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Abstract: Carbon-based nanocomposites have developed as the most promising and emerging
materials in nanoscience and technology during the last several years. They are microscopic materials
that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by
their size, shape, increased surface-to-volume ratio, and unique physical and chemical characteristics.
Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase
types. The nanocomposites that were constructed exhibit unique properties, such as significantly
enhanced toughness, mechanical strength, and thermal/electrochemical conductivity. As a result of
these advantages, nanocomposites have been used in a variety of applications, including catalysts,
electrochemical sensors, biosensors, and energy storage devices, among others. This study focuses
on the usage of several forms of carbon nanomaterials, such as carbon aerogels, carbon nanofibers,
graphene, carbon nanotubes, and fullerenes, in the development of hydrogen fuel cells. These fuel
cells have been successfully employed in numerous commercial sectors in recent years, notably in
the car industry, due to their cost-effectiveness, eco-friendliness, and long-cyclic durability. Further;
we discuss the principles, reaction mechanisms, and cyclic stability of the fuel cells and also new
strategies and future challenges related to the development of viable fuel cells.

Keywords: carbon-based nanomaterials; oxygen reduction reaction; specific activity; durability;
energy conversion; polarization curves

1. Introduction

In recent years, hydrocarbon-based (coal, gas, and oil) fossil fuels have predominantly
been used to meet our global energy demand. However, fossil fuels can create severe
damage to the environment by emitting toxic pollutants such as SOx, NOx, and COx [1,2].
Therefore, the development of clean and green energy storage technologies is essential to
protect the environment and also fulfill the global energy demand [3]. There are numerous
methods that have been used to make key efforts in the development of high-efficient-based
energy conversion and storage technologies [4,5]. Among them, the water-splitting process
is an important energy storage system that produces hydrogen efficiently in fuel cells, where
electrocatalyst plays a crucial role [6]. In general, metal hydroxide-based electrode catalysts
are used as electrode materials in fuel cells. However, they have several limitations, such as
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high cost, limited accessibility, and short service-life, restricting their contribution to meet
energy storage technologies [7]. In order to reduce the cost of electrodes, researchers have
been focused on developing carbon-supported electrocatalysts that are effectively used
in several energy storage technologies, such as supercapacitors, fuel cells, solar cells, and
batteries, due to their outstanding low-residual current, cost-effectiveness, and long-cyclic
durability [8–14].

Fuels cells are classified as phosphoric acid fuel cell (PAFC), polymer electrolyte
membrane fuel cell (PEMFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC),
and solid-oxide fuel cell (SOFC) based on the types of electrolytes used [15]. Among
them, PAFC, PEMFC, and AFC are appropriate for automobiles and portable applications
because they run at low temperatures (300 ◦C), whereas MCFC and SOFC operate at
relatively high temperatures (>500 ◦C) and may be suitable for stationary applications.
Electrochemical performance, efficiency, and durability are crucial factors to consider when
choosing electrode materials for fuel cell applications [16]. The overall electrochemical
reaction process can occur at both anode and cathode as follows:

At anode, oxidation

2H2 → 4H+ + 4e− (1)

At anode, oxidation

O2 + 4H+ + 4e− → 2H2O (2)

Overall reaction

2H2 + O2 → 2H2O (3)

During the electrochemical reaction, electrons and protons are created at the an-
ode (oxidation reaction), while water and heat are produced at the cathode (reduction
reaction) [17,18].

Numerous methods have been used to develop carbon-supported nanocomposites, most
notably sol–gel [19] microwave (MW) assisted [20], sonochemical [21], electrochemical [22],
and hydrothermal (HT) [23]. Among them, the electrochemical technique is a promising
one due to several merits, including shorter fabrication time, uniform and desired thick-
ness of film deposition, and higher stability [24]. For instance, a multifunctional N and O
co-doped 3D carbon aerogel has been prepared through the carbonization route. The fabri-
cated carbon felt–polyvinyl alcohol–polyaniline CF–PVA–PANI catalyst showed excellent
catalytic activity towards ORR activities [25]. Correspondingly, a robust bi-functional-based
N-doped carbon aerogel modified nickel (Ni/NCA) composite was prepared using hy-
drazine hydrate as a reductant at high temperature. Interestingly, the developed Ni/NCA
composite appeared as agglomerated metal particles, which exhibited better electrocatalytic
activity and good cyclic durability for the electrocatalytic reduction of p-nitrophenol [26].
On the other hand, Lopez et al. [27] developed a novel type of N-doped carbon nanofiber
by the electrospinning technique with an applied voltage of 15 kV, and it served as a
remarkable catalyst for ORR application. Further, an effective electrodeposition approach
was used to successfully construct a simple pathway for the fabrication of bimetallic sup-
ported fullerene-based (Pd-W@fullerene) composite with the applied potential ranges of
1.2 to 0.25 V. The constructed Pd-W@fullerene was shown to be a promising catalyst for
energy applications [28]. In another report, a durable electrode was fabricated using mixed
nanomaterials such as gold nanoparticles and multi-walled carbon nanotubes incorporated
on graphene nanoribbon (Au–NT–G) by HT treatment and the resulting composite played
a significant role in polymer electrolyte membrane fuel cell technology [29].

Here, we summarize a comprehensive analysis of synthetic strategies used to develop
different types of carbon-based nanomaterials and their relevant fuel cell applications.
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Further, we investigate the important factors that induce catalytic performance of nano-
materials, such as size, shape, morphology, synergic effect, and chemical interactions.
Moreover, we compared the stability and catalytic performance of carbon-based nanomate-
rials to the commercial catalyst.

2. Carbon Aerogel-Based Electrode Materials

Carbon aerogels (CAs) are considered as a promising electrode material for energy
storage and conversion applications in fuel cells, supercapacitors, and batteries due to
their inherent characteristics, including massive specific surface area (SSA), a large pore
volume, excellent electrical conductivity, and outstanding chemical, mechanical, and ther-
mal stabilities [30–32]. In addition, they can be prepared from cellulose biomass, which
is one of the most naturally abundant and cost-effective biopolymers [33]. For instance,
Yang et al. developed N-doped CAs (NCAs) based on pyrolysis of polyacrylonitrile at
controlled temperatures ranging from 600 to 900 ◦C [34]. The resulting nanocomposite was
used for ORR application in the microbial fuel cell (MFC). The MFC not only produces
electricity but is also used to treat wastewater [35]. In the MFC, organic waste matter
is oxidized into electrons and protons at the microorganism-modified anode, whereas
oxygen is reduced to water at the cathode. The developed NCAs catalyst was utilized as
cathode material in MFC and displayed an impressive catalytic response towards ORR in
0.1 mol L−1 NaOH. Further, the N-doping causes the catalytic active site generation to be
induced, and subsequently it enhances the catalytic response of the catalyst. The XPS data
revealed that the N content in NCAs varied from 8 to 24% depending upon the temperature
used for catalyst preparation. The onset (Eonset) potential was found to be +0.81, +0.82,
+0.85, and +0.84 V vs. RHE for the catalysts fabricated at different temperatures of 600, 700,
800, and 900 ◦C, respectively. These results corroborate that the catalyst fabricated at 800 ◦C
(NCA-800) represented a better catalyst compared to other ensuing high pyridinic-N and
graphitic-N contents. Furthermore, a maximum power density of 1048 ± 47 mW m−2 was
achieved at the NCA catalyst when applied in the MFC, and this value is comparable to
the value observed with the commercial Pt/C catalyst (1051 ± 28 mW m−2).

