage
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Notes: Quarterly S&P common stock earnings-price ratio, 1947.2 to 1994.3. For each block size, ~
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mean squared deviation from nominal coverage is defined as ~ ~ [coverage(k,i)-O.9] 2,
i=O

where i = O,..., 16 denotes the time horizon of the impulse response.



Figure 2

Effective Coverage of Nominal 90 0/0

Bootstrap Confidence Intervals for Impulse Responses

T =80

1 i I I I I 1 I

0.9 -

AR-BC

j ‘,
/-\

. .
\

0.7 - \ ~‘ \ ... ‘ \
“\

. - . -. - .
-. —. —.-.

i. -.-, -. _ , ----
0.6 - ;

-. - . -

: I

0.5 - ;;

:/

0.4 - ;;

:/

0.3 -;

:/

0.2 J

AR -

“,. . . .
\ . . . . . .
\ . .. CHOL -. . . “ .. . . .., .
\ . . . . . . . . . . . . . . . . . . . . . . .
\

\
\

\
\

\
\\ BLOCK

\
\ .

\
\-

0
1 I I I 1 -——

0 2 4 6
L

8 10 12 14 – – ‘;6
Quarters

Source: 1,000 Monte Carlo trials for ARMA(2,4)-DGP based on U.S. T-Bill rate for 1971.4-1993.4.



Figure 3

Effective Coverage of Nominal 90 0/0

Bootstrap Confidence Intervals for Impuise Responses
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Figure 4

Effective Coverage of Nominal 90 ‘!/0

Bootstrap Confidence Intervals for Impuise Responses
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