Porous NCAs were synthesized using two different routes, namely NH4OH–urea and
NaOH–urea, by pyrolysis of cellulose aerogel derived from coir fibers [36]. Interestingly,
these two routes rendered entirely different pore size CAs, as shown in Figure 1. The SEM
image clearly indicates that the starting material (cellulose fibers) had a cylindrical shape
with many internal pores. The estimated pores size and wall thickness were ~3 µm and
~3.2 µm, respectively (Figure 1a). In the NaOH–urea system, the internal structure of the
aerogel disintegrated and obtained a sizeable internal pore with a broken wall (Figure 1b).
On the other hand, the carbon aerogel prepared from NH4OH–urea system provided a
stable structure with a larger internal pore size than the NaOH–urea system (Figure 1c). It
revealed that ammonia is not only involved in the dissolution of cellulose, but it also creates
defects in the carbon aerogel, and consequently, it causes an aerogel with a higher SSA
and pore volume to be obtained. The internal pore size of the starting material, cellulose
aerogels, was 200 µm, and it reduced to 150 and 176 µm upon pyrolysis of carbon−NaOH
and carbon−NH4OH aerogels, respectively. Overall, the active SSA and pore volume
increased from 70 to 3730 m2g−1 and 0.54 to 4.20 cm3 g−1, respectively. Further, the
developed catalyst was evaluated in terms of ORR activity in an alkaline medium. Both
carbon−NaOH and carbon−NH4OH aerogels displayed a well-pronounced reduction
peak at −0.39 V (vs. Ag/AgCl) in the O2-saturated 0.1 mol L−1 KOH solution (Figure 1d).
In contrast, no peak appeared in the N2-saturated 0.1 mol L−1 KOH solution, implying
that the observed peak was associated with the ORR. Further, the carbon−NH4OH aerogel
showed a current density of 1.05 mA cm−2, which was two times higher than that of the
carbon−NaOH aerogel.
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bon−NH4OH aerogel. (d) CVs obtained for the different aerogels in O2 and N2 saturated solutions. 
Reprinted with permission from [36]. The American Chemical Society, Washington, DC, USA, 
2020. 

In another report, a robust macroporous carbon aerogel (MCA) was designed by py-
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To achieve macropores in the composite, isocyanate derived polymer was introduced into 
the RF framework. It has been reported that the cross-linker isocyanate loses its chemical 
bonding with nanoparticles in the RF framework and develops the macropores. The de-
veloped macroporous aerogels were used as a substrate for the deposition of Pt. The cov-
erage of Pt on aerogels was estimated to be 5.67 × 10−11 mol cm−2, which is equal to 57% of 
monolayer coverage. Finally, the as-prepared Pt coated aerogel was successfully used as 
an electrode material for fuel cell applications. 

Recently, the development of porosity-tunable carbon aerogel for proton-exchange 
membrane fuel cells (PEMFCs) was demonstrated by Gu et al. [38]. It is well known that the 
diffusion of the reactants and products are directed to affect the performance of the PEM-
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Figure 1. SEM images of the (a) cellulose aerogel, (b) carbon−NaOH aerogel, and (c) carbon−NH4OH
aerogel. (d) CVs obtained for the different aerogels in O2 and N2 saturated solutions. Reprinted with
permission from [36]. The American Chemical Society, Washington, DC, USA, 2020.

In another report, a robust macroporous carbon aerogel (MCA) was designed by
pyrolysis of resorcinol–formaldehyde (RF) aerogel mixtures under an Ar atmosphere [37].
To achieve macropores in the composite, isocyanate derived polymer was introduced into
the RF framework. It has been reported that the cross-linker isocyanate loses its chemical
bonding with nanoparticles in the RF framework and develops the macropores. The
developed macroporous aerogels were used as a substrate for the deposition of Pt. The
coverage of Pt on aerogels was estimated to be 5.67 × 10−11 mol cm−2, which is equal to
57% of monolayer coverage. Finally, the as-prepared Pt coated aerogel was successfully
used as an electrode material for fuel cell applications.

Recently, the development of porosity-tunable carbon aerogel for proton-exchange
membrane fuel cells (PEMFCs) was demonstrated by Gu et al. [38]. It is well known
that the diffusion of the reactants and products are directed to affect the performance
of the PEMFCs. Therefore, it is essential to use the correct pore size of the membrane,
depending on the analytes. The synthesis and electrode fabrication protocols are illustrated
in Figure 2a–d. Firstly, the CA was synthesized by sol–gel polymerization of resorcinol
and formaldehyde. Then, the CA was impregnated with carbon black (CB), and then
platinum nanoparticles (PtNPs) were attached to the CA–CB mixture through chemical
reduction by NaBH4. Further, a different ratio of R/Na2CO3 was used to prepare the
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various pore sizes of CAs. CA-100, CA-200, and CA-300 were obtained by mixing 1.54 g,
3.08 g, and 4.62 g of resorcinol with 0.016 g of Na2CO3. The pore size of CA played a crucial
role in the deposition of PtNPs. It was revealed that the micropore structure (<2 nm) is
not appropriate for deposition of 2–4 nm of PtNPs, whereas the mesoporous structure is
highly suitable due to their bigger size that is around 2–50 nm. Further, the mesopore
structure stimulates the ionomer loading and creates an effective network for adequate
proton transportation for H2 and O2. Figure 2d shows the step-by-step construction of
membrane electrode assembly, where the homogenous catalyst ink was airbrushed on
the carbon paper and dried. Then, the catalyst coated carbon papers were hot-pressed
with Nafion 117 membrane at 130 ◦C for 1 min. The developed materials were tested in
the context of hydrogen adsorption/desorption reaction, and it was found that CA-200
exhibited better activity than other catalysts. The surface area was estimated for Pt/CA-200
and Pt/CB and found to be 188 m2 g−1 and 86.4 m2 g−1, respectively (Figure 2e).
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Figure 2. (a) Synthesis of CA, (b) Pt/catalyst (e.g., Pt/CA or Pt/CB) preparation, (c) application
onto the electrode, and (d) membrane electrode assembly (MEA) preparation. (e) CVs of Pt/CB and
Pt/CA-200 catalyst layer for ECSA analysis by hydrogen adsorption/desorption at a scan rate of
20 mV s−1. Reprinted with permission from [38]. Elsevier, Amsterdam, The Netherlands, 2021.

Another group [39] used the same precursors to synthesize CA for hydrogen storage
applications. Na2CO3 is usually used to dry the wet catalyst. However, it causes shrinking
of the catalyst. In order to avoid this issue, the authors used the organic condensing agent
triethylamine (TEA). Different ratios of resorcinol and formaldehyde were used to develop
the catalyst and characterize it using different techniques. The BET data revealed that
the optimized catalyst (CA-1000) had a surface area of 545.03 m2 g−1, pore volume of
0.271 cm3 g−1, and pore size of 1.96 nm. Furthermore, the hydrogen storage efficiency was
evaluated to be 4.0 wt%.

Further, a highly conducting and mesoporous CA was developed using resorcinol and
furfuraldehyde (FFA) as precursors for PEMFC [40]. The MW-assisted polyol process was
employed to incorporate the PtNPs into the CA. TEM images of PtNPs-loaded CA (PtCA)
display that PtNPs were uniformly distributed on the CA with an average particle size of
3.5 nm. The as-prepared catalyst was tested towards ORR, and the activity was compared
to the commercial catalyst JM20; it was found that the catalyst exhibited an onset potential
of 964 mV vs. RHE compared to 918 mV of the JM20. Additionally, the half-wave potential
was estimated to be 814 mV, which was 27 mV positively shifted compared to the JM20.
Further, the catalytic performance was evaluated towards PEMFCs, and it was found that
the PtCA showed a power density of 536 mW cm−2 at 0.6 V, whereas JM20 exhibited a
power density of 525 mW cm−2 under similar conditions.
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Graphene (GR) is a 2D-material, and it has high electron conductivity, a large SSA,
and outstanding chemical stability [41]. However, 2D-layered GR sheets readily undergo
π−π restacking by van der Waals attraction, driving reduction of the surface area and
consequently affecting the electronic properties of the materials [42]. To resolve this issue,
Zhou et al. demonstrated the fabrication of 3D-graphene/carbon nanotube (GR–CNTs)
aerogels and PVA acquired as an organic binder [43]. The CNTs were introduced into
the GR to control the restacking of GR sheets. A solvothermal process was employed to
incorporate the PtNPs onto GR–CNTs. The capacitance property of the developed catalyst
was tested for use as electrode material in supercapacitors. It was found that Pt/GR–CNTs
exhibited a relatively higher ECSA value (75.0 m2 g−1) than their counterparts, such as
Pt/GR (30.0 m2 g−1) and Pt/CNTs (28.5 m2 g−1).

The single atom-based transition-metal catalyst is considered an emerging nanomate-
rial for ORR applications. Several strategies were implemented to improve the catalytic
performance of the single atom-based transition-metal catalyst, including electronic struc-
ture modulation, defect engineering, and integration with other suitable support [44].
The preparation of NCAs was demonstrated, where Co atoms (Co-NCA@F127-1) were
atomically dispersed on chitosan template [45]. A polymeric material was obtained by re-
acting the p-aminophenol and F with HMTA under acidic and high-temperature conditions,
and the resulting polymer was coated onto a chitosan template. To acquire the pheno-
lic resin/Co2+ composite hydrogel, Co ions were chelated with the developed polymer
that contained active functional groups, namely −OH, −NH2, and −COOH. Moreover,
a surfactant, poloxamer (F127), was incorporated into the composite to improve the me-
chanical stability as well as control the morphology and pore structure of the CAs. The
morphological characterization of CA by TEM revealed that it appeared as a 3D cross-
linked coral structure. Further, ORR activity was investigated under alkaline conditions
by the developed Co-NCA@F127-1, and the catalytic response was compared with the
commercial Pt/C (Figure 3). It was found that the Co-NCA@F127-1 displayed an onset and
half-wave potential of 0.935 V and 0.805 V vs. RHE, respectively, which is almost 128 mV
higher than that of NCAs. In addition, in terms of diffusion limiting current density, the
Co-NCA@F127-1 (5.96 mA cm−2) outperformed the commercial Pt/C (5.21 mA cm−2).
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A molecular-templating strategy was employed to develop microporous carbon
aerogels (MPCAs) using a fast and straightforward polycondensation of 4,4′-biphenyl
dicarboxaldehyde (BPDA) with octaaminophenyl polyhedral oligomeric silsesquioxane
(POSS-NH2) [46]. The as-prepared MPCAs displayed a 3D interconnected macroporous
structure along with a well-defined micropore framework (Figure 4a). To improve the
catalytic efficiency of MPCAs, iron (III) nitrate was introduced with methylene blue by a
simple annealing process. The obtained catalysts were investigated towards the ORR in
0.1 mol L−1 KOH, and it was found that the MPCAs–FeIII exhibited remarkable catalytic
response compared to the Fe-free MPCAs and the commercial Pt/C catalyst (Figure 4b).
The FeIII incorporated MPCAs showed half-wave potential and current density of 0.88 V
and 5.8 mA cm−2, respectively, and these values were relatively superior to those of their
counterparts, such as pristine MPCAs (0.76 V, 4.8 mA cm−2), FeIII doped microporous
carbon particles (MPCPs-Fe) (0.82 V, 4.8 mA cm−2), and also the commercial Pt/C catalyst
(0.85 V, 5.3 mA cm−2). Further, the durability of the MPCAs–FeIII catalyst was investigated
by chronoamperometric measurements. Figure 4c depicts that there was a discernable
change in the current response after 10,000 cycles, and it indicates that the catalyst has
long-lasting catalytic activity for ORR. Moreover, no significant change in the morphology
was observed for the catalyst after 10 h of continuous current measurement. These results
revealed that MPCAs–FeIII is a promising catalyst for fuel cell applications.
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3. Carbon Nanofiber-Based Electrode Materials

Nanostructured carbons, including zero-dimensional (0D) carbon dots and quantum
dots, one-dimensional (1D) carbon nanotubes (CNTs), and two-dimensional (2D) graphene,
have attracted the interest of researchers in recent years [47]. Past research suggested that
the size, structure, shape, and functionalization of carbon nanofibers are responsible for
their characteristic applications in many fields, including materials science, nanotechnology,
energy storage, biomedicine, tissue engineering, and environmental science [48–52]. It
has been suggested that the high porosity formed by fiber interlacing allows the species
to easily pass through the fiber layers without causing excessive pressure drop, which is
advantageous for mass transfer [53]. In general, CNTs have received considerably greater
attention than CNFs due to several advantages, such as lower levels of microstructural
flaws, stronger tensile strength, smaller dimensions, and lower density. On the other hand,
CNFs are a good alternative since their manufacturing technique is easily transferrable
to industry. However, CNFs are approximately 2 to 3 times cheaper than SWCNTs or
MWCNTs [54]. In particular, CNFs perform many purposes as active electrode materials
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in fuel cell research [55]. For instance, CNFs are effectively used in microbial fuel cells
(MBFC) [56], direct methanol fuel cells (DMFC) [57], direct ethanol fuel cells (DEFC) [58],
membrane fuel cells (MFC) [59], and polymer electrolyte membrane fuel cells (PEMFC) [60].
However, one disadvantage of CNFs is their limited surface area (less than 200 m2 g−1),
which makes it difficult to disperse metal nanoparticles (MNPs) on CNF surfaces. Typically,
very high metal concentrations are necessary in real fuel cell electrodes (20–60 wt%) [61,62].
The requirement of high metal concentration is due to the need to create a thin catalyst layer
with a high density of catalytic sites, which is essential to reduce ohmic drop and mass
transfer limits [63]. However, it is necessary to maintain a good dispersion of tiny MNPs
as well as a robust resistance to corrosion phenomena for the catalyst. Electrochemical
corrosion is highly connected to surface area and the presence of flaws in the graphitic
structure. In this regard, it is critical to identify effective preparation processes capable of
achieving good metal dispersion on low surface area supports as well as increasing the
metallic phase’s resilience against sintering and dissolution [64,65]. We summarized the
physical and electrochemical properties of carbon-based electrode materials used in fuel
cell applications (Table 1).

Table 1. Summary of the various synthetic strategies, morphologies and their fuel cell properties of
the recent reported carbon based catalysts.

Electrodes Method Morphology SSA
(m2 g−1)

Electrolyte
(M)

Power Density
(mW cm−2) Ref.

N-CNF a Pyrolysis Nanofiber 916 0.1 KOH 10 [27]
NCAs b Pyrolysis Hollow structure - 0.1 NaOH 1048 ± 47 [34]

Fe-Ricobendazole Sacrificial route Agglomerated particles 600 0.1 KCl:Buffer 0.200 [35]
CA c Pyrolysis Spherical structure 3730 0.1 KOH 1.05 [36]

Pt/CA Sol-gel, NaBH4 Nanoparticles 700 − 333.4 [38]
Pt-MCA Sol-gel Mesoporous structure 613 0.5 H2SO4 536 [40]

Fe/Co/CNF Electrospinning Nanofiber 272 0.5 H2SO4 195 [48]
CNTs/CNFs Electrospinning Nanofiber - - 362 ± 20 [51]
GNFd-PtRu Polyol Nanofiber 16.9 - 19.2 [52]
WC/CNF e Hydrothermal Nanofiber 44.058 1 KOH 9.0 [58]

a Nitrogen-doped carbon nanofiber. b Nitrogen doped carbon aerogel. c Carbon aerogel. d Graphtized nano fiber.
e Tungsten carbide based carbon nanofiber.

Till now, the various forms such as porous [66], hollow [67], helical [68], twisted [69],
and stacked [70] structures of CNF have been fabricated by various experimental ap-
proaches [71]. Furthermore, the functionalities of CNFs are easily tailored through both
chemical and physical alterations, which is extremely beneficial for doping functional
nanoscale building blocks on the surface of CNFs, which yield a variety of CNF-based
functional nanomaterials. CNFs have been manufactured using a wide range of techniques,
including catalytic chemical vapor deposition (CCVD) [72], arc discharge [73], and laser
ablation [74]. While arc discharge and laser ablation produce high-purity CNFs, they
require a large-scale operation and substantial production costs. Furthermore, because
these technologies rely on carbon electrodes, they are inappropriate for large production in
the long run. However, for many applications, a cost-effective approach to mass manufac-
turing is necessary. Pt catalysts on catalytically graphitized CNF performed exceptionally
well in terms of ORR activity and durability [75]. Different forms of Pt catalysts such
as Pt/CNF, Pt/GCF-HT, and Pt/GCF-(Co) were thoroughly investigated towards ORR.
The additional heat treatment step on the catalytically graphitized CNF resulted in the
formation of a unique pore structure with prominent meso/macropores. This may further
enlarge the effective specific surface area and consequently provide more reactive sites. The
morphologies of the Pt catalysts were investigated through a high-resolution FE-SEM, as
shown in Figure 5a–c. Pt NPs were clearly loaded on fiber-based carbon supports with a
thickness of 250 nm. A close examination of the morphology revealed that the Pt deposited
as evenly for Pt/CNF and Pt/GCF-HT, whereas they developed porously on Pt/GCF-HT
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(Co). Figure 5d–f shows that Pt particles were aggregated on the CNF support, while
uniformly dispersed on GCF-GCF-(Co). In comparison to Pt/CNF and Pt/GCF-HT, a
reduced size of Pt NPs dispersed on GCF-(Co) according to HR-TEM images, as shown
in Figure 5g–i. The average particle size was determined for Pt/CNF, Pt/GCF-HT, and
Pt/GCF-(Co) and was found to be 6.0, 4.7, and 3.9 nm, respectively. In terms of PEMFC
efficiency, the Pt/GCF-(Co)-HT attained a higher maximum power density of 0.85 W cm−2

in the active area of 25 cm2 upon a modest loading level of 0.1 mg Pt cm−2. When com-
pared to the commercial Pt/C-TKK catalyst, the Pt/GCF-(Co)-HT catalyst had a superior
mass transfer performance (over 2.2 A cm2). Further, Pt catalysts incorporated graphitized
carbon in the PEMFC cathode; the 25 cm2 size of a single cell is schematically represented
in Figure 5j [74].
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Cai and co-workers [76] developed a new MFC (Figure 6a) using CNTs/CNFs elec-
trodes. The resulting catalyst had a high power density of 306 ± 14 mW·m−2, which
was 140% superior to the conventional Pt/C. The longevity of the CNTs/CNFs catalyst
was tested, and it was found that catalytic activity was retained up to 60 days without a
voltage drop. The EIS was used to examine the internal resistance of the developed catalyst.
The value of the first intersection of Nyquist plots and the Z’ axis was the value of an
analogous electrical circuit consisting of an ohmic resistance (Rohm). The Nyquist plots
were fitted with different vital experimental parameters such as double-layer capacitance,
Warburg impedance, electrolyte diffusion resistance, pore adsorption capacitance, and
charge-transfer resistance (Figure 6b). Tafel plots were used to compute exchange current
density (i0), a crucial characteristic of ORR activity, by fitting the over potential from 80 to
100 mV (Figure 6c). Overall, the CNTs/CNFs electrode achieved a high apparent capac-
itance (0.68 ± 0.11 F·cm−2) and a long discharge time, which could be attributed to the
simultaneous effects of electrochemical double-layer capacitance and pseudo-capacitance
behavior. These characteristics indicated that CNTs/CNFs are promising catalysts for
MFCs applications.

Yoon et al. [77] demonstrated the CoOx@CoNy/NCNF550-catalyst-coated MEA used
for ORR application. Figure 7a illustrates the fabrication processes of CoOx@CoNy/NCNFs
achieved at various nitridation temperatures. Initially, 1D-N-doped CNF (NCNF) paper
was made by electrospinning polyacrylonitrile (PAN) soaked in dimethyl formamide (DMF)
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solution and then carbonizing it. A consistent polydopamine (PD) coating layer formed
on the surface of the NCNF paper by immersing it in a dopamine solution at ambient
temperature. After 12 h of dopamine polymerization, the solution color changed from pale
brown to dark brown. With a significant power density (~80 mW cm−2) of 177.2 mA cm−2,
the CoOx@CoNy/NCNF550-catalyst-coated MEA demonstrated outstanding electrochem-
ical ORR performance in AMFC (Figure 7b). It was revealed that the observed excellent
ORR and OER activities were associated with the synergic effect between CoOx@CoNy
nanorods and NCNF. The ORR activity of NCNF was investigated, and the authors realized
that it had a very poor catalytic response as a result of the 2e− transfer process [78]. The
ORR was assisted by the interfacial rim sites between the CoOx@CoNy and NCNF, which
allowed for moderate adsorption of intermediates and quick charge injection. Moreover,
the Co4N nanorods’ oxidized coatings offered effective OER active sites with increased Co
d-band vacancies.
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Figure 7. (a) Schematic illustration of the fabrication processes of CoOx@CoNy/NCNFs, (b) polar-
ization curves of CoOx@CoNy/NCNF550-coated MEA in AMFC, and (c) proposed reaction scheme
of CoOx@CoNy/NCNF toward ORR/OER. Reprinted with permission from [77]. The American
Chemical Society, Washington, DC, USA, 2021.
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Jeon et al. [79] fabricated CNF/TiO2–Pt nanofibrous electrocatalyst via an in situ
process through the protocol given in Figure 8a. The discovered nanofibrous catalyst had a
larger active surface area and excellent ORR activity. The structural change that occurred
upon the calcination and reduction procedure of the electrospun nanofibers can be noticed
in the XRD analysis (Figure 8b). Furthermore, the HR-TEM photograph in Figure 8c depicts
the whole synthesis flow of the nanofibrous composite structure, and it was discovered
that before reduction, the surface appeared as a single phase of NiTiO3 with a typical
interplanar distance of 2.7, harmonizing the (104) plane. On the other hand, after the
reduction process, spherical Ni NPs with an average size of ~10 nm were well-deposited
on the TiO2 nanofiber surface. The fabricated CNF/TiO2–Pt served as a better catalyst for
ORR applications. Further, it was mentioned that the chemical structure of Pt NPs was
modified on the CNF/TiO2–Pt surface due to the interaction between the Pt NPs and TiO2,
as illustrated in Figure 8d.
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4. Graphene-Based Electrode Materials

Fuel cells are a type of energy conversion device that can generate electricity as long
as fuel is available. Because the chemical energy of fuels is directly transformed into
electricity, fuel cells have far better system efficiency than combustion engines, as well as
lower pollution emissions. As a result, fuel cells are one of the most appealing technologies
for addressing global energy and environmental concerns while also making our lives
cleaner and more sustainable. An electrolyte is layered between two electrodes in an
atypical fuel cell [80]. On the anode surface, the fuel is oxidized, and the liberated electrons
pass through an external circuit to decrease O2 at the cathode. To complete the circuit, the
mobile charge carriers (H+, OH−, CO2

3−, or O2−) pass via electrolytes at the same time.
Among various nanomaterials, GR and its derivatives have strong chemical, electrical, and
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mechanical capabilities, allowing them to be used as mass alternative materials in fuel cell
applications. In recent years, many kinds of research have been focused on maximizing the
potential usage of graphene-based materials in fuel cells. GR-based materials are excellent
electrocatalyst supports because they increase the number of active sites and make electron
transit easier for both fuel oxidation and ORR [81,82]. Due to their high electrocatalytic
activity, high poisoning tolerance, and low cost, metal-free GR materials have been proved
to be excellent candidates for ORR applications [83]. The impact of electronic structural
change, doping configurations, defects, or graphene functional groups on the performance
of fuel cells have been studied extensively [84]. The incorporation of graphene-based
materials into polymer membranes can improve ionic conductivity and correspondingly
reduce the fuel crossover [85]. High proton conductivity and impermeability to water,
H2, and methanol make polymer membranes incorporating GR materials intriguing as
fillers/additives [86]. In addition to electrolytes and electrodes, GR-based materials can
increase current collection, fuel/air distribution, and bipolar plate stability [87].

GR is a one-atom-thick layer containing hexagonally arranged sp2-hybridized car-
bons [88,89]. In 2010, Andre Geim and Konstantin Novoselov received the Nobel Prize in
Physics for their significant contributions to the development of GR-based catalysts [90].
Since then, GR has become the fastest-growing sector of science, spurring enormous ef-
fort and achievement in this field. GR-based materials include graphene oxide (GO),
reduced graphene oxide (rGO), heteroatom-doped graphene, functionalized GR, and
three-dimensional (3D) graphene present with a wide range of physical and chemical
characteristics, as summarized in Table 2 [91,92].

Table 2. The significant properties of Gr-based materials for fuel cell applications.

Gr GO Heteroatom Doped Gr 3D Gr

large surface area strong hydrophilicity tunable charge and spin
density distribution large surface area

high charge mobility high proton conductivity abundant active sites high intrinsic electrical
conductivity

high chemical stability moderated electrical
conductivity

high electrocatalytic
activity

well-organized pore
structure

strong mechanical strength tunable electrochemical
behavior

fast heterogeneous
electron transfer rate mechanical flexibility

The use of GR materials in fuel cells has been shown to offer a number of advantages.
For instance, GR-based materials act as potential ORR and fuel oxidation electrocatalysts
due to their huge surface area and conductive properties [93]. Further, strong ionic conduc-
tivity, high tensile strength, and restricted fuel permeability are achieved while combining
polymer membranes with GR [94]. Bipolar plate conductivity and corrosion resistance can
be improved upon incorporating GR with an electrode material. Qiu et al. [95] used SiO2
nanosphere templates to create 3D holey rGO hollow nanospheres sandwiched by interior
and exterior Pt nanoparticles (Pt@holeyr-GO@Pt hollow nanospheres) (Figure 9). The mass
activity for MOR was 1.3- and 1.7-fold higher in Pt@holelyr-GO@Pt hollow nanospheres
compared to Pt@r-GO@Pt hollow nanospheres and commercial Pt/C, respectively, due to
increased mechanical strength and mass diffusion, as well as more exposed active sites.

Modifying GR with heteroatom and functional groups provides more anchor sites
for metal NPs, which significantly improves ethanol electrooxidation (EOR) activity and
durability [96,97]. For instance, Yang et al. [96] used a diazo process to create aniline-
functionalized graphene to bind Pd NPs for EOR. The mass activity of the catalyst with
aniline groups (43.1 mA mg−1) was almost five times greater than that of the catalyst
without aniline modification (8.9 mA mg−1) after 7200 s of testing, which was attributable
to the well distributed Pd NPs and significant contact between aniline groups and Pd.
The 3D-structured graphene can also improve ethanol transport by reducing catalyst
aggregation and deactivation [98]. Yao et al. [99] used GO and ZIF-8 as precursors to
spray-dry Pd encapsulated into hollow N-doped GR microspheres, displaying greater EOR
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activity (2490 mA mg−1) in alkaline medium than Pd/rGO (1232 mA mg−1). As previously
stated, hollow N-doped GR microspheres are useful not only for immobilizing Pd NPs, but
also for facilitating reactant diffusion for a better catalytic response [100].
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Gr GO Heteroatom Doped Gr 3D Gr 
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tion 

large surface area 
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cal conductivity 

high chemical stability 
moderated electrical con-
ductivity 

high electrocatalytic ac-
tivity 

well-organized pore 
structure 

strong mechanical strength 
tunable electrochemical 
behavior 

fast heterogeneous 
electron transfer rate 

mechanical flexibility 
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Figure 9. Schematic diagram of (a) 2D-GO/Pt NPs, (b) 3D-GO Pt@r-GO@Pt hollow nanospheres, and
(c) 3D-Pt@holey r-GO@Pt hollow nanospheres, and (d) Pt mass-normalized CV curves recorded in an
N2-saturated 0.5 mol L−1 of H2SO4 + CH3OH solution with a sweep rate of 50 mV s−1. Reprinted
with permission from [95]. The American Chemical Society, Washington, DC, USA, 2018.

5. Single-Walled Carbon Nanotube-Based Materials

Over the past three decades, the rapid development of nanotechnology occurred
towards the 1D structural form of CNTs, which is considered the allotropic form of
carbon [101]. SWCNTs have become the most versatile materials due to their outstanding
properties such as unique structure, superior mechanical and electrical properties, excellent
flexibility, low-processing cost, optical transparency, larger SSA, and excellent catalytic
properties. Their diameters range from 0.7 to 10.0 nm [102]. So far, SWCNTs have attracted
and hold great potential applications in various fields and have also expanded to solar
cells [103], biomedicine [104], and energy storage devices [105], etc. The structural form of
SWCNTs consists of a graphene sheet (single layer) rolled into a cylindrical tube format. In
general, SWCNT-supported Pt-deposited thin film catalysts could facilitate better transport
in DMFC applications [106]. Bimetallic based composites such as Pt-Ru/SWCNT and
Pt-Mo/SWCNT were developed through a chemical reduction method, where the electro-
catalysts were annealed for 2 h at 400 ◦C under N2 atmospheric conditions. Moreover, the
as-synthesized Pt-Ru/SWCNT composite showed better current and power densities than
Pt/SWCNTs catalysts [107]. Rajala and co-workers [108] fabricated PtNWs on SWCNTs
(PtNWs/SWCNTs); the fabricated PtNWs/SWCNTs catalyst was pretreated with ozone,
which renders polar surface groups on the SWCNT. The fabricated PtNWs/SWCNT-O3
composites were more hydrophilic in nature than non-ozonized compounds. This is due
to an increase of oxygen-containing groups in the catalysts during the pretreatment with
ozone. The synthesis procedure is outlined in Figure 10. Furthermore, the larger spheri-
cal agglomerates are more stable, and they do not create such NW structures. However,
sub-nm Pt particles are required to produce PtNWs during the heat treatment, as shown
in Figure 10b,c for before and after heat treatment of CNT bundles with PtNWs. Further,
PtNWs/SWCNT-O3 catalysts outperformed in the hydrogen evolution reaction (HER)
study with higher mass activity, which was estimated by DFT calculations [108].
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Figure 10. (a) Schematic illustration of the synthesis of Pt/SWNT-O3 with 3.9 wt% of Pt con-
tent; HAADF/STEM image of (b,c) CNT bundles with Pt/SWNT before and after heat treatment.
Reprinted with permission from [108]. Elsevier, Amsterdam, The Netherlands, 2020.

Fernandez et al. [109] tested the electrochemical behavior of SWCNT by using cyclic
voltammetry and spectroscopic techniques. Moreover, SWCNTs were able to store hydro-
gen within their pores, which was confirmed through the galvanostatic charge–discharge
method. Hu’s group [110] found that enclosing catalytically active potassium and iron
metal nanoparticles in SWCNT catalysts improves ORR electrocatalytic activity. Further,
Wu and Xu [111] showed that in comparison with the assembly using Pt supported on
both MWCNT and SWCNT electrodes, during the electrochemical oxidation of methanol,
Pt-SWCNT/NAF catalyst displayed significantly enhanced power density, lower onset
potential, and lower RCT values using CV and EIS analysis, whereas Pt-MWCNT/NAF
catalysts displayed higher tolerance to CO poisoning and richness in oxygen-containing
functional groups. A membrane electrode assembly (MEA) of SWCNT/CNF electrode
was synthesized by Grishkumar et al. [112] via a simple electrophoretic technique. From
the Nyquist plot, the SWCNT/Pt catalyst exhibited a lower RCT value than that of CB/Pt
(Figure 11a,b). The overall power output was investigated through galvanostatic polariza-
tion methods (Figure 11c,d).
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Figure 11. The AC impedance spectrum in Nyquist form for HER at an overpotential of 100 mV at the
(a) CFE/CB/Pt electrode and (b) CFE/SWCNT/Pt electrode. (c) The power density and galvanostatic
polarization data at different temperatures of an MEA prepared using a CFE/SWCNT/Pt anode and
a CFE/CB/Pt cathode, and (d) the power density and galvanostatic polarization data at different
temperatures of an MEA prepared using a CFE/SWCNT/Pt anode and cathode. Reprinted with
permission from [112]. The American Chemical Society, Washington, DC, USA, 2005.

Yoo et al. [113] prepared ivy-like conductive m-SWCNTs nanonets using a one-
pot surface engineering strategy as displayed in Figure 12a. The authors employed
Nd0.5Sr0.5CoO3 (NSC)-perovskite as a catalyst for the ORR/OER to test the feasibility of
m-SWCNTs. Using a rotating ring-disk electrode (RRDE), the electrochemical ORR/OER
performance of the NSC@m-SWCNTs was investigated in an oxygen-saturated 0.1 MKOH.
The well-developed m-SWCNT nanonets are projected to increase electron conductivity
on the NSC surface, making the NSC@m-SWCNTs electrochemical kinetics easier. The
catalytic ORR activity of SWCNTs is widely recognized [114]. As a result, the NSC@m-
SWCNTs can demonstrate bifunctional OER/ORR activities (see Figure 12b). The NSC@m-
SWCNTs had a better ORR onset potential (−0.12 V against Hg/HgO) than the NSC
(−0.25 V vs. Hg/HgO) and NSC@p-SWCNTs (−0.18 V vs. Hg/HgO) in the cathodic scan
(Figure 12c). The NSC@m-SWCNTs’ greater catalytic activity was attributable to their
higher diffusion-limiting current density than the NSC and NSC@p-SWCNTs. The NSC@m-
SWCNTs are a potential bifunctional catalyst, according to these findings. Despite the
fact that this outstanding study shows tremendous potential, there are few publications
on the use of isolated SWCNTs as ORR/OER electrocatalysts. In another study, the two
different types of carbon nanotube (SWCNT and SWCNT/PANI)-based electrocatalysts
were developed by the arc discharge method. The electrocatalysts SSA of hydrophilic and
hydrophobic values and their interactions were discussed. The as-prepared SWCNT/PANI
catalysts showed significantly enhanced fuel cell efficiency [115].



Molecules 2022, 27, 761 16 of 28Molecules 2022, 27, x FOR PEER REVIEW 17 of 30 
 

 

 
Figure 12. (a) Schematic illustration of the PFO-assisted one-pot surface engineering pro-
cess for the preparation of OLO@m-SWCNT powders. (b) Conceptual illustration of the 
beneficial effect of the m-SWCNT nanonets on the bifunctional ORR/OER electrocatalytic 
activity (i.e., the ORR through the SWCNTs themselves and the OER accelerated by the 
m-SWCNT nanonets) of the NSC, and (c) ORR electrocatalytic activities of the pristine 
NSC, NSC@SWCNTs, and NSC@m-SWCNTs. Reproduced with permission [113]. Copy-
right, The Royal Society of Chemistry, London, UK, 2017. 

6. Multi-Walled Carbon Nanotube-Based Electrode Materials 
In recent years, MWCNTs-based electrode nanomaterials have attracted great atten-

tion due to their fascinating electrical, mechanical, thermal, and optical properties [116]. 
In 1991, Sumio Iijima developed carbon nanotubes from fullerene by the arc discharge 
method [117]. During the past three decades, carbon nanotube-based electrocatalysts have 
contributed to various electrochemical applications, such as electrochemical sensors [118], 
gas sensors [119], and energy storage devices [120–122]. MWCNTs are arranged in the 
form of cylindrical shapes made of sp2-carbon, and the diameter and length range from 3 
to 30 nm and 40 to 50 nm, respectively [123]. Moreover, they consists of manifold-wrapped 
single graphene sheets into hollow tubes, whose outside diameters are 2 nm [124]. More 
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balanced bi-functional electrocatalyst, and more specifically a fresh active catalyst surface 
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anol fuel cell applications. The catalyst has exhibited a mass activity value of 933.3 
mA/mgPt [127]. Dogan et al. [128] introduced hexagonal-based boron nitrite with a con-
ducting polymer supported MWCNT (h-BN-Ph-NH-CO-MWCNT) composite by cou-
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Figure 12. (a) Schematic illustration of the PFO-assisted one-pot surface engineering process for the
preparation of OLO@m-SWCNT powders. (b) Conceptual illustration of the beneficial effect of the
m-SWCNT nanonets on the bifunctional ORR/OER electrocatalytic activity (i.e., the ORR through the
SWCNTs themselves and the OER accelerated by the m-SWCNT nanonets) of the NSC, and (c) ORR
electrocatalytic activities of the pristine NSC, NSC@SWCNTs, and NSC@m-SWCNTs. Reproduced
with permission [113]. Copyright, The Royal Society of Chemistry, London, UK, 2017.

6. Multi-Walled Carbon Nanotube-Based Electrode Materials

In recent years, MWCNTs-based electrode nanomaterials have attracted great atten-
tion due to their fascinating electrical, mechanical, thermal, and optical properties [116].
In 1991, Sumio Iijima developed carbon nanotubes from fullerene by the arc discharge
method [117]. During the past three decades, carbon nanotube-based electrocatalysts have
contributed to various electrochemical applications, such as electrochemical sensors [118],
gas sensors [119], and energy storage devices [120–122]. MWCNTs are arranged in the
form of cylindrical shapes made of sp2-carbon, and the diameter and length range from
3 to 30 nm and 40 to 50 nm, respectively [123]. Moreover, they consists of manifold-
wrapped single graphene sheets into hollow tubes, whose outside diameters are 2 nm [124].
More specifically, MWCNTs are still the most promising candidate for developing next-
generation transparent energy storage and conversion technology [125]. For the first time,
Sun et al. [126] developed a porous polyaniline/multi-walled carbon nanotube-based
Co9S8 (Co9S8+PPANI/MWCNT) composite that can act as a next-generation electrochemi-
cal hydrogen storage device and achieved a discharge capacity value of 689.2 mAh g−1.
Interestingly, the spherical shaped nanoparticle of Pt2Ir/MWCNT composite has become
a well-balanced bi-functional electrocatalyst, and more specifically a fresh active catalyst
surface through electrode materials that play an important role in the development of
direct methanol fuel cell applications. The catalyst has exhibited a mass activity value of
933.3 mA/mgPt [127]. Dogan et al. [128] introduced hexagonal-based boron nitrite with
a conducting polymer supported MWCNT (h-BN-Ph-NH-CO-MWCNT) composite by
coupling, acylation, and oxidation routes. The electrode materials have high van der Waals
interactions with hydrogen, the acyl group playing an important role in enhancing their
electrocatalytic activities. Moreover, the composite had an increasing hydrogen storage ca-
pacity under cryogenic conditions. Tian et al. [129] synthesized Pt nanoparticles supported
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on MWCNT (Pt/MWCNT) composite by the intermittent microwave irradiation (IMT)
technique, and with H2PtCl6 used as a precursor. Figure 13a shows the TEM image of
Pt/MWCNT; the Pt nanoparticles were uniformly placed on the MWCNT with a size range
from 1.5 to 4.0 nm. The binding energy study of the Pt/MWCNT composite was carried
out by XPS analysis before and after the reduction treatment process. Before the reduction
process, the particles were clearly indicated at Pt 4f, Cl 2p, C 1s, and O 1s, respectively,
whereas the Cl 2p peak vanished from the Pt/MWCNT composite after the reduction treat-
ment method. The removal of halide ions can influence the catalytic activity of methanol
fuel cells (Figure 13b). The electrochemical properties of Pt/MWCNT composite were
studied using the cyclic voltammetric technique, using 0.5 M H2SO4 solution (Figure 13c).
The as-synthesized Pt/MWCNT nanocomposite showed significantly enhanced methanol
oxidation compared to E-TEK 40% Pt/C catalyst under acidic conditions (Figure 13d).
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Figure 13. (a) TEM micrographs of Pt/MWCNT-10 nm, (b) XPS survey scan spectra of Pt/MWCNT
nanocomposites before and after reduction treatment, and CVs of Pt/MWCNT nanocomposites
prepared on MWCNTs with different diameters in (c) N2 saturated 0.5 mol L−1 H2SO4 and (d) CVs
of Pt/MWCNT nanocomposites prepared on MWCNTs with different diameters in N2-saturated
0.5 mol L−1 H2SO4. Reprinted with permission from [129]. The American Chemical Society, Wash-
ington, DC, USA, 2006.
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Generally, composite materials are often used for the development of polymer elec-
trolyte membrane fuel cells. Barker et al. [130] showed the Nafion (NAF) proton exchange
membrane and ceria-coated multi-walled carbon nanotube (CeO2/MWCNT/NAF) com-
posite by wet chemical as well as solution-casting techniques. Figure 14a shows the TEM
micrograph of the MWCNT wall after treatment of ceria nanoparticles, i.e., the diame-
ter of the ceria particle was about 5 nm. The tensile strength and mechanical properties
of CeO2/MWCNT/NAF composites were enhanced by the typical stress–strain study
(Figure 14b). The electrode stability of the composite materials was tested using an open cir-
cuit potential value of the membrane degraded at 0.472 mV h−1, as shown in Figure 14c. The
gas cross-over study revealed that the catalyst retained activity for up to 96 h (Figure 14d).
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Figure 14. (a) TEM micrographs showing MWCNT after ceria treatment. (b) Typical stress–strain
curves for NAF and [2% CeO2/MWCNT]/NAF membranes at 23 ◦C and 50% RH. (c) OCV decay
of recast NAF and [2% CeO2/MWCNT]/NAF at 90 ◦C and 30% RH with H2/O2 flow rates of
100/200 sccm. (d) Gas crossover of recast NAF and [2% CeO2-MWCNT]/NAF membranes during
OCV hold. Reprinted with permission from [130]. The American Chemical Society, Washington, DC,
USA, 2014.

Similarly, multi-walled carbon nanotube-based flower-like Pt nanostructure electro-
catalysts were synthesized by the wet chemical reduction route. A TEM image of Pt-
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nanoparticle decorated MWCNT shows the flower and budlike morphologies and their
average distribution of 80 nm (Figure 15a–c). The decorated Pt-MWCNT electrocatalysts
were used to evaluate ORR by the CV technique in 0.5 M H2SO4 (Figure 15d). The elec-
trocatalytic oxidation of methanol was evaluated by the CV technique, the anodic peak
potentials were observed at ~0.9 V, and the methanol oxidation onset potential occurred at
~0.42 V (Figure 15e). The steady-state current was examined by using the chronopotentio-
metric technique (Figure 15f) [131]. Mink and co-workers successfully proposed a method
to develop an MWCNT-based anode, and it was confirmed to be a feasible micro sized fuel
cell device. The MWCNT-based anode materials hold promise as energy storage devices,
and generated both electricity and water [132].
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Figure 15. TEM (a,b) images and (c) SAED pattern obtained for the Pt nanoparticle decorated
MWCNTs. The scale bar in (b) and (c) is 100 nm; (d) CV illustrates the electrocatalytic activity of
nPtFs toward ORR in 0.5 mol L−1 H2SO4; scan rate: 25 mV s−1. (e) CV illustrating the electrocatalytic
performance of nPtFs toward oxidation of methanol (0.1 mol L−1) in 0.5 mol L−1 H2SO4; scan rate:
25 mV s−1. Inset shows the voltammetric response of electrode modified with commercial catalyst
toward methanol oxidation. (f) Chronoamperometric curves obtained for the oxidation of methanol
(0.1 mol L−1) on nPtFs and commercial catalyst-modified electrodes. Reprinted with permission
from [132]. The American Chemical Society, Washington, DC, USA, 2010.
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7. Fullerene-Based Electrode Materials

Buckminsterfullerene or C60 is an allotropic carbon present in different forms such
as a spherical, tubular, and ellipsoid shape and was discovered by Kroto in 1985. It is
represented as 0-D carbon-based materials [133]. Fullerene (C60) received considerable
attention owing to its high electron transporting properties, good electron-accepting ability,
and stable structural arrangements [134–136]. Moreover, C60-based electrode materials
have been used as an efficient electrocatalyst in many fields, such as solar cells [137],
batteries [138], biosensors [139], and fuel cells, etc. [140]. Having remarkable proper-
ties, such as convenience, low temperature operation, and high energy density of direct
methanol fuel cells, using fullerene nanosheet modified (Pt/Ru/Sn/W fullerene) electrocat-
alysts could increase their catalytic activity with fuel cell efficiency [141]. The Pt-supported
fullerene (Pt/C60(OH)24-27)-based electrocatalyst was synthesized through a simple process,
where formic acid was used as a reducing agent. From TEM analysis, the agglomerated
spherical-shaped fullerene (Pt/C60(OH)24–27) was obtained. Moreover, it can be used as
an efficient electrocatalyst during the electrocatalytic oxidation of ethanol [142]. Ram-
babu and Bhat [143] developed a sulfonated polyether ether ketone supported sulfonated
fullerene (SPEEK-Sfu)-based composite membrane by the diazotization reaction route.
The SPEEK-Sfu composite membrane matrix showed better oxidation resistance with re-
duced methanol permeability in DMFCs. A new class of heterostructured boron nitride
nanosheets was modified with fullerene molecules by a new strategic route to form 10%
F/BCN multifunctional-based supramolecules (Figure 16a). Using the LSV technique,
the constructed 10% F/BCN//10% F/BCN cell device exhibited remarkable current den-
sity (10 mA cm−2), and the insert digital image shows the overall water splitting process
(Figure 16b). Finally, the 10% F/BCN electrocatalyst was tested through the chronoampero-
metric method, using a measurement period of about 20 h, showed good electrode stability
(Figure 16c) [144].
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Xiao et al. [145] reported an inorganic fullerene-based WS2 supported Pd nanopar-
ticle catalyst by the sol-immobilization method, and the semi-spherical nature of the
IF-Pd/WS2 catalyst exhibited excellent electrocatalytic activity towards HER with good
cyclic stability. Generally, NAF can be used as an electrolyte for all types of electrode fabri-
cation processes due to its good ionic conductivity and excellent electrode stability [146].
Rambabu et al. [147] prepared a composite membrane of NAF ionomer using functional-
ized fullerene (NAF®-FF) via the diazotization reaction method, where 4-benzenediazonium
sulfonic acid was used as a precursor. Hence, the NAF®-FF composite membrane showed
enhanced proton conductivity upon testing with different methanol concentration levels
and exhibited a power density of 146 mW cm−2 in DMFC for NAF®-FF (1 wt%) with better
stability. Zhang et al. [148] fabricated hybrid materials of graphene–fullerene, in addition
to Pd NPs that were deposited on GO-PyrC60 via a simple HT approach. The hybrid-
supported Pd/RGO-PyrC60 catalyst showed increased catalytic activity towards methanol
oxidation. Feng et al. [149] designed a fullerene quantum dots (FQDs)-based CoNi layered
double hydroxide (CoNi-LDH) nanosheet anchored with Ni foam (NF) via a self-assembled
process. The decorated FQD/CoNi-LDH/NF catalyst showed excellent electrocatalytic
activity for OER and HER as well as urea oxidation at ambient atmospheric conditions.

8. Conclusions and Perspectives

Carbon-based electrocatalysts have made major contributions in recent years to the
development of cost-effective and environmentally-friendly hydrogen fuel cell energy
storage technology that fulfills worldwide energy demand. It is apparent that contemporary
research efforts are underway to develop low-cost carbon materials with improved power
conversion efficiency, reduced CO2 and CO emissions, and greater durability. To build
high-efficiency electrocatalysts, several techniques were adapted. Until now, much effort
has gone into synthesizing carbon-based catalysts with various functionalization in order
to obtain larger surface areas, uniform surface morphologies, and uniform nanoparticle
dispersions, all of which can improve electrochemical properties and long-term durability
of electrocatalysts. From these studies, a fundamental idea has been gained into the
mechanistic details regarding the morphology, size effect, and synergic effect of the catalyst
towards ORR and HER. Further, it has been demonstrated that the different forms of
carbon-based composite electrodes, such as CAs, CNFs, fullerene, SWCNTs, MWCNTs,
and GR, etc., were successfully used as promising candidates for fuel cell catalysts. Indeed,
the ability to tailor the features of these interesting materials, especially their electrical
characteristics, to reflect the specific requirements of each application promises to be a
potent means of future improvements in this cutting-edge domain.

Most of the CNT-based electrocatalysts reviewed in the article showed a better catalytic
response and were comparable to the expensive commercial catalysts. As a result, simple,
low-cost, scalable, and controlled methods for producing CNT-based nanocomposites
should always be designed, and various CNT-based applications are expected to move
rapidly in the near future, opening the door to a plethora of new potentials in this promising
and exciting field. Even though significant progress in developing low-cost CNT-based
catalysts for hydrogen fuel cell applications has been made, several challenges remain to
apply the developed catalysts for large-scale commercial applications. The major area of
research is focus to improving the stability and long-term catalytic efficiency of the catalyst
in alkaline and acidic media.
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AFC Alkaline fuel cell
Au–NT–G Gold nanoparticles–multi-walled carbon nanotube–graphene nanoribbon
BCN Boron carbon nitride
BPDA 4,4′-biphenyl dicarboxaldehyde
CAs Carbon aerogels
CB Carbon black
CF–PVA–PANI Carbon felt–polyvinyl alcohol–polyaniline
CFE Carbon fiber electrode
CV Cyclic voltammetry
DMFC Direct methanol fuel cell
ECSA Electrochemical surface area
EIS Electrochemical impedance spectroscopy
EOR Ethanol electro oxidation
FQDs Fullerene quantum dots
FFA Furfuraldehyde
GR Graphene
HMTA Hexamethylenetetramine
HER Hydrogen evolution reaction
LSV Linear sweep voltammetry
LDH Layered double hydroxide
MFC Microbial fuel cell
MCFC Molten carbonate fuel cell
MEA Membrane electrode assembly
MCA Macroporous carbon aerogel
NAF Nafion
Ni/NCA Nitrogen doped carbon aerogel modified nickel
NF Nickel foam
OCV Open circuit voltage
ORR Oxygen reduction reaction
PyrC60 Fullerene–pyrolidine
PAFC Phosphoric acid fuel cell
PEMFCs Proton-exchange membrane fuel cells
PtNPs Platinum nanoparticles
PtNWs Platinum nanowires
PVA Polyvinyl alcohol
POSS-NH2 Octa-aminophenyl polyhedral oligomeric silsesquioxane
RF Resorcinol–formaldehyde
RCT Charge-transfer resistance
rGO Reduced graphene oxide
Sfu Sulfonated fullerene
SOFC Solid-oxide fuel cell
SPEEK Sulfonated polyether ether ketone
SSA Specific surface area
SWCNT Single-walled carbon nanotube
TEA Triethylamine
TEM Transmission electron microscopy
